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1. Introduction

The 1.375-um water vapor band has been chosen by MODIS and NPOESS as a cirrus cloud detection
channel based on the work of Gao et al. (1993; 1995; 1998). The nominal band is centered at 1.375
pm and is 0.03-pm (30 nm) wide, i.e., 1.360--1.390 um. In this report, we analyze this detection
approach and use the results to answer the question: Is MODTRAN resolution sufficient to fully
characterize this detection approach or is the higher spectral resolution of FASCODE required?

Cirrus clouds, and especially thin cirrus, occur primarily in the upper troposphere. Gao’s approach to
detecting cirrus from space recognized that detecting cirrus is best done in an atmospheric water-
vapor band that blocks most or all of the upwelling scattered sunlight from the surface. Figures 1 and
2 show the MODTRAN atmospheric transmission from space to sea level for the mid-latitude-
summer (MLS) and sub-arctic-winter (SAW) atmospheres in the vicinity of the 1.375-um water-
vapor absorption band. The central part of the band is virtually opaque for the MLS atmosphere, but
there is a small average transmission (0.0567) for the SAW atmosphere over the MODIS band.
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Figure 1. MODTRAN atmospheric transmission from space to sea level for a mid-latitude
summer mode! atmosphere in the vicinity of the 1.375 um water-vapor
absorption band. The central part of the band is virtually opaque. Also shown is
the position of the nominal MODIS band.
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Figure 2. MODTRAN atmospheric transmission from space to sea level for a sub-arctic
winter atmosphere in the vicinity of the 1.375 wm water-vapor absorption band.
The central part of the band has a small average transmission (0.0567). Also
shown is the position of the nominal MODIS band.

In the vicinity of the 1.375-um water-vapor absorption band, the Earth appears very dark from space,
and the only clouds that can be seen are those that are above most of the water vapor. These are
usually cirrus but can also include volcanic aerosols and certain clouds associated with deep
convection and thunderstorms, including anvil cirrus (incus). Gao and his collaborators chose a
wavelength band for MODIS in the 1.375-um region for cirrus detection. Measurements and
simulations proved this to be an effective way of detecting most cirrus. By setting a threshold
radiance, a cirrus/no cirrus detection algorithm can determine whether cirrus is present, and by
modeling how sunlight scatters from cirrus clouds some additional information about the composition
of the cirrus themselves can also be retrieved.



2. Modeling

Gao’s original work and his conclusmns leading to the cirrus detection scheme were based on
LOWTRANT7 (resolution 20 cm ™ ) (Gao 1995). The LOWTRANT7 model is now cons1dered obsolete,
having been replaced by MODTRAN. By comparison, MODTRAN’s resolution is 2 cm™ and
FASCODE’s is 0.0002 cm -l . Inverse centimeter (cm™ 1) (also referred to as “wavenumber”) units are
used to specify wavelength in the models using the conversion:

10000

X 22 e
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The 1.375-pm MODIS is centered at 1.375 um and is 0.03 pm (30 nm) wide, i.e., 1.360-1.390 pm,
which is specified as 7194.24 — 7352.94 cm™ . Resolution is not the only difference between the
three codes; this will be discussed in more detall below.

The Moderate Resolution Transmittance (MODTRAN) code, developed by the Air Force Research
Lab (AFRL), calculates atmospheric transmittance and radlance for frequencies from 0 to 50,000

cm ! at moderate spectral resolution, primarity 2 cm™ (20 cm™ in the UV) (Berk et al., 1989). The
development of the MODTRAN model was motivated by the need for higher spectral resolution than
was available in the Low Resolution Transmittance (LOWTRAN7). MODTRAN’s capabilities
include spherical refractive geometry, solar and lunar source functions, scattering (Rayleigh, Mie,
single and multiple), and default atmosphere profiles (gases, aerosols, clouds, fogs, and rain).
MODTRAN version 4 release 1 was used for these calculations, and is the most current release.

The Fast Atmospheric Signature Code (FASCODE) is a first principles, line-by-line atmospheric
radiance and transmittance code, which was also developed by AFRL (Smith et al., 1978).
FASCODE has become the standard benchmark for atmospheric background codes based on band
model approaches to radiation transport such as MODTRAN. It is applicable from the visible to
long-wavelength infrared. - FASCODE is used to calculate atmospheric radiance and path
transmission at low altitudes, but can also be used for non-equilibrium high-altitude calculations.
FASCODE version 3 was used for these calculations, and is the most current release. FASCODE
uses the HITRAN database for information on the spectroscopic transitions of the gases in the
atmosphere. The HITRAN database project was started by the Air Force Geophysics Laboratory
(AFGL) in the late 1960s and has been continuously updated since then (Rothman, 1998).

The MODTRAN and FASCODE models share some common capabilities (and in some cases source
code) for spherical refractive geometry, scattering (Rayleigh, Mie, single and multiple), and default
atmosphere profiles. However, the current release of the FASCODE model does not contain a solar
source as MODTRAN does. so a direct calculation of the scattering of reflected solar light off the
cirrus cloud cannot be performed. This limits the comparison to transmission only.




The geometry used in comparing FASCODE and MODTRAN, which is identical to the geometry
used by Gao (1995), is illustrated in Figure 3. The transmission of the atmosphere as a function of
wavelength was calculated along the incoming light path from the sun to a point in the atmosphere at

an altitude z, and then from that point back to space. These transmission values are shown in Figures
4-7.

The rational for using this model geometry is two fold. The model geometry was developed by Gao
to support the band selection for the MODIS sensor, and documented in the peer-reviewed literature.
This band has been successfully used for operational cirrus detection, providing a sanity check for the
model physics. Secondly, as mentioned above, the FASCODE model does not contain a solar source
as MODTRAN does, so a direct calculation of scattering of reflected solar light off the cirrus cloud
cannot be performed.

A useful metric to compare the model calculations is the average transmission over the band. Two
reference altitudes (z =6 and 10 km) and two reference bands (1.372-1.382um and 1.373-1.376
pm) along with the MODIS band were chosen for comparison. The average transmission across these
bands was calculated and tabulated in Tables 1 and 2.
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A
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Figure 3.  Geometry used in the transmission calculation. The transmission of
the atmosphere is calculated from the top of the atmosphere to an
altitude Z at a 45° zenith angle, then back to space at a 0° zenith angle.

Table 1. Band Averaged Transmission for Z = 6 km for the Geometry from Figure 3

Band MODTRANMLS FASCODEMLS MODTRAN SAW FASCODE SAW
MODIS 0.1699 0.2222 0.5692 0.6400
1.372-1.382 um 0.2357 0.3031 0.6400 0.6996
1.373-1.376 um 0.2649 0.3474 0.7069 0.7548




Table 2. Band Averaged Transmission for Z = 10 km for the Geometry from Figure 3

Band MODTRANMLS FASCODE MLS MODTRAN SAW FASCODE SAW

MODIS 0.7328 0.7875 0.9097 0.9307
1.372-1.382 um 0.7824 0.8243 0.9322 0.9446
1.373-1.376 um 0.8335 0.8626 0.9552 0.8596




3. Discussion

As the data in Tables 1 and 2 show, there are significant differences in the band-averaged
transmission values calculated by FASCODE and MODTRAN. MODTRAN consistently
underestimates the transmission for both altitudes and model atmospheres in all three bands. Figures
4-7 clearly show that the resolution of MODTRAN is not high enough to completely model the
spectral structure in this wavelength region. The band-averaged transmissions differ by up to 50% for
the MODIS band MLS atmosphere case. This error is comparable to the transmission from the
ground to space for the SAW atmosphere.
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Figure 4. Comparison of the calculated transmission from FASCODE
and MODTRAN for the 1.372-1.382 wm band for the Mid-
Latitude-Summer (MLS) and Sub-Arctic-Winter (SAW)
atmosphere models for a 6-km cloud height.
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Figure 5. Comparison of the calculated transmission from FASCODE
and MODTRAN for the 1.372-1.382 um band for the Mid-
Latitude-Summer (MLS) and Sub-Arctic-Winter (SAW)
atmosphere models for a 10-km cloud height.
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4. Conclusions

The results of the simulation are consistent with the work of Gao (1993) for the MODIS band
selection, indicating that the physics of the models is sound. MODTRAN’s spectral resolution is not
high enough to completely model the spectral structure in this band, as compared to FASCODE. The
comparison of the band-average transmission yields values that are significantly different between the
two models.

The motivation for this analysis was to answer the question: Is MODTRAN resolution sufficient to
fully characterize this detection approach, or is the higher spectral resolution of FASCODE required?
The answer is that the current release of MODTRAN does not have sufficient spectral resolution to
model the spectral structure in this band. The FASCODE model does have the resolution to model
this band. The FASCODE model does not have a solar source as MODTRAN does, however, so
applying FASCODE to this analysis will require more involved modeling.
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