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EXECUTIVE SUMMARY

SCOPE/OBJECTIVE

The objective of this study was to conduct ship motion characterization to identify
stabilization problems that could affect the operation of the Stabilized High-Accuracy Optical
System (SHOTS) while onboard the Mobile Aerial Target Support System (MATSS).

REQUIREMENTS

As a missile tracking system, SHOTS must be stabilized to maintain its tracking capabili-
ties. Successful operation of SHOTS requires extensive knowledge and characterization of
environmental conditions that could possibly be encountered under normal operations. These
conditions may change, depending on location, time, and additional sensors that may disturb
SHOTS.

ACCOMPLISHMENTS

Angular amplitudes and rates, and linear accelerations were measured with a six -axis-
gyroscope. High-frequency vibrations were characterized with a triaxial accelerometer.
Additional measurements from an onboard gyroscope with better resolution were used as a
correlation factor between the two gyroscope systems. Fourier analysis of angular amplitudes
and linear accelerations determined relevant frequencies for the system. Sources of error for
the gyroscope system such as temperature drift and axes misalignment were identified and
characterized.

RECOMMENDATIONS

This report identifies the importance of conducting more measurements at different
locations on MATSS, characterizing sea conditions and other sensors on MATSS more
carefully, and analyzing measurements in more detail. Corrective measures should be
developed and implemented to minimize systemic errors.
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INTRODUCTION

The linear and angular ship-motion measurements in this report were taken during the
Mobile Aerial Target Support System (MATSS) Acceptance Plan: Phase II—Near-Shore Sea
Trial on 15 April 1999. Yard tugs and a commercial tow ship transferred MATSS from the
Navy Inactive Ship Maintenance Facility (NISMF) Pier to the mouth of Pearl Harbor,
Hawaii, and from Pearl Harbor, Hawaii, to the test site, approximately 8 nautical miles
offshore. During this phase, communication exercises, emergency drills, and helo-hovers
were conducted along with evaluation of sea-worthiness and ship -motion characterization.
This trial will transition to Phase III of the Acceptance Plan (Target Launch Demonstration
Trial).

MATSS provides a stable BQM-74 and BQM-34 launcher platform for deployment in the
open ocean to support Pacific Missile Range Facility (PMRF) training and test and evaluation
(T&E) exercises. Platform remoteness removes PMRF and the Kauai, Hawaii, facility from
the missile harm area. Appendix A briefly describes platform capabilities and physical
characteristics of the MATSS system. MATSS will also host various auxiliary sensors that
will support PMRF functions. Ship motion will have a profound effect on the operation and
performance of most of these sensors. The Stabilized High-Accuracy Optical Tracking
System (SHOTS) will be one system that is most sensitive to ship motion. It is essential to
characterize the environmental conditions that SHOTS may encounter during normal
operations and to incorporate these results in the final system design.

SHOTS is an optical missile tracking system for the PMRF in Kauai, HI. Textron, the
prime contractor, will build two systems and the controllers. Each proposed system would
have a 40-inch aperture, 200-inch focal length telescope with mid-wavelength infrared
(MWIR) and visible cameras mounted on a stabilized mount for shipboard applications. The
final accepted design might include modifications to the dimensions provided in this report.
When completed, the system will track missiles from a sea-going platform using radar
pointing, stored pre-flight nominal trajectory, and orientation from a global positioning
system (GPS) augmented by the Inertial Navigation System (INS).

SHOTS must be stabilized to maintain target track capability and to ensure sufficient
mechanical structural strength to allow operation without loading failures. With SHOTS on
the open deck, maximum pitch accelerations would occur with the system located at the
extreme ends of the MATSS platform. Maximum roll accelerations would occur with the
system located on the extreme port or starboard laterals. The forces will increase on the
SHOTS structure as the system mounts raise the elevation of the optical sensors above the
deck. Therefore, it is important to realize that forces on SHOTS will necessarily be greater
than report data that represent information taken at the motion sensors.

Report data were collected at the predetermined location on the MATTS chosen for the
SHOTS system (Figure 1). Alternate locations have been identified for the SHOTS system
and additional testing must be conducted at the new locations. The Crossbow’ Six-Axis
DMU-VGX gyroscope measured angular amplitudes and rates, and linear accelerations. A
Crossbow’ Triaxial Accelerometer CXL10HF3 characterized higher frequency vibrations.
This report also presents data from the Seatex’ MATSS MRU H gyroscope, permanently
onboard MATSS. Although placed at a different location, data from this latter sensor provide




an excellent correlation factor with slightly better resolution. This report also characterizes
possible sources of error such as temperature drift and axes misalignment.




EXPERIMENTAL RESULTS

ANGULAR AMPLITUDE MEASUREMENTS MADE WITH CROSSBOW® DMU-VGX
GYROSCOPE

The Crossbow’ DMU-VGX gyroscope used in this experiment is a six-axis system that
uses three angular rate gyroscopes and three accelerometers, and is designed for very
accurate acceleration and angular measurements in dynamic environments. This device is
ideal for platform stabilization analysis. According to the manufacturer, the DMU-VGX
provides stabilized roll-and-pitch angles through sophisticated signal processing of the rate
and acceleration sensors. Standard tilt sensors use the earth's gravitational field to measure
angle. Consequently, they only measure tilt accurately when the object being measured is not
accelerating. In dynamic environments, conventional sensors do not distinguish between tilt
and acceleration. The DMU-VGX gyroscope uses the angular rate and acceleration signals to
calculate the roll-and-pitch amplitudes by integrating the angular rate outputs and using the
accelerometer outputs to correct for errors caused by angular rate sensor drift.

All six sensor elements are Microelectromechanical Systems (MEMS). The three angular
rate gyroscopes are made out of vibrating ceramic plates that use the Coriolis force to
compute angular rates independently of linear acceleration. The three accelerometers are
MEMS silicon-based devices that use differential capacitance to detect acceleration. Table 1
shows manufacturer calibration data for all six sensors. The coordinate system is right-
handed.

Table 1. DMU-VGX gyroscope calibration data.

Range Sensitivity Null Offset
Gyroscope Calibration Data (deg/s) (deg/s/V) V)
X-Axis 50.00 25.38 248
Y-Axis 50.00 25.27 2.50
Z-Axis 50.00 2532 252
Range Sensitivity Null Offset
Accelerometer Calibration Data (G) (G/V) V)
X-Axis 2.00 1.03 2.50
Y-Axis 2.00 0.96 2.55
Z-Axis 2.00 1.02 249

The DMU-VGX gyroscope is easily installed with the Crossbow ®-provided National
Instruments’ LabView format data acquisition application. Special applications can be
incorporated using LabView programming. The gyro provided the following parameters (in
analog format) for this experiment: roll-and-pitch amplitudes; roll, pitch, and yaw rates; and
X, y, and z accelerations. Data analysis was performed with the help of Mathworks’
MATLAB™ and Microsoft” Excel software packages.

The Crossbow® motion sensors were placed as close as possible to the predetermined
location for SHOTS. Figure 2 and 3 shows the location and layout of the data acquisition
sensors. The sensor package coordinates are 222 ft, measured from bow to stern, and 5 fi,




measured from the edge of the stern-port side. Two steel angles were welded to the MATSS
surface to provide better coupling between the sensors and the surface of the ship, and to
provide support for the sensors. An aluminum plate was secured to the steel angles using
C-clamps, and both sensors were mounted on the plate (Figure 2). The data acquisition and
other electronic equipment used to acquire and store sensor information was protected from
the environment by placing it inside a plastic hut secured to the rails (Figure 3). Figure 4
shows ship-motion parameters and relative orientation of the sensors with respect to the ship.

Figures 5 shows a time-domain display of roll measurements obtained over approximately
30 minutes. Figure 6 shows a zoom-in view of the data for a 200-second time span. The
maximum amplitude for the roll was ?5.9 degrees (after correcting for the offset), with an
average value of ?2.9 degrees. Table 2 provides relevant information regarding location,
direction, speed, and environmental conditions under which the data were obtained.
Appendix B gives a brief explanation of the criteria for determining sea state. Frequency
content was extracted from the roll data by using Fast Fourier Transform (FFT) algorithms in
MATLAB"". Figures 7 and 8 show the results. Different windows were used for the FFT
analysis without much effect on the outcome. The results were obtained by windowing the
data stream using a Kaiser (1815,20) window. The central roll frequency was at 0.198 Hz,
corresponding to approximately 5 seconds/cycle. The power spectrums show other relevant
frequencies at 0.201 and 0.213 Hz. Figures 7 and 8 show power spectrums with relative
magnitudes in normal and db scales, respectively.

Figure 9 shows a time-domain display of pitch and Figure 10 provides a zoom-in view of
the data. The maximum value for the pitch was ?1.5 degrees, with an average value of 70.29
degrees. Table 3 contains the same relevant information provided in Table 2. Frequency
content was extracted from the pitch data by using the same FFT algorithms, and Figures 11
and 12 show the results. The central frequency was at 0.195 Hz. Correlation between roll-
and-pitch motion is an important issue that should be considered in SHOTS. When maximum
roll-and-pitch amplitudes are added, the combined amplitude compensation required from the
tracking system increases. Figure 13 shows the delay time between roll-and-pitch peaks. The
bar graph in this figure shows that 40.7% of the time, both peaks happen without delay; 9.5%
of the time, a 1-second delay occurs; 33.3% of the time, a 2-second delay occurs; 15.1% of
the time, a 3-second delay occurs; and 1.4% of the time, the delay is greater than 3 seconds.

The combined maximum angular amplitude in this experiment was as follows:

Maximum Amplitude of Roll = A, = 5.9 degrees
Maximum Amplitude of Pitch = A, = 1.5 degrees

Combined Angular Amplitude = A, = (5.9 + 1.5°)"* = 76.1 degrees.




MOBILE AERIAL TACTICAL

SUPPORT SYSTEM LENGTH

256 Ft

SHOTS
SYSTEM

Power Generator

Figure 1. Location of SHOTS
System on MATTS.

CROSSBOW MATSS BARGE
ACCELEROMETER STERN-PORT SECTION, PARTIAL VIEW

b

CROSSBOW SENSOR COORD[INATHE

Figure 2. Sensor and secured mounting plate. Figure 3. Protective plastic hut secured to rail.
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Figure 13. Time delay between roll and pitch peaks.

ANGULAR RATE MEASUREMENTS MADE WITH DMU-VGX GYROSCOPE

The Crossbow ® DMU-VGX gyroscope measured roll, pitch, and yaw rates values. Figure 14
shows only a portion of the time-domain data stream for all three rates. Nevertheless, the maximum
and minimum values for these rates were obtained after analyzing the entire data stream. Table 4
shows a maximum roll rate of 5.86 degrees per second, a maximum pitch rate of 2.64 degrees per
second, and a maximum yaw rate of 0.5 degrees per second. The combined maximum angular rate for
the obtained values was as follows:

Maximum Roll Rate = R, = 5.86 degrees per second
Maximum Pitch Rate = R, = 2.64 degrees per second
Maximum Yaw Rate = R, = 0.50 degree per second

Combined Angular Amplitude Rate = R, = (5.86° + 2.64° + 0.59)""* = 6.45 degrees per second
LINEAR ACCELERATION MEASUREMENTS MADE WITH DMU-VGX GYROSCOPE

The Crossbow® DMU-VGX gyroscope also measured linear accelerations in the x, y, and
z directions. As in the angular rates, Figure 15 shows only a portion of the time-domain data.
Table 4 shows a maximum x-acceleration of 0.025 g, a maximum y-acceleration of 0.079 g,
and a maximum z-acceleration of 1.130 g. The combined maximum linear acceleration for
the obtained values was as follows:

Maximum x-acc. = a; =0.025 g
Maximum y-acc. =a, =0.079 g
Maximum zacc. =a,=1.130 g

Combined Linear Acceleration = Ay, = (.025” + .079°+ 1.13)"? = 1.133 ¢

The frequency contents of the angular rates and the linear accelerations were identical to
those in the angular amplitude data. Results presented here are only for the roll rate and the
linear acceleration in the z direction, but all three rates and all three linear accelerations were
verified to contain the same frequency information. Figures 16 and 17 show that the peak
frequency is at 0.198 Hz for both sets of data.

11
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VIBRATION MEASUREMENTS MADE WITH CROSSBOW® CXLHF3

The Crossbow® CXLHF3 Triaxial accelerometer detects and characterizes higher
frequency sources such as generators, motors, and other electromechanical systems. These
accelerometers are precision vibration sensors made of piezoelectric material integrated with
signal conditioning. The CXLHF3 was connected to a computer through the DAQ 700 a data
acquisition card from National Instruments The data were acqulred using LabVIEW
programming and analyzed using MATLAB"™ and Microsoft” Excel. Table 5 shows
manufacturer sensor calibration data taken at room temperature.

Table 5. CXLHF3 accelerometer calibration data.

Vibration
Accelerometer Zero-g Sensitivity
Calibration Data Voltage (mV/g)
X-axis 3.500 %
y-axis 3.300 97
Z-axis 3.400 100

Table 6 shows vibration results for all three directions, but this report discusses only the
z-direction vibration results. Small vibrations were detected with a maximum amplitude of
less than 10 mV in the z direction, and much lower amplitudes, about 2 mV, in the x and y
directions. Sensitivity in the z direction was 100 mV/g, which resulted in a maximum
amplitude of approximately 0.1 g. The frequency information in the z direction was maxima
at frequencies of 140, 171, 125, and 4 Hz, in decreasing order of amplitude (Figures 18 and
19), which represent the power spectrums with relative magnitudes in normal and db scales,

respectively.

The mechanical vibrations detected probably originated at the power generator and were
used during the trial. Figure 1 indicates that the generator is about 75 ft from the SHOTS
sensor. As indicated in the Table 6 results, most of the vibration was felt in the z direction.
As more systems are added to MATSS, the mechanical vibration spectrum will require re-
evaluation. More specifically, all instruments that will be active during SHOTS operation and
in close proximity should be evaliated and their full effect on system stability characterized.
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STATIC MEASUREMENTS MADE WITH DMU-VGX GYROSCOPE

A set of measurements was taken 1 day before the MATSS sea trial. These measurements
indicate the angular amplitudes and rates experienced by MATSS during the time it was on
deck in a static environment. Table 7 shows the values obtained during this experiment and
Figures 20, 21, 22, 23, and 24 show the time-domain display of these measurements.

The combined maximum angular amplitude was as follows:

Maximum Amplitude of Static Roll = A= 0.209/2 = 0.105 degree
Maximum Amplitude of Static Pitch = Ap, = 0.220/2 = 0.110 degree

Combined Angular Static Amplitude = A = (0.105> + 0.11)'? = 20.152 degree

The combined maximum angular amplitude rate was as follows:

Maximum Static Roll Rate = R, = 0.341/2 = 0.171 degree
Maximum Static Pitch Rate = R; = 0.249/2 = 0.125 degree
Maximum Static Yaw Rate = Ry, = 0.360/2 = 0.180 degree

Combined Angular Rate = Re = (0.171> + 0.1257+ 0.180%)"* = 0.278 degree per second
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SYSTEMIC ERRORS FOR CROSSBOW® DMU-VGX GYROSCOPE

The intrinsic errors of the Crossbow® gyroscope were characterized for short-term and
long-term effects in a controlled laboratory environment. Table 8 shows the maximum errors
found during several laboratory bench trials of approximately 1 hour each, taken on 7 July
1999. This length of time is comparable to the length of the test files during the sea trial. The
results are absolute values and the total angular amplitudes and rates are expressed as a
plus or minus number after correcting for the offset. Figures 25, 26, 27, 28, and 29 show the
time-domain display of these measurements. The linear accelerations contained an error of
approximately 0.015 g in all three directions for the same 1-hour period. The intent was not
to compensate for the errors, but to give a quantitative assessment for the actual errors
expected in field use.

The combined maximum angular amplitude was as follows:

Maximum Error for Short-Term Roll = EA, = .099/2 = 0.0495 degree
Maximum Error for Short-Term Pitch = EAys = .093/2 = 0.0465 degree
Combined Angular Error = EAg = (.0495% + 0.04659)" = 20.07 degree

The combined maximum angular amplitude rate was as follows:

Max. Error Roll Rate = ER s = 0.114/2 = 0.057 degree per second
Max. Error Pitch Rate = ER s = 0.096/2 = 0.048 degree per second
Max. Error Yaw Rate = ERys = 0.046/2 = 0.023 degree per second

Combined Angular Rate Error = ER = (.0572 +.048%+.023%)"* = 20.08 degree per second
The combined maximum linear acceleration was as follows:

Maximum Error x-acceleration = EA, = 0.015 g
Maximum Error y-acceleration = EA, = 0.014 g
Maximum Error zacceleration = EA, = 0.015 g

Combined Linear Acceleration Error = EA,y, = (.0152 +.014> + .0152)”2 =0.025 ¢

Figure 30 shows long-term errors for roll data. These measurements were made over
24 hours. This figure represents data taken on 7 July 1999 at 1600 to 8 July 1999
at 1700. The total roll drift for this experiment was recorded at about 0.5 degree for a
temperature change of about 11?C. This graph shows a correlation between the roll drift and
temperature. Temperature drifts were approximated as linear. Similar results, not included in
this report, were obtained for pitch data.

19
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ANGULAR AMPLITUDE MEASUREMENTS MADE WITH SEATEX MRU H
GYROSCOPE

The Seatex  motion sensor was placed as close as possible to the MATSS center of mass.
Figure 30 indicates sensor location by coordinates at 128 ft, measured from bow to stern;
40 ft, measured from the port side (centerline); and 5 ft, 11 inches, measured from the keel.
Figure 31 shows a time-domain display of roll measurements obtained over approximately
40 minutes. Figure 32 provides a zoom-in view of the data for a 300-second time span. The
maximum value for the roll was ?6.46 degrees (after correcting for the offset). Table 9
provides relevant information regarding location, direction, speed, and environmental
conditions under which the data were obtained. The central roll frequency was at 0.17 Hz,
corresponding to approximately 5.8 seconds/cycle. Figures 33 and 34 show power spectrums
with relative magnitudes in normal and db scales, respectively. Figure 35 shows a time
domain display of pitch. Figure 36 provides a zoom-in view of the data. The maximum value
for the pitch was ?2.03 degrees. Table 10 contains the same relevant information provided in
Table 9 for pitch. Frequency content far pitch data was the same as in the roll data.

22
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SUMMARY OF RESULTS

The measurements obtained with the Crossbow® gyroscope were compared with those
obtained with the Seatex  gyroscope and with information provided by the U.S. National
Oceanographic Data Center (NODC) from Buoy 5100 (Table 11). One file (Seatex " #11)
was recorded during helicopter approach exercises, which could explain the slight difference
in the magnitude of the angular measurements. Peak frequencies vary by about 10% between
the Crossbow® and the Seatex " data. The NODC roll-frequency data were very close to the
data obtained with the Crossbow® gyroscope.

Table 11. NODC data from Buoy 5100.

Maximum Roll Peak Maximum Pitch Peak
Sensor Roll Frequency/Period Pitch Frequency/Period
Crossbow" ?5.9 0.198/5.1 21.50 0.195/5.1
Seatex® 76.4 0.17/5.8 22.03 0.17/5.8
NODC 0.192/5.2

To fully characterize motion effects on SHOTS, more measurements must be made at the
final location for the system. The full effect of other sensors and equipment must also be
considered and analyzed. Full characterization of the environment under which SHOTS will
be operating is essential, and will allow for corrections to be imple mented. Corrective
measures will minimize some of the errors addressed in this report.
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APPENDIX A

DESCRIPTION OF THE MOBILE AERIAL TARGET SUPPORT
SYSTEM (MATSS IX-524)

PLATFORM CAPABILITIES

?? Open ocean operations
?? Launch targets in an SS3
?? Survive an SS6
7?7 7-knot tow in SS3, 5knot tow in SS4
?? Targets launched in favorable wind conditions
?? Withstand a target explosion with minimum damage
?? Transit water depths of <20 feet (5-foot draft)
CHARACTERISTICS

Dimensions Stability
Length: 256 f 2064-tons Displacement
Beam: 80 ft 42-tons/inch Immersion
Draft: S5t 3,300 LT-ft to heel 1 Deg.
Freeboard: 23 ft Metacentric Height = 91 ft
Deck Space: 20,000 i Survive SS6

A-1




APPENDIX B

DETERMINATION OF SEA STATE

The National Oceanographic Data Center (NODC) provided information regarding sea-
state conditions encountered by MATSS during the sea trial. Buoy 51003 collected the data
in this report at the following location:

Latitude = 19°10' 17"N
Longitude = 160° 43' 47"W

Buoy51003 was the closest buoy to MATSS when data were collected. The scale used to
characterize sea state is known as the Beaufort scale (B-1), which provides a sea disturbance
number ranging from 0 to 9 and is associated with wave height and wind speed. The average
wind speed reported by the buoy for 15 April, between 2000 and 2200 Universal Time Code
(UTC) was 8.75 m/s, and the average wave height was reported as 1.9 m, with an average
period of 5.2 cycles/s and a maximum period of 10 cycles/s. Onboard MATSS, the average
wind speed was measured as 21 kn (kn = 0.515 m/s), or about 10.8 m/s. Given those values,
Table 12 indicates an average sea-state disturbance number 4. The MATSS encountered
stronger winds than those reported by the buoy and waves, possibly with heights larger than
the 1.9 m reported by the buoy. It is possible that MATSS encountered an occasional sea-
state disturbance number 5 during the trial.

Table B-1. Beaufort wind force scale.

Wave Height Wind Speed
Sea State Average (m) (m/s)
0 0 0.3to 1.5
1 0t00.3 1.6t0 3.3
2 0.3t00.6 34to54
3 0.6101.2 55t07.9
4 12t024 8.0 to 10.7
5 24to4 10.8to 13.8
6 4106 13.9t0 244
7 6to9 24.5t0 28.4
8 9to 14 28.5 to 32.6
9 >14 >32.7

B-1
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