REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Director, Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1244, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
 4/20/99 Interim Report, 6/1/98 - 12/31/98

4. TITLE AND SUBTITLE
 New Microlayer and Nanolayer Polymer Composites

5. FUNDING NUMBERS
 DAAG55-98-1-0311

6. AUTHOR(S)
 E. Baer and A. Hiltner

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)
 Case Western Reserve University
 10900 Euclid Avenue
 Cleveland, Ohio 44106-7202

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES
 The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
 During the period, new types of micro- and nano- layered polymeric composite systems were created with specific property combinations. Various materials systems with two and three components were produced for the first time. These had novel characteristics due to structure control as a function of scale and inter-layer adhesion.

 Highlights include:
 (1) Development of clear nano-layered composites with improved ballistic performance characteristics;
 (2) Creation of conducting micro-layered composites by controlled interdiffusion;
 (3) Microlayered structures with highly anisotropic conductivity

14. SUBJECT TERMS

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OR REPORT
 UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE
 UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT
 UNCLASSIFIED

20. LIMITATION OF ABSTRACT
 UL

NSN 7540-01-280-5500

Enclosure 1

Standard Form 298 (Rev. 2-69)
1. **Manuscripts Submitted and Published**

2. **Scientific Personnel**

Faculty:
- E. Baer, professor
- A. Hiltner, professor
- S. Nazarenko, assistant professor

Research Staff and Graduate Students
- E. Stepanov, Senior Research Associate
- T. Schuman, Ph.D. candidate
- M. Parsons, Ph.D. candidate
- D. Jarus, PhD. candidate
- J. Kerns M.S. candidate
- M. Dennison, B.S. candidate

3. **Inventions**

None
4. **Scientific Progress and Accomplishments**

Transparent nanolayered composites with more than 4,000 layers have been created of both polycarbonate/styrene acrylonitrile copolymers and polycarbonate/polymethylmethacrylate. A composition of 80% polycarbonate, with improved solvent (craze) resistance, achieved the ballistic performance of polycarbonate.

Novel electro-mechanical composites have been made with highly anisotropic electrical properties using interdiffusion between layers under controlled thermal conditions. The elastomeric nature of these systems has been used to develop sensitive sensors that function under large reversible deformation.

5. **Technology Transfer**

Four companies, Kimberly-Clark, American National Can, International Paper and Dow Chemical are utilizing the microlayer technology developed under this ARO program to create new products.

Also, under this contract, composites have been made for the Army Research Laboratory, at Chestnut Run. Structure-property relationships have been established for these systems.