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1. Introduction

The concept of the Hilbert transform and the related application of analytic signal
representation are well known and studied [1]. It is common practice in modern communications and
radar signal processing systems, particularly those that are implemented digitally, to leverage the
benefits of analytic representation. Among the more important benefits are the potential increase in
spectral resolutlon for a given number of signal samples, and the abxhty to calculate mstantaneous
envelope and phase measurements from the resulting complex-valued signal. What is less welI
known is the fact that there are alternative methods of analytic signal generation that can alleviate
problems associated with implementation issues such as real-time operation and signal
synchronization. The goal of this report is to bring to light the implications of recent publication in
this area, and to augment these results with recent AFRL in-house reseérch results. In particular,
recent published research introduces filter design considerations which can reduce computational
complexity and simplify the design process [2]. In this report, this method is generalized for a wider
range of filter designs and applications.

A quick review of the Hilbert transform and analytic signal representation is given in Section
1.1. For more detail, the reader is referred to [1]. Herein we are concemed with digital (i.e.,
numerical), uniformly sampled discrete-time 'sequences resulting from the proper acquisition of a
corresponding analog signal of interest or from the computer generation of a signal of interest. In
practice, one can certainly approximate Hilbert transforms and the analytic signal representation with

analog waveforms. This method is described in Section 2. However, it can be shown that even with

rather stringent specifications on in-phase (I) and quadrature (Q) channel balance (e.g., 0.1 dB _

amplitude and 1 degree phase imbalance), a modest amount (40 dB) of image distortion suppression
will be achieved [3]. In many cases, the in-phase and quadrature channels are then digitized in
preparation for further digital processing. In contrast, when generating the analytic signal
computationally after digitization of the signal of interest [4, 5], the precision of the required
calculations and the available processor resources (speed, memory, etc.) become the ]imiﬁng factors
on performance Th1s second method is descrlbed in ‘Section’ 3, along with advancements to the
method Because of the recent advances in d1g1ta1 s1gnal processing (DSP) hardware, this latter

approach is often deemed more cost effective, particularly when image suppression greater than 40 dB



is required. Section 3 addresses often overlooked synchronization concerns, and provides a novel

interference cancellation application. Section 4 provides a summary and conclusions.

1.1 Review of Analytic Signal Representation

A convenient method of explaining the concept of analytic signal representation relies on
knowledge of some basic signals and systems theory. Although the term “analytic” has roots in the
theory of complex variables, it will suffice here to say that this term refers to complex-valued
continuous-time / continuous-amplitude signals, having specific continuity properties within the I and
Q channel signal components. In this sense, it’s somewhat of 2 misnomer to refer to a digitized signal
as being analytic, given the discrete nature of the signal. One can, however, generate good analog
approximations to a true analytic signal by using a pair of digital-to-analog converters (DACs) and
low-pass filters using the corresponding digital “analytic” signal. Therefore, for the remainder of this
report we dismiss distinctions between the two, allowing the term “analytic signal” for the analog and
digital cases. Herein we are ultimately interested in the digitized form of the analytic signal. However,
continuous-time analytic signal generation is first described fdr contextual purposes.

The signal theory to be relied upon is now introduqed. Of particular importance is Euler’s

identity,

e’® =cos(a) + jsin(a). (1-1)

This provides a Imathematical framework for interpretation of pairs of separate real-valued signals, the
real and imaginary components of Equation (1-1), as being a single but complex-valued signal. Here,
o represents some phase signal that is a function of either continuous or discrete time, i.e., either
a(t) or a(nT;), and T is the sampling interval. Thus for an arbitrary index in time, », the in-phase
signal is cos(ot)E and the quadrature signal is sin(a). More generally, we can multiply both sides of
Equation (1-1) by a real-valued envelope signal, |a|, to account for changes in signal amplitude over

time. As with a, |a| represents an envelope signal that is a function of either continuous or discrete

time, i.e., either |a(?)| or | a(nTy)|.



From the modulation theorem it is known that any real band-pass signal, s(r), can be

represented as
s(t) =} a(t)|-cos(a(?)), 1-2)

where |a(z)] is the envelope of s(z), and a(t) is the phase. If we define the pre-envelope of s(t) as

s, ()= a@)] €%, (1-3)
from Equation (1-1) we have
54 (0) = s+ j5(0) = a(r) | {eos(@(@) + jsin(@@))}. (1-4)

The signal 5(z) = a(z)]-sin(c(?)) is the Hilbert transform of s(z) ! This can be shown by using the

mathematical definition of the Hilbert transform,

§(t)=lj°° 5@ 4r. (1-5)
LIt —T _

As can be seen, this time-domain representation has little intuitive appeal. The Hilbert transform has a
much more intuitive meaning when viewed from a frequency-domain perspective as will be discussed
below. However, the time-domain representation of Equation (1-5) implies that in order to obtain the
exact transform, the integral is performed over all time. As with an exact Fourier transform, this is of
course, impractical. In practice, the transform is approximated with filters that can actually be
implemented. The trade-off areas in such approximations include filter time delays and noq—ideal

frequency responses that are typical with practical filters.

! The notation § is being used here to signify the Hilbert transform of ', rather than the usual notation, § ; the notation § will be used to represent the
estimate of some arbitrary signal, § . ’
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Im{S(f)}
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m{S, ()} Im{S(f))

Figure 1-1. Representative band-pass signal spectra from the Hilbert transform method of complex
envelope generation; (a) the spectrum of the original real signal, s(z), (b) the spectrum of j times the

Hilbert transform, 5(t), of s(z), (c) the spectrum of the pre-envelope, s, (¢) = s(t)+ js(z), and (d)
the spectrum of the complex envelope, 5(¢) , of s(z).

Figures 1-1 (a) through 1-1 (d) help to describe the Hilbert transform process. In Figure 1-1

(a) is presented a representative spectrum of an arbitrary band-pass signal, s(#). Note that the Fourier

transform of a real signal is conjugate symmetric as depicted in the figure. Fourier transformation of
4



the signal of Equation (1-5) can be shown to result in a 90 degree phase shift in the frequency

components of s(r). Shown in Figure 1-1 (b) is the spectrum of the product j-§ (t). Multiplication
of the Hilbert transform by the complex constant, j, and adding this to the original signal, results in the
pre-envelope, s, (2), as described by Equation (1-4).

Note that the resulting signal spectrum has no energy below f=0.

The utility of this process is apparent through inspection of Equation (1-4). With the I signal, s(?),

and the Q signal, 5(z), one can calculate the envelope as \fsz(t)+§2(t) , and the instantaneous

phase as «;(t) = Arc tan[E @/ s(t)]. Alternatively, the pre-envelope can be down-converted in

frequency to 0, by multiplying by eI , where f. is the center frequency of the pre-envelope.

This results in the complex envelope,
(1) = s, (1) e T2 (1-6)

Representing the pre-envelope phase component as a(t) = 2nf .t + ¢(t) + @ , the phase of the complex
envelope is @(t)+8 , where € is some constant. The spectrum of the complex envelope is depicted
in Figure 1-1 (d). In practice, approximations to the complex envelope are more commonly used,
rather than pre-envelope approximations. As described in Section 3, however, this leads to
unnecessary additional computations when working with digitized signals. Practical methods of

approximating the complex envelope can now be presented.

2. The Quadrature Down-converter

Also referred to in the literature as the quadrature mixer or quadrature demodulator, the
quadrature down-converter represents a practical solution to the problem of complex envelope
approximation. The basic structure of the quadrature down-converter is shown in Figure 2-1 (@. It
consists of a signal splitter, and a pair of mixer and low-pass'ﬁlter combinations. The intent of the
device is to accomplish the elimination of the negative frequency components seen in Figure 1-1 (@)
and frequency down-conversion consistent with the desired spectrum of Figure 1-1 (d). This is

achieved by performing the down-conversion first, then low-pass filtering with the appropriate




(identical) low-pass filter in each channel. In the ideal case, if the splitters, mixers, and low-pass
filters were ideal processes with perfect gain and phase responses, then a signal proportional to the
complex envelope is obtained by interpreting the device output as i(¢)+ jg(¢). (The proportionality
constant factor of 2 is easily accounted for.) The ideal result will be a pure downward translation in

frequency and rejection by the low-pass filters of signal content that occurs in the vicinity of 2f.

This signal content is expected, is due to the mixing process itself, and is normally easily removed by
the filters. Hewever, in practice, distortions arise in the form of attenuated and phase-delayed images
of the desired spectral components. In effect, the down-conversion process contains an undesired up-

converted signal component that is also located at 0 Hz, creating the additive image distortion signal.

Mixer i(t)
=® Low-pass| "~ |
Filter, complex
(1 mliplier i(#)+ jq(t)
10—
0 s __ L {Filter, h
———'\ -T‘—-; | Oscillator
“ 190 Degree :
Phase Shifter
g Low-pass q(t) exp(—J- 27zfct)
Filter, h b
Mixer v

(a

Figure 2-1. The quadrature down-converter method of complex envelope generation; (a) the physical
representation, (b) the mathematical representation.

The mathematical representation of the quadrature down-conversion process is shown in
Figure 2-1 (b). Comparing the physical and mathematical representations, the local oscillator and
phase shifter processes are approximations to the signal exp(-j27f.t). The splitter and mixer
processes attempt to achieve the same result as complex-valued multiplication of this locally
generated signal by the real input signal, s(f). The pair of real-valued identical low-pass filters
accomplishes the rejection of out-of-band frequency components, consistent with the rules of complex

arithmetic. These rules imply the need for a pair of identical filters, one operating on the in-phase

channel and the other operating on the quadrature channel. In contrast, the mathematical system



requires a single real low-pass filter operating on the complex-valued signal output from the complex

multiplier.

Re{S(f)} Re{2S( f)exp(-j2af 1)}

(@) ®)
m{S(/)) Im{ 25 (f)exp(~j27 )}
Re{S(f)) Re(T, -5 (%))
© @
m{S(f)) (T, -§ (/) f=Q-F/(2m)

Figure 2-2. Representative band-pass signal spectra from the ideal quadrature down-converter method
of complex envelope generation; (2) the spectrum of the original real signal, s(r), (b) the spectrum of

the down-converted signal, 2s(¢) exp(—j27nf.t), (c) the spectrum of the complex envelope, §(f),

resulting from ideal low-pass filtering and (d) the spectrum of the sampled complex envelope,
5(nT,), at the sampling interval T; =1/ F;.



Once the in-phase and quadrature signals have been generated by the quadrature down-
converter, a pair of identical, synchronized analog-to-digital converters are used to acquire the analytic
signal. Shown in Figure 2-2 are representative spectra for the various steps in the ideal quadrature
down-converter, including the sampling process. Although there are practical issues such as gain and
phase imbalance between the channels, filter delays and local oscillator synchronization, it can be seen
that the quadrature down-converter represents a viable method of complex envelope generation. In
fact, methods of characterizing and compensating for channel imbalance have been studied [6 - 9]. A
commonly used alternative is to first digitize the signal of interest and then implement a numerical
(i.e., digital) quadrature down-converter. This leads to the less known concept of complex band-pass

filters.

3. Complex Band-pass Filters

The generalization of a method of generating the discrete-time pre-envelope and complex
envelope signals from a properly sampled band-pass signal is now presented. Advancements are
made to the work of Reilly, Frazer and Boashash [2], where the special case which employs complex
FIR (Finite Impulse Response) band-pass filtering has been treated. The generalization presented
herein, includes the extension to the IR (Infinite Impulse Response) case, and the extension to the
case where synchronization to a reference is of concern. These extensions allow for further practical
application of the complex band-pass filtering process.

With the work of [2], the concept of complex (band-pass) filtering for generation of the
discrete analytic signal has been introduced. (Related observations regarding the relationship of
symmetric half-band low-pass filters, Hilbert transformers, and analytic signal generation, have been
previously made by Jackson [10].) As the name implies, complex band-pass filtering involves the
generation of a pre-envelope signal, achieved via linear convolution of the real input signal with a
filter represented by an appropriate set of complex-valued filter coefficients. As will be shown, these
coefficients are easily derived from the design of a real low-pass filter, of appropriate frequency
response characteristics. This real low-pass filter will be referred to herein as the low-pass filter
prototype.

Any common method of generating the coefficients of this low-pass filter prototype may be

used, including the popular Parks-McClellan algorithm, and window-based designs [11]. The same



design considerations used in generating the low-pass filter of the half-band filter method [10] or the
low-pass filter pair of the commonly employed quadrature down-conversion method [12] of complex
envelope generation are used in designing the low-pass prototype. (For example, if the cut-off
frequency of the prototype filter is B/2 Hz, then the bandwidth of the resulting complex band-pass
filter will be B Hz.) Once the pre-envelope is generated via complex band-pass filtering, the
modulation theorem indicates that one can easily rotate the pre-envelope down in frequency to a center
frequency of 0, resulting in the complex envelope. Thus it can be shown that the quadrature down-
conversion and complex band-pass filtering processes can produce equivalent results.

As in [2], this equivalence is leveraged herein and allows for the formulation of the complex
band-pass filter coefficients. However, rather than being limited to the FIR case, the results given in
Section 3.1 also apply to the more general IIR case. Interest in IIR solutions is evidenced in [11, 13,
14]. One reason for this interest is that it is often the case that FIR filters meeting the same
specifications are of substantially larger order.

In spite of the simplicity of the complex band-pass filter, practical issues arise when
attempting to use either this or any equivalent method of analytic signal generation. In particular,
situations often arise in synchronization applications, where filter time delays must be taken into
account in order to alleviate phase offsets. In subsequent sections it is shown how to avoid such
problems. An example of the complex band-pass filter method of pre-envelope generation is given,

emphasizing the IIR case and synchronization problem.

3.1 Complex Band-Pass Filter Generation

Based on the relationship of the quadrature down-conversion method of complex envelope
generation and the complex band-pass filter method of pre-envelope generation, the coefficients of the
complex band-pass filter can be derived. Consider the low-pass prototype filter irﬁpulse response,
hy(nTs) , and its z-transform, Hy,(z). For the ARMA (Auto-Regressive Moving-Average) filter model,
which includes both the FIR and IIR cases, Hj,(2) is of the form

M
2 bk '.Z_k
Hp()=50—. | G-1

Zak 'Z-k

k=0



The impulse response, hy,(nT}), is determined by the 2+M+N real coefficients by, k=0,1,2,....M and ay,

k=0,1,2,...N. (Here, T, is the sample interval in seconds, and the corresponding sample rate is
F, =1/ T, samples per second.) The filter response Hj,(z) corresponds to the response of either of the

identical real low-pass filters used in the quadrature down-conversion process.

The z-transform of a filter i(nTy) is by definition
H(z)= O, h(nT,)-z™" . (3-2)

Therefore when the low-pass filter prototype is appropriately modulated, the resulting complex

sequence,

hy, (nT )e+j2” finTy

b

has the z-transform

. Z .
by (nTy)e 27 T o5 H (2) = Hyp (207727 sy (3-3)

Thus for filters of the form presented in Equation (3-1) we have

M
Ebl\ _{Z_e"j27[f[7} }_k
H+ ()= k;O
Zak _{z'e-jzfrf,T, }—k
k=0
M
z{bk ‘e+j27rf,kT, }'Z—k
= . (3-4)
Z{Gk .e+j27rf,kT: }Z-—k
k=0
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Equations (3-3) and (3-4) imply that any filter with the response as indicated in Equation (3-1) can be
circularly rotated in frequency by the amount f; Hz, by multiplying the finite length real coefficient

sequences ax and by by the complex exponential sequence,

otk _ ot i2m fikT, (3:5)

The resulting complex-valued coefficients are those of the desired complex band-pass filter, &, (n7,),

the response of which is given in Equation (3-4). The complex band-pass filter numerator coefficients

become
dp =by-et* p=012,....M, (3-62)

the denominator coefficients become

cp =ag-et M p=012,..,N. (3-6b)

Thus we can transform a properly designed prototype low-pass filter of the quadrature down-
converter with low-pass bandwidth B/2, into a complex band-pass filter with band-pass bandwidth B

and centered at + f, Hz. Subsequently, we can linearly convolve the input sequence with this complex

filter. The result of this convolution, a positive pre-envelope, can then be circularly rotated down in
frequency to yield the corresponding complex envelope signal if so desired, for e.g. FM demodulation
[15]. This is consistent with the results of [2], with the important exception that the method of
complex filter coefficient generation of Equations (3-6a) and (3-6b) includes not only the FIR case,
but also the more general IR case. Note also that we have not limited ourselves to the case where the
entire positive frequency range is of interest, as defined by the pre-envelope of the input sequence.

Rather, the pre-envelope of any band-pass constituent of the input signal can be obtained.




3.2 Synchronization Considerations

The rather simple looking results of Equations (3-6a) and (3-6b), are not without associated
subtleties. To better appreciate these subtleties, we now consider the application of the complex band-
pass filter method, to problems involving synchronization. Without loss of generality, we consider the
two-component case where a narrow-band constituent, s, (n7), of the input signal,
s(nT,) = s,(nT,)+s,(nT,), is of interest. (The term “narrow-band” is being used relative to the
sample rate, F /2.) It is assumed that the pre-envelope of s, (nT,) must be extracted, without loss
of phase reference to s,(n7,). (A continuous-time example of such a synchronization problem, is

that of commercial FM stereo reception. Subsequent to FM demodulation, a pilot tone at 19 KHz is
used to synchronously demodulate an AM-DSB-SC constituent at 38 KHz, which contains the L-R
audio component [16].) The approximate center frequency of s, (nT;) is taken to be Q; =27T,
radians per second. As it turns out, the choice of the rotation sequences of Equations (3-6a) and (3-
6b), has an effect on the ability to achieve synchronization. In the application of Equations (3-6a) and
(3-6b), the rotation sequences, e*/** , used in the products shown were each conveniently assigned an
index, k, corresponding to the indices of the filter coefficients.

This index assignment will often suffice, but more generally, the indices must be carefully
selected to achieve a desired phase relationship, and need not be integer valued in the exponent.

Taking this into account, we rewrite Equations (3-6a) and (3-6b) as

d]x—y[ =b]x—y[ .e+j91x cx=y,y+Ly+2,.,y+M (3-7a)

Clx—y[ = AYx-y[ -e+jQ’(X+A), x=y,y+1L,y+2,.,y+ N, (3-7b)

Here, we are using the notation Jx-y[, for the nearest integer value of the quantity x-y. In order to
determine the proper values for the index, y, and for the offset, A , we need to consider the processing
involved in the corresponding quadrature down-conversion method of pre-envelope generation when
applied to the synchronization problem. The block diagram of such a system for generating the pre-
envelope of s, (nT.), is shown in Figure 3-1. This system for generating the pre-envelope, s, (nT}),
of the constituent s, (n7,) , has been carefully designed to take into account the effective time delay,

12



n,T,, of the low-pass filter, /1 (nT). By pre-determining and using the sample delay, n,, in the

system of Figure 3-1, a pre-envelope is generated that remains synchronized to the delayed input

signal constituent, s, ([n—n,]T,). This further implies that the phase relationship with the delayed

constituent, s,([n—n,]T.), has also been maintained and can therefore be readily used to process
s,([n—n,1T)).
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Figure 3-1. Pre-envelope generation using the quadrature down-converter, with phase relationships of
signal constituents maintained.

Analyzing the response of the system of Figure 3-1, we can determine the offset, A, that will

yield the equivalent complex band-pass filter, A, (nT,), when using Equations (3-7a) and (3-7b). It
can be shown that the equivalent complex band-pass filter is obtained when A=n,. Also, the
numerator filter coefficients can be made conjugate symmetric by setting y =—M /2. This can lead to

a lower number of computations when implementing the filter, if the low-pass prototype is a
symmetric FIR filter.

As an exaxhple, results from a MATLAB-based simulation are presented. In this simulation,
5,(nT,) and s,(nT,) are both unity amplitude sinusoids of frequencies 0.23 and 0.69 Hz
respectively. Likewise, the phase angle of s, (nT,) is three times that of s, (nT,). These signals are

summed to form the input, s(nT,) = s, (nT,) +s,(nT,), to a complex band-pass filter which is used to

13




generate the pre-envelope, s, ([n—n, IT.), of the constituent s, (n7;). It is then graphically
demonstrated that the phase relationship with the delayed constituent, s,([n—n,]T,), has been

maintained. This is accomplished by tripling the phase and frequency of the pre-envelope,

s,, (n—n,]T,), and using the real part of this result as the estimate of s,([n—n,]1T,). Samples of
both the true constituent, s,([n-n,]T,), and the estimate are shown in Figure 3-2. (The starting
sample has been chosen well after filter transients have subsided.)

The prototype low-pass filter is 16" order digital Butterworth filter with a specified cut-off of
09765 Hz relative to F, =2 samples per second, resulting from the MATLAB™ “butter.m” routine
[17]. In this example, the pre-envelope of a band-pass constituent located at f, =0.23 Hz is of
interest. This filter has been intentionally designed such that n, is approximately integer valued, and
in this case n, = 33 samples. As seen in Figure 3-2 (a), when we arbitrarily set A =0, the complex
band-pass filter resulting from Egs. (3-7a) and (3-7b) imparts an undesired phase on the estimate of
s,([n—n,]T,). In contrast to this, when we set A =n, =33, synchronization between the estimated

and true signals is achieved as shown in Figure 3-2 (b).

[0)]

s

a) £

£

<

o estimate
+ true

400 410 420 430 440 450
Sample, n

Figure 3-2. (a) Segments of the estimated and true sequences of the constituent s, ([n - 331T,),
with A =0 and n, = 33; synchronization is not achieved.
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Figure 3-2. (b) Segments of the estimated and true sequences of the constituent s, ([n —33]T,), with
A =n, =33 ; synchronization is achieved.
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Figure 3-3. Example prototype low-pass filter and resulting complex band-pass filter responses; (a)
low-pass filter magnitude response, (b) low-pass filter phase response,
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Figure 3-3. (c) complex band-pass filter magnitude response, (d) compex band-pass filter phase
response.

Figure 3-3 shows the responses of the prototype Butterworth low-pass filter and the corresponding

complex band-pass filter. Note that the response has been rotated in frequency to 0.23 Hz.

33 Example Application: Interference Removal

The additional example of maintaining signal synchronization for the purpose of interference
cancellation provides further insight into potential applications. The cancellation technique to be
presented in this section has been applied in [18] to enhance speaker identification in the presence of
narrow-band interference. For convenience, a description of the method is also given in this report.

Narrow-band interference can be removed via notch filtering prior to processes such as
demodulation. For removal of pure tonal interference, the notch filter approach can be very effective.
One can design a notch filter with a small bandwidth such that only a small amount of the desired
signal is attenuated when the tone is removed. However, in practical communication settings,
interfering signals can have non-infinitesimal bandwidths. A more sophisticated technique is required
to handle such cases.

The interference cancellation technique/device proposed by the author and presented herein,
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will be referred to as the narrow-band interference canceller (NBIC). The basic NBIC device is shown
in Figure 3-4. Although it is somewhat more complicated relative to the notch filter method, it is also
observed to be more robust in scenarios where the interfering signal is angle-modulated. The input to

the device,

X (nTy) = s(nT,)+ D(nTy) , (3-8)

X,(ln-d,T,) @y(In—dIT)

/
X(nT) / FM Demod LPF1 Integrator I—)I cos(+) [

—
AM Demod____)l——__L ;'2\ > ol
LPF2 | 20T 127 \ Multiplier
T 24d,([n-d]T,)

Y
9]
%
o1

D(n-dr))

Io
Time- X([n-4dlT) +
7| Alignment 49 >
Delay Kin-dIT)

Figure 3-4. A narrow-band interference canceller.

consists of the sum of a desired signal s(nT;) , and an interfering distortion signal, D(nT}), and is
sampled at F; =1/T; samples per second. For the given configuration of the NBIC, it is assumed that
D(nT,) is much narrower in bandwidth than s(nT) , and can be modeled as

D(nT,) = 2a,(nT,)| - cos(e, (nT;)), (3-9)

where @, (nT,) = 27f,nT, + §,(nT,) +6, . Here, 2|a,(nT,)| is the slowly varying envelope and f, is
the center frequency of D(nT;). The angle modulation which is present consists of @,(rT,) and the

constant (dc) phase term, 6, . Referring to the figure, the function of the complex band-pass filter

(CBPF) is to pass, with unity gain, frequencies in a narrow band about the center frequency estimate,




f » , and to reject all other frequencies (both positive and negative). In an initialization process, the set
of complex valued coefficients for the CBPF are generated based on this center frequency estimate.
To create the CBPF, Equations (3-7) (a) and (b) are applied, with A =d;, where d| is the time delay

(in samples) imparted by the low-pass filter prototype. The output of the CBPF is an estimate of the

pre-envelope of D(nT,), and is represented as
X,(nT)=|a,nT)-explj-{et,(nT) +enT) N, (3-10)

where n, =n-d, . The envelope of the distortion estimate is | A,(nT) |=|a,(nT,)+ E(nT,)|. The
errors, E(nT,) and e(nT,) are an additive envelope error and an additive phase error, respectively.
These errors are the combined result of the component of s(nTy) which passes through the CBPF,

and the errors arising from the convolution of D(nT) with the CBPE. These effects are minimized

by proper selection of the bandwidth of the CBPF. Nominally, this bandwidth is set equal to the

bandwidth of D(nT,). X,(nT,) can be represented in rectangular notation as

X,(nT,) = X, (nT) + jX 5, (nT,) | (3-11)
where
X 5, (nT,) = | Ay (nT,)|-cos(ay (nT,) + e(nT,), (3-12)
and
X, (nT,) = |A,(nT,)|-sin{a, (nT) + e(nT,)). | (3-13)

This representation facilitates the demodulation processes, using the pair of real signals, X p(nT)),

and X,,(nT)).
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- Before proceeding with the descriptions of the remaining processes, it is noted that overabll, the
complex band-pass filter, CBPF, and the low-pass filters, LPF1 and LPF2, will impart a delay relative
to the input signal. This fact is taken into account in the NBIC, by designing these filters such that a
total delay of d samples is imparted, relative to the input. LPF1 and IPF2 are designed to impart
equal delays since the FM Demod and Integrator together impart a zero sample delay, as does the AM
Demod. Thus the delay of CBPF is d; samples, and the delays of LPF1 and LPF2 are both (d -d1)
samples. ’ ‘ |

" The AM demodulation (AM Demod) and low-pass filtering (LPF2) processes, are readily

accomplished, and result in

& (iT,) = | X5 =d ) + X3, (- 41T |

LPF2
= A (n=d ) ey . (3-14)

The notation [']me represents the low-pass filtering process depicted in the figure as LPF2. From (3-

14) and the definition of A, (nT,) , we have that
a,(n-dir)=[ a,((n-d,JT)+ E(n-d, 1)) |I,.. - (3-15)

To be consistent with (3-9), we note the need for a gain of 2 as shown in Figure 3-4, for restoration of

the envelope. The function of LPF2 is to reject, to the extent possible, the envelope error component,

E(nT,) .

The FM demodulation (FM Demod) process is implemented as a first-backward-difference

operation on the recovered phase sequence

(3-16)

X, (nT,
a,,(nT,) = Arc tanli—””-@—i?-] .

X pi(nT)




This difference is calculated in a modulo-27 fashion, often referred to as phase unwrapping. (More

correctly, this is referred to as phase-difference quadrant determination.) The Arctan in (3-16) is the
four-quadrant arctangent of the ratio of quadrature and in-phase components, Xp,,and Xp, . Inthe

absence of phase cycle-slips, the low-pass filtering (LPF1) and Integrator processes result in the

distortion phase estimate
@, ([n-dIT) = oy ((n—dIT) +e((n=d, 1)), G-17)

The function of LPF1 is to reject, to the extent possible, the phase error component, e(nT)).

The Integrator process, in the case where a backward-difference FM demodulator is used, is simply an
accumulator, with a specific initial condition. This initial condition is set equal to the initial phase,

a,,(-T,), used in the FM demodulation process. (For simplicity the initial phase is set to zero.) Note

that for practical purposes, the integration process can also be calculated modulo-27, preventing large
accumulation results. Thus, the function of the Integrator is to invert the FM demodulation process.

The FM demodulation process itself, has facilitated the use of LPF1.
With the envelope and phase estimates of D(nT,) available, the €0s() and Multiplier

- processes are used to generate the estimate
D({n-dIT)=2a,([n—d]T,)-cos(é, ([n—dIT.)). (3-18)

Finally, as shown, after properly aligning the input with the distortion estimate, the distortion estimate

is subtracted from the input signal, resulting in an estimate of the desired signal,
S([n—dlTg) = X([n—d]TQ—f)([n—d]TQ. (3-19)

Thus the Time-Alignment Delay imparts a delay of d samples on the input, allowing for a

synchronous subtraction process.
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4. Conclusions

Generation of the discrete-time pre-envelope or complex envelope signals from a sampled
band-pass signal, is a fundamental pre-processing step in modern signal processing systems, with
applications including sonar, radar, audio and communication processing systems. The complex
band-pass filter method presented herein provides the system designer with a simple means of analytic
signal generation which leverages existing real low-pass filter design tools. Extensions are made to
the cited previous work in which the special case of the FIR complex band-pass filter was presented.
These extensions include the more general IR complex band-pass filter, and applications where
synchronization is of concern. An example has been presented which both employs an IIR complex
band-pass filter and demonstrates how to maintain phase synchronization. The concepts provided in
the example were then built upon to provide a more sophisticated example application of interference
cancellation. The results presented allow for further understanding and practical application of the
complex band—pass filtering process.

As presented in [4], the digital quadrature down-converter represents an enhancement to the
traditional analog process. In particular, with appropriately designed filters and proper arithmetic
precision, the image distortion present in analog implementations is kept within acceptable limits in
the digital implementation. With the work of [2], advantage is taken of the equivalence of FIR
complex band-pass filters and digital quadrature down-converters with FIR low-pass filters. This
leads to the elimination of the need for complex sequence generation and multiplication at every
sampling instant. Instead, the FIR filters themselves are pre-rotated in frequency, forming the
complex band-pass filter used for subsequent convolution. Designers of the digital quadrature down-
converter have cleverly avoided complicated sequence generation by judicious choice of the sample
rate and center frequency of the signal of interest. However, this limits the flexibility of the analytic
signal generation process. (It should be noted that rotation of the center frequency of the pre-envelope
signal to 0 Hz is unnecessary; in particular, as with envelope demodulation, angle demodulation does
not require the complex envelope [15].)

Both the FIR complex band-pass filter process of [2] and the digital quadrature down-
converter of [4] address only the case where the entire positive frequency band is of interest. In the
most general case, any band-pass signal in the Nyquist range may be of interest. The extensions

presented in this report allow for the arbitrary selection of center frequency and bandwidth. More
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recently, poly-phase filter banks (see e.g., [19]) are becoming popular for the selection of band-pass
signals that are less than full Nyquist bandwidth. However, the standard applications of such poly-
phase methods are for inputs with equally spaced frequency channels. This and the often-used
additional constraint of perfect reconstruction, limits the choices of filter responses available to the
designer. In general, where no such channelization is required, the complex band-pass filter represents

an attractive alternative when si gnal fidelity, bandwidth and frequency selection flexibility are desired.
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