December 4, 2001

Dr. Linwood Vincent, Scientific Officer (3)
Coastal Dynamics Program
Code 321CD
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Administrative Grants Officer (1)
Office of Naval Research
San Diego Regional Office
4520 Executive Drive, Suite 300
San Diego, CA 92121

Director, Naval Research Laboratory (1)
Attn: Code 2627
Washington, DC 20375

Defense Technical Information Center (2)
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

Office of Naval Research (1)
Attn: ONR OOC1, Mr. William McCarthy
800 North Quincy Street
Arlington, VA 22217-5660

SUBJECT: Final Technical Report
ONR Award No. N00014-98-1-0019
PI: Robert Guza

Enclosed for your records is the final technical report for the above referenced grant.

Sincerely,

UCSD/Scripps Institution of Oceanography

Ann F. Dunbar
Contract & Grant Specialist
A methodology has been developed to assimilate measurements of wave frequency spectra (e.g. from a buoy or synthetic aperture radar) into global and regional-scale wind-wave prediction models. Wave rays (great circles in deep water) are used to establish a relationship between a specific wave measurement and the geographic source location of the wave energy from an earlier model time step. The source of the energy can either be from within the model domain (local wave generation) or originate at the model boundary (input wave energy boundary conditions). The ratio of measured and predicted wave energy is used to correct the original model estimates of source energy and the corrected source information is propagated forward in real time as part of the model’s assimilation cycle. Predicted arrivals of southern hemisphere swell along the U.S. west coast were improved significantly by using this assimilation technique. These findings were presented at the 2001 WISE Meeting (Waves In Shallow Environments) and are being prepared for publication as part of the ongoing development and validation of the method at NRL-Stennis.
Data Enhanced Modeling of Sea and Swell on the Continental Shelf

Robert T. Guza

A methodology has been developed to assimilate measurements of wave energy, as a function of wave frequency, into wind-wave prediction models. The utility of the method has been demonstrated using data from buoys in the Pacific Ocean and the Southern California Bight. The assimilation scheme has been transitioned to NRL-Stennis for additional validation and development into an operational product.
A methodology has been developed to assimilate measurements of wave frequency spectra (eg. from a buoy or synthetic aperture radar) into global and regional-scale wind-wave prediction models. Wave rays (great circles in deep water) are used to establish a relationship between a specific wave measurement and the geographic source location of the wave energy from an earlier model time step. The source of the energy can either be from within the model domain (local wave generation) or originate at the model boundary (input wave energy boundary conditions). The ratio of measured and predicted wave energy is used to correct the original model estimates of source energy and the corrected source information is propagated forward in real time as part of the model's assimilation cycle. Predicted arrivals of southern hemisphere swell along the U.S. west coast were improved significantly by using this assimilation technique. These findings were presented at the 2001 WISE Meeting (Waves In Shallow Environments) and are being prepared for publication as part of the ongoing development and validation of the method at NRL-Stennis.
A methodology has been developed to assimilate measurements of wave energy, as a function of wave frequency, into wind-wave prediction models. The utility of the method has been demonstrated using data from buoys in the Pacific Ocean and the Southern California Bight. The assimilation scheme has been transitioned to NRL-Stennis for additional validation and development into an operational product.