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ABSTRACT 
 

 

The thesis surveys and develops spacecraft design techniques and tools involving 

the integration of collaborative/concurrent engineering (CE) for spacecraft design, 

specifically in the areas of spreadsheet and CAD/CAE software, for the NPS Spacecraft 

Design Center (SDC).  The applicability of solid modeling to the spacecraft design 

process is also explored.  A previous class design is modeled using a solid modeling tool 

and the results compared against the time and effort required for the original.  In addition, 

two CE software tools obtained from commercial and university sources are installed in 

the SDC, improved, documented if necessary, and evaluated.  The capabilities are 

evaluated with regard to learning curve, CE and their utility to the curriculum.  A User’s 

Guide for one of the software tools is written, as no documentation existed for it prior to 

this thesis.  In addition, procedures for spacecraft design utilizing the SDC are developed 

in order to enhance student design capabilities and further their educational experience.   

 v



 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 vi



DISCLAIMER 

 

 
The views expressed in this thesis are those of the author and do not reflect the 

official policy or position of the United States Navy, Department of Defense or the U.S. 

Government.   

While every attempt has been made to thoroughly document the software and its 

modifications described herein, the author makes no guarantees as to the performance of 

the software.  As with any new software tool, the reader should take precautions to 

validate all equations, computations, and functional integrity during use. 
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I. INTRODUCTION 

 

A. BACKGROUND 

The capability to rapidly integrate design ideas and concepts into a formal process 

for production has come a substantial distance since the advent of Computer-Aided 

Design (CAD), Computer-Aided Manufacturing (CAM), and Computer-Aided 

Engineering (CAE) tools.  Thirty years ago, drawings throughout the world were 

produced manually on paper.  Changes meant erasing and redrawing, along with the 

possibility of a brand new drawing being necessary.  The process was also dependent on 

a human being to recognize the need for changes to affected documents and to make 

those changes when necessary.  Collaborative design consisted of weekly meetings at 

best, with the product design process limited to paper only. [Ref. 1]  Since then, CAD has 

added revolutionary capabilities to the engineering process known as Integrated 

Collaborative/Concurrent Engineering (ICE/CE), and essentially changed the way 

product design is conducted.  

Collaborative or concurrent engineering is a philosophy that enables product 

development by a team to be conducted in a real-time, iterative fashion.  It is a powerful 

collection of processes and tools focused on making the team interaction and design 

extremely efficient, from initial concept to the manufacturing floor.  The philosophy 

entails enabling a design team with the proper tools to successfully complete the design, 

and a process to guide them through the iterative process.  The process uses rules of 

thumb, experience-based design techniques, analytic equations, and algorithms combined 

with the use of spreadsheet software to help the team successful complete a design, 

within a dramatically reduced timeframe as compared to previous spacecraft design 

processes.  This process has been greatly improved with the advent of solid modeling 

tools for the personal computer (PC) that have improved dramatically in the last five 

years. 

The revolution in CAD/CAE was born in November of 1982:  the first CAD 

program to run on a PC was introduced by Autodesk in the form of AutoCAD.  

Combined with the production of the first IBM PC that same year, the catalyst for 
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widespread use of PC-based design tools was in place.  The introduction and rapid 

improvement of PC’s fueled the competition and capability of CAD systems intensely.  

In 1987, AutoCAD included Application Program Interfaces (API’s) so that programmers 

could interface the CAD system with other software programs using C code.  This 

provided software programmers to create applications that were considered “add-ons” to 

the main kernel program.  The evolution of CAD/CAM was by this time so feverish that 

by the end of the 1980’s over 600 add-on applications were available for AutoCAD [Ref. 

1].  The overwhelming success of AutoCAD was fuel for others to increase their efforts 

in the area of solid modeling software environment development.  The only problem with 

the increase in capability was the relatively high cost of the software, between $50,000 

and $100,000 per seat. 

By the early 1990’s, the utility and enormous advantage of CAD/CAM/CAE had 

been proven beyond a doubt, enabled by intense competition, microprocessor speed and 

Moore’s Law, and ever-advancing graphical display capabilities.  Commercial products 

were available with various levels of capabilities at mostly very expensive prices.  All of 

these systems were exceptional in their ability to model physical designs accurately 

within specified tolerances for transport to electronic drawings and manufacturing 

facilities.  The area where they were lacking, however, was in concurrent/collaborative 

engineering (CE) capability and its associated tools.  This process is critical to 

successfully take a product through the design and manufacturing process, from concept 

definition and exploration to initial model development and analysis all the way to 

product engineering drawings, manufacturing, and assembly.    This has led to the CE 

philosophy creating a fundamental paradigm shift in the product design industry.  At a 

rapid pace, engineers across design disciplines are turning to software tools and facilities 

where they can pool their collective knowledge all at the same time utilizing a 

streamlined process.  With the combination of further dramatic increases in CPU speed 

and graphics capability in the late 1990’s and the significant reduction in cost and 

increase of functionality of solid modeling software, product design companies have 

begun an intense increase in the use of solid modeling software, integrating them into a 

CE process [Ref. 2].   
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The creation of powerful, flexible spreadsheet software in the early 1990’s paved 

the way for eventual integration of solid modeling tools for under $10,000 per seat with 

spreadsheet-based analysis for conceptual product design.  Since spacecraft design 

involves large quantities of relatively straightforward calculations and data manipulation 

for various spacecraft subsystems, it was inevitable that spreadsheets would become the 

tool of choice for spacecraft conceptual design.  Solid modeling combined with 

spreadsheet-based analysis offers a way for the design team to rapidly visualize the 

product, easily modify and improve the model, quickly assess impacts to the whole 

caused by changes to the parts of the spacecraft, transfer initial models to finite element 

analysis programs, and continue with the same models directly to the manufacturing 

floor.  This combination has produced nothing short of a revolution in the product design 

industry.  From automobiles to spacecraft, virtually every component in the product will 

go through a CE/CAD/-CAE/CAM cycle before final assembly.  Although each company 

and research agency has developed different processes for collaborative engineering, one 

of the most successful being embraced today involves the three aspects of CE:  design 

team, dedicated team facility, and tools and processes that enable and guide the team 

through the rapid design. [Ref. 5]  The Naval Postgraduate School (NPS) Spacecraft 

Design Center (SDC) aims to provide these three key tenets of CE to space systems 

engineering students for the very first time. 

 

B. SCOPE 

The fundamental processes that make up a design are similar across engineering 

disciplines.  This process, however, is currently undergoing a major shift in focus.  Over 

the recent years, the aerospace industry, along with major commercial and government 

entities, has developed facilities, processes, and tools to implement the CE philosophy.  

With the rapid advance in technology having no end in sight, the importance of CE and 

its integration into the design process has grown into an undeniable force.  The 

methodology used in the engineering process, from concept design to manufacturing, is 

crucial for a systems engineer to understand properly.  A new and increasingly critical 

part of the integration of technology into the design process is the use of solid modeling 

tools.  Therefore, it is imperative that engineering students at NPS who may go on to 
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serve in space acquisition programs understand the rapidly advancing tools and processes 

that enable the design, testing, and manufacture of a spacecraft.   

The thesis first explores and describes The Aerospace Corporation’s Concept 

Design Center (CDC), a powerful concurrent engineering methodology process.  The 

CDC uses Microsoft Excel to assist in the design of a space system.  The spreadsheet 

tools are used at the focus of their process, serving as the primary source of real-time 

knowledge sharing for conceptual spacecraft design.  The CDC was witnessed firsthand 

by the author prior to the installation of the tool in the SDC.  The background is critical to 

understanding the full capabilities of this type of approach to spacecraft design and its 

applicability to the SDC.   

The thesis then provides supporting evidence of the revolution in solid modeling 

as applied to the concurrent engineering process.  Across the product design industry and 

engineering disciplines, solid modeling is being infused into the design process at a rapid 

pace.  This integration, when fueled by the increase of computer processor and graphics 

capabilities, is changing the fundamental way engineering design takes place.  The utility 

and integration of solid modeling software into the CE process for the CDC spreadsheets 

at NPS is also evaluated.  The Aerospace Corporation utilizes solid modeling capability 

by including a Configuration seat separately during their design process using 

SolidWorks™, a powerful, versatile, solid modeling package obtained under an 

educational license for under $500.  In addition, a copy of California Institute of 

Technology’s rapid solid modeling tool, DrawCraft, is used in a concurrent design 

method to generate conceptual spacecraft.  DrawCraft is interfaced with SolidWorks™, 

and both are installed in the SDC.  The utility of integrating DrawCraft/SolidWorks™ 

into the CDC process is evaluated with respect to learning curve, ease of use, time to 

generate a solid model, and model modification flexibility.  The capabilities of 

SolidWorks™ with respect to the design process, the use of graphics and animations in 

presentations and reports, and exporting of solid geometry to finite element analysis 

(FEA) programs is explored and the results presented.  Application to the Space Systems 

Engineering curriculum is evaluated using a spacecraft design generated in AA4871, the 

capstone design course, as a test case.  The author was involved in the design as a 
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structures engineer.  Points of contact for personnel involved in supporting, developing 

and maintaining all software presented are located in Appendix A.   

Thirdly, the thesis details the integration of the CDC spreadsheets into the NPS 

SDC, part of the Spacecraft Research and Design Center (SRDC).  The software was 

obtained courtesy of The Aerospace Corporation.  The tool is the first fully functioning 

concurrent engineering software to be available in the NPS SDC, and is one of the most 

powerful conceptual spacecraft design tools available in industry today.  The installation 

and modification of the tool is described and documented, including all pertinent 

information for proper use in the integrated engineering environment.  Since the CDC 

was seen in use by the author, the firsthand knowledge of witnessing the expert team in 

action flavors the NPS process as written. Only the systems portion of the tool is 

considered in depth, as complete documentation of each subsystem is a task that is 

possibly beyond the reach of a single thesis.   

Finally, the CDC spreadsheet data transfer architecture, procedures for future 

modification of the tool and its Visual Basic code, and a recommended design process for 

the NPS SDC are discussed.  The data transfer architecture is critical to understand in 

order to add or modify workbooks to the overall system.  Modification and description of 

the software code is undertaken, written in Microsoft Visual Basic for Applications 

(VBA).  The extreme value of this work has been expressed by The Aerospace Company 

as no user’s guide has been written to date.  The application of the CDC process and the 

software it uses toward the NPS curriculum is evaluated primarily based on the following 

factors: ease of use, maintenance requirements, depth, and ability to reduce spacecraft 

design time in AA4871.  A comparison is undertaken based on the author’s experience in 

the capstone course prior to the software installation.  Printouts of worksheets in the 

Systems workbook are included in the appendix.  The completed User’s Guide is attached 

as a separate document.   
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II. THE CONCEPT DESIGN CENTER 

 

A. OVERVIEW 

The Concept Design Center (CDC) at The Aerospace Corporation consists of a 

number of teams focusing on different segments of spacecraft mission design, enabled by 

powerful PC-based spreadsheet tools.  At the focus of this exploration is the Space 

Segment Team, which is responsible for conceptual design of spacecraft.  The process 

methodology is founded on three key tenets: 

• A team drawing on a wealth and breadth of engineering expertise. 

• A process using design tools that are flexible and work in real-time, enabling 

design results to be obtained quickly.  

• A facility enabling easy and comfortable team and customer interaction. [Ref. 4: 

p. 3] 

The purpose of this methodology is to enable rapid generation of a spacecraft 

design based on the principles of concurrent engineering.  The methodology uses lessons 

learned, design techniques based on experience, rules of thumb, algorithms, and analytic 

equations in a data linked system that is very suitable for trade studies, technology 

insertion assessments, and overall conceptual design [Ref. 4: p. 1]. 

The design process is intended to be a rapid study into the feasibility and trade 

space interactions of a spacecraft mission.  The high-level insight that is gained from 

such a study is invaluable in the initial stages of the design.  Technology insertion effects 

may also be evaluated using the process, comparing the benefits versus risk of 

incorporation of advanced technologies [Ref. 5: p. 1].  The overall goal is to obtain mass, 

power, and cost estimates for the spacecraft.  According to Agrawal [Ref. 7: p. 44],  

The challenge to a spacecraft designer is to select the spacecraft 

configuration, technologies, and equipment to meet the functional 

requirements with high reliability and low cost. 
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B. TEAM, PROCESS, AND FACILITY 

The Space Segment Team (SST) consists of engineers specializing in the required 

subsystems for spacecraft design.  These are:  propulsion; attitude determination and 

control (ADACS); power; communications; thermal; structures; command and data 

handling (CD&H); telemetry, tracking and control (TT&C); astrodynamics; and systems 

engineer [Ref. 5: p. 4].  The SST focuses on the spacecraft part of space system 

architectures, performing trade studies on the subsystem level to determine the optimum 

configuration for a particular mission.  The experts retain control over their subsystem 

spreadsheets, allowing them the flexibility to attack design problems in any way they see 

fit.  Figure 2.1 shows the interaction of the SST with other segments directly involved in 

the process.  The members of the team are not part of the CDC full-time; rather, they are 

volunteers, carefully picked for their communication and team-building skills, and rotated 

into studies alternately to avoid burnout. 

 
Figure 2.1  The CDC Space Segment Team (courtesy of The Aerospace Corporation). 
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The integrated design process utilizes three distinct phases.  First, the customer 

reviews requirements with the team members in order to provide enough information to 

prepare for the actual design session, and to structure the trades that will take place in the 

sessions [Ref. 5: p. 2].  This takes place in meetings over a period of two to four weeks.  

The team members prepare software models and conduct research into the intended 

design.  The next phase, the actual design sessions, occur in periods of four hours over a 

timeframe of a few days.  The sessions consist of real-time collaborative interaction 

between all study participants.  The team uses Microsoft Excel to share data between 

subsystem workbooks by linking parameters between them, allowing for both manual and 

automatic updating of data.  The team discusses design issues amongst each other and 

with the customer, and iterates the design parameters until a satisfactory configuration is 

reached.  The systems engineer coordinates the efforts of the team and ensures all 

parameters are kept within study bounds.  The documentation phase follows, where 

customer requests for modifications are taken into consideration when preparing the 

extensive report on the design session and its results.  Team members are responsible for 

their section of the report, with the process taking three to four weeks to complete. 

The teams at The Aerospace Corporation have been equipped with networked 

design tools since 1997, and opened a new unclassified facility in March 2001.  Figure 

2.2 depicts the facility, and clearly shows the open, flexible nature of the rooms.  

 
Figure 2.2  CDC facility (courtesy of The Aerospace Corporation). 
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The PC’s share a common network, with pertinent software programs installed on 

each machine, enabling subsystem engineers to perform real-time analysis.  The 

spreadsheets are linked using Excel’s Object Linking and Embedding utility.  This 

enables the real-time linking of parameters between subsystems.  Databases are used by 

each subsystem to choose components for a particular configuration.  Visual Basic for 

Applications (VBA) code enables the systems engineer to control the flow of data during 

the study.  The facility also has two overhead projectors and screens that are controlled 

by a LCD touch screen interfaced to a video switched control system, allowing any 

computer monitor to be shown to the study participants.  The conference room at the back 

of the facility is where the study planning takes place.  Printers and a copier are located in 

the adjacent room in order to provide hardcopies of design session information to study 

participants. 

The combination of tools, process, and facility presents a versatile, powerful way 

to design spacecraft.  Each subsystem workbook is maintained by experts, and each study 

session is choreographed with the data flowing through the central point of the systems 

engineer.  Off-line tool capability adds to the arsenal of design tools so that engineers can 

run real-time simulations and quickly recover the results into their spreadsheets.  The 

tools available include solid modeling software in the form of SolidWorks™ and 

PCSOAP, an orbital analysis program.  Since the advent of the CDC, The Aerospace 

Corporation has decreased the time and cost for spacecraft design by up to 70%.  This has 

allowed them to increase the number of design studies significantly while continuing to 

expand the capabilities of the tool.   

The CDC’s spreadsheet tool does have limitations.  Cost estimation is performed 

using cost estimating relationships (CER’s) as opposed to using component costs and 

building an estimate from the “ground up”.  This is being addressed by Aerospace, but 

the rapidly changing cost of components combined with vendor unwillingness to share 

cost data severely hampers any bottom up cost estimation effort.  The subsystems are also 

as limited as the equations utilized and the engineers applying them.  The engineers must 

manually optimize their subsystems based on their experience and requirements 

information rather than utilize a software optimization routine or analytical optimization 

equations.  However, this manual optimization may very well be the lynchpin of the 

 10 



CDC’s software design tools.  The component databases also are limited in that they must 

be rigorously maintained in order to keep the designs based on real-world components.   

The CDC software tools are clearly extremely valuable for the rapid design of 

spacecraft, despite their limitations.  The real-time sharing of data and collaboration with 

customers and team members fosters a healthy environment for discussion of alternatives 

and allows the design to take place in a minimum amount of time.  Performance, risk, and 

cost assessments of the design can be quickly evaluated, as they never have before.  

Interdependencies of subsystems are made clear, and comparisons of components in the 

design may be evaluated.  Finally, the systems engineering process may be seen in real-

time, further adding to the experience and expertise of all team members.  This process 

and its associated tools are critical for the systems engineer to understand properly.  This 

chapter is fitting to end with an outlook from Wertz [Ref. 8: p. 50]. 

… models being developed throughout the aerospace community are 

attempting to automate this basic design process of evaluating the system-

wide implication of changes.  In due course, system engineers may 

become technologically obsolete.  Much like modern chess players, the 

challenge to future systems engineers will be to stay ahead of the 

computer in being creative and innovative. 
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III. SOLID MODELING AND INTEGRATED DESIGN 

 

A. REVOLUTION IN THE DESIGN PROCESS 

Michael Davis, founder of Headstuf Product Development [Ref. 2], described the 

capabilities of solid modeling as follows: 

Young people have no idea how powerful a concept this is.  Software at 

last that can build what you think, the way you think?  Amazing.  In 

relative historical terms, this is such a very new concept.  [Ref. 2] 

The foundation of design and product development used to rely on two separate 

entities: the designer and the engineer.  The introduction of parametric solid modeling 

tools in the mid-eighties was the herald of a new era in product design.  Parametric 

Technologies released Pro-Engineer, a parametric software design tool.  At this point, 

most companies were still focused on separate design and engineering development 

processes, not focusing their efforts toward an integrated process.  This is partly due to 

the extreme cost of CAD workstations at the time, which could easily run in excess of 

$100,000 per seat [Ref. 2].  The market suddenly became flooded with modeling tools 

that threatened to break the mold of the dedicated CAD workstation. 

The fact that solid modeling has come into the design process as a fully 

recognized major contributing factor only recently is due to the power of the personal 

computer and the advances in 3-D graphics capabilities that have come with it in the late 

1990’s.  Currently, solid modeling packages are available for reasonably powerful 

desktop computers for under $10,000, an order of magnitude cost decrease in less than 

ten years of development.  There are many advantages that solid modeling offers the 

design process, and when combined with continuing decreasing cost and increasing 

capability, they are the reason the revolution in product design is taking place.  

Visualization, analysis, revision speed, drawing creation, and data sharing are just some 

of the benefits of a good solid modeling tool.  

Integrated into the process from the beginning, solid modeling can provide for 

many different options of use.  As shown in Table 3.1, the most powerful applicable for 
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use in the SDC are the first three listed: product visualization, analysis, and revision 

speed.  It is critical that engineers as well as the customer have an idea of what the 

spacecraft will look like as early as possible in the process.  

 
Table 3.1  Features and benefits of solid modeling [From:  Ref. 3]. 

It is also very important to create an initial configuration quickly, verify that the 

spacecraft will fit in the launch vehicle fairing in the stowed configuration, and make 

revisions as necessary.  If requirements change often, as experienced by the author in the 

AA4871 concept design of the Mithra spacecraft for the Air Force Research Laboratory, 

they can be incorporated into the design quickly and easily.   

Having a solid model and solid assembly is important for accurate mass property 

calculations and interference checking, and for transfer of geometry into analysis 

software. The model is created only once, and revisions automatically update related 

dimensions within the model.  This allows the engineer to spend more time in analysis or 

trade space studies, where comparisons of various components in the design yield more 

benefits from the time invested.   
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Figure 3.1  SolidWorks™ model by Michael Davis [From:  Ref. 3]. 

The ease of use of recent solid modeling packages is astounding, allowing 

engineers to produce models of complex assemblies without any outside help. This is 

evidenced by the model in Figure 3.1.  It was developed with no outside support and 

completed in about 15 hours.  All the parts are exportable to machine fabrication 

technology as is [Ref. 3].  The combination of visualization, rapid and easy importation 

into analysis software and rapid speed of revision make a very strong case for integration 

of solid modeling into a design process. 

 

B. INTEGRATION INTO SPACECRAFT DESIGN 

When applied to the spacecraft design process in AA4871, the advantages of solid 

modeling become very clear.  The process so far at NPS has been limited in its ability to 

quickly depict an accurate representation of a spacecraft and enable changes to it in a 

flexible, easy manner.  Visualization and analysis of the spacecraft are critical to 

understanding the component fit relationships, the design evolution and interactions 

between subsystems, and how the structure will react to launch loads.  Solid modeling 

applies to mission analysis as depicted in Table 3.2.   
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Analysis 
Type 

Goal 
Solid Modeling 

Applicability 

Feasibility 

Assessment 

To establish whether an objective is achievable and 

its approximate degree of complexity (limited detail) 
Yes 

Sizing 

Estimate 

To estimate basic parameters such as size, weight, 

power or cost (limited detail) 
Yes 

Point Design To demonstrate feasibility and establish a baseline 

for comparison of alternatives (limited detail) 
Yes 

Trade Study To establish the relative advantages of alternative 

approaches or options (expanded detail) 
Yes 

Performance 

Assessment 

To quantify performance parameters (e.g., 

resolution, timeliness) for a particular approach 

(expanded detail) 

Yes 

Utility 

Assessment 

To quantify how well the system can meet overall 

mission objectives (expanded detail) 
Yes 

 

Table 3.2  Mission Analysis Hierarchy [After:  Ref. 8: p. 51]. 

Mission analysis is defined as the process of quantifying the system parameters 

and the resulting performance [Ref. 8: p. 49].  The ability to conduct each type of 

analysis is enhanced by the use of models, allowing engineers to make decisions based on 

fully visualized, easily modifiable configurations.  Although the course requirements of 

AA4871 are geared towards mission analysis to the point of completing a limited 

performance assessment, the use of solid models when integrated with the CDC 

spreadsheets will enhance the course scope, enable more trade space to be explored, 

allow more detail in the performance assessment, and contribute significantly to the 

utility assessment.  

In order to attempt to understand the true power of solid modeling, it is 

appropriate to undertake a thorough comparison with the author’s previous experience in 

the AA4871 course.  Many hours were spent by the systems engineer in the design class 

to generate an accurate 2-D drawing of the Mithra spacecraft.  As the configuration 
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changed, the drawing was revised with much difficulty due to the inherent 

interrelationships of component placement and sizes as well as the requirement for the 

spacecraft to fit within the selected launch vehicle fairing.  The configuration was to be 

depicted in 2-D only, due to the steep learning curve associated with solid modeling 

software perceived by the subsystems engineer.  It was assumed that in order to use a 

solid modeling program, much time and effort would be necessary; therefore the 2-D 

approach would yield better return on investment for the time spent.  Also, the 

subsystems engineer did not have time to explore both avenues of approach.  Figure 3.2 

shows the 2-D view of the spacecraft and the launch vehicle fairing.  
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Figure 3.2  Mithra spacecraft in the launch vehicle fairing. 

 17 



The author, as the structures engineer, could not begin to construct a detailed 

finite element model (FEM) for analysis until the final configuration was set, since the 

learning curve for the analysis software was exceptionally steep, ascertained after lengthy 

tutorial sessions.  This is the case with many complex FEM packages, since they were 

initially designed for analysis rather than 3-D modeling.  

 The final model of the spacecraft, depicted in Figure 3.3, was completed by the 

electrical power subsystem engineer, since he took the initiative to learn yet another 

modeling software that the design team was unaware of.  The structures engineer was 

busy creating analytical spreadsheets, completing the FEM, and running the analysis, 

therefore could not research and assist in the use of a solid modeling tool.  The final 

model of the spacecraft was combined with the 2-D configuration drawings and 3-D 

analysis results for the coursework presentation and reports.  If the team members had 

access to a capable, easy to use modeling tool, it would have enabled them to more 

quickly and fully understand the relationships between components and subsystems, see 

the rationale behind component placements, analyze spacecraft technical parameters, and 

draft presentations that clearly communicated the design intent and final configuration. 

 
Figure 3.3  Mithra Relay Mirror satellite. 
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Figures 3.4 and 3.5 show the Mithra satellite bus and its equipment bays as 

created by the systems engineer.  The models took a great deal of time to create and only 

2-D drawings were completed.   
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Figure 3.4  Mithra bus assembly. 

While the use of color enhances Figure 3.4’s presentation of the configuration, it 

still lacks texture and detail, as well as the critical third dimension.  Figure 3.5 is difficult 

to read and does not give the viewer a good impression of the relationships between 

components within the equipment bays.  Although it portrays the 2-D relationships in a 

satisfactory manner, the information lost because of the lack of 3-D information is 

significant.  The lack of color in Figure 3.5 also hinders their effectiveness. 

Now compare this figure to Figure 3.6, where the bus was created with 

SolidWorks™, a rapid solid modeling software program.  The bays are now clearly 

depicted in a 3-D frame of reference, and the relationships between components as to 

separation distance and relative size are extremely easy to see.  The use of lighting, 

texture, and color significantly enhance the viewer’s comprehension of the spacecraft 

component layout. 
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Figure 3.5  Mithra equipment bays, AutoCAD. 

 
Figure 3.6  Mithra bays depicted with SolidWorks™. 

The model depicted in Figure 3.6 was created with SolidWorks™ in 

approximately six to eight hours.  The basic familiarization with the software took 

approximately ten hours, giving a total time to create of about eighteen to twenty hours.  

If a student is expected to complete one to two hours study for every hour spent in class, 

this would easily fit within the curriculum’s existing time allocation for the AA4871 

design course.  It is expected that since learning the spacecraft design process is the 

student’s primary reason for enrolling in the curriculum, a significantly greater amount of 

time would be spent using the tool. 

The model dimensions are fully parametric, meaning all assembly dimensions 

update automatically to accommodate a change in any one dimension.  The internal bus 

components are free to be placed anywhere in the bus using the surface, edge, and point 

mating tools embedded in the software.  Many other relational tools are available.  The 

speed of revision after creating this model is almost instantaneous.  Any change in bus 
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side panel length changes the shelf lengths and solar panel lengths, and maintains all 

relations for the interior bay components.  For example, the large batteries are placed 

against the exterior wall of Bay 3 (rightmost view of Figure 3.6), so if the main bus 

structure dimension changes in any way, the batteries remain in their proper positions 

against the wall.  In addition, dimensions for any part may be displayed, as well as offsets 

or reference dimensions, if any.  If the relations are chosen carefully and monitored each 

time a change is made, the model will maintain excellent situational relationships and 

continue to provide valuable visualization information.  All parts are easily moved 

between bays, enabling the configurations engineer with tremendous flexibility in 

component placement, enhancing the number of configurations within the equipment 

bays that can be attempted before deciding on the final one.  

 SolidWorks™ also allows solid parts to be hidden or set to levels of transparency 

so that parts within assemblies are easily seen.  Figure 3.6 shows the bus outer structure, 

solar panels, and batteries semi-transparent.  This offers another powerful visualization 

option to the structures/configuration engineer.  Features may also be hidden temporarily 

in order to better see layered components.  The model can be rotated easily and different 

section views can be created quickly, enabling the entire design team to see relationships 

between components.  This especially aids the Thermal subsystem engineer, since it is 

necessary to determine the relative placement of components before conducting a rough 

thermal analysis.  The model may be exported into a thermal analysis program with the 

desired components already in place. 

Mass properties of each component are available, as well as the overall mass 

properties of the assembly.  Upon creation the individual parts are assigned a density 

commensurate with their mass and volume, and the software then calculates a rough 

mass.  The mass properties output also includes volume, center of mass, principal axes, 

surface area, and principal moments of inertia.  The properties computed by the software 

are very close to the spreadsheet calculations and estimates made using parametric 

equations.  Figure 3.8 shows the mass properties as displayed by SolidWorks™.  The 

principal axes are depicted for ease of reference, and the density of any given part may be 

modified at any time, enabling the structures engineer the flexibility to approximate 

component masses as necessary. 
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 These mass properties are crucial for the attitude dynamics & control engineers to 

properly assess the necessary sizes of reaction wheels for the design.  The mass and 

location of components are also critical to the launch vehicle, as the center of mass must 

be within safe vertical and horizontal operating envelopes of the launch vehicle fairing 

for stability and control purposes.  If any component must be moved, it can be done so 

readily and the new mass properties calculated immediately.  This gives the systems and 

structures engineer flexibility and speed in revision, which was lacking in the mass 

property calculations for the original Mithra design.  

 
Figure 3.7  Mass properties in SolidWorks™. 

 In order to determine whether the satellite fit within the launch vehicle fairing, it 

was necessary to create a drawing.  The dimensions of the launch vehicle fairing had to 

be determined from the launch vehicle user’s guide and input into the 2-D design 

program.  As discussed earlier, Figure 3.2 shows the Mithra satellite and the launch 
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vehicle fairing as created by the systems engineer.  The figure shows that despite the use 

of a relatively advanced drafting tool, the basic design intent is not depicted very well.  

The dimensions are difficult to see, and the 2-D representation is lacking in detail and 

texture, two key elements of product visualization.  Also, many revisions were necessary 

to ensure that changes made would keep the spacecraft within the desired launch vehicle 

fairing envelope.  A faster, easier way to accomplish this task is depicted in Figure 3.9. 

 
 Figure 3.8 SolidWorks™ model of Delta III LV fairing, Mithra bus attached. 

 The Aerospace Corporation utilizes SolidWorks™ extensively in their Concept 

Design Center.  From the author’s visit to witness the CDC in action, it was clear that the 

customer in the study was particularly interested in visualization of the spacecraft being 

designed, enabled through the solid model.  A special seat devoted to the configuration of 

the spacecraft is used for SolidWorks™.  During the design session, it was the most 

frequently displayed monitor on their large screen.   

 From their model compilation, The Aerospace Corporation provided over forty 

launch vehicle fairing solid models, including the STS and Sea Launch systems.  The 
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availability of these models, created directly from the launch vehicle user’s guides, 

provides the systems and configurations engineer a clear advantage over 2-D methods 

when trying to determine whether a complex satellite design will fit within a given fairing 

in the launch configuration.  The engineer simply has to create a new assembly in 

SolidWorks™, open the satellite and launch vehicle fairing files, and drag and drop the 

origins of both parts onto the origin of the new assembly.  The spacecraft may then be 

moved and relations put in place or removed to properly orient it with respect to the 

fairing.  Though the three pictures in the figure above do not depict dimensions, they can 

be easily turned on and off, enlarged or reduced, and placed in any way desired in 

relation to the model.  The model may be rotated to any view desired, shading and 

transparency modified, and colors changed at any time.  This 3-D capability obviously 

gives a much clearer visual image of the satellite within the launch vehicle.   

 Figure 3.9 shows a very powerful feature that enables the systems or 

configuration engineer to determine fit within the launch vehicle fairing.   The Collision 

Detection feature is turned on prior to moving an assembly or part, and gives visual and 

audio alerts when parts are detected as having collided.  This process has been done 

previously using 2-D drafting estimation and revision techniques; now it can be done in 

3-D, a much more powerful tool for complex assemblies.  The figure shows the Mithra 

bus placed in the Delta III launch vehicle fairing such that an alert is displayed, showing 

the surfaces that have been detected as having collided.  In this case, the outer panel of 

the spacecraft bus has collided with the inner fairing wall. 
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Figure 3.9 Mithra bus moved within Delta III fairing, collision detection on. 

 SolidWorks™ also allows animation and photo-realistic rendering by parts, 

enabling engineers to create detailed movies of antennas unfolding, the spacecraft 

repositioning, or range of movement of a particular appendage.  This capability, when 

combined with the ability to export the model directly to FEA programs, underscores the 

importance of incorporation of solid modeling into spacecraft design.  The examples 

shown also verify the powerful capability of solid modeling as applied to a spacecraft 

design at NPS.  It is for these reasons that the effort was undertaken to develop the 

capability of solid modeling for the NPS SDC and integrate it to the fullest extent 

possible into the CDC process.  
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IV. CDC AND THE NPS SPACECRAFT DESIGN CENTER 

 

A.   OVERVIEW 

The Aerospace Corporation provided the Excel architecture used in the CDC to 

the NPS SDC in calendar year 2000.  This was done because there was no iterative, real-

time design capability within the NPS Space Systems Engineering curriculum, leaving 

students at a disadvantage when it comes to understanding the real-world process that 

space systems engineers must go through in order to design a spacecraft.  The software 

was then modified and installed by the author for test and evaluation, with consideration 

towards future use in the Space Systems Engineering curriculum.  The effort was 

undertaken to provide the capstone design course, AA4871, a better way to conduct 

spacecraft design while furthering the educational experience of the class.  In addition, 

the long-term goal of a student-designed and NPS-built small satellite would be furthered 

by the addition of a rapid conceptual design tool.  Another reason for the effort is the fact 

that a User’s Guide to the CDC did not exist prior to this thesis, despite the 

overwhelming success of the tool at Aerospace and other organizations, including the Jet 

Propulsion Laboratory in Pasadena, California.  Currently, Aerospace systems engineers 

must train new personnel by having them witness the design process firsthand and 

allowing them to access the subsystem spreadsheets, with no preparation or manual 

available for study or guidance.  

The CDC suite consists of linked spreadsheets within Microsoft Excel with 

macros controlling key data transfer functions.  It should be noted that real-time verbal 

and written interaction between subsystems is an essential part of a successful CDC 

process.  The overall graphic representation of the CDC software was extensively 

modified prior to full installation in order to enhance the user interface experience and to 

reflect the cooperation, professionalism, and outstanding relationship existing between 

The Aerospace Corporation, the NPS SDC, and the Aeronautics and Astronautics 

Department. 

The NPS SDC lab manager and Professor Brij Agrawal control the original, 

properly functioning copy of the CDC software.  Dual backups of the spreadsheets were 
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deposited with the lab manager in case reinstallation is necessary, since he is responsible 

for all hardware and software installed in the lab.  When discussing VBA code in this and 

subsequent chapters, the terms “macro” and “subroutine” are used interchangeably. 

In order to provide for security and proper use of the tool, it is important to note 

the role of NPS network administrators. They retain overall authority and responsibility 

for the use and maintenance of the workstations/network associated with the SDC in 

accordance with NPS computer use policies.  It is imperative that they are consulted on 

all network issues, in addition to the lab manager.  This enables controlled points of 

access to the software, thereby allowing proper use and development of the tool. 

The User’s Guide approaches the CDC software from a systems perspective, 

concentrating on the Systems workbook and it’s inherent control of the data flow and 

overall guidance of the design process.  A detailed description of the Systems workbook 

is presented followed by the overall data transfer architecture, specifics on link structure, 

and the associated Visual Basic for Applications (VBA) code.  A section on modification 

to the link system, workbooks and code is also included.  Details of each subsystem are 

left to the user for investigation, since proper documentation and understanding of each 

one is a task beyond the scope of one thesis.   

The CDC User’s Guide is not intended to be an authoritative, all-encompassing or 

restrictive manual on the software and its setup.  The NPS SDC users are free to modify 

workbooks and add functions wherever improvement is warranted upon the approval of 

Professor Brij Agrawal.  Modifications should take place with the full understanding of 

the implications as delineated in this thesis. 

 

B. SYSTEMS WORKBOOK 

The systems workbook contains seven sheets:  Inputs, Outputs, Guidelines, 

Summary, Audit, TRL, and Calculations.  The primary sheets used for data transfer 

control are Inputs, Outputs, Summary, and Audit.  The Guidelines, TRL and Calculations 

sheets are for reference only.  Comments were inserted for many of the cells in each 

worksheet to serve as an in-use guide for the workbook.  This section details the Systems 

 28 



workbook in order to enable systems engineers to realize the proper use and functionality 

of this crucial part of the CDC tool. 

1. Inputs 

The two columns of each subsystem’s Output sheet are linked directly to their 

corresponding sections here, up to approximately 300 rows.  Activating any cell on the 

sheet and observing the editor location to the right of the equal sign shows the link path.  

Figure 4.1 shows cell C3 highlighted and the corresponding linked cell (in the ADACS 

workbook) appearing in the editor location.  

 
Figure 4.1  Systems workbook, Inputs worksheet. 

The Ref ID column is included as a reference for finding specific data related to 

each subsystem, and is not currently used.   It may be useful in the future upon 

integration of other software tools.  The subsystem data is linked in two columns:  the 

parameter name and the actual value.  Units are included in the parameter name to ensure 

mistakes between English and SI units are minmized.  Each subsystem is separated for 

ease of visual reference with a blue demarcation line, and the columns associated with the 

separation lines are not linked.  Each subsystem save time and interface check time stamp 

are included near the end of their columns.  Any parameter on the Outputs sheet may be 

linked to the proper column here in order to pass systems data such as total spacecraft 

mass, power, and requirements information to the subsystems with each update. 

2. Outputs 

The Outputs sheet is linked to its appropriate column on the Inputs sheet.  

Discretion is left to the systems engineer as to what data to include here.  Possible outputs 

relevant to the subsystems are study number, requirements from the Guidelines sheet, and 

total system mass and power figures.  The cells on the Outputs sheet can be directly 

linked to any other sheet in the workbook using the Copy and Paste Special-Paste Link 
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operations.  Figure 4.2 shows cell C3 linked to the Summary sheet. 

 
Figure 4.2  Systems Outputs sheet linked to the Summary sheet. 

3. Guidelines 

The Guidelines sheet is the starting information for the design.  It includes general 

information such as lifetime, orbit, and constellation size, as well as the specific 

spacecraft requirements such as repositioning requirements and pointing accuracy.  Also 

included is the overall cost target and a listing of participating subsystem engineers.  The 

cost model software is not included in the guide, since the workbook is not directly linked 

to the real-time flow of information between subsystem engineers.  

This sheet enables initial calculations to be made by each subsystem and thereby 

begins the study process.  The Aerospace logo at the top right contains the software credit 

and date of modification information.  The approximate date of any modifications to the 

software should be appended to the macro in Visual Basic to maintain a basic change 

history.  The proper format for this procedure is described in the macro comments. 
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Figure 4.3  Guidelines sheet. 

4. Summary 

The Summary sheet is the focal point of the Systems workbook.  Included on this 

sheet are linked values from the Inputs sheet and check calculations to ensure that values 

are correct and within a reasonable range for the design.  The sheet serves as the Systems 

engineer’s quality control mechanism.  The sheet may be added to in any manner with 

calculations, graphs, charts, or pictures in order to facilitate the Systems engineer’s 

situational awareness of the design.  While the sheet is best viewed at 60-90% zoom 

factor, with 75% being used for optimum display quality, splitting the screen view by 

using the split box at the top of the vertical scrollbar greatly facilitates simultaneous 

monitoring of two or more sheet sections.  Much of the functions and formatting of the 

original spreadsheet were modified in order to improve functionality and graphical 

presentation of the data.  While most changes are addressed in the text of this chapter, the 

additions and changes are documented in detail in the VBA code, Appendix C.  Figure 

4.4 shows the first row containing buttons that control the data flow and provide 

workbook information.  These subroutines were modified and improved by the author, 
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explained in more detail in Appendix C. 

 
Figure 4.4  Summary sheet data transfer control section. 

Update Button 

Runs the Update subroutine.  This automatically updates the workbook 

links for every link on the Audit sheet that has been saved since the last update.  It brings 

the most recently saved information from the subsystem Output sheets into their 

appropriate columns on the Systems Inputs sheet with all links to the Inputs sheet 

updating accordingly.  It also contains subroutines for automatic calculations and 

parameter manipulation on the Systems Summary sheet.  See the comments in the code 

for more details. 

Output Button 

Runs the SaveData subroutine.  This deletes the current data.xls file, 

copies the Systems Inputs sheet, and saves it as a new data.xls file.  The file is then used 

by the subsystems to update their Inputs sheets via their Update External Data button or 

the Edit-Links…Update Now operation. 

Display Links Button 

Runs the DisplayLinks subroutine.  This displays all links associated with 

the Systems workbook for easy reference.  It serves as a check to ensure all intended 

links are properly attached to the workbook.  The Aerospace Corporation logo displays 

information about the CDC software as installed in the SDC when pressed. 

The Inputs (Quicklook) and Spacecraft Summary (Quicklook) sections of the 

summary sheet display parameters that the Systems engineer wishes to keep track of 

during the design process.  This section can be thought of as a “quick look” for the 

design’s critical parameters and is shown in Figure 3.5.  Many of these values are used 

later in the sheet for calculation checks for various subsystems.  This section can be 

modified to include other data by linking cells directly to the desired parameter on the 

Inputs sheet.  The values will then automatically change with each update cycle.  The 
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systems engineer retains the option to directly enter a value in a cell to override the 

subsystem inputs.  If this is done, the link to the inputs sheet must be reestablished before 

the next update, otherwise the cell must continue to be updated manually.  Note that the 

Communications subsystem is divided into TT&C and C&DH.  These two subsystems 

may be under the purview of one engineer, but frequently are considered separate in their 

functions.  If it is necessary to model a specific communications payload, the mass and 

power estimates may be entered manually in the Payload area of the Mass and Power 

section.  Any other subsystem created by a design team may have its inputs inserted here, 

but care must be taken with the cell references as written in the VBA code. 

 
Figure 4.5  Inputs section of the Systems Summary sheet. 

The drag and drop operation can be used to highlight all of the section below 

which it is desired to insert the new row and move it down one row, then adjusting the 

dividers between the sections if necessary.  Since the Current area is copied into the 

Previous area when an update is performed, it will be necessary to record a new macro 

and put it in place of the previous macro in order to perform the operation correctly.  

Details of the proper subroutine operation are included in Appendix C. 

The Previous area was created using the current value cells as the source and 

copying them to the previous cells when an update is performed.  This area serves as a 

quick reference to identify changes that might exceed the study bounds, as well as 

providing verification of units and other important parameters.  It also keeps the Systems 

engineer, as well as all subsystems, aware of the effect their changes are causing over the 
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design iteration.  A macro was recorded when creating the areas highlighted in Figure 

4.5.  The Copy and Paste Special-Values operation was used on the Current areas and the 

values placed in the Previous cells.  The macros were then included at the beginning of 

the update subroutine, as detailed in Appendix C.  This has the effect of transferring the 

current values to the previous values whenever the Update button is depressed, prior to 

retrieving the new values from the subsystems.  Any other parameters of interest can be 

added to the Current and Previous areas by minimal additions to the code.  The 

comments in the VBA code detail this procedure. 

The Spacecraft Summary area of the Summary worksheet contains orbital 

parameters and mass/power information.  Shown in Figure 4.6, the Orbital Parameters 

section uses analytical equations to calculate parameters for both quality assurance and 

quick reference.   

 
Figure 4.6  The Orbit Parameters section of the Systems Summary sheet. 

 Since the orbital parameters can greatly influence a payload and its performance, 

this section can be extremely useful.  The basic mission characteristics are also 

summarized here with information such as mission lifetime, launch date, and technology 

freeze date.  The manually entered values give the Systems engineer freedom to include 

parameter data that may have contingencies associated with them or are related to the 

study in an indirect manner.  For example, the Orbit Insertion 1 ∆V and Orbit Insertion 2 

∆V cells have a contingency of 5% added to the sum of the cells above them. 
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The Mass and Power section is used to break down the mass and power of each 

subsystem and includes design margins and percentage of dry mass calculations.  The 

Mass column takes inputs in SI units and converts them to English units in the adjacent 

column.  The percentage of dry mass is included in order to ensure the values are within a 

reasonable range and to track the effects of subsystem changes on the design.  A very 

important parameter, launch vehicle mass margin, is calculated in the Launch Vehicle 

section by subtracting the total spacecraft mass from the launch vehicle throw mass. 

 
Figure 4.7  Mass and Power section of the Summary sheet. 

 

The first rows of the Payload and Spacecraft sections calculate the total mass and 

power appropriately.  Manual values are used for the payload mass and power entries to 

allow the design team flexibility, since the specifications for many payloads are not 

available in the initial design stages.  If a communications payload is being designed, its 

parameters may be entered here, separate from the TT&C/CD&H subsystems.  The mass 

and power inputs for the spacecraft are linked to those in the Inputs section of the sheet.  

Both the Payload and Spacecraft sections include design margins, or contingencies, as 

annotated in the Comments area.  Margins are calculated for the spacecraft mass and 

power, broken down between payload and other subsystems, and clearly listed in each 

section.  The margins are always manually entered values, allowing the Systems engineer 

flexibility to adjust them appropriately depending on the margins used by the subsystems. 
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Typical values of preliminary design margins range from 25% for new equipment to 5% 

for known hardware [Ref. 8:p. 317].  According to Joseph Aguilar of The Aerospace 

Corporation, the margins for conceptual design, which takes place in the CDC, should not 

fall below 25%.  The decision must be made early in the design process as to the use of 

margins by the subsystems in order to ensure proper use of this critical design factor.  In 

the SDC, the subsystem component lists may be used for general design guidance where 

available.  However, the design team should take into consideration that The Aerospace 

Corporation generally does not specify hardware at the component level.   

The Satellite Summary section calculates the End of Life (EOL) power for each 

mode based on the subsystem inputs and lists the Beginning of Life (BOL) power from 

the Power subsystem.  EOL power is the power required for proper mission performance 

at the end of the spacecraft design life, and is the average power that determines the size 

of the power source [Ref. 8:p. 407].  BOL power is the amount necessary to reach EOL 

power taking into account degradation effects over the design life of the spacecraft.  

Degradation effects can reduce BOL power over the life of the satellite by up to 30% 

[Ref. 8:p. 315].  The section also calculates the dry mass of the entire satellite (spacecraft 

plus payload), the wet mass using input from the Propulsion subsystem, and the launch 

mass including the adapter mass obtained from the Structures subsystem.  Useful 

calculations are made in the comments section, including dry mass without contingencies 

and on-orbit mass as a percentage of wet mass.   
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Figure 4.8  Satellite Summary section. 



The drop down box below launch mass will adjust the mass according to the 

number of s/c that will be launched simultaneously.  This assumes each spacecraft is 

identical across subsystem masses.   

The Power section was modified to calculate the total time spent in daylight and 

eclipse from the Mode 1-4 columns, whose titles may be modified to more accurately 

reflect the power states of the spacecraft.  The time in minutes spent in each mode is 

manually entered in the orange cells directly below the Mode 1-4 cells, with the 

appropriate titles selected from the dropdown boxes. 

 
Figure 4.9  Total time spent in daylight and eclipse. 

The dropdown boxes are linked to the highlighted area in the comments section.  

The Daylight and Eclipse Time cells sum those modes that are daylight or eclipse, 

respectively, across the Power section according to the status of the drop down boxes.  

This effectively creates a referenced association between the orbital power requirements 

and the times they will be needed.  The orbital period must completely be accounted for 

when entering values in the time cells.  For example, four possible modes consist of 

standby, tracking, downloading, and recording.  The standby mode may be used as a 

“catch-all” which includes time not specifically accounted for in the other modes.  With a 

ninety-minute orbital period, thirty may be spent in tracking and recording, and thirty in 

downloading.  This would leave thirty minutes for the standby mode, regardless of 

whether the time spent in it was in daylight or eclipse.  The total time that the spacecraft 

spends in daylight and eclipse is compared against a backup calculation at the top of the 

comments section based on the maximum eclipse and orbital period times from the 

Astrodynamics/Orbit subsystem, ensuring the entire orbital cycle is accounted for.  The 

average eclipse times are assumed to be near maximum during the spacecraft life, giving 

the appropriate scenario for design analysis [Ref. 8:p. 107].  It is important to note that 

the subsystem power and mode outputs must match the format of the Summary 
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worksheet.  This must be monitored by the Systems engineer and coordinated prior to the 

design session. 

The NASA TRL column lists each of the payload or subsystem Technology 

Readiness Levels (TRL’s), with the TRL associated with the Payload and Spacecraft 

totals rows as the minimum of their respective sections.  This gives the subsystems 

engineer a quick reference towards reliability and risk, as it is not explicitly considered in 

the CDC software.  With the lowest subsystem TRL taken as definitive for the design, 

this feature leans towards the conservative.  As seen in Figure 4.14, as TRL number 

increases, so does technology readiness.  This also allows the team to assess the impact of 

technology insertion on their design, both in capability of the spacecraft and inherent risk.  

The TRL’s estimate the cost risk due to technical difficulties inherent in development.  

Categories 1 and 2 are high risk, 3 through 5 moderate, and 6 through 8 low [Ref. 8:p. 

804].  TRL’s as applied to the CDC process are explained in more detail later in this 

chapter. 

The Convergence section was added to the base CDC software by the author 

since The Aerospace Corporation expressed interest in this capability.  It allows the 

design team to track mass and power as the design is iterated, as well as graphically 

witness the affect of subsystem changes. The mass and power history are critical sources 

of information for the systems engineer as the design will begin to converge around an 

optimum launch mass for a particular configuration.  This will in turn signal the systems 

engineer that the design may be near completion for the configuration chosen.  Controls 

for calculation of the percentage change of mass and power values from one update to the 

next were added by the author in order to realize design convergence more quickly.  The 

Update button is simply a copy of the same button at the top of the sheet, placed 

strategically to allow an update from this section.  All of the buttons may be rearranged 

on the sheet by right-clicking on them and moving them to a different location if the 

systems engineer decides to do so. 
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Figure 4.10 Convergence section. 

As the CDC Systems subsystem exists today at The Aerospace Corporation, no 

analytical capability is included to determine quantitatively that the design iteration may 

be stopped.  Instead, systems engineers rely on handwritten tracking of mass values and 

use only their experience to guide them towards moving on to another configuration.  In 

order to enhance the systems engineer’s knowledge and situational awareness of the 

design during the process, the charts graphically show the trends in mass and power as 

they change with iteration.  The controls allow values to be cleared from the columns, 

percentage calculations to be turned on and off, and an update to be performed directly 

from this section of the sheet.  This also provides a powerful educational tool for the 

Space Systems Engineering curriculum, as students may receive immediate feedback on 

the impact of subsystem changes on the overall design. 

Studies of convergence may lead to a significant decrease in design time if they 

reveal that a certain percentage change between designs is found to be optimum.  Studies 

may also be done on the relationship between mass and power convergences in order to 

reveal their effects on each other during the conceptual design stage.  In addition, any 

other parameters of interest may be monitored during the design in this fashion by a 

relatively simple copying of the section cells, charts, VBA code and push buttons if 

desired, and ensuring that they are referenced properly.  The previously working section 
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of the worksheet and the associated code would act as the guide to proper arrangement 

and function.  The data gathered from this section over a design or multiple designs may 

be extremely useful for analysis of trade study impacts, use in presentations and reports, 

and as a subject for studies on the effectiveness and design capability of the NPS SDC.   

The Percentage Change Calculation ON and OFF buttons operate by enabling 

the calculation of percentage change differences between the current and previous values 

of mass and power.  When the ON button is depressed, the adjacent cell, which acts as a 

status indicator, changes to green and displays “ON”.   

 
Figure 4.11 Percent Change Calculation controls. 

The color of the CHANGE data display cell is also set to green and “ON” displayed.  The 

OFF button acts in a similar manner, with the color of the cells changing to red to 

indicate the function has been disabled.   

 
Figure 4.12 Percent change alert. 
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The code performs the calculation when an update is performed if it is enabled, 

evidenced by the green “ON” in the status cell.  It finds the last two values in each 

column and displays the difference as a percentage relative to the previous value using 

the general formula (Current-Previous)/Previous.  The values and percentage change are 

then displayed using message boxes in order to quickly and clearly alert the Systems 

engineer to the changes and are then placed in the appropriate CHANGE data display cell.  

The CHANGE data display cell is manually formatted to display the value as a 

percentage, while the formatting for the message box alerts is done in the VBA code.  

The OFF button inhibits the performance of the calculations.  When the ON button is 

depressed during the iterative process, the last calculated value of percent change is 

replaced with “ON” in the data display cell beneath the respective columns.  The raw 

code and associated comments may be found within the VBA code section of this 

document. 

 Since the functionality is embedded in the update macro, each time the Update 

button is pressed the new value of launch mass and EOL/BOL power are taken from the 

Launch Mass cell and the EOL/BOL Power cells and written to the appropriate columns.  

The columns are linked as the data source for the charts, thus updating the chart 

automatically.  When a new study begins or it becomes necessary to clear the charts at 

any time, the Launch Mass Convergence and Power Convergence columns (chart source 

columns) can be cleared of data by depressing the Clear button corresponding to the 

column of interest.  The function may also be performed by activating the cells of 

interest, right clicking, and using the Clear Contents operation.  If the button is used to 

clear the data, it cannot be recovered, while using the Clear Contents operation enables 

recovery using the Undo button. 
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The source data range may be changed by activating the chart of interest, right 

clicking, selecting Source Data…, and modifying the Data Range field as appropriate.  

The source data range is outlined in blue when the chart area is activated.  Initially, the 

source data range is kept relatively small in order for the chart to present the information 

effectively.  As the design is iterated, the source data range may be increased as 

necessary by activating the chart and dragging the range outlined in blue to the 

appropriate size.  The clear buttons are not available when the chart is active. 



 
Figure 4.13 Activated Launch Mass Convergence chart. 

As the design progresses, the source data range or the plot area should be 

modified so that the chart displays the data in the most useful manner possible according 

to the Systems engineer’s judgment.  For instance, it may be necessary for large 

fluctuations in values at the outset of a design to maintain the source data range equal to 

the update number plus one or two.  As the variations begin to decrease, the range can be 

increased to enable the chart to depict the convergence more clearly.  This is shown more 

clearly in Figures 4.14 and 4.15.  With the source data range set to update times two, the 

range affects the chart graphics by appearing to show a relatively large fluctuation, even 

though the launch mass percent change between updates 5 and 6 is only a decrease of 4% 

from the previous value.  
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Figure 4.14 Launch Mass Convergence, source range set to update times two. 

When the range is changed to a setting of update number times three, the graphic 

appears to show a much greater variation.  This is seen in Figure 4.15, where the data is 

simply being compressed into a much larger x-axis range.  This is evidence that the 

appearance of the chart is very important and the functionality of the percent change 

calculations is extremely valuable to quantify the change between iterations.  The 

appearance can also be modified by resizing the plot area.  One possible guideline for 

convergence might be considering the iteration complete when the values stabilize to 

within 5% or less.  For example, a 1000 kg spacecraft may satisfactorily converge if the 

change in value is within 50 kg for three or four iterations.  Long-term experience with 

adjusting the plot area and proper use of the percent change feature may help to establish 

a confident rule of thumb to follow.  The use of design margins and their values should 

also be considered when assessing the convergence of a design. 
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Figure 4.15 Launch Mass Convergence, source range set to update times three. 

5. Audit 

The Audit worksheet is used to monitor the status of the subsystems during the 

design.  When the Audit Links button is pressed, the latest save time/date stamp for each 

subsystem is compared to the previous and the Status column is updated appropriately.  

The list used in the code loop is defined as “linklist” using the Excel capability to assign 

a name to ranges and manipulate them in various ways.  This is currently set to the list of 

workbooks as shown in the Link column of Figure 4.16 and may be viewed using the  

Insert-Name-Define operation from the toolbar and selecting the name to see the 

cell range in the Refers To message box.  If another workbook is added to the CDC 

software the list must be modified and the new workbook incorporated into the data flow.  

A row may be inserted and the range updated to include the new workbook, necessitating 

the graphic formatting of the new cells to be updated to match the rest of the sheet.  The 

VBA code in the AuditLinks macro must then be modified to ensure the ranges are 

44



referenced correctly and effect proper operation.  See the Appendix C for details on 

proper functioning. 

 
Figure 4.16 Audit sheet. 

6. TRL 

The Technology Readiness Level sheet provides a quick reference to the NASA 

guidelines for technology readiness, as shown in Figure 4.17.   
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Figure 4.17 NASA TRL Levels (From:  Ref. 4).  Arrow denotes increasing risk. 

This is used as a guide by each subsystem throughout the design process.  The 

TRL’s offer a reference to risk and reliability, since they quantify the level of 

development of the spacecraft components.  Each subsystem engineer is responsible for 

applying the TRL’s appropriately within their workbooks and ensuring their outputs 

accurately reflect the design.   For the systems engineer’s reference, a white paper 

explaining TRL’s in detail, in picture format, is included in the TRL sheet [Ref. 4]. 

7. Calculations 

The Calculations sheet is intended to be a scratch sheet for miscellaneous 

calculations that the systems engineer wishes to conduct separately from the other sheets.  

This sheet can also be used to link values to the summary sheet for drop-down boxes, 

formulas, or other uses. 
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C. SOLIDWORKS™ AND DRAWCRAFT INTEGRATION 

The capabilities of the solid modeling tools installed in the SDC are significant in 

their impact on the design process.  SolidWorks™ is a solid modeling tool used to create 

3-D models that is integrated into the SDC along with DrawCraft, a software tool that 

interfaces with SolidWorks™, and which was obtained by the author courtesy of the 

California Institute of Technology.   

 
Figure 4.18 Mars Polar Lander model created by Caltech. 

The DrawCraft software can be used to rapidly create a basic spacecraft from a 

toolbar of definable simple parts.  The Aerospace Corporation has also provided 

SolidWorks™ models for use in the SDC, consisting of launch vehicle fairings and basic 

spacecraft components, which can be used alone or via the DrawCraft software.  The 

software comes with a basic User’s Guide that enables the Structures/Configuration 

engineer to quickly learn to use the tool.  The software interfaces with SolidWorks™ 

through the Application Programming Interface (API) included with the SolidWorks™ 

program.  After the basic spacecraft parts and assembly are created, they may be added to 
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or modified using either the normal SolidWorks™ software interface or the DrawCraft 

interface.  The DrawCraft interface allows the addition of custom objects, which would 

include The Aerospace Corporation components.  Custom objects are parts that have 

been previously created within SolidWorks™.  The DrawCraft User’s Guide provides 

adequate guidance on how to use the tool, and the SolidWorks™ help resource is 

considerable in scope and application.  The basic components that come with the 

DrawCraft software are also directly accessible via the SolidWorks™ software itself. 

 
Figure 4.19 Thruster cluster created in SolidWorks™ with DrawCraft. 

One of the most powerful aspects of using SolidWorks™ is that upon 

modification of a part dimension, the assembly is able to automatically update based on 

the change.  The Structures/Configuration engineer must ensure the proper relationships 

exist between the parts of the assembly.  The DrawCraft tool offers an interface that will 

automatically mate the parts properly to the main bus when initially created and allow the 

addition of a custom object, or part, that has previously been created in SolidWorks™.   

 In SolidWorks™, modification of a generic DrawCraft part is accomplished by 

double-clicking on the part of interest and changing its dimensions, then performing a 

rebuild by pressing the Rebuild icon on the SolidWorks™ toolbar.  There may be parts 

created by the DrawCraft tool that are based on equations to size the parameters of the 

object.  If it is necessary to modify these in SolidWorks™, the Equations label in the part 

property area of the screen may be used to access the equations in order to determine 
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which dimension is driving the part.  Once this is determined, the side or face of the part 

containing that dimension may be double-clicked, modified, and rebuilt, with all other 

dimensions of the part updating as necessary.  If any part being modified is set to read-

only, the program will not allow modifications. In this case, the part must be activated, its 

properties accessed by right-clicking, and the read-only check box deactivated.  The 

dimensions can then be modified and the program will maintain the relationships between 

parts in the assembly. 

Though it contains minor technical errors, the DrawCraft tutorial enables rapid learning 

for the tool, allowing a simple spacecraft to be built using the tool in only a few hours.  

The thruster cluster depicted in Figure 4.19 is one example of parts that are available to 

be automatically dimensioned and mated within an assembly.  Also included are 

antennas, trusses, propellant tanks, and solar arrays.  The tutorial allows the creation of a 

basic spacecraft in just a few hours, providing a very powerful tool for the SDC and the 

spacecraft design team when added to the capabilities of SolidWorks™ itself.  

 
Figure 4.20 SolidWorks™ Mass Properties. 
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Mass properties may be accessed using the Tools command from the 

SolidWorks™ toolbar.  It is important to remember that SolidWorks™ provides for a 

generic density to be entered for each part in the assembly and the mass properties of 

each part to be viewed independently.  When the mass properties for the entire assembly 

are calculated, they will be displayed with the density option disabled.  Care must be 

taken to identify the coordinate system for the data in order to properly interface and 

crosscheck with the Attitude Determination and Control subsystem.   

The DrawCraft interface allows a mass to be entered for each part, which in turn 

is used as input into the mass properties calculations.  The solid model created may be 

saved in a file format compatible with Finite Element Analysis (FEA) programs at any 

stage in the process.  This enables rapid availability of the model for FEA where in 

previous design classes the FEA could not take place until the final configuration was set.  

As the configuration changes, the Structures/Configuration engineer can save a new copy 

of the model in either of the most popular formats, International Graphics Exchange 

System (IGES) or Standard Exchange Protocol (STEP).  These may then be imported for 

analysis into programs such as SDRC’s I-DEAS, available on the NPS network from the 

Mechanical Engineering department server.   

 

D. CDC DATA TRANSFER AND CONTROL ARCHITECTURE 

1. File and Link Structure        

The file structure of the CDC software tool as installed in the SDC consists of all 

Excel workbooks that make up the suite residing in the same folder.  This folder must be 

accessible by all team members in order to facilitate ease of maintenance and control of 

design configuration archiving.  The shared path for all links in the tool’s system is 

D:\\Aerospace Tools\CDC on the computer Endeavor.  Only the base systems and 

subsystem workbooks should be included in this folder.   
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Figure 4.21 Workbooks in D:\\Aerospace Tools\CDC. 

All other links to workbooks or programs should reside somewhere other than 

within the CDC software folder.  The folder may be located anywhere on the network as 

long as it can be accessed by all team members easily and the links in each subsystem are 

pointed to the correct folder.  All team members should be responsible for ensuring that 

all links to their workbook are functioning as necessary, including those links to 

workbooks other than included in the workbook folder.  Archiving designs is 

accomplished by creating a new folder under Aerospace Tools with the design title or 

other identifying information, copying all workbooks in the base CDC workbook folder, 

and pasting them to the new archive folder.  The base CDC workbooks may then 

continue to reside in the same folder and to be used with little concern over corruption by 

removal of workbooks.  Additional subsystem workbooks may be added to this folder if 

necessary. 

The link structure is simple, but affords a great deal of capability.  Each 

subsystem workbook’s Outputs sheet is linked, to a row depth of approximately 300 

rows, directly to the Systems Inputs sheet in the appropriate areas.  This was 

accomplished using the Copy and Paste Special-Paste Links operation.   
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Figure 4.22 Subsystem Output sheet to Systems Input sheet. 

The number of rows was chosen by the author by taking into consideration the 

longest output sheet of all subsystems included in the original CDC tool, 

Communications, adding a small margin, and assuming all other subsystems would not 

grow greater than 300 rows in any design taking place within the NPS SDC.  As the 

number of linked rows increases, the time to execute the updates increases as well.  The 

local formatting of each workbook applies to the linked data. 

2. Data Flow Architecture        

The CDC data control architecture consists of cells within worksheets, as well as 

entire worksheets, which utilize the linking properties included in the Microsoft Excel 

spreadsheet software.  The control over most of the executable code rests in the Systems 

workbook, with the Summary sheet containing the majority of the functions.  The actions 

that control the data transfer rely on a synergistic, coordinated set of commands executed 

at flexible time intervals that are promulgated by the Systems engineer.  The Audit or 

Save actions may be used at any time without negative effects, since they do not affect 

the majority of executable code.   
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Figure 4.23 CDC Data Transfer and Control Architecture 

 The Audit button is used to determine when the subsystems of interest have 

completed a save, signaling to the Systems engineer that an update may be warranted.  

When the UPDATE button is pressed, the update macro is executed.  All subsystem links 

to the input sheet are updated, including the Output sheet of the Systems workbook.  The 

code then modifies the Systems Summary sheet as described earlier.   

The OUTPUT button is depressed when the Systems engineer has examined the 

data and is prepared to send it to the subsystems.   This deletes the data workbook and 

copies the Systems Inputs sheet into a new one.  This is done in order to allow subsystems 

the flexibility, since an automatic transfer directly to them could interrupt their current 

calculations.  When the subsystems are ready to receive the new data, the Update 

External Data button on their sheets is used to place it in their own Inputs sheet. 

3. Modifying Links, Adding Workbooks and Sheets 

The links are controlled by the Edit-Links… operation as used from the command 

bar.  The Links message box shows all links to the current workbook and gives the user 

options to execute on them.  If it is desired to add another workbook to the inputs sheet, it 

must first reside in the Models folder wherever the CDC software is being run from.  
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Modification may then be accomplished by opening both workbooks simultaneously and 

using the Copy-Paste Special-Paste Links operation using the right-click method.  When 

pasting, activate only the upper left cell of the range desired to paste into, and the 

program will automatically paste to the proper range.  Care must be taken to paste only 

the exact ranges necessary for proper linking, full row, column, or sheet linking can 

exceed the system memory.  Once this is accomplished, the new link will appear in the in 

the Links box when it is next checked.  The Audit sheet linklist must also be modified, as 

noted earlier in this guide in the sheet description, to include the new link for automatic 

update when the update is performed.   For more information on using the Links controls, 

use the MS Excel help documentation.   

 
Figure 4.24 Links control box. 

When checking proper operation of the links by executing code (using any of the 

control button in the CDC), ensure only the workbook that is executing the code is open.  

Any other open workbook that is linked to the active workbook will cause an error in the 

link update procedure. 

If changes are made to any workbook in the CDC with regard to Excel link 

sources, such as graphing or database workbooks, those links may be updated separate 

from the data.xls workbook using the Edit-Links…Update Now operation on the link of 

interest.  Sheets may be added to any workbook in the CDC, and any cells may be linked 

to the Outputs sheet, which will then be automatically included in the Systems Inputs 
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sheets upon the next update.  This is the easiest way to include parameters which other 

subsystems may find useful.  If it is necessary to remove output parameters, ensure the 

entire row is deleted so no gaps in parameters or values remain. 

4. Cautions     

The proper operation of the CDC relies on control of modifications to links and 

their sources for all workbooks, as well as control of modification to the VBA code.  The 

links are affected when adding or deleting linked ranges or modifying existing ones.  The 

code is affected when recording new macros to perform an operation, or by manual 

changes.  New macros are stored in a new subroutine module that can be viewed on the 

left side of the screen when using the Visual Basic Editor, which is available directly 

from the command bar or by using the Tools-Macro-Visual Basic Editor operation.  The 

editor contains an extensive help resource that is extremely valuable when adding to or 

modifying the code.  If any modifications are made, it is suggested that the entire Models 

folder be copied to another folder and revised therein, leaving the original CDC software 

in place and operational until replacement is warranted, only after extensive testing of the 

new code.  

The subsystems require diligence in learning their powerful features and functions 

before use.  Any modifications to the workbooks themselves, especially any VBA code 

within them, must be done with a backup copy.  NPS SDC users may add sheets as 

necessary to the original CDC workbooks in order to improve their functionality, as long 

as the existing functionality of all other sheets is not corrupted. 

 

E. VISUAL BASIC FOR APPLICATIONS (VBA) CODE 

1. Overview      

VBA is a productivity-oriented tool development program that is included in all 

MS Office applications.  Its flexibility and powerful functionality allow engineers to 

rapidly develop powerful GUI’s, which are crucial to the presentation and conveyance of 

data in the concurrent engineering process.  The following sections provide a brief 

description of each section, with the details of its operation found in the code comments, 

as attached to this document. 
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The original code was documented and modified extensively over a period of two 

months in order to enhance the functionality of the overall CDC software and the 

Systems workbook.  The overall intent is to allow control of data flow to reside within 

the Systems workbook and provide a means for flexible, rapid, and clear data 

presentation and manipulation in order to enhance the Systems engineer’s, as well as each 

team member’s, overall situational awareness of the design.  The code was in serious 

need of documentation, as well as functionality enhancement.  The original code 

provided little documentation on program flow, necessitating the addition of extensive 

comments to the code as changes and additions were made. 

 
Figure 4.25 First section of VBA code before modification. 
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Figure 4.26 First section of code after modification. 

The main source of control flows from the Update subroutine, which calls other 

subroutines as it executes and contains most of the executable code for the Systems 

workbook.  The preamble to the code provides notes and general operation information 

for quick reference when studying the code.  Figures 4.25 and 4.26 compare the first few 

sections of the code before and after modification.  

2. Auto Open Macro     

The CDC tool can be run on Mac workstations.  Upon opening of the Systems 

workbook, this subroutine checks to see which operating system is in use.  It then sets the 

directory path separator as the “\” symbol for Windows, which is used in the SDC.  The 

Pub declaration makes the path separator available to all modules for delineation of file 

paths within the code. 
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Figure 4.27 Auto Open macro. 

3. Update Macro        

An update is performed when the Systems engineer presses the Update button on 

the Summary spreadsheet.  This causes the execution of the subroutine, which in turn 

calls subroutines while executing.   

 
Figure 4.28 Update subroutine, beginning section. 

When the code is executed, it sets the path separator for Windows, activates the 

Summary sheet, and assigns the current values of launch mass and BOL/EOL power to 

variables for use after insertion of the new data, at which point they will be considered 
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the previous values.  In order to prevent any cell automatic updating to occur, the 

automatic calculation property of the worksheet is disabled.  The Current_to_Previous 

subroutine is called to copy the current data for all subsystems to the proper cells, with 

automatic calculation then re-enabled so that when the links are updated the new values 

propagate throughout the sheet.   

 
Figure 4.29 Update macro code. 

The links are updated according to their save status as indicated in the Audit 

worksheet.  Each link is updated if the last save time is more recent than the last updated 

time, and the “Unavailable” alert with its proper color is reset in the status column.  

The Convergence section is then modified by the code.  The new launch mass and 

power values are placed in the first empty cell of their convergence columns using the 

Find method, which returns the cell address of the first empty cell.  If the percentage 

59



calculations are enabled as indicated by the green “ON” status indicator, the code then 

executes the calculation of mass and power percentage change relative to the previous 

values.  The last entry in the column is assigned as the current value, and the address of 

that value is checked to determine if it is the address of the first entry.  If this is 

determined, then it is assumed the current update is either the first of the design or the 

first after the column values have all been cleared.  Therefore, the previous values are not 

considered and variables are set accordingly, with the calculations of percent change 

bypassed by the GoTo command.  The code then displays the message boxes appropriate 

for that situation.  If it is determined that the address of the last entry is not the first of the 

column, then calculations are enabled and the percent change is displayed, along with the 

current and previous values.  This gives the Systems engineer a clear alert to the changes 

taking place due to the last iteration.  The last percentage change values are then placed at 

the end of the columns for ease of reference.  If calculations are not enabled, “OFF” is 

placed in the change cell and its color changed to red. 

Since the chart source data is set to the convergence columns, the charts 

automatically update.  This gives a graphic representation of the data and enables the 

Systems engineer to assess the impact of design changes during the study.  When the 

columns are cleared using the appropriate buttons, the charts also clear. 

4. Save Data Macro 

When the Output button is pressed, the Systems Input sheet is written to a file 

called “data.xls”.  This file is then accessed by the subsystems when they are ready to 

import the new data by pressing their own Update buttons or using the Update Now 

function under the Edit command on the toolbar.  The operation of the code is fairly easy 

to discern. 
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Figure 4.30 SaveData subroutine. 

5. Audit Links Macro    

 The Systems engineer monitors the save status of the subsystems by 

running the AuditLinks macro.  For each link defined in the link list on the Audit sheet, 

the code checks the save status to determine if updating is necessary and does so as 

appropriate.  The subroutine was modified from the original by adding text and color 

displays to indicate the save status of each subsystem in a more easily readable manner. 
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Figure 4.31 Audit Links macro. 

6. Display Links and Software Information Macros   

These simple subroutines add minor, but very useful capabilities to the CDC tool.  

The Display Links button is used to activate the DisplayLinks macro, where a for loop is 

used to show a message box for every link to the Systems workbook.  This enables the 

Systems engineer to quickly verify link status if in question.  The Aerospace_Info macro 

gives proper credit to the source of the software tool, and offers a way to track 

modifications to the software, specifically the Systems workbook, by adding dates of 

modification.  The current design class must be aware of the last modifications made to 

the software in order to determine if updates to capabilities may be in order. 
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Figure 4.32 Display Links and Software Information macros. 

7. Modifications, Additions, and Cautions     

Any modifications or additions to the VBA code should be done in a backup copy 

of the Models folder with all the subsystems contained therein.  The workbooks as 

installed should be left operational until new code and its capabilities are thoroughly 

tested, commented, and documented, with the additional documentation added to this 

guide.  Most cell references in the code are fixed, therefore changes in operating ranges 

in the Systems Summary sheet must be guided by the code in order to ensure continued 

proper operation.  Any cells outside those already in operation may be modified without 

restriction. 
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V. SPACECRAFT DESIGN AT THE NPS SDC 
 

A. SDC DESCRIPTION  

The SDC consists of nine Pentium workstations, plus a laptop computer, of 

varying processor speeds, ranging from 450 MHz to 733 MHz, with large screens, on a 

common network.  The workstations are arranged in order to maximize benefit of real-

time interactions between subsystems that need frequent access to each other.  The 

systems engineer or project manager may choose between the Pentium 850 MHz laptop 

computer attached to the network and projector, or the Endeavor computer station where 

the CDC software files reside. 

 

Figure 5.1  Spacecraft Design Center layout. 

All workstations have access to a common network, and the projector resides in 

the laboratory, set up for design sessions. 
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B. SYSTEM/SUBSYSTEM SETUP 

All workstations prepare for the session by logging on to the network and opening 

their respective subsystem Excel files.  When the Systems engineer has opened his 

workbook, the subsystems can also open the Systems workbook as a read-only file, 

thereby enabling them access to real-time system information.  This is a powerful feature 

of the CDC tool.  In previous design classes, the subsystem engineers did not have the 

ability to monitor the overall spacecraft status in real time, nor were they able to 

immediately assess the impacts of their changes on the spacecraft as a whole.   

The subsystems can commence work if requirements information has been 

disseminated, and save their subsystems as necessary.  Another powerful feature for use  

Figure 5.2  The NPS Spacecraft Design Center. 

at NPS is that their work may be carried out independently of a session since the data 

control is not dependent on the physical presence of the subsystem engineers or whether 

or not their workbooks are open.  This gives subsystem engineers freedom to work on 

their subsystem as time permits, and use the design sessions to assess the latest changes 

all team members have made through data exchange.  The disadvantage to this is that 
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data from other subsystems will not be available immediately, leaving the subsystem 

engineer to work on his workbook alone.  During a regular session with all team 

members present, all data is available under control of the Subsystem engineer.    

Preparation for sessions is necessary, since trade studies encompass various 

possible configurations of the spacecraft.  It is the project manager’s responsibility, along 

with the Systems engineer, to ensure that bounds and requirements for each configuration 

are distributed to team members well prior to a session.  For instance, it may be required 

to assess the effect of different orbits on payload performance.  The number of orbits to 

be evaluated and their parameters, as well as any other subsystem requirements that may 

flow from them, should be identified beforehand so that all members can prepare 

properly for the session.  In addition, the impact of technology insertion on a design may 

be assessed; with one configuration utilizing flight-proven, reliable components while 

another is significantly more advanced.  The associated risk with advanced technology 

should be taken into account for both cost estimates and impact on the component 

assembly and testing schedule.   

It is important to note that adequate time for a design class will not be available to 

complete a design in one day.  It should be the project manager’s responsibility to stop 

the session when necessary and continue work later whenever it is possible.   

C. DESIGN           

The major challenge is to obtain the initial design for the spacecraft.  Subsequent 

iterations will be modifications to the original.  The design begins by the Systems 

engineer initializing the system parameters in his Guidelines and Outputs sheets, then 

running an output, so that each team member’s subsystem model may then access the 

initial study parameters.  He then uses the Audit Links button on the Audit sheet to 

determine if the subsystems have been saved as team members work on their workbooks.  

The subsystems manually enter or link cells for the requirements information as it applies 

to them, and begin configuring their worksheets as necessary.  The Systems engineer 

monitors the progress of the subsystems and coordinates the flow of data among the 

team.  He also periodically updates the master list of design requirements parameters.  As 
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team members work on their subsystems, they exchange ideas about design issues with 

their teammates.   

When the Systems engineer is satisfied that an update is warranted, he announces 

that an update is about to be performed.  Upon receipt of the new data, the Systems 

engineer analyzes any changes and the quality of parameters, ensuring they are within 

study bounds.  If any parameters are out of bounds, the subsystems should be notified and 

an investigation made into the source of the inconsistency.  When the Systems engineer is 

ready to send the data to the subsystems, he performs the output and announces to the 

team that an update is available.  The subsystems may then import the data using their 

Update buttons, as well as check their read-only copies of the Systems workbook to 

assess the spacecraft status.  Team members at any time may explain subsystem design 

issues to the entire team so that everyone understands how the design is evolving.  This 

understanding is critical to the education of a Space Systems engineer; therefore, the 

subsystem explanations must be given a chance to take place. 

During the design, the configuration/structures engineer may be utilizing both 

Excel and SolidWorks™ to perform his analysis.  The solid modeling is an addition to 

the CDC software.  Although it is not fully integrated into the process, it performs a 

valuable role in visualizing the spacecraft design and ensuring that the stowed 

configuration is appropriate for the launch vehicle selected.  In previous spacecraft 

designs at NPS, this capability was not available, leading to much delay in structural 

analysis and attitude control calculations since modifications to the configuration could 

not be assessed completely on a real-time basis. 

 

D. DOCUMENTATION/DESIGN ARCHIVING    

When the study has been completed, the design must be archived for future 

reference for documentation or class presentation purposes by copying the Models folder 

to the Archive folder and renaming it to the design title, with the date completed included 

if so desired.  This allows one archive folder to maintain the continuity of design 

produced in the SDC.  It is important to note that design iterations may be run from the 

archive folder if so desired, but the intent is to maintain one operational source rather 
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than create multiple ones.  This is done in order to avoid problems with links or the data 

transfer and control structure. 
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VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

A. SUMMARY 

This thesis explored and described The Aerospace Corporation’s Concept Design 

Center and its associated Excel-based software tool as witnessed firsthand by the author 

prior to the installation of the tool in the SDC.  It then provided supporting evidence of 

the revolution in solid modeling as applied to the concurrent engineering process.  The 

utility and integration of solid modeling software into the CE process for the CDC 

software tool at NPS was also evaluated.  This was done based on The Aerospace 

Corporation’s utilization of a solid modeling capability in their design process by 

including a specific Configuration engineering seat in their facility.   

California Institute of Technology’s rapid solid modeling tool DrawCraft, which 

is integrated with SolidWorks™, was used in a concurrent design method to generate 

conceptual spacecraft.    The utility of integrating DrawCraft/SolidWorks™ into the CDC 

process was evaluated with respect to learning curve, ease of use, time to generate a solid 

model, and model modification flexibility.  The capabilities of SolidWorks™ with 

respect to the design process, the use of graphics and animations in presentations and 

reports, and exporting of solid geometry to finite element analysis (FEA) programs was 

explored as well and found to be robust.  Application to the Space Systems Engineering 

curriculum was evaluated using a spacecraft design generated in AA4871, the capstone 

design course, as a test case.   

The CDC software tool was integrated into the NPS SDC, and is the first fully 

functioning concurrent engineering software to be available for the curriculum’s use.  

The installation and modification of the tool was described and documented, including all 

pertinent information for proper use in the integrated engineering environment.  

Specifically, improvements were made to the Systems workbook by the addition of 

current and previous parameter display areas, as well as the addition of a launch mass and 

power convergence section, in order to facilitate design situational awareness by the 

team.  Since the CDC was seen in use by the author, the firsthand knowledge of 
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witnessing the expert team in action flavored the NPS modifications and process as 

written.   

The CDC software data transfer architecture, procedures for future modification 

of the tool and its Visual Basic for Applications code, and a recommended design process 

for the NPS SDC were developed and discussed.  The software’s data transfer 

architecture is critical to understand in order to add or modify workbooks to the 

spreadsheet software structure.  Modification and description of the software code were 

undertaken in order to improve the functionality, ease of use, and graphical display of 

systems data for the design team.  The extreme value of this work has been expressed by 

The Aerospace Corporation as no user’s guide for the CDC Excel software has been 

written to date.  The application of the CDC software toward the NPS curriculum was 

evaluated relative to the spacecraft design in AA4871.  A comparison was undertaken 

based on the author’s experience as a structures engineer in the course, prior to the 

software installation. 

 

B. CONCLUSIONS 

The Concept Design Center process and software combined with solid modeling 

tools is a very powerful team for spacecraft design at NPS.  Along with the facility, these 

things all work to benefit the design team. The tools provide a design capability to the 

NPS SDC that did not exist prior to their modification and installation.  The abilities of 

the CDC software in particular extend beyond what is necessary for the curriculum, yet it 

provides a solid foundation for students to understand the complex interactions of a real-

world spacecraft conceptual design.  The modifications to the Systems workbook 

increase the level of team awareness of the design by allowing them to track specific 

changes in mass and power between iterations.  The convergence section, in particular, is 

provides the team with a percentage change calculation warning between iterations and a 

graphical tracking mechanism for mass and power of the spacecraft, two of the three 

most important parameters of spacecraft design.  The documentation serves to guide the 

NPS space systems engineering curriculum in their future modification of the tool, 
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provide a detailed description of the inner workings of the CDC processes and tools, and 

enable a capability that did not previously exist formally in the SDC.   

Solid modeling tools provide an extremely powerful visualization capability and 

are a critical integrative facet of the process.  SolidWorks™ and DrawCraft provide the 

design team the ability to rapidly create a model, make changes to it, visualize the 

spacecraft in 3-D, extract and verify critical design information such as total mass and 

moments of inertia, and export the model to a finite element analysis program.  These 

parameters may then be compared against spreadsheet or analytical calculations in order 

to assess their equivalency.  This is done in a relatively easy manner compared to the 

author’s experience in AA4871, and in a considerably shorter time.  The additions of 

launch vehicle fairing models provided by The Aerospace Corporation and easily 

modifiable generic spacecraft components available through the DrawCraft software are 

significant contributions towards solid modeling capability at the SDC.  In addition, 

curriculum students now have a vehicle to enhance their understanding of the revolution 

in solid modeling and product design taking place in both government and commercial 

endeavors, adding a critical facet to their education as space systems engineers. 

 

C. RECOMMENDATIONS 

The CDC software can be modified by student design teams and brought to a 

level of complexity, either more or less than exists today, that more accurately 

contributes to the education and class design needs of the curriculum and AA4871.  The 

data control structure and code documentation has been verified by The Aerospace 

Corporation as being valuable to their systems engineers, as no formal training 

methodology is in place and a user’s guide was nonexistent prior to this thesis.  The 

documentation serves to guide the NPS space systems engineering curriculum in their 

future modification of the tool, and provides a detailed description of the inner workings 

of the CDC.  This documentation should be updated further as the details of the software 

functionality become more evident with its use. 

Studies may be conducted into the utility of the added convergence section of the 

Systems workbook Summary sheet.  Since the evaluation of an iterated design is 
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currently done manually by estimation based on experience, the studies may shed more 

light on the correlation between specific subsystem changes and total mass and power 

fluctuations, and their cumulative effects on the overall design.  Studies may also show if 

these fluctuations can be determined quantitatively as being sufficient to stop design 

iteration.  If this were the case, a reduction in the number of iterations to design stoppage 

would result in reduced total iteration time, thus decreasing the cost of the design in a 

commercial setting. 

The integration of concurrent engineering methodology and integrated 

collaborative engineering principles into the design process at NPS has potential for 

significantly enhancing the level of quality, comprehension, depth, and scope of future 

spacecraft designs.  Student knowledge of the real-world design process is now available, 

serving to enhance their space systems engineering education.  Though the process is 

necessarily different from that of The Aerospace Corporation, it still provides the design 

team a versatile, flexible approach to maintaining their situational awareness of the 

design throughout its iteration.  Improvements to the process are inevitably necessary, 

since this marks the first true implementation of the integrated concurrent engineering 

process into the SDC.  All NPS users of the tools should strive to incorporate and 

document such changes with the consent of the curriculum manager.  It will be necessary 

to judge the true impact of the process on spacecraft design at NPS.  This may be 

accomplished by the solicitation of feedback from design teams, assessing the real-time 

effects of the process and tools using previous designs and experience as benchmarks, 

and conducting comparisons of the product of designs; namely the final design report. 
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APPENDIX B.  CDC SYSTEMS WORKBOOK SHEETS 

Inputs Sheet 
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Outputs Sheet 

78



 

Guidelines Sheet 
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Summary Sheet 
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Summary Sheet, continued 



 

Audit Links Sheet 
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TRL Sheet 
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APPENDIX C.  SYSTEMS WORKBOOK VBA CODE 
 

' CDC Code updated by Mike Abreu, Naval Postgraduate School, May-June 2001 

' The comments in all code have been extensively revised and added to by Mike Abreu, May-June 2001 

' 

'   CDC Link Flow and general description: 

' 

'   SUBSYSTEM OUTPUT SHEETS-->CORRESPONDING COLUMNS ON SYSTEMS INPUT SHEET 

'   DATA.XLS SHEET-->SUBSYSTEM INPUT SHEETS (I linked 300 rows as a default to cover the date/time stamp for TTC, 

'   the largest subsystem output) 

' 

'           The "audit" sheet monitors the save status of each subsystem using the time/date stamp of the most recent save. 

'           Once critical subsystems are saved and show ready for updating, the RETRIEVE SUBSYTEM DATA (UPDATE) button on 

'           the summary sheet is used to update the systems workbook.  The values can then be checked for reasonability and 

'           comparision to previous values. 

'           When ready, the systems engineer uses the DISSEMINATE DATA (OUTPUT) button to write the systems 

'           input sheet to the data.xls workbook, hence updating all subsystems with the most current data. 

'           The Excel status bar at the bottom of the workbook is used to display information while retrieving or sending data. 

' 

'         NOTES: 1.  The Systems workbook should be the only one open when performing an update when working with the CDC 
software on the 

'                         same PC, otherwise it will not work correctly. 

'                    2.  When first opening a subsystem workbook after an update and save cycle has been performed, you will be asked if 
you would 

'                         like to update the links to other workbooks.  If YES is selected, the new data from the last update is imported, 
otherwise the 

'                         old data remains in place. 

'                    3.  To follow the code flow for any subroutine, enter break mode by pressing the break button on the toolbar 

'                         selecting Step Into, and executing the code one line at a time using F8.  The cursor may also be positioned 

'                         anywhere in the code after selecting into, then right clicking and using Run to Cursor to run all code before 

'                         pausing at the cursor.  Remember to press the Reset button on the toolbar when finished as the code will not 

'                         execute from Excel in break mode. 

' 

' ***Please document any code updates or modifications in the appropriate section.  See the Aerospace_Info sub at the end of this 
code.*** 

' 

Public sep                              '  Makes variables available to all subroutines 

' Auto Open macro, checks to see which system type you're running on (windows vs. mac), and assigns the directory path separator 

' appropriately. 

' 

Sub auto_open() 

    os = Left(Application.OperatingSystem, 3) 

    If os = "Mac" Then 
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        sep = ":" 

    ElseIf os = "Win" Then 

        sep = "\" 

    Else 

        MsgBox ("Unkown Operating System - Path separation character not defined") 

    End If 

End Sub 

 

' Update macro 

 

'  When the UPDATE button is pressed, for each link listed in the audit link list, this macro checks which subsystems 

' need updating based on the date/time stamp in the audit sheet Last Saved column and updates each link as necessary. 

' Also included are plotting routines that show the convergence of the launch mass and BOL/EOL power as the study progresses, as 

' well as one to transfer the current data to previous data with each update. 

' The routine can be adapted to monitor any of the study data to analyze its convergence by copying the chart 

' and making sure its source data is the same range that the code writes to.  The charts can be cleared by clearing the contents of the 
columns. 

' CAUTION:  This subroutine's cell references will not change if the sheet is modified in any way. 

'                Any modification of this section must ensure the cell relationships between the code and the sheet are properly maintained. 

 

Sub Update() 

 

    ' Initially sets variables to the current values since they will be the previous values when the new values come 

    ' into the workbook.  It then calls a subroutine to transfer current values to the previous areas.  The previous varables 

    ' are used later for percent change calculations. 

    ' The "application.calculation=xlAutomatic" enables auto updates all the linked values within the Summary sheet. 

    ' It is included to ensure all fields in the Summary sheet are automatically updated when the new data arrives. 

 

Set self = Workbooks("Systems.xls") 

    sep = Application.PathSeparator 

    Application.Calculation = xlCalculationManual 

    Worksheets("Summary").Activate 

    LM = ActiveSheet.Range("D76").Value        ' Sets the current values for use later as the previous values after update has taken 
place. 

    EOL = ActiveSheet.Range("G68").Value 

    BOL = ActiveSheet.Range("G69").Value 

    Current_to_Previous1                                            ' Copies the values from the current areas of the input section of the summary 
sheet 

    Application.Calculation = xlAutomatic                       ' to the previous areas and allows any values that change to be updated 
automatically 

                                                                            ' throughout the workbook. 

    ' Check date/time stamps from the Audit sheet and update links from subsystems if necessary. 

    For Each link In Worksheets("Audit").Range("linklist") 

        link.Offset(0, 2).Value = FileDateTime(self.Path & sep & link.Text) 
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            If link.Offset(0, 1).Value < link.Offset(0, 2).Value Then 

                Application.StatusBar = "Updating data from: " & self.Path & sep & link.Text 

                self.UpdateLink Name:=self.Path & sep & link.Text 

             End If 

        link.Offset(0, 1).Value = link.Offset(0, 2).Value      ' Replaces the old last update received with the last saved date/time stamp. 

        link.Offset(0, 3).Interior.ColorIndex = 3                ' The value will be the last time the update button was pressed. 

        link.Offset(0, 3).Value = "Unavailable" 

    Next 

     

    ' Adds current values to the convergence section by finding the first empty cell in each convergence column and copying the 
appropriate value to it. 

    With Worksheets("Summary").Range("G84:G115") 

    Set mass = .Find("", LookIn:=xlValues) 

    End With 

    mass.Value = ActiveSheet.Range("D76").Value 

    'self.Worksheets("Summary").Cells(76, 4)   ' MNA: Writes the updated launch mass to the first empty cell found, hence updating 
the plot. 

     

    With Worksheets("Summary").Range("P84:P115") 

    Set BOLPower = .Find("", LookIn:=xlValues) 

    End With 

    BOLPower.Value = ActiveSheet.Range("G69").Value 

    ' MNA: Writes the updated BOL power to the first empty cell found, hence updating the plot. 

     

    With Worksheets("Summary").Range("Q84:Q115")     ' Specifies range of the EOL power convergence column to look in and finds 
the first empy cell. 

    Set EOLPower = .Find("", LookIn:=xlValues) 

    End With 

    EOLPower.Value = ActiveSheet.Range("G68").Value 

     

    ' This section copies the updated values, calculates the percent change from the previous values, and places the values in the 
appropriate cells. 

    ' It will not execute if the Percent Chance Calculations has been turned off.  It finds the first empty cell in the same manner as 
above. 

 

If Range("L84") = "ON" Then 

    With Worksheets("Summary").Range("G84:G115") 

         Set mass1 = .Find("", LookIn:=xlValues) 

    End With 

    c = mass1.Address                                           ' Selects first empty cell, hops one cell up, and assigns the value to the current 
variable. 

    Range(c).Select 

    ActiveCell.Offset(rowoffset:=-1, columnoffset:=0).Activate 

    CurrentMass1 = ActiveCell.Value 
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    If ActiveCell.Address = "$G$85" Then 

      LM = "None" 

      MPercentChange = 0                                     ' Makes sure a division by zero does not occur by checking if the current value is in 
the first cell of 

      GoTo MassFix                                               ' the convergence columns.  This case occurs any time there is not a value in the first 
cell of the column. 

    Else 

      ActiveCell.Offset(rowoffset:=-1, columnoffset:=0).Activate 

      LM = ActiveCell.Value 

      MPercentChange = CurrentMass1 - LM              ' If all is well, LM is already set to the previous value. 

      MPercentChange = MPercentChange / LM          ' Calculates percentage change from previous value. 

      LM = Round(LM, [2]) 

    End If 

MassFix: 

        CurrentMass1 = Round(CurrentMass1, [2])                          ' Rounds the number to two decimal places. 

        MPercentChange = Round(MPercentChange, [2]) 

        title = "Launch Mass"                                                                                                   ' Displays the alert box. 

        msg = "Launch Mass [kg]" & vbCrLf & vbCrLf & "Current        " & CurrentMass1 & vbCrLf & _ 

        "Previous      " & LM & vbCrLf & vbCrLf & "Mass Changed " & MPercentChange * 100 & " %" 

        Response = MsgBox(msg, vbOKOnly, title) 

         

' The other two convergence columns work in the same way as above. 

    With Worksheets("Summary").Range("P85:P115")    ' Specifies the range of the BOL convergence column to look in and finds the 
first empy cell. 

         Set BOL1 = .Find("", LookIn:=xlValues) 

    End With 

    d = BOL1.Address 

    Range(d).Select 

    ActiveCell.Offset(rowoffset:=-1, columnoffset:=0).Activate 

    CurrentBOLPower = ActiveCell.Value 

     

    If ActiveCell.Address = "$P$86" Then 

        BPowerPercentChange = 0 

        BOL = "None" 

        GoTo BOLPowerFix 

    Else 

        ActiveCell.Offset(rowoffset:=-1, columnoffset:=0).Activate 

        BOL = ActiveCell.Value 

        BPowerPercentChange = CurrentBOLPower - BOL 

        BPowerPercentChange = BPowerPercentChange / BOL 

        BOL = Round(BOL, [2]) 

BOLPowerFix: 

        CurrentBOLPower = Round(CurrentBOLPower, [2]) 

        BPowerPercentChange = Round(BPowerPercentChange, [2]) 
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        title = "Beginning of Life Power" 

        msg = "BOL Power [W]" & vbCrLf & vbCrLf & "Current      " & CurrentBOLPower & vbCrLf & "Previous    " & _ 

        BOL & vbCrLf & vbCrLf & "BOL Power Changed " & BPowerPercentChange * 100 & " %" 

        Response = MsgBox(msg, vbOKOnly, title) 

    End If 

     

    With Worksheets("Summary").Range("Q85:Q115")       ' Specifies the range of the EOL convergence column to look in and finds 
the first empy cell. 

         Set EOL1 = .Find("", LookIn:=xlValues) 

    End With 

    e = EOL1.Address 

    Range(e).Select 

    ActiveCell.Offset(rowoffset:=-1, columnoffset:=0).Activate 

    CurrentEOLPower = ActiveCell.Value 

    If ActiveCell.Address = "$Q$86" Then 

        EPowerPercentChange = 0 

        EOL = "None" 

        GoTo EOLPowerFix 

    Else 

        ActiveCell.Offset(rowoffset:=-1, columnoffset:=0).Activate 

        EOL = ActiveCell.Value 

        EPowerPercentChange = CurrentEOLPower - EOL 

        EPowerPercentChange = EPowerPercentChange / EOL 

        EOL = Round(EOL, [2]) 

EOLPowerFix: 

        CurrentEOLPower = Round(CurrentEOLPower, [2]) 

        EPowerPercentChange = Round(EPowerPercentChange, [2]) 

        title = "End of Life Power" 

        msg = "EOL Power [W]" & vbCrLf & vbCrLf & "Current      " & CurrentEOLPower & vbCrLf & "Previous    " & EOL _ 

        & vbCrLf & vbCrLf & "EOL Power Changed " & EPowerPercentChange * 100 & " %" 

        Response = MsgBox(msg, vbOKOnly, title) 

     End If 

   

' Write appropriate values to the percent change tracking cells. 

    If Range("L84") = "OFF" Then 

      Range("G109") = "OFF" 

      Range("P109") = "OFF" 

      Range("Q109") = "OFF" 

      Range("C84").Select 

    Else 

        Range("G109").Value = MPercentChange 

        Range("P109").Value = BPowerPercentChange 

        Range("Q109").Value = EPowerPercentChange 
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        Range("C84").Select 

    End If 

End If 

 

    Application.StatusBar = False 

    Application.Calculation = xlAutomatic 

     

End Sub 

 

' Save Data Macro 

 

' This macro sets the active workbook to Systems, copies the systems input sheet, deletes the previous 

' data.xls workbook and saves the systems input sheet to a new data.xls, updating all subsystem input sheets. 

' The macro is assigned to the OUTPUT button. 

' 

Sub SaveData() 

    Application.Calculation = xlManual 

    Application.ScreenUpdating = False 

    Set self = Workbooks("systems.xls") 

    sep = Application.PathSeparator 

    Application.StatusBar = "Output Data from systems.xls: Copying 'Inputs' and 'Summary' Worksheet" 

    Sheets(Array("Inputs", "Summary")).Copy 

    On Error GoTo errtrap 

    retry = 0 

    Application.StatusBar = "Output Data from systems.xls: Killing " & self.Path & sep & "data.xls" 

    Kill self.Path & sep & "data.xls" 

    Application.StatusBar = "Output Data from systems.xls: Saving new data.xls" 

    ActiveWorkbook.SaveAs FileName:=self.Path & sep & "data.xls" 

    On Error GoTo 0 

    ActiveWorkbook.Close 

    Application.StatusBar = False 

    Application.Calculation = xlAutomatic 

    Application.ScreenUpdating = True 

    End 

     

errtrap: 

    retry = retry + 1 

    Application.StatusBar = "Output Data from systems.xls: " & self.Path & ":data.xls was busy. Retry: " & retry 

    Resume 

End Sub 

 

' Audit Links macro 
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' When the AUDIT button is pressed, the most recent subsytem save date/time stamps are transferred to the Last Saved 

' column.  This macro checks that stamp against the last update time stamp (generated when the UPDATE button is pressed) 

' and alerts the systems engineer that the subsystem is ready to update if the update stamp is older. 

' Link offset 0,1 is Last Update Received and link offset 0,2 is Last Saved. 

 

Sub AuditLinks() 

    Dim msg1, msg2 As String 

    msg1 = "Available" 

    msg2 = "Unavailable" 

    Application.Calculation = xlManual 

    Application.ScreenUpdating = False 

    Application.StatusBar = "Auditing Link Status" 

    Set self = Workbooks("systems.xls") 

    sep = Application.PathSeparator 

     

    For Each link In Worksheets("audit").Range("linklist") 

        link.Offset(0, 2).Value = FileDateTime(self.Path & sep & link.Text) 

         

        If link.Offset(0, 1).Value < link.Offset(0, 2).Value Then           ' Compares latest save time to last save time and 

           link.Offset(0, 3).Interior.ColorIndex = 4                             ' sets messages and colors to display in the link status column. 

           link.Offset(0, 3) = (msg1) 

           link.Offset(0, 3).Font.color = 6 

        End If 

        If link.Offset(0, 1).Value > link.Offset(0, 2).Value Then 

           link.Offset(0, 3).Interior.ColorIndex = 3 

           link.Offset(0, 3) = (msg2) 

           link.Offset(0, 3).Interior.ColorIndex = 3 

        End If 

    Next 

     

    Application.StatusBar = False 

    Application.ScreenUpdating = True 

    Application.Calculation = xlAutomatic 

    Worksheets("audit").Select 

End Sub 

 

 

' Remove Hidden Names macro 

 

' Module to remove all hidden names on active workbook. 

 

' Excel allows names to be given to ranges within sheets.  These names can then be used to manipulate the ranges 
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' more easily.  This macro is not currently linked to a button.  All names in the active workbook may be viewed by either 



' running this macro manually from the command bar above or using the Insert-Names-Define operation from Excel to 

' view and/or modify names and ranges.  See VBA Help on Names for more information. 

 

Sub Remove_Hidden_Names() 

 

' Dimension variables. 

Dim xName As Variant 

Dim Result As Variant 

Dim Vis As Variant 

 

'Loop once for each name in the workbook. 

For Each xName In ActiveWorkbook.Names 

 

    'If a name is not visible (it is hidden)... 

    If xName.Visible = True Then 

        Vis = "Visible" 

    Else 

        Vis = "Hidden" 

    End If 

 

    '...ask whether or not to delete the name. 

    Result = MsgBox(prompt:="Delete " & Vis & " Name " & _ 

        Chr(10) & xName.Name & "?" & Chr(10) & _ 

        "Which refers to: " & Chr(10) & xName.RefersTo, _ 

        Buttons:=vbYesNo) 

 

    'If the result is true, then delete the name. 

    If Result = vbYes Then xName.Delete 

 

    'Loop to the next name. 

Next xName 

End Sub 

 

' Display Links macro 

 

' MNA:  This macro checks all the links in the active workbooks and displays them for quick reference from the systems summary 
sheet. 

' The links can also be checked using the "Edit-Links" operation from the Edit toolbar. 

 

Sub DisplayLinks() 

  alinks = ActiveWorkbook.LinkSources 

  If Not IsEmpty(alinks) Then 

    For I = 1 To UBound(alinks) 
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        MsgBox "Link " & I & ":" & Chr(13) & alinks(I) 

    Next I 

  End If 

 End Sub 

  

' Software Information Macro 

 

' MNA:  This macro displays CDC software information.  If modifications are made to any part of the code, a quick reference to 

' the latest month and year of update can be made by adding a msg3 to the Dim statement, specifying the text of msg3, 

' then adding "vbCrLf & msg3" to the msg line. 

 

Sub Aerospace_Info() 

    Dim msg, msg1, msg2, title, Response As String 

    title = "Naval Postgraduate School Spacecraft Design Center - May 2001" 

    msg1 = "This Concept Design Center software was provided by The Aerospace Corporation" 

    msg2 = "Modifications made May 2001 by Mike Abreu at the Naval Postgraduate School, Monterey, CA" 

    msg = msg1 & vbCrLf & vbCrLf & msg2 

    Response = MsgBox(msg, vbInformation, title) 

End Sub 
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