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BLENDING METHODOLOGY OF LINEAR PARAMETER VARYING CONTROL

SYNTHESIS OF F-16 AIRCRAFT SYSTEM

JONG-YEOB SHIN�, GARY J. BALASy, AND ALPAY M. KAYAz

Abstract. This paper presents the design of a linear parameter varying (LPV) controller for the F-16

longitudinal axes over the entire 
ight envelope using a blending methodology which lets an LPV controller

preserve performance level over each parameter subspace and reduces computational costs for synthesizing

an LPV controller. Three blending LPV controller synthesis methodologies are applied to control F-16

longitudinal axes. Using a function substitution method, a quasi-LPV model of the F-16 longitudinal axes

is constructed from the nonlinear equations of motion over the entire 
ight envelope, including non-trim

regions, to facilitate synthesis of LPV controllers for the F-16 aircraft. The nonlinear simulations of the

blended LPV controller show that the desired performance and robustness objectives are achieved across all

altitude variations.

Key words. LPV control synthesis, F-16 longitudinal axes

Subject classi�cation. Guidance and Control

Nomenclature.

m, Iyy : Mass (slug), Inertial moments (slug ft2)

V , q : Velocity (ft sec�1), Dynamic pressure (psi)

�, q : Angle of attack (rad), Pitch rate (rad sec�1)

�, 
 : Pitch angle (rad), Flight path angle (rad)

Æe, T : Elevator de
ection (rad), Thrust (lb)

�c, S : Chord length (ft), Reference area (ft2)

Xac, Xcg : Aerodynamic center position (ft), Center of gravity position (ft)

CX , CZ : X and Z force aerodynamic coeÆcients

CXq
, CZq : Aerodynamic stability derivatives

Cmo
: Pitch moment aerodynamic coeÆcient

Cmq : Pitch moment aerodynamic stability derivative

1. Introduction. Extensive researches have focused over the last ten years on developing analysis

and synthesis techniques for gain-scheduled controllers for linear parameter varying (LPV) systems [13, 12,

17, 6, 2, 15]. In Ref. [13, 12], conditions are given which guarantee stability, robustness, and performance

properties of the global gain-scheduled designs. Recent theoretical developments have produced methods

for synthesizing gain-scheduling controllers for LPV systems, which guarantee a level of robust stability

and performance across scheduling parameter spaces [6, 2, 15]. In Ref. [2], LPV control synthesis methods

have also been developed using parameter-dependent Lyapunov functions to lead to a less conservative

result. This gain-scheduling approach has been successfully applied to synthesize controllers for pitch-axis

�ICASE, MS 132C, NASA Langley Research Center, Hampton, VA 23681. This research was supportd by National Aero-

nautics and Space Administration under NASA Contract No. NAS1-97046 while the �rst author was in residence at ICASE,
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yProfessor, Department of Aerospace Engineering and Mechanics, University of Minnesota, 110 Union St. SE, Minneapolis,

MN 55455.
zGraduate Research Assistant, Department of Mechanical Engineering, University of California, Berkeley, CA 94720.
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missile autopilots [3, 11], F-14 aircraft lateral-directional axis during powered approach [4, 5], and turbofan

engines [8].

One of the potential diÆculties in practical uses of the LPV synthesis methodology with parameter-

dependent Lyapunov functions is that the complexity of the linear matrix inequality (LMI) optimization

problem increases exponentially with the number of scheduling parameters and the number of the grid

points over the scheduling parameter spaces. One approach to facilitate practical use of LPV synthesis

methodology, denoted as the \blending approach", has been discussed in Ref. [15, 14]. This approach to

control design partitions the full parameter space into overlapping small subspaces. An LPV controller is

synthesized for each small region. These regional controllers are blended into a single LPV controller for the

entire parameter space. In this paper, this blending approach is applied to control F-16 longitudinal axes

over the entire 
ight envelope.

To synthesize an LPV controller for an F-16 aircraft, an LPV model of the aircraft dynamics is required.

Conventional approaches to generate an LPV model of an aircraft are based on Jacobian linearizations at

trim points or a change of state coordinates [11] to reduce the nonlinearity of aircraft dynamics. The LPV

models constructed by both approaches can present aircraft dynamics at trim conditions. However, the

models can not represent aircraft dynamics at non-trim conditions. Instead of using Jacobian linearization

or state transformation, the nonlinear terms of aircraft dynamics can be substituted for other functions in

quasi-LPV form [18, 19]. This function substitution approach can be applied for both trim and non-trim

conditions. The approach has been used in generating a quasi-LPV model of a generic missile [18, 19]. In

this paper, a quasi-LPV model of F-16 longitudinal axes is provided over the entire 
ight envelope including

non-trim regions, using a function substitution approach.

In Section 2, a brief summary of conventional LPV controller synthesis used in this paper is presented

to emphasize the complexity of the LMI optimizations. In Section 3, three blending LPV control synthesis

methodologies are presented. Development of a quasi-LPV model of F-16 longitudinal axes is presented in

Section 4. In Section 5, formulation of the LPV control problem and the blending of two LPV controllers of

the F-16 aircraft are presented. Nonlinear simulations of the closed-loop system with the blended controller

are presented in Section 6 and this paper concludes with a brief summary in Section 7.

2. LPV Control Synthesis. In this section, a conventional LPV control synthesis using parameter-

dependent Lyapunov functions[2] is brie
y described. Consider a generalized linear open-loop system as

functions of parameters �(t) 2 P . For a compact subset P � Rs, the parameter variation set denotes the

set of all piecewise continuous functions mapping R (time) into P with a �nite number of discontinuities in

any interval, where s is the number of parameters. An LPV open-loop system can be written as

2
64
_x(t)

e(t)

y(t)

3
75 =

2
64
A(�(t)) B1(�(t)) B2(�(t))

C1(�(t)) 0 D12(�(t))

C2(�(t)) D21(�(t)) 0

3
75
2
64
x(t)

d(t)

u(t)

3
75 ; (2.1)

where y(t), e(t), d(t) and u(t) are measurements, errors, disturbances, and control signals. Hereafter, �

denotes �(t). The induced L2 norm of d to e is de�ned as

sup
�2P;d2L2;jjdjj2 6=0

jjejj2
jjdjj2

:

In a conventional LPV synthesis methodology, suppose there is an LPV output feedback controller K(�)

which stabilizes the closed-loop system exponentially and makes the induced L2-norm of d to e less than 
.
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The controller K(�) can be written as"
_xk

u

#
=

"
Ak(�) Bk(�)

Ck(�) Dk(�)

# "
xk

y

#
: (2.2)

An LPV controller K(�) can be constructed from solutions of X(�) and Y (�) of the following optimization

problem [2]:

min
X;Y 2Rn�n


 (2.3)

subject to 2
66664
X(�)ÂT (�) + Â(�)X(�)�

sX
i=1

(��i
@X

@�i
)�B2(�)B

T
2 (�) X(�)CT

11(�) 
�1B1(�)

C11(�)X(�) �Ine1 0


�1BT
1 (�) 0 �Ind

3
77775 < 0; (2.4)

2
66664
~A(�)Y (�) + Y (�) ~AT (�) +

sX
i=1

(��i
@Y

@�i
)� CT

2 (�)C2(�) Y (�)B11(�) 
�1CT
1 (�)

BT
11(�)Y (�) �Ind1 0


�1C1(�) 0 �Ine

3
77775 < 0; (2.5)

"
X(�) 
�1In


�1In Y (�)

#
� 0; (2.6)

X(�) > 0; Y (�) > 0;

where

Â(�) � A(�)�B2(�)C12(�); ~A(�) � A(�) �B12(�)C2(�); (2.7)

and n is the number of states of the generalized open-loop system. The detailed de�nitions of matrices

C11(�), C12(�), and B11(�) can be found in Ref. [2]. Note that

sX
i=1

��i indicates that every combination of �i

and ��i is included in the LMIs. The parameter rate _� is bounded as �i � _�i � ��i.

A method to construct an LPV controller K(�) from the solutions X(�) and Y (�) is taken from Ref. [2].

In this paper, an LPV controller is constructed as [2]:

Ak(�) = A(�) +B2(�)F (�) +Q�1(�)Y (�)L(�)C2(�)� 
�2Q�1(�)M(�; _�); (2.8)

Bk(�) = �Q�1(�)Y (�)L(�); (2.9)

Ck(�) = F (�); (2.10)

Dk(�) = 0; (2.11)

where matrices Q(�), F (�), L(�), and M(�; _�) are de�ned as

Q(�) = Y (�)� 
�2X�1(�);

F (�) = �[BT
2 (�)X

�1(�) +DT
12(�)C1(�)];

L(�) = �[Y �1(�)CT
2 (�) +B1(�)D

T
21(�)];

M(�; _�) = H(�; _�) + 
2Q(�)[�Q�1(�)Y (�)L(�)D21(�)�B1(�)]B
T
1 (�)X

�1(�):
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Matrix H(�; _�) is de�ned as

H(�; _�) =� [X�1(�)AF (�) +AF (�)
TX�1(�) +

sX
i=1

�
_�i
@X�1

@�i

�

+ CT
F (�)CF (�) + 
�2X�1(�)B1(�)B1(�)

TX�1(�)]

with AF (�) = A(�)+B2(�)F (�) and CF (�) = C1(�)+D12(�)F (�). The closed-loop system with the controller

K(�) is exponentially stable and the induced L2 norm is less than 
. The proof can be found in Ref. [2].

To make the optimization problem of equation (2.3) computationally tractable, the scheduling param-

eters � are discretized into grid points. Thus, an in�nite number of constraints are represented by a �nite

number of LMI constraints. Also, X(�) and Y (�) are represented by a �nite number of basis functions hi(�)

and gi(�):

X(�) =

NxX
i=1

hi(�)Xi; Y (�) =

NyX
i=1

gi(�)Yi;

where hi(�) and gi(�) are continuously di�erentiable functions. The LMIs of equations (2.4)-(2.6) are solved

for all grid points of the scheduling parameters simultaneously. The size of the optimization problem is

proportional to 2s+1Ng where s and Ng are the number of scheduling parameters and total number of grid

points over the scheduling parameter space. The number of decision variables are (Nx +Ny)
n(n+1)

2 , where

Nx, Ny and n are the order of basis functions of X and Y , and the state order. Thus, computational time

to solve the optimization problem of equation (2.3) is dependent on the number of grid points of scheduling

parameters, the state order of a generalized open-loop system, and basis function orders. The conventional

LPV synthesis methodology may require expensive computational cost (computational time and computer

memory) when number of scheduling parameters increases. In the next section, a blending method to reduce

the computational cost to synthesize an LPV controller and to preserve performance level over parameter

subspaces is presented.

3. LPV Controller Blending Approach. Instead of designing a single LPV controller for the entire

parameter set in a conventional LPV synthesis, LPV controllers can be synthesized for parameter subsets,

which are overlapped with each other. Then, these LPV controllers are blended into a single LPV controller

over the entire parameter set. Thus, the performance of the closed-loop system with the blended controller

is preserved when parameter trajectories travel over the overlapped parameter subsets.

Consider the scheduling parameter vector � 2 P which consists of subvectors �s 2 Ps and �d 2 Pd. The

parameter subset Ps can be partitioned into two subsets with the following conditions:

Ps\ = Ps1 \ Ps2 ; (3.1)

Ps = Ps1 [ Ps2 : (3.2)

Suppose that there exist LPV controllers K1 and K2 constructed from parameter-dependent Lyapunov

functions of a parameter subvector �d, over each parameter subset Psi [ Pd, i = 1; 2. Thus, Xi and Yi

are functions of �d (not �s) over each parameter subset Psi [ Pd; i = 1; 2. Also, the controller Ki can

stabilize the closed-loop system and the induced-L2 norm of the closed-loop system is less than 
i over each

parameter subset Psi [ Pd.

When a scheduling parameter subvector �s is in the intersection subset Ps\ , LMI solution matrices

Xi(�d) and Yi(�d) are combined into Xb(�s; �d) and Yb(�s; �d), respectively. There are three methods to
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calculate Xb(�s; �d) and Yb(�s; �d), which will be explained later. The blended matrices Xb(�s; �d) and

Yb(�s; �d) should be feasible solutions of the LMI constraints of equations (2.4)-(2.5) over the parameter

subset Ps\ [ Pd. When the parameter subvector �s is in the parameter subset Psi � Ps\ , Xb(�s; �d) and

Yb(�s; �d) should be equal to Xi(�d) and Yi(�d), respectively, and the partial derivatives of @Xb

@�
and @Yb

@�

should be equal to @Xi

@�
and @Yi

@�
, respectively. There are three blending methods for Xb and Yb to satisfy

the feasibility condition and the boundary conditions.

For method I, matrices Xb(�s; �d) and Yb(�s; �d) can be written as:

Xb(�s; �d) =

2X
i=1

bxi(�s)Xi(�d); (3.3)

Yb(�s; �d) =

2X
i=1

byi(�s)Yi(�d); (3.4)

where \blending functions" bxi(�s) and byi(�s) are di�erentiable scalar functions. To satisfy the boundary

conditions of Xb and Yb, blending functions bxi(�s) and byi(�s) are de�ned as:

bxi(�s) =

8<
:1; �s 2 Psi �Ps\ ;

0; �s 2 Ps �Psi ;
(3.5)

byi(�s) =

8<
:1; �s 2 Psi �Ps\ ;

0; �s 2 Ps �Psi ;
(3.6)

@bxi(�s)

@�s
= 0;

@byi(�s)

@�s
= 0; �s 2 Psi �Ps\ : (3.7)

Suppose that the blending functions bxi(�s) and byi(�s) satisfy the following conditions:

2X
i=1

bxi(�s) = 1; 0 � bxi(�s) � 1; �s 2 Ps\ ; (3.8)

2X
i=1

byi(�s) = 1; 0 � byi(�s) � 1; �s 2 Ps\ ; (3.9)

and 
 is chosen as max(
1; 
2). Then, the following equations are satis�ed, since the LMIs of equations

(2.4)-(2.5) are convex with respect to X and Y . Hereafter, � dependence is omitted for convenience.

XbÂ
T + ÂXb �

sX
i=1

(��i

2X
j=1

bxj
@Xj

@�i
)�B2B

T
2 +XbC

T
11C11Xb + 
�2B1B

T
1 < 0; (3.10)

~AYb + Yb ~A
T +

sX
i=1

(��i

2X
j=1

byj
@Yj
@�i

) � CT
2 C2 + YbB11B

T
11Yb + 
�2CT

1 C1 < 0: (3.11)

When the derivatives of blending functions
@bxi(�s)
@�s

and
@byi(�s)
@�s

are small enough to satisfy the following

inequalities,

��

0
@ sX

i=1

8<
:��i

2X
j=1

Xj(�)
@bxj (�s)

@�i

9=
;
1
A < �(MX); (3.12)

��

0
@ sX

i=1

8<
:��i

2X
j=1

Yj(�)
@byj (�s)

@�i

9=
;
1
A < �(MY ); (3.13)
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it is obviously noted that the blended Xb(�s; �d) and Yb(�s; �d) can be feasible solutions of LMIs of equations

(2.4)-(2.6) over the parameter subset Ps\ , where matrices MX and MY are de�ned as

MX �XbÂ
T + ÂXb �

sX
i=1

(��i

2X
j=1

bxj
@Xj

@�i
)�B2B

T
2 +XbC

T
11C11Xb + 
�2B1B

T
1 ;

MY � ~AYb + Yb ~A
T +

sX
i=1

(��i

2X
j=1

byj
@Yj
@�i

) � CT
2 C2 + YbB11B

T
11Yb + 
�2CT

1 C1:

Here, �� and � represent the maximum and the minimum singular values, respectively.

The procedure of designing an LPV controller over the entire parameter set using this blending method

I is:

1. Partition the entire parameter set into two subsets which have the overlapped subset.

2. Solve the LMI optimization of equation (2.3) for Xi(�d) and Yi(�d) over each parameter subset.

3. De�ne blending scalar functions bxi(�s) and byi(�s) which satisfy the boundary conditions of equa-

tions (3.5)-(3.7) and the derivative conditions of equations (3.12)-(3.13). Note that the derivative

conditions are suÆcient for Xb(�s; �d) and Yb(�s; �d) to be feasible solutions of the LMI constraints

of equations (2.4)-(2.5) over the parameter subset Ps\ [Pd. A controller designer chooses candidate

blending functions until the feasibility conditions of equations (2.4)-(2.5) are satis�ed.

4. Construct an LPV controller over the entire parameter set Ps[Pd using equations (2.8)-(2.11), from

the calculated Xb and Yb of equations (3.3)-(3.4).

For method II, an alternative way to calculate the blended matrices X(�s; �d) and Y (�s; �d) as feasible

solutions of the LMIs of equations (2.4)-(2.6) is adding extra LMIs in conventional LPV synthesis with

candidate blending functions [2]. The extra LMIs are:

2
66666664

2X
j=1

bxjXjÂ
T + Â

2X
j=1

bxjXj +

sX
i=1

(��i
@

@�i

2X
j=1

bxjXj)�B2B
T
2

2X
j=1

bxjXjC
T
11 
�1B1

C11

2X
j=1

bxjXj �Ine1 0


�1BT
1 0 �Ind

3
77777775
< 0; (3.14)

2
66666664

~A
2X

j=1

byjYj +
2X

j=1

byjYj ~A
T +

sX
i=1

(��i
@

@�i

2X
j=1

byjYj)� CT
2 C2

2X
j=1

byjYjB11 
�1CT
1

BT
11

2X
j=1

byjYj �Ind1 0


�1C1 0 �Ine

3
77777775
< 0: (3.15)

The procedure of designing an LPV controller over the entire parameter set using this blending method

II is:

1. Partition the entire parameter set into two subsets which have the overlapped subset.

2. Solve the LMI optimization of equation (2.3) for the solution matrices X1(�d) and Y1(�d) over one

of parameter subsets, which is denoted by Ps1 [ Pd.

3. De�ne blending scalar functions bxi(�s) and byi(�s) which satisfy the boundary conditions of equa-

tions (3.5)-(3.7).
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4. Solve the LMI optimization problem of equation (2.3) with the extra LMI constraints of equa-

tions (3.14)-(3.15) for the solution matrices X2(�d) and Y2(�d) over the other parameter subset

Ps2 [ Pd.

5. Construct an LPV controller over the entire parameter set using equations (2.8)-(2.11) with the Xb

and Yb calculated using equations (3.3)-(3.4).

The LMI optimization over the second parameter subset Ps2 [ Pd is related with the solution matrices X1

and Y1 over the �rst parameter subset Ps1 [ Pd. Thus, de�ning the order of parameter subsets may a�ect

the designed LPV controller over the entire parameter set.

Both methods I and II require appropriate blending functions to blend solution matrices over the param-

eter subset Ps\ . Note that an LPV controller provided by the blending methods I and II changes dependently

on which blending functions are selected. It is unknown how this a�ects the closed-loop performance of the

designed LPV controller.

For method III, blending matrix functions are calculated to minimize the induced L2 norm 
 over the

parameter subset Ps\ [ Pd. The blended solution matrices Xb and Yb are rewritten as:

Xb(�s; �d) =
1

2
[Xb1(�s)X1(�d) +X1(�d)Xb1(�s)] +

1

2
[Xb2(�s)X2(�d) +X2(�d)Xb2(�s)]; (3.16)

Yb(�s; �d) =
1

2
[Yb1(�s)Y1(�d) + Y1(�d)Yb1(�s)] +

1

2
[Yb2(�s)Y2(�d) + Y2(�d)Yb2 (�s)]; (3.17)

where \blending matrix functions"Xb1(�s), Xb2(�s), Yb1(�s), and Yb2(�s) are di�erentiable symmetric matrix

functions bounded over the parameter subset Ps\ . To present the blending matrix functions, basis functions

gxj (�s), hxj (�s), gyj (�s), and hyj (�s) for Xb1(�s), Xb2(�s), Yb1(�s), and Yb2(�s) are introduced, respectively.

To satisfy the boundary condition of blended matrices Xb(�s; �d) and Yb(�s; �d), Xb1(�s), Xb2(�s), Yb1(�s),

and Yb2(�s) are de�ned as:

Xb1(�s) = gx0(�s)I +

NxgX
j=1

gxj (�s)Xb1j
; Xb2(�s) = hx0(�s)I +

NxhX
j=1

hxj (�s)Xb2j
; (3.18)

Yb1(�s) = gy0(�s)I +

NygX
j=1

gyj (�s)Yb1j ; Yb2(�s) = hy0(�s)I +

NyhX
j=1

hyj (�s)Yb2j ; (3.19)

where

gx0(�s) = 1; hxj (�s) = 0;
@gxj (�s)
@�si

=
@hxj (�s)
@�si

= 0; �s 2 Ps1 �Ps\ ;

hx0(�s) = 1; gxj (�s) = 0;
@gxj (�s)
@�si

=
@hxj (�s)
@�si

= 0; �s 2 Ps2 �Ps\ ;

gy0(�s) = 1; hyj (�s) = 0;
@gyj (�s)
@�si

=
@hyj (�s)
@�si

= 0; �s 2 Ps1 �Ps\ ;

hy0(�s) = 1; gyj (�s) = 0;
@gyj (�s)
@�si

=
@hyj (�s)
@�si

= 0; �s 2 Ps2 �Ps\ :

(3.20)

Here, the basis functions are di�erentiable over the parameter subset Ps\ and Xb1j
, Xb2j

, Yb1j , and Yb2j
are unknown constant matrices in Rn�n. The unknown constant matrices can be determined solving the

following LMI optimization:

min
Xb1j

; Xb2j
; Yb1j

; Yb2j
2Rn�n


; (3.21)
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2
66664
XbÂ

T + ÂXb �

sX
i=1

(��i
@Xb

@�i
)�B2B

T
2 XbC

T
11 
�1B1

C11Xb �Ine1 0


�1BT
1 0 �Ind

3
77775 < 0; (3.22)

2
66664
~AYb + Yb ~A

T +

sX
i=1

(��i
@Yb
@�i

)� CT
2 C2 YbB11 
�1CT

1

BT
11Yb �Ind1 0


�1C1 0 �Ine

3
77775 < 0; (3.23)

"
Xb 
�1In


�1In Yb

#
� 0; Xb > 0; Yb > 0; (3.24)

where

Xb = gx0X1 + hx0X2 + 0:5

8<
:
NxgX
j=1

gxj [X1Xb1j
+Xb1j

X1] +

NxhX
k=1

hxk [X2Xb2k
+Xb2k

X2]

9=
; ;

Yb = gy0Y1 + hy0Y2 + 0:5

8<
:
NygX
j=1

gyj [ Y1Yb1j + Yb1j Y1 ] +

NyhX
k=1

hyk [Y2Yb2k + Yb2kY2]

9=
; :

(3.25)

The procedure of designing an LPV controller over the entire parameter set using this blending method

III is:

1. Partition the entire parameter set into two subsets which have the overlapped subset.

2. Solve the LMI optimization of equation (2.3) for Xi(�) and Yi(�) over each parameter subset.

3. De�ne basis functions for blending matrix functions in equations (3.18) and (3.19), which satisfy the

boundary conditions of equation (3.20) over each parameter subset.

4. Solve the LMI optimization of equation (3.21) over the parameter subset Ps\ [ Pd.

5. Construct solution matrices X and Y over the entire parameter set using the solution matrices X1,

X2, Y1, Y2, Xb, and Yb.

6. Construct an LPV controller over the entire parameter set using equations (2.8)-(2.11) based on

solution matrices X and Y generated in step 5.

In this section, there were described three methods to calculate the blended solution matrices Xb(�s; �d)

and Yb(�s; �d) which are feasible solutions of LMIs of equations (2.4)-(2.5) over the parameter subset Ps\[Pd.

Since all three methods keep X1 and Y1 over the parameter subset Ps1 �Ps\ , the blended LPV controllers

generated by the three methods are equal to the regionally designed LPV controller K1 over the parameter

subset Ps1 �Ps\ . Both methods I and III can, also, keep the regional LPV controller K2 over the parameter

subset Ps2 �Ps\ .

The disadvantage of method I is that choosing blending functions is in an ad-hoc manner. However,

method I is the fastest to synthesize an LPV controller over the entire parameter set among the three blending

methods. In method II, the blending solution matrices Xb and Yb are guaranteed to be feasible solutions

over the parameter subset Ps\ . This method II requires solving the LMI optimization with the extra LMI

constraints. In method III, optimal blending matrix functions are calculated to minimize the induced L2

norm 
 over the parameter set Ps\ , based on basis functions de�ned by a controller designer. It is unknown

how the basis functions a�ect the blending matrix functions and the LPV control design.
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4. Quasi-LPV Model of F-16 Longitudinal Axes. In this section, a quasi-LPV model of F-16

longitudinal axes is presented. The full nonlinear equations of an F-16A aircraft are taken from Ref. [1].

The nonlinear equations of F-16 longitudinal axes [1] are

_V =
qS cos�

m
[CX (�; Æe) +

�c

2V
CXq

(�)q] +
qS sin�

m
[CZ(�; Æe) +

�c

2V
CZq (�)q]

� g sin(� � �) + T cos�; (4.1)

_� =
g cos(� � �)

V
�

sin�

mV cos�
T + [1 +

qS�c

2mV 2
(CZq (�) cos�� CXq

(�) sin�)]q

+
qS

Vt
[CZ(�; Æe) cos�� CX(�; Æe) sin�]; (4.2)

_q =
qS�c

2IyyV
(�cCmq

(�) + �CZq (�))q +
qS�c

Iyy
(Cmo

(�; Æe) +
�

�c
CZ(�)); (4.3)

_� = q: (4.4)

Velocity (V , ft/sec), angle of attack (�, rad), pitch rate (q, rad/sec), and pitch angle (�, rad) are the state

variables and thrust (T , lb) and elevator de
ection (Æe, rad) are the control variables. The aerodynamic

coeÆcients are lookup tables based on wind-tunnel data from NASA-Langley wind-tunnel tests on an F-16

aircraft scaled model [16]. The aerodynamic data were valid for a speed range of 100 � V � 900 ft/sec,

an angle of attack range of -10Æ � � � 45Æ, and an altitude range of 5000 � h � 40000 ft. These three

parameters are scheduling parameters in the quasi-LPV model derived for the F-16 longitudinal axes. Note

that V and � are both scheduling parameters and states and h is a scheduling parameter which enters

implicitly into the nonlinear dynamics.

Unfortunately, the control variable Æe does not enter aÆnely in equations (4.1)-(4.3). To derive a quasi-

LPV model of F-16 longitudinal axes, it is necessary that all controls be in aÆne form. This is achieved

by transforming (Æe, T) into synthetic inputs us = [u1 u2]
T . For details of the transformation, readers are

referred to Ref. [14]. For the F-16 quasi-LPV model, cos � and sin � are linearized about a trim value �o.

After tedious algebraic manipulations, equations (4.1)-(4.4) are rewritten as

_x = A(V; �; h)x +M(V; �; h)us + f(V; �; h); (4.5)

x � [V � q � � �o]
T ;

where the elements of matrices A 2 R4�4, M 2 R4�2, and f 2 R4�1 are written in Appendix A.

Using the function substitution method [18, 19], the nonlinear function f(V; �; h) can be decomposed

into quasi-linear functions G(V; �; h)[V �Vo ���o]
T where G is in R4�2. Thus, a quasi-LPV model of F-16

aircraft longitudinal axes is provided. The details of function substitution are written in Appendix B. To

compare simulation results of the nonlinear and the quasi-LPV model of the F-16 aircraft dynamics, several

time sets of inputs T and Æe are pre-de�ned. In this paper, one example of time simulations is presented for

space limitation. For example, inputs are set as

Æe = Æeo; (4.6)

T =

8<
:To lb; 0 � t � 1; 11 � t

To � 2000 lb; 1 � t � 11 sec;
(4.7)

where Æeo and To is a trim value. The time simulation results in Figure 4.1 show that the time responses

9
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Fig. 4.1. Nonlinear vs. quasi-LPV model simulations

of the quasi-LPV and nonlinear models are almost matched to each other. Note that the quasi-LPV model

provided by the function substitution method may change depending on which one trim point is selected. It

is unknown how this a�ects the quasi-LPV model or the LPV control design.

5. LPV Control Problem Formulation.

5.1. Control Design Objectives and Weighting Functions. A formulation of the LPV control

synthesis of the F-16 longitudinal axes is presented in this section. The primary control objective for the

F-16 longitudinal 
ight controller is to track velocity and 
ight path angle commands within 1 ft/sec and

0.6Æ error range in steady-state conditions.

Velocity and 
ight path angle tracking problems can be formulated as model matching problems in the

LPV control synthesis. In this paper, we consider the F-16 aircraft as an unmanned aircraft. The ideal

10



transfer function from the 
ight path angle command to the 
ight path angle measurement is modeled as

a second order system,
0:426(s+ 1:5)
s
2 + 1:6s+ 0:64

with 0.8 rad/sec bandwidth and a right hand zero at -1.5 rad/sec.

For the velocity tracking problem, the ideal transfer function from the velocity command to the velocity

measurement is modeled as the second order system 0:16
s
2 + 0:8s+ 0:16

with 0.4 rad/sec natural frequency

and critical damping.
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Fig. 5.1. Interconnection structure for the model matching problems.

A block diagram of the interconnection structure for synthesizing an LPV controller for the F-16 longi-

tudinal axes is shown in Figure 5.1. The velocity, angle rate and angle sensors are modeled as the �rst-order

low pass �lters 50
s+ 50,

60
s+ 60, and

10
s+ 10 (see Ref. [1, 16]). In the LPV controller synthesis models, the

sensor models shown in Figure 5.1 are approximated as:

Sen = diag([1; 1;
10

s+ 10
]); (5.1)

since the interesting frequency range for LPV control synthesis is less than 10 rad/sec. The reduced order

sensor models help to reduce the overall state order of an LPV controller, since the state order of an LPV

controller is same as that of the augmented open-loop system. The elevator actuator is modeled as the

�rst-order lag �lter 20
s+ 20 and its rate limit is de�ned as � 60 deg/sec in Ref. [1, 16]. Since the F-16 is a

�ghter aircraft, we estimated the engine model as the �rst-order lag �lter 4
s+ 4 which allows fast responses

in engine dynamics. The thrust rate limit is taken to be 10000 lb/sec. In the block diagram in Figure 5.1,

the actuator rate and actuator models are:

Act = diag([
20s

s+ 20
;

20

s+ 20
;

4s

s+ 4
;

4

s+ 4
]): (5.2)
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The performance weighting functions are chosen based on the desired performance objectives. The per-

formance weighting function of 
ight path angle Wp
 ,
100(s=100+ 1)2

(s=0:6+ 1)2
, is derived based on the performance

objective to keep a 
 tracking error less than 0.6Æ for 1 radian command in steady state 
ight. Since the

bandwidth of the ideal model from the 
ight path angle command to the 
ight path angle measurement is

0.8 rad/sec, the roll o� frequency of the weighting function is chosen as 0.6 rad/sec to specify the tracking

error less than 0.6Æ at the low frequency region (< 0.6 rad/sec). The performance weighting function for the

velocity, Wpv ,
s=200+ 1
s+ 1 , is derived to track velocity commands within 1 ft/sec error range in steady state


ight. The unmodeled dynamics are included in the multiplicative uncertainty models, Wmu1 and Wmu2 .

The uncertainty weighting functions are rolled up in the mid-frequency range in order to limit the bandwidth

of the LPV controllers. The multiplicative uncertainty weight functions are set as

Wmu1 =
0:01(s=0:35+ 1)

s=80 + 1
;

Wmu2 =
0:01(s=0:2+ 1)

s=50+ 1
:

The sensor noise models are taken as constant across frequency to reduce the state order of the LPV

controllers. The velocity, angle, and angle rate sensor noises are modeled as white noises with amplitudes of

0.8 ft/sec, 0.1Æ, and 0.6 deg/sec, respectively.

To solve LMI equations (2.4)-(2.6), the basis function sets need to be de�ned for X and Y . There is

no analytical method to choose the best basis function set. Most often the basis functions used are power

series[7], Legendre polynomials[10], or aÆne functions of scheduling parameters [9]. Here, the basis function

set for X(�) and Y (�) is chosen as the �rst order power series f1; �g of the scheduling parameter of velocity

to reduce the computation time in the LPV control synthesis. Note that the basis functions of X and Y do

not have to be same.

5.2. Blending Two Controllers. In this section, synthesizing an LPV controller for the F-16 longi-

tudinal axes using the blending approach is demonstrated. To apply the blending approach for control of

the F-16, the entire parameter set (the 
ight envelope) is partitioned into two subsets: high and low altitude

regions. Parameter subsets are:

P1 � f(V; �; h)j100 � V � 900 ft/sec; �10 � � < 45Æ; 5000 � h < 30000 ftg;

P2 � f(V; �; h)j100 � V � 900 ft/sec; �10 � � < 45Æ; 10000 < h � 40000 ftg;

P\ � P1 \ P2: (5.3)

To use methods I and II, blending functions are required over the parameter subset P\, which are satis�ed

with the boundary conditions of equations (3.5)-(3.7). Blending functions b1(h) and b2(h) are chosen as:

b1(h) =

8>>><
>>>:
1; h � 10000 ft;

0:5[1 + cos(h�1000020000 �)]; 10000 < h < 30000 ft;

0; 30000 ft � h;

(5.4)

and

b1(h) + b2(h) = 1: (5.5)
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Using the blending functions, the solution matrices Xi and Yi are blended across the parameter subset P\

as:

Xb(V; �; h) = b1(h)X1(V; �) + b2(h)X2(V; �); (5.6)

Yb(V; �; h) = b1(h)Y1(V; �) + b2(h)Y2(V; �): (5.7)

Using method I, an LPV controller KI is constructed with the solution matrices Xb and Yb using equa-

tions (2.8)-(2.11) over the entire parameter set P1 [ P2.

Using the blending functions in equations (5.4)-(5.5) and the solution matrices X1 and Y1 over the

parameter subset P1, the solution matrices X2 and Y2 are determined solving the LMI optimization over the

parameter set P2 with the extra LMIs of equations (3.14)-(3.15) described in method II. An LPV controller

KII is constructed based on the calculated blended matrices Xb and Yb using equations (2.8)-(2.11) over the

entire parameter set.

To blend solution matrices Xi(V; �) and Yi(V; �) calculated over each parameter subset, the basis func-

tions for blending matrix functions of equations (3.18) and (3.19) are required to use method III. In this

paper, the basis function sets are chosen as fg0; g1g for Xb1 and Yb1 , and as fh0; h1g for Xb2 and Yb2 ,

respectively.

g0(h) =

8>>><
>>>:
1; h � 10000 ft;

0:5[1 + cos(h�1000020000 �)]; 10000 < h < 30000 ft;

0; 30000 ft � h;

(5.8)

g1(h) =

8>>><
>>>:
0; h � 10000 ft;

0:15[1 + cos(h�2000010000 �)]; 10000 < h < 30000 ft;

0; 30000 ft � h;

(5.9)

h0(h) = 1� g0(h); h1(h) = �g1(h): (5.10)

Note that it is not necessary to choose the same basis functions for Xbi and Ybi . From the solution of the LMI

optimization of equation (3.21), the matricesXb(V; �; h) and Yb(V; �; h) are calculated using equations (3.16)-

(3.19). An LPV controller KIII is constructed from the matrices Xb(V; �; h) and Yb(V; �; h) using equations

(2.8)-(2.11) over the entire parameter set.

For comparison, an LPV controller Ktot is constructed with solution matrices X and Y over the entire

parameter set using the conventional LPV controller synthesis approach. It takes approximately 43 hours on

933 MHz PIII machine running Linux. Using the blending methods I, II, and III, it takes approximately 22,

25, and 30 hours on the same machine, respectively. The computation time to synthesize the LPV controller

for the F-16 longitudinal axes is reduced using the blending approaches.

6. Nonlinear Simulations. The 12 state nonlinear F-16 aircraft dynamics [1] with the synthesized

LPV controllers, K1, K2, Ktot, KI , KII , and KIII , are simulated to compare their time simulations in this

section. Recall that the LPV controllers K1 and K2 are constructed over parameter subsets P1 and P2,

respectively. The LPV controller Ktot is synthesized over the entire parameter set, using the conventional

LPV control synthesis methodology. The LPV controllers KI , KII , and KIII are the blended controller

using the blending methods I, II, and III, respectively. In simulations, the LPV controller is implemented
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Fig. 6.1. Time simulations with the LPV controllers around 8000 ft altitude.

using linear interpolation at the current values of the scheduling parameters between the grid point solutions.

The full state models of actuators and sensors are included in the nonlinear F-16 aircraft simulations.

Using these LPV controllers, the velocity and 
 step responses are simulated around 8000 ft and 32000

ft altitude, respectively. The step input sizes are a 10 ft/sec velocity command and a 5Æ 
 command at 1 sec.

The simulation results in Figure 6.1 show that all velocity and 
 measurements match the ideal responses

within �0.25 ft/sec and 0.06Æ tracking error. It is observed that these LPV controllers achieve the desired

performance objectives.

The LPV controllers K1, KI , KII , and KIII are exactly equal to each other over the parameter subset

P1 �P\, since the blending methods I, II, and III keep the regional LPV controller K1 over the parameter

subset P1 �P\. The step responses of velocity and 
 with the LPV controller KIII in Figure 6.1 represent

the step responses with the LPV controllers K1, KI , and KII in the simulations around 8000 ft altitude.
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The actuator de
ections and their rates of the time simulations are shown in Figure 6.1. It is noted that the

blended LPV controller KIII uses smaller actuator de
ections and their rates than the LPV controller Ktot

does to achieve the performance objectives.
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Fig. 6.2. Time simulations with the LPV controllers around 32000 ft altitude.

The LPV controllersK2,KI , andKIII are exactly equal to each other over the parameter subset P2�P\.

The blended LPV controllerKII is di�erent from K2 over the parameter subset P2�P\, since in the method

II, the blended controller is constructed solving the LMI optimization of equations (2.3)-(2.6) with the extra

LMI constraints of equations (3.14)-(3.15). The step responses with the LPV controllers Ktot, KIII , and

KII are shown in Figure 6.2. It is observed that these LPV controllers achieve the desired performance

objectives over the parameter set P2 � P\. The simulation results show that the LPV controller Ktot uses

the largest actuator de
ections and their rates to achieve the performance objectives.

For comparison, there is simulated one of candidate maneuvers that the F-16 aircraft 
ies from 15000 ft
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to 32000 ft across the parameter subset P\, using 20 and 10 ft/sec velocity step and 10Æ 
 step commands.

Velocity, 
ight path angle, altitude, and angle of attack time responses with the LPV controllers Ktot, KIII ,

KII , and KI are shown in Figure 6.3. All the LPV controllers can achieve the performance objectives across

the parameter subset P\. It is noticed that the velocity tracking performance with the blended controllers

is slightly better than the LPV controller Ktot designed over the entire parameter set P1 [ P2 using the

conventional LPV controller synthesis methodology. The actuator de
ections and their rates with the LPV

controllers are shown in Figure 6.4. The simulation results show that the blended controllers use much

smaller actuator de
ections to track the velocity and 
 commands.
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Fig. 6.3. Time simulations with the LPV controllers for the candidate maneuver.

Sensor noises are integrated into the F-16 aircraft simulations for the same situation of 
ying the F-16

aircraft from 15000 ft to 32000 ft. Sensor noises for pitch rate, velocity and pitch angle are set as white

noises with �0.5 deg/sec, � 0.8 ft/sec, and �0.1Æ amplitudes. The simulation results are omitted for space
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Fig. 6.4. Actuator time responses with the LPV controllers for the candidate maneuver.

limitations. The LPV controllers Ktot, KIII , KII , and KI stabilize the F-16 aircraft with the sensor noises

and achieve tracking performance objectives over the scheduling parameter variations. The thrust signal and

its rate do not exceed their limits: T < 19000 lb and jdT
dt
j < 10000 lb/sec. Also, the elevator actuator and

its rates do not exceed their limits: jÆej < 25Æ and jdÆe
dt
j < 60 deg/sec. The blended controllers KIII and KI

can preserve the performance level of the regional LPV controllers K1 and K2 over each parameter subset

P1 and P2.

Note that method I requires the slow parameter-varying blending functions. In this example, the param-

eter intersection range is wide enough to provide the slow-varying blending functions for method I. When

the parameter intersection space is narrow, method III is appropriate to blend two LPV controllers over the

parameter intersection space.
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7. Summary and Discussion. In this paper, the methodologies of blending LPV controllers are

discussed to preserve the performance level over each parameter subset and to reduce computation time to

synthesize an LPV controller over the entire parameter set. The blending approaches are to design each

LPV controller for the set of a small number of scheduling parameters over the parameter subsets and blend

all controllers scheduled on the entire scheduling parameters using the blending functions.

The quasi-LPV model of the F-16 longitudinal axes is provided by a function substitution method over

the entire 
ight envelope to facilitate synthesis of an LPV controller. The two LPV controllers of the F-16

longitudinal axes are synthesized as functions of velocity and angle of attack at two regions: low and high

altitudes, respectively. The two LPV controllers are blended into a single LPV controller as functions of

velocity, angle of attack, and altitude over the entire 
ight envelope, using the three blending approaches. It

is noted from the nonlinear time simulations that the blended controllers achieve better performance than

the LPV controller constructed using the conventional LPV synthesis methodology. The blended controllers

constructed using methods I, II, and III achieve the performance objectives and stabilize the closed-loop

system of the F-16 aircraft with sensor noises.
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Appendix A. Nonlinear Equations of F-16 Longitudinal Axes. From nonlinear equations (4.1)-

(4.4), the nonlinear equations of the F-16 longitudinal axes are rewritten as follows:2
66664
_V

_�

_q
_�

3
77775 =

"
A11(V; �) A12(V; �; h)

A21(V; �) A22(V; �; h)

#266664
V

�

q

� � �o

3
77775+M(V; �; h)us + f(V; �); (A.1)

where

A11 = A21 =

"
0 0

0 0

#
;

A12(1; 1) =
qS�c

2mV
(CXq

(�) cos�+ CZq (�) sin�);

A12(1; 2) = g(� cos� cos �o � sin� sin �o);

A12(2; 1) = 1 +
qS�c

2mV 2
(�CXq

(�) sin�+ CZq (�) cos�);

A12(2; 2) =
g

V
(sin� cos �o � cos� sin �o);

A22 =

2
4 qS�c
2V Iyy

(�cCmq
(�) + �CZq (�)) 0

1 0

3
5 ;

f =

2
666664

qS
m CZ(�) sin�+ g(� cos� sin �o + sin� cos �o)
qS
mV CZ(�) cos�+

g
V (sin� sin �o + cos� cos �o)
qS
Iyy

�CZ(�)

0

3
777775 :
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The gain matrix M is constructed as lookup tables and us are synthetic inputs. The term of M(V; �; h)us

can represent the following terms:

M(V; �; h)us(V; �; Æe; T ) �

2
66664

qS
m
[ �CZeÆe sin�+ CX (�; Æe) cos�] +

cos�
m

T
qS
mV

[ �CZeÆe cos�� CX (�; Æe) sin�]�
sin�
mV

T
qS�c
Iyy

CM (�; Æe) +
qS
Iyy

� �CZeÆe

0

3
77775 :

The detailed methods to determine M and synthetic inputs us are available in Ref. [14]. The synthetic

inputs can vary in the range of �1 � u1 � 1 and 0 � u2 � 1. The units of u1 and u2 are 25
Æ and 19000 lb,

respectively.

Appendix B. Decomposition. Set the state variables in a quasi-LPV model of the F-16 aircraft

dynamics as V � Vo, � � �o, q � qo and � � �o, where Vo, �o, qo and �o represent a trim point. Then,

equation (A.1) is rewritten as"
_�1
_�2

#
= F (z) +

"
A11(z) A12(z)

A21(z) A22(z)

#"
�1

�2

#
+

"
B1(z)

B2(z)

#
~u; (B.1)

where

F (z) = f(z) +

"
A11(z) A12(z)

A21(z) A22(z)

# "
zo

wo

#
+

"
B1(z)

B2(z)

#
uo;

�1 = z � zo; �2 = w � wo; ~u = us � uo; (B.2)

and

z = [V �]T ; w = [q �]T : (B.3)

To provide a quasi-LPV model of F-16 aircraft dynamics from equation (B.1), the term F (z) should be

decomposed into linear parameter varying functions written as

F (z) = F (zo + �1) =

"
gz(zo + �1)

gw(zo + �1)

#
�1; (B.4)

where gz 2 R
2�2 and gw 2 R

2�2. There are an in�nite number of possible solutions of gz and gw to satisfy

equation (B.4). To determine functions gz and gw, more constraints are required. In this paper, the variation

of gz and gw over the entire 
ight envelope is minimized. With these constraints, an optimization problem is

formulated to determine gz and gw. For example, to determine the �rst row of gz, an optimization problem

is follows:

min
gz112R;gz122R

�; (B.5)

subject to

F1(zo + �1) = [gz11(zo + �1) gz12(zo + �1)]�1 (B.6)

j
@2gz11(zo + �1)

@�21
j � �; j

@2gz12(zo + �1)

@�21
j � �;
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where F1 is the �rst row of F . To make the optimization problem of equation (B.5) computationally tractable,

the continuous constraints are evaluated at grid points over the parameter set. Thus, the matrix gz can be

determined at every grid point of �1. Using solutions of the optimization for gz and gw, a quasi-LPV model

of F-16 longitudinal axes is written as:2
66664
_V

_�

_q
_�

3
77775 =

"
A11(V; �) + gz(V; �) A12(V; �; h)

A21(V; �) + gw(V; �) A22(V; �; h)

#
2
66664
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�� �o

q

� � �o

3
77775+M(Vt; �; h)(us � uso): (B.7)
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