NEW METHODOLOGY FOR SIMULATING FRAGMENTATION MUNITIONS

V. Gold, E. Baker*, K. Ng and J. Hirlinger
U.S. Army, TACOM-ARDEC, Picatinny Arsenal, NJ

*Presented By: Dr. Ernest L. Baker
<table>
<thead>
<tr>
<th>Title and Subtitle</th>
<th>New Methodology for Simulating Fragmentation Munitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Gold, V; Baker, E; Ng, K.; Hirlinger, J.</td>
</tr>
<tr>
<td>Performing Organization Name(s) and Address(es)</td>
<td>U.S. Army, TACOM-ARDEC, Picatinny Arsenal, NJ</td>
</tr>
<tr>
<td>Sponsoring/Monitoring Agency Name(s) and Address(es)</td>
<td>NDIA (National Defense Industrial Association) 211 Wilson Blvd, STE. 400 Arlington, VA 22201-3061</td>
</tr>
<tr>
<td>Distribution/Availability Statement</td>
<td>Approved for public release, distribution unlimited</td>
</tr>
<tr>
<td>Supplementary Notes</td>
<td>Proceedings from the 36th Annual Gun & Ammunition Symposium & Exhibition 9-12 April 2001 Sponsored by NDIA</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>Subject Terms</td>
<td></td>
</tr>
<tr>
<td>Report Classification</td>
<td>unclassified</td>
</tr>
<tr>
<td>Classification of Abstract</td>
<td>unclassified</td>
</tr>
<tr>
<td>Number of Pages</td>
<td>16</td>
</tr>
</tbody>
</table>
Fragmentation Modeling

Outline

• Introduction
• Background
• Modeling Methodology
• Natural Fragmentation
• Preformed Fragmentation
• Conclusions
Fragmentation Modeling

Introduction

• **TACOM-ARDEC Warheads**
 - Long history of warheads design
 - Technology development
 - Application

• **Fragmentation Ammunition Requirements**
 - ALACV, OCSW, OICW, M203 upgrade
 - Lightweight ammunition
 - Lethal fragmentation, various approaches
Fragmentation Modeling

Background

• **Natural Fragmentation**
 – Limited lethality due to poor size distribution
 – Good structural characteristics (G load)

• **Preformed and Scored Fragmentation**
 – High lethality potential
 – Reduced structural integrity, efficiency issues

• **Combined Fragmentation**
 – Natural AND preformed/scored fragmentation
 – Multiple materials (eg: steel and tungsten)
 – Maintain structural integrity where required, use preformed/scored fragmentation elsewhere
 – Require new modeling methodology
Fragmentation Modeling
Modeling Methodology

• **Warhead Mechanics (early time)**
 – Arbitrary Lagrangian/Eulerian High Rate Continuum Modeling: CALE (LLNL) finite difference program
 – Velocity and Mass Distributions

• **Fragmentation Modeling**
 – Hybrid Analytical and Empirical Approach
 – Natural Fragmentation: Mott based model
 – Preformed/Scored Fragmentation: Experimentally based size distribution
Fragmentation Modeling

Natural Fragmentation: CALE

Explosive

Hardened steel shell

Copper shaped charge liner

Steel fragments

Copper jet

R

$t=0 \, \mu\text{sec}, \frac{V}{V_0}=1$

$t=8 \, \mu\text{sec}, \frac{V}{V_0}=3$

$t=20 \, \mu\text{sec}, \frac{V}{V_0}=14$

Tank-automotive & Armaments COMmand
Fragmentation Modeling

Natural Fragmentation: CALE

Experimental Data
Fragmentation Modeling

Natural Fragmentation: CALE
Fragmentation Modeling

Natural Fragmentation: Mott

Stress Release Wave
Fracture
Region Under Plastic Expansion
Region Stress Relieved

\[(R_i, z_i)\]
\[\Delta \theta\]
\[r_i\]
\[\theta_j\]
Fragmentation Modeling

Natural Fragmentation: Mott

Fragment Size Distribution:

\[N_j(m) = N_{0j} e^{-\left(\frac{m}{\mu_j}\right)^{1/2}} \]

\[\mu_j = \sqrt{\frac{2}{\rho} \left(\frac{p_F}{\gamma} \right)^{3/2} \left(\frac{r_j}{V_j} \right)^3} \]

Total Number of Fragments:

\[N_{0j} = \frac{m_j}{\mu_j} \]

\(\gamma \) is a statistically based material dependant constant
Fragmentation Modeling

Natural Fragmentation: Mott

γ calibration
γ = 12 final value, V/V₀ = 3 (t = 8 μs)

Experimental Data

CALE-MOTT analyses, t = 20 μs, γ = 30
CALE-MOTT analyses, t = 8 μs, γ = 30
CALE-MOTT analyses, t = 8 μs, γ = 12
CALE-MOTT analyses, t = 8 μs, γ = 5
Fragmentation Modeling

Natural Fragmentation: Mott

\[\gamma = 12 \text{ final value, } \frac{V}{V_0} = 3 \ (t=8 \mu s) \]
Fragmentation Modeling

Preformed Fragmentation: CALE

Explosive

Steel shell

Copper shaped charge liner

Steel fragments

Copper jet

$\text{t}=0\mu\text{sec}, \text{V/V}_0=1$

$\text{t}=20\mu\text{sec}, \text{V/V}_0=4$

$\text{t}=30\mu\text{sec}, \text{V/V}_0=6.8$

Tank-automotive & Armaments COMmand
Fragmentation Modeling

Preformed Fragmentation: CALE
Fragmentation Modeling

Preformed Fragmentation: Analysis

- Preformed, $2\mu_0 = 3$ grains, $t=10\mu$sec, $V/V_0=3.4$
Fragmentation Modeling

Summary

- New Fragmentation Simulation Capability
- Natural Fragmentation
- Preformed and Scored Fragmentation
- Combined Fragmentation
 - Required new modeling methodology
 - Natural/Scored/Preformed, multiple materials
 - Currently being applied on the ALACV program