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Military Stochastic Scheduling Treated As a
"Multi-Armed Bandit" Problem

Kevin D. Glazebrook
Department of Statistics
University of Newcastle
Newcastle-upon-Tyne

NE1 7RU England

Abstract

A Blue airborne force attacks a region defended by a single Red surface-to-air
missile system (SAM). Red is uncertain about the Blues he faces, but is able to
learn about them during the engagement. Red's objective is to develop a policy
for shooting at the Blues to maximise the value of Blues shot down before he
himself is destroyed. We show that index policies are optimal for Red in a range
of scenarios and yield effective heuristics more generally. The quality of such
index heuristics is confinned in a computational study.

1. Introduction and Basic Scenario

The following scenario is a simplified version of one occurring when a Blue airborne

force attacks a Red region defended by a Red missile system; see Barkdoll, et al (2001).

A single Red surface-to-air missile (SAM)-hereafter, simply Red-can attack and

be attacked by a collection of N Blue airborne attackers, labelled 1 through N. Blues

come in B types, but Red only has imperfect information concerning the nature of the

Blues he is facing. Red is able to construct N (independent) prior distributions n', 112,...,

H1N which summarise his beliefs about the type identities of the Blues before any shooting

starts. Hence HIj is the probability that Red assigns to the event "Blue numberj is of type

b, 1 <j<N, 1 < b•< B" in advance of action. At each time t= 0,1,2,... Red shoots at a

single Blue and that Blue retaliates by firing back on Red. Red has a (constant)

probability rb of destroying a type b Blue with a single shot, and has (constant)

probability 9b of being destroyed by a retaliatory strike. Red knows when a Blue has been

destroyed because no retaliatory strike follows. All shooting outcomes are assumed to be

independent of each other. If Red destroys a type b Blue with his tth shot then he receives



a reward Vbd, where Vb is the utility associated with this occurrence and a E [0,1] is a

discount rate. Red's goal is to maximise the expected utility of Blues destroyed prior to

his own destruction.

A crucial feature of the model concerns Red's capacity to update his beliefs about the

Blues he is facing in the light of the outcomes of past engagements, by using Bayes'

Theorem. In particular, if Blue targetj has been involved in n engagements and he and

Red have survived them all (note that this is the only event of interest for future

decision-making) then the prior i' becomes the posterior rf" given by

" =_(--rb) (--Ob)" l<b<B. (1)
•_r~jj (I _ ra (1) _O )

~dfld( d)n(19-d) -

Hence, Red's beliefs about the Blues are evolving and this will plainly impact his

shooting decisions.

2. An Index Result for a Class of Generalised Bandit Problems

The above problem will be analysed by means of a result due to Nash (1980), in a

contribution that developed the classical index result of Gittins and Jones (1974). Nash

envisages N "bandits", thejth of which is in state Xj(t) at time t. A decision-maker chooses

one of the bandits to process at each time t = 0,1,2.... The effect of choosing banditj at

time t is as follows:

(i) bandit j experiences a Markovian change of state Xj(t) -+ Xj(t + 1). Bandits not

chosen remain fixed;

(ii) a reward at{-'f.jq1{Xi(t)}Rj{Xj(t)}} is generated.

The novelty of this model concerned the multiplicatively separable reward structure

in (ii) above. Here all bandits make a contribution to the rewards generated when j is

chosen through the so-called influence functions qi. The q's and R's are non-negative

and bounded.
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If some policy v is used for choosing bandits, with v(t) used for the choice made at t,

then the total return under Nash's model can be written

E[~ a'[Y1 qi {X(t)}]Rv(t) X(t)(t)}]0 (2)

The goal is to choose v to maximise the return in (2).

Nash was able to show that, under certain conditions (which are satisfied in all of the

problems discussed here), this problem has an index solution of the following character:

at each time t, compute a calibrating index

G, {Xl (t)), G2 {X2(t)}1, ... , GN{XN(t))

for each bandit in its current state. An optimal policy will always choose that one of the

bandits with the largest index. It does not matter how ties are broken.

We can deploy Nash's model to solve our problem as follows: the bandits correspond

to the N Blues. The state Xj(t) of Blue j at time t has three components, labelled I1(t),

I (t) and IJ (t). Here 1I(t) is the posterior distribution for Bluej describing Red's current

beliefs about it-see (1). Both I (t) and IB, (t) are indicator functions as follows:

0 t , if by time tj has destroyed Red,
IJR (t) =

L1, otherwise,

and

j (t 0, if by time tj has been destroyed by Red,I•(t) = l

1, otherwise.

To deploy Nash's model for our problem we make the following choices for eachj:

qj{Xj(t)} = Ij(t),
(3)

Rj {Xj (t)} = 0 whenever Ij (t) = 0 or 1i (t) = 0.

Otherwise Rj records a single return when Bluej is destroyed.

The effect of the choices in (3), when placed within Nash's reward structure, is

(a) to wipe out any further returns following Red's destruction by any Bluej; and
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(b) to wipe out further returns from Bluej following its own destruction.

This is precisely what we want. The total return in (2) is now exactly the expected utility

of Blues destroyed until Red's own destruction.

We return now to Nash's general model, but we shall exploit the fact that our q

functions (from (3)) all have starting values 1, which remain there until a possible

transition to 0. This simplifies the index structure considerably. Consider Bluej in some

state x for which qj(x) = 1. We shall describe the index Gj(x) which is used in determining

the optimal policy. Imagine Red shooting at Bluej (from initial state x at t = 0) until some

positive-valued stopping time r, defined with respect to Blue's evolving state. Define the

reward rate Gj(x, -r) earned up to r-by

Gj (X, I-) = E~jt'=_'1 )t Rj{Xj(t)}IXj(0) = x]1- E[a• qj {Xj(z-)} Xj(0)= x]

The index Gj(x) is the largest such reward rate, namely

G1 (x) = sup Gj(x, r). (5)
•'>0

In the next section we show how to develop indices for the problem in Section 1. A

general methodology for index computation for Nash's model may be found in

Glazebrook and Greatrix (1995). Other discussions of Nash's model are found in Fay and

Glazebrook (1987), Glazebrook and Owen (1991), Glazebrook and Greatrix (1993), and

Glazebrook (1993).

3. Indices for the Blues

The problem in Section 1 may be formulated as a Bayes sequential decision problem

(in which the expected reward is taken with respect to the prior distributions If, 1 •<j1• N,

as well as over the realisations of the engagement) whose structure conforms to Nash's

generalised bandit, as outlined in Section 2. Hence, all we have to do is specify what the

indices Gj are which determine optimal policies for Red. In discussing this we can

concentrate on individual Blues, and hence, drop the Blue identifierj.
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Consider a Blue target whose associated prior is HI and which has had n engagements

with Red, which have left both of them intact (IR = IB = 1). Refer to this state as (HI, n).

For the purposes of Red's decision making it is only such Blues and such states which are

of interest. In Red's next engagement with this Blue, three things can happen: (1) Blue is

destroyed and Red not; (2) Red is destroyed and Blue not; and (3) neither is destroyed. In

the formulation as a Bayesian sequential decision problem we use the posterior in (1) to

develop the probabilities of these three events as

(1) p[Blue destroyed and Red not] = -bfibrb(l -rb)(1 - Ob) /D(HI, n),

(3) p[neither destroyed] = .brib( l-rb)(+l (--0,)n+l/D(I

(2) p[Red is destroyed and Blue not] = 1 -p[Blue destroyed and Red not] -

p[neither destroyed].

In (1) and (3) we take D(H,n) = lb rib (I - rb)'(1 -9b)'

Further, the expected return for Red from the next engagement is given by

ab I-b Vbrb (1--rb )' (1 - Ob)f

Ib r1b )n(1l- b)n

Now, in following the prescription for computing the index at the end of Section 2 we

only need (for theoretical reasons) to consider certain kinds of stopping time v in our

determination of the index G(fl, n) of the Blue under discussion. Specify positive integer

r(> 1). We write rr for Red's stopping time in which, from time 0 (at which point the

state of the Blue is assumed to be (I-I, n)), Red has r further engagements with Blue

unless one or other of them is destroyed first. The random variable z, is the number of

shots from Red that results from this, and cannot exceed r or be less than one. The

expected reward up to -'r, which is required for the numerator in (4), may be expressed as

Eb Fb(1 - rb).(1 - Ob)" J-r-I a+I Vbrb -rb )' (1 - Ob)'}S=O:° (6)
D(-I,n)

and the expression in the denominator (recall that q is just IR) is
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1- bHb(1- rb)"(1 -Ob) {ZS=°r arb(1-rb)'(1 -Ob)' + r(l--rb)r(1-_Ob)r}

D(nI,n)

From (5), (6) and (7) the index G(FI, n) may be developed as

{b Hb (1-rb)fl (1- Ob )n {r-0o as'+1 Vbrb (1- rb )S(1--Ob )S(8c n,) =I ( I- )n (I-- n-- -- 2b (8)

where

S=O

and

A 2b = r (1 r(-- O )r.

We can now implement an optimal policy. If Red is still alive, then he computes all the

indices for the still live Blues and engages next whichever live Blue has the largest index.

In order to understand index structure, introduce the so-called "one-step index"

H(HI, n) obtained by taking r = 1 in (8) as

H(r, n) _b rib (1-- rb)(l -- Ob)"Vbrrb
b rIb (1 rb)(l -- b)' {(1- a)+ a•b (Ir)} (9)

It is straightforward to establish the following:

(i) If H(FI, n) is decreasing in n, then the maximum in (8) is attained at r = 1 for all

n and it then follows that G(H, n) = H(Hl, n) for all n. If this behaviour holds

good for all Blues then the index policy is quasi-myopic (a one-step look ahead

rule). Here indices are always decreasing, and so in an optimal policy, which

always targets the Blue with the largest index, Red will switch his targeting of

the Blues frequently.

(ii) If H(I-, n) is increasing in n, then the maximum in (8) is attained for all n in the

limit as r - oo. Here G(HI, n) can be shown to be increasing in n. If this

behaviour holds good for all Blues then Red will, in an optimal policy, persist in

targeting individual Blues in turn until each is destroyed;
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(iii) If there are just two Blue types (B = 2), then H(fI, n) will be either increasing or

decreasing in n;

(iv) H(rI, n) may be thought of (somewhat crudely) as a weighted average (with

respect to the posterior distribution) of a vulnerability index

Vbrb/{(l- a)+ acb (1- rb)}

for Blues of type b. This vulnerability index is high when Vb and rb are large and

when t% is small. It is plainly such Blues that Red would like to shoot at. In fact,

H(HI, n) takes expectations for the numerator and denominator of the

vulnerability index separately. The index formula in (8) tells Red exactly how

to choose.

A variety of extensions to the above are available from standard index theory. Two are,

perhaps, worthy of mention:

(a) When new Blues arrive for engagement in a Poisson fashion, an index policy is

still optimal. The index in (8) is not always quite the right one, but will do very

well in practice. See Fay and Glazebrook (1992);

(b) If there are several identical Red shooters operating in parallel, instead of just

one, and the Red objective is to maximise the utility from destroying Blues until

all Reds are destroyed, then the above index policy (operated in the obvious way)

will do very well, but will not, in general, be strictly optimal. See Glazebrook

and Garbe (1998).

4. Some Major Extensions

We elaborate the scenario in Section 1 by supposing that Red could be one of several

(R) Red types and each Blue has at his disposal several weapons, some of which may be

designed for use against particular Red types. In this situation, each Blue will seek to

learn about what kind of Red type he faces as well as vice-versa. We shall assume that

the individual Blues can only learn about Red independently of each other-they cannot
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pool information. We shall consider a range of approaches, in increasing levels of

complexity. Note that there are minor variants of most of the following proposals and

most of the objects described can bej (i.e., target) dependent.

(a) Blue's strategy known to Red

The simplest option is to suppose that each Blue type b has a strategy for

choosing successive weapons in the face of inconclusive engagements and that

these strategies are known to Red. Hence, for each blue type b, there is a

sequence {Wb(n), n > 1} of weapons to be used. Note that we do not actually

require that all Blues of type b have the same strategy-that is just here for

simplicity. An index policy is still optimal and the indices concerned involve

minor adjustments to (8). We write
n

O(b, n) = {1- Owb (m)} (10)
m=1

where Ow is the kill probability for weapon W. The index for this situation may

be shown to be

F -b FIb (1- rb )f {j-_-1 as+' Vbrb (1- rb)S (b, n + s)}1
G (rI, n) =m ax -- - "S=O - - - ] ( 1

(H [b 0 b(1 ){1-Blb -B 2b}

where
r-1

BIb =•as+Irb(I-rb)sO(bn + s)
3=0

and

B2b = r(l- )r-(bn + r).

(b) Blue's beliefs known to Red

This is, in fact, a simple example of (a) in which Blue's strategies Wb {Wb(n),

n _> 1 } are developed as Blue type b updates his prior beliefs pb about the Red

type he faces. This notation presupposes that all Blues of the same type will have
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the same priors, but this is not an essential feature. If Red has access both to the

Pb's and also to how Blue is using his posterior beliefs to choose successive

weapons, then he has access to Blue's strategy and a suitable form of the index in

(11) can be used.

(c) Blue's beliefs not known to Red

The approacha in (b) will yield an optimal index policy whose return

R(P1, P, ... , 1P) will depend upon the priors Pb describing Blue's initial beliefs

about Red. How do we proceed if we drop the assumption that Red knows the

Pb's? The two classical decision-theoretic approaches are:

(1) Suppose Red is minimax

Here Red acts conservatively and chooses the best (i.e., index) policy for the

"least favourable" priors. For most reasonable models, this will amount to

Red supposing that all Blues know what kind of Red type he is and

calculating indices accordingly.

(2) Suppose Red is Bayes

Here Red expresses his beliefs about the unknown Pb's via appropriate prior

distributions b(p). We are putting priors on priors, each of the latter being

an R-dimensional probability vector p. Indices can now be developed as

follows:

For each b we have

p -* weapon sequence Wb(p) -> O(b, n, p), n > 1,

extending (10). The index (11) now is developed to become

G(HI,n) =

l b -rb {1rb a Vbrb(l - rb)sO(bn + P)}#b (P)dP (12)

rŽ1 L ZbJb(l - b){fl Clb (P) - C2 b (P)}b (P)dP j

where
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r-1

Clb (p) I a•irb (1 - rb)-O(b,n + s,p)
S=0

and

C2b (P) ar - rb)r O(b,n + r,p)

and such indices determine the optimal policy for the Bayesian Red. In this

formulation, Red can make inferences about Blue's evolving beliefs about

what kind of Red he is. For example, if R = 5 and a Blue type possesses 5

weapons, each one potent against one of the 5 different Red types and

ineffectual against the others, then after 4 inconclusive engagements, Red

will understand that such a Blue type now almost certainly has a clear view

of what kind of Red he is and that such a Blue's next retaliation could well

be fatal for him. The index in (12) will reflect these developing beliefs.

An assumption that Blues can pool their information about Red will induce stochastic

dependence among the Blues. Appropriately developed indices can do well but will not

be strictly optimal. See, for example, Boys, Glazebrook and McCrone (1996).
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Appendix A

Issues for the Blue force

The scenario is as in Section 1 of the main report where the primary focus is on Red's

decision-making. However, the controller of the Blue force also faces some issues. A

natural first question for Blue concerns what force he needs to deploy in order to destroy

an optimally shooting Iked with a given large probability, 0.95, say. This, in fact, turns

out to be straightforward to assess. Suppose that Nb type b Blues are deployed, 1 <b5 <B.

The probability of Red's ultimate survival (having destroyed all Blues) does not depend

upon his strategy for engaging them. Hence, we may as well suppose that Red engages

each Blue in a continuous fight until one or the other is destroyed. In such an engagement

it is easy to show that

p[Blue of type b is destroyed] =rb/10b(I-rb) = Vltb, say, 1 • b5 •B.

Hence, the probability that Red survives the baffle with Nb type b Blues, 1 • b • B, is

given by

N, N2  NB

and the controller of Blue requires this to be less than or equal to 0.05, say. If there is

only one Blue type, then the choice is of the smallest number N to deploy such that

V/:A• 0.05.

If we now ask how the Blue force should accomplish the destruction of Red with

given probability at least cost to itself, then the strategy for Red does come into play

since, for example, Red may tend to engage "expensive" Blues first. Hence, we shall

suppose that Red shoots optimally, and will consider a simple situation for Blue in which

B = 2 and the loss of each type b costs him Gb, b =1,2. We note from the main report that

when B = 2, all indices are either increasing or decreasing in n. We shall suppose that the
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former is the case for all Blues and so Red's optimal shooting policy engages each Blue

non-preemptively until one or other is destroyed.

Let the expected cost to the Blue force of the deployment of Nb type b's, b = 1,2

against an optimally shooting Red be denoted C(N1, N2). Blue's optimisation problem is

minimise C(N1, N2)
NIN 2

such that (13)

where 1 > e_ 0 and 1 - cis the desired probability of killing Red.

We describe a scenario in which C(N1, N2) may be computed easily. Red's priors for

the Blue types he faces are obtained by moderating his ignorance about them (as initially

expressed byp(Blue is of type b) = 0.5, b = 1,2) by means of information obtained from a

sensor. This sensor can only judge Blue type with error. We have

p[Blue judged to be of type bi[Blue is of type 2] ]kb~b2 •

Hence, Red allocates to each Blue one of two possible priors rib, b = 1,2 according to the

judgement of the sensor. We have

ITI = p[Blue is of type 1 Blue judged to be of type 1] = Oil/(Oi + 012)

and similarly for the other probabilities. Let X, be a Bin(N1, 11) random variable

representing the number of the N1 type 1 Blue types judged by the sensor to be of type 1

and hence, given prior 1-11 by Red. Similarly, X2 - Bin(N2, 02). Red faces X1 + N2 - X2

Blue types to which he allocates prior HIl and initial index G, and N1 - X, + X2 Blue types

to which he allocates prior H2 and initial index G2. Suppose G, > G2 and so Red first

engages all those Blues judged to be of type 1, followed by those judged to be of type 2.

We assume that if Red faces two or more Blues with the same index then he chooses

between them at random.

Now the cost of engaging b, (fixed) type 1 Blues and b2 (fixed) type 2 Blues in

random order can be computed recursively by

13



c(b1 ,b2) = b,( I{C, + c(bi - 1, b2 )} + b202 {C + c(b1,b 2 -1)}

(b, +b 2 ) (b, +b 2)

c(O,O) = 0.

Hence, the desired expected cost to Blue of the chosen deployment is given by

C(NI,N 2)= E{c(X,,N2 - X2 )+ V/'1 /42-X2 c(N 1 - X1, X 2 )}.

This can now be used in (13).

In more complicated situations, Blue's expected cost may be computed via suitable

development of the methodologies described by Bertsimas and Nifio-Mora (1996) for

multi-armed bandits.

14



Appendix B

Shoot-Look-Shoot for Red

We elaborate the scenario described in Section 1 of the main report in two ways:

(i) after every shot by Red, the targetted Blue is inspected and categorised (with

error) according to type and alive/dead. Write

p[Blue julged to be of type biIBlue is alive of type b2] = Okb

p[Blue judged to be of type b, Blue is dead of type b2 ] = ObF,

where 1 < b1, b2 < B.

(ii) the Blue targetted by Red may or may not retaliate. We now have 9bj, for the

probability of retaliation to a single shot for live Blues of type b. Dead Blues do

not fire back.

Inter alia, (ii) enables us to consider the deployment of decoys by Blue.

Red now gathers information about the Blues he is facing in a much more

complicated way than previously. Index policies are still optimal, but the index structure

is more complex and simple closed forms as in (8) above must not be expected. Consider

a Blue target with assigned prior Hl. Sufficient statistics gleaned from the history of Red's

past engagements with this Blue, which will determine Red's posterior distribution for

this target, are:

(a) the number of Red shots faced by this target (n);

(b) the outcome of the subsequent inspections (b = {b1 , b2, ... , b,});

(c) the number of retaliations by Blue (m);

(d) the shot by Red to which Blue last retaliated (k).

Note that m < k < n. The posterior probability that, given n, b, m, k, Blue is of type b and

is still alive is proportional to
ri_-b (1 - k-1 gml( g fb)-m - --- bPbn_,k)

bb(1 -- rb)f -bbb ( ) m (b- = b(n,.m, k)= (IbPb(H) (14)
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where H is used as a shorthand for the history (n, b. m, k). The posterior probability that,

given n, b, m, k, Blue is of type b but is now dead is proportional to

Hlb (I-b)k(1 -Ob) M(, b (1 5b) rb

n-k-I k+t " n
XD (1-rb)- I f1obibll ObJL] j(I -- b)Y (15)

t=O i=1 )(=k+t+l

-71 nbb(n,bm,k)= HIb (H)

as before. Hence, given history H, the posterior probabilities are given by
p[Blue alive of type b H]) {= I(H) + I ()

p[Blue dead of type bilH] = nFb (H)/M 1b{Pb (H) + A (H)}.

The corresponding one-step index for a Blue with prior HI and history H is given by

aE,, bPn(H)Vbrb

-"b rib JPb (H)[1- ct{rb +(l -rb)(1 - c59)}]+ A (H)(1- a)- '

and will frequently yield good shooting policies.

In order to develop the index G(HI, H) for a Blue with prior H1 and history H that can

be used to determine optimal policies for Red, we require an iterative procedure due to

Glazebrook and Greatrix (1995). Denote by 92(H) the set of histories reachable (in the

obvious sense) from history H and B{ 2(-)} the set of bounded functions on Q(H).

If H = (n, b, m, k) there are two distinct ways in which the history can evolve

immediately from H, depending upon whether Blue retaliates or not during the next

engagement with Red. If Blue does retaliate we have an evolution of the form

H - H(b, ret)={n+l,(b,b),m+1,n+l} (16)

on the assumption that neither party to the engagement is destroyed. To achieve the

transition in (16), Blue needs to be judged by the sensor to be of type b and also to

retaliate. If Blue does not retaliate, we have an evolution of the form

H -> H(b, nonret) = {n + 1, (, b), m,.k}. (17)
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Let u E B{Q(H)} and H~E Q(IJ). From Glazebrook and Greatrix (1995) we need to

consider the transform TH: B f 9(H}) -> B{fQC(H)} defined by:

{THy(u)}(H') = maxf a~b Db~(H')Vr + a~bDn~(H) [rb Ed Odh u{H'(d, nonret)}

+1- rb )(l - ~b )Id OAdb u{H'(d, nonret)}

+I- rb )(b (1 b 001d 'Odb u{H'(d, ret)}]

+alb Ib b (H') EdOEu{H'(d, nonret~Ii
D(H') ~ d i

a~~brIibb(HI)Vbrb + D~ l~(H) [rb Zd Adb u{H(d, nonret)}

+1- rb )(I - 15b )Ed ckdb u{H(d, nonret)}

+1- rb )5b (1 - Ob )Xd l db u{H(d, ret)}]

+a~ br~b (H) uj~,nne)(18)
+ D(H) Ed Ydbý Ij~,nne)]J.

In (18) we use the notations established in (16) anid (17), together with

D(H) = Zb rlb{I~(H) + b(H)l

with similar usage for IF c- Q(H). We compute the index G(fl, HI) by noting that

lim{Th(u)}(H) = G(I, H) (19)

for any u (e B{Q(TH}. Observe that in (17), TH' denotes an n-fold application of TH-i.e.,

Tý= TH(T7') = TH(TH(T;72))
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Appendix C

Some Other Extensions

The main report mentions some developments of the simple scenario of Section 1. In

(i) - (iii) below, we identify some further elaborations for which index policies remain

optimal. In (iv) we identify other possible extensions for which index policies will

perform well, while not always being strictly optimal.

(i) Each Blue type has a finite number of bullets (known to Red). This requires a

modest elaboration to the index structure and index policies remain optimal.

(ii) Red has a finite number of bullets. Here we have a "finite horizon" version of the

(potentially infinite) battle depicted in Section 1. The index policy based on

H(1-, n) remains optimal for the case that these are all decreasing in n.

(iii) Here we elaborate the simple scenario in Section 1 by allowing all Blues that are

still alive to take a shot at Red (after each of Red's shots), and not simply that

Blue which was targetted. Suppose that Blue number j has a probability rj of

killing Red (irrespective of which Blue type he is) when he is not the Blue

targetted. Typically the 77's will be much smaller than the 9's. Under certain

plausible additional conditions, the index in (8) will be replaced by the following

for Blue numberj:

G(ln maF (bI- rb )f (1 - Ob )fl {-- + Vbrb (1- rb )S (1 - Ob )S }]G j(rI', n) = m ax 5=0- -- •r . .. . . . .
r;> I I-b lb (1--rb ).(1--b )n{(,1- Vj) -Alb -(I1- Vj)Azbl

(iv) Other versions of the "finite horizon" problem in (ii) for which the indices are

not all decreasing are not strictly indexable, but index policies will usually

continue to do well. The same holds for a suggested development in which each

Blue would remain in the targetting zone for Red for just a finite amount of time

before leaving (having, for example, run out of fuel).

18



Appendix D

Simulation Study

This appendix reports on results from a simulation model implemented by

P.A. Jacobs. The scenario is as in Section 1 of the main report with Blue targets being of

two types. There are bi type 1 Blue targets and b2 type 2 Blue targets. Red uses a sensor

to initially estimate the type of each Blue target. The probability that Red classifies a type

i target as type i is A-; otherwise it is classified as the other type. Natural priors for Red to

use in this context are (see Appendix A):

(a) for those Blues judged to be of type 1:

(b) for those Blues judged to be of type 2:

The simulation model implements two shooting policies for Red: (i) an index policy

(as in Section 3 of the main report) with assigned values of V, = V2 = 1, a= 1; and

(ii) random shooting in which, at each decision epoch, Red chooses to engage one of the

remaining Blues chosen at random (with equal probabilities). Some results are presented

in Tables 1 and 2. In each cell of both tables we report the estimated mean number of

Blues killed prior to Red's destruction, with the corresponding standard error in brackets.

The upper figures in each cell correspond to the index policy and the lower to the random

shooting policy. In all runs we take 01 = 02= 0. All entries are based on

100 replications.
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TABLE 1
(Blue types very different: r, = 0.9, 91 = 0.1; r2 = 0.1, O2 = 0.9)

S0(b1  b2) (2,8) (4,6) (6,4) (8,2)
1 (0) 2.04 (0.04) 3.98 (0.05) 5.65 (0.15) 7.82 (0.15)

(ii) 0.39 (0.05) 0.83 (0.11) 1.41 (0.14) 3.42 (0.27)
0.95 (i) 1.66 (0.08) 3.36 (0.13) 5.25 (0.17) 7.28 (0.18)

(ii) 0.34 (0.06) 0.72 (0.11) 1.33 (0.17) 2.74 (0.26)
0.9 (i) 1.35 (0.10) 2.82 (0.15) 4.60 (0.21) 6.46 (0.23)

(ii) 0.33 (0.06) 0.59 (0.09) 1.59 (0.16) 3.03 (0.26)
0.85 (i) 1.19 (0.09) 2.29 (0.16) 4.20 (0.21) 6.13 (0.24)

(ii) 0.39 (0.08) 0.81 (0.10) 1.32 (0.18) 3.27 (0.27)
0.8 (W) 0.89 (0.09) 1.96 (0.16) 3.38 (0.21) 5.86 (0.27)

(ii) 0.24 (0.05) 0.82 (0.11) 1.49 (0.16) 3.41 (0.29)
0.7 (i) 0.69 (0.10) 1.39 (0.14) 2.88 (0.20) 4.28 (0.27)

(ii) 0.44(0.08) 0.74(0.11) 1.28(0.14) 2.70(0.24)
0.6 (i) 0.41 (0.06) 1.06 (0.12) 2.07 (0.17) 3.72 (0.27)

(ii) 0.30 (0.06) 0.69 (0.10) 1.58 (0.16) 3.21 (0.25)
0.5 (i) 0.30 (0.06) 0.86 (0.11) 1.49 (0.16) 2.80 (0.25)

(ii) 0.30 (0.05) 0.81 (0.11) 1.52 (0.16) 2.56 (0.25)

The mean number of Blues killed by Red prior to Red's own destruction
under (i) an index policy and (ii) a random shooting policy.

TABLE 2
(Blue types more alike: r, = 0.7, 91 = 0.3; r2 = 0.3, 92 = 0.7)

0 0 1,b2) (2,8) (4,6) (6,4) (8,2)
1 (i) 2.13 (0.11) 3.40 (0.19) 4.19 (0.27) 5.44(0.33)

(ii) 0.80 (0.11) 1.38 (0.19) 2.24 (0.23) 3.08 (0.33)
0.95 (G) 2.07 (0.15) 3.04 (0.20) 4.08 (0.26) 4.38 (0.32)

(ii) 0.96 (0.10) 1.30 (0.16) 2.50 (0.28) 3.29 (0.29)
0.9 (i) 1.55 (0.14) 3.19 (0.22) 3.55 (0.25) 4.74 (0.33)

(ii) 0.85 (0.11) 1.48 (0.19) 2.41 (0.25) 3.38 (0.30)
0.85 (i) 1.61 (0.14) 2.47 (0.21) 3.99 (0.28) 4.75 (0.32)

(ii) 0.95 (0.16) 1.41 (0.15) 1.66 (0.19) 2.78 (0.26)
0.8 (0) 1.22 (0.14) 2.11 (0.18) 3.32 (0.25) 4.74 (0.32)

(ii) 0.87 (0.11) 1.27 (0.17) 2.09 (0.21) 2.58 (0.28)
0.7 (i) 1.30 (0.14) 1.70 (0.18) 2.95 (0.26) 4.09 (0.32)

(ii) 0.74 (0.12) 1.71 (0.21) 2.38 (0.24) 3.12 (0.30)
0.6 (i) 1.19 (0.15) 1.83 (0.20) 2.43 (0.21) 3.91 (0.31)

(ii) 0.82 (0.11) 1.34 (0.16) 2.20 (0.24) 3.20 (0.29)
0.5 (i) 0.98 (0.13) 1.57 (0.20) 1.67 (0.20) 3.09 (0.29)

(ii) 0.80 (0.13) 1.33 (0.17) 2.05 (0.21) 2.57 (0.29)

The mean number of Blues killed by Red prior to Red's own destruction
under (i) an index policy and (ii) a random shooting policy.
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Although plainly a more extensive simulation study (with more replication) is

desirable, certain major features are already transparent from Tables 1 and 2. As we

might expect, the index policy outperforms the random shooting policy other than at

O= 0.5, where the sensor does no better than the flip of a fair coin and the two policies

are virtually identical. The level of excess number of Blues killed achieved by the index

policy is remarkably high when Red receives high quality information from the sensor

assets (i.e., 05 is high). However, even rather mediocre information (q5 = 0. 6, say) can be

put to very good use by Red. The value of the information to Red is unsurprisingly

greater when the Blue types are more distinct.
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