Fuzing and the MEMS Dilemma

36th Annual NDIA Gun & Ammunition Symposium
April 11, 2001

Gary Fleming
Tech Exec, Med Cal Technology

Ed Rempfer
Chief, Weapon Systems Team

Tank-automotive & Armaments COMmand
<table>
<thead>
<tr>
<th>Report Date</th>
<th>Report Type</th>
<th>Dates Covered (from... to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11Apr2001</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title and Subtitle</th>
<th>Contract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuzing and the MEMS Dilemma</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleming, Gary; Rempfer, Ed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performing Organization Name(s) and Address(es)</th>
<th>Program Element Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Med Cal Technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sponsoring/Monitoring Agency Name(s) and Address(es)</th>
<th>Project Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDIA (National Defense Industrial Association) 211 Wilson Blvd, STE. 400 Arlington, VA 22201-3061</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performing Organization Report Number</th>
<th>Task Number</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sponsor/Monitor’s Acronym(s)</th>
<th>Work Unit Number</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sponsor/Monitor’s Report Number(s)</th>
<th>Distributions/Availability Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution/Availability Statement</th>
<th>Unrestricted</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Supplementary Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceedings from the 36th Annual Gun & Ammunition Symposium & Exhibition 9-12 April 2001</td>
</tr>
<tr>
<td>Sponsored by NDIA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abstract</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Subject Terms</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Report Classification</th>
<th>Classification of this page</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classification of Abstract</th>
<th>Limitation of Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>UU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
</tr>
</tbody>
</table>
Tools for Ants?
MEMS merges computation with sensing and actuation to change the way we perceive and control the physical world.
MEMS – A Core Technology

- Micro-Electro-Mechanical Systems (MEMS) is a core technology that:
 - Leverages IC fabrication technology
 - Builds ultra-miniaturized components
 - Enables radical new system applications
Why Use MEMS?

- IC Technology
- Precision
- Batch Fabrication
- Miniaturization

- Integrated Multiple Functions
- Improved Performance
- Reduced Manufacturing Cost & Time
- Portability
- Ruggedness
- Low Power Consumption
- Easily & Massively Deployed
- Easily Maintained & Replaced
- Little Harm to Environment

Fuel Atomizer Nozzle

DARPA
Commercial Packaged MEMS

Major Segments

- Medical: 9%
- Industrial: 16%
- Defense & Aerospace: 14%
- Automotive: 61%

"U.S. MEMs-Based Sensor Markets"
Frost & Sullivan Report # 5999-32, 1999
Pressure Sensor Belt on Jet Planes

Pressure Belt Cross Section

MEMS Sensor Integrated on an MCM with Embedded Passives

Inter-segment connector

End of next module

Boeing Pressure Belt Using MEMS

Flight Loads Testing Using Pressure Belts
PicoSAT Aboard Stanford OPAL Satellite

• First demonstration:
 – Launched by first flight of Minotaur 26 Jan 2000 (sponsored by Air Force and Missile System Center)
 – Two PICOSAT linked by 30-m-long tether jettisoned from a mother ship, OPAL (Stanford), 7 Feb 2000
 – Operate MEMS RF switches in space

30-m-long tether for tracking & communication demonstration
Figure 1-8: Concepts for applications of automotive sensors and accelerometers. MEMS could be used to activate suspension systems, control engines and emissions, control vibrations, and cancel noise. Source: D. Thomas, Perkin-Elmer Applied Biosystems, based on concepts by G. Kovacs, K. Petersen, and M. Albin.
Insertion of MEMS Technology
In Fuze Safe & Arm

This concept takes all the functions embodied in a conventional mechanical S&A and implements them in a single S&A die which is integrated with a fuze circuit board.

Note: a MEMS mechanical S&A is not a “sensor” per se, but rather its components intrinsically combine both sense and actuate functions in a single unpowered chip.
MEMS are small… but not insignificant!

Sandia MEMS “strong-link” system for Trident “C-4” RV retrofit
MEMS for Ordnance

“This is a lesson we learned in Desert Storm and Kosovo. We cannot currently do as good a job as we would like on killing critical mobile targets on the battlefield.”

Adm. Harold W. Gehman Jr,
former NATO Supreme Allied Commander Atlantic and CINC Joint Forces Command
MEMS for the Land Warrior

Computer/Radio Subsystem
- Computer
- Soldier Radio
- Squad Radio
- GPS
- Handheld Flat Panel Display
- Video Capture

Protective Clothing and Individual Equipment Subsystem
- Advanced Load Carrying Capability
- Chem/Bio Garment/Glove/Boot
- Combat ID

Integrated Helmet Assembly Subsystem
- Lightweight Helmet with Suspension
- Helmet-Mounted Display
- Image Intensifier
- Laser Detector
- Chem/Bio Mask
- Ballistic/Laser Eye Protection

Weapon Subsystem
- Laser Rangefinder
- Digital Compass
- Wiring Harness
- Video Camera
- Thermal Weapon Sight
- Close Combat Optic
Future Combat Systems

- Army transformation to lighter, faster, more lethal, networked force
- Joint Army-DARPA program
- Deployment in 2012
- MEMS in sensor webs, active tags, munitions, MAVs, seekers, communications, power, …

http://www.darpa.mil/fcs/
MEMS Builds on Microelectronics Manufacturing

free-form geometries
3D solid modelers

CONCEPTION OF NEW DEVICE; SPECIFICATION OF PROCESS

COMPUTER-AIDED DESIGN, SIMULATION AND LAYOUT OF DEVICE

GENERATION OF PHYSICAL MASKS OR DIRECT-WRITE PATTERNS

coupled electrical, mechanical, fluidic, kinematic ... analysis

thicker films
deep etches
fewer steps

MULTIPLE PROCESSING CYCLES

DEPOSITION OF MATERIAL

PATTERN TRANSFER

REMOVAL OF MATERIAL

removal of underlying materials to release mechanical parts

special probing, sectioning and handling procedures to protect released parts

seal some parts of device but expose others

test more than electrical function
MEMS MANUFACTURE

- MEMS is projected to be a $34 Billion World wide industry by year 2002
 - multiple commercial growth opportunities
- The MEMS Silicone (Si) based Industry is a spin-off of the Integrated Circuit (IC) Industry
 - Utilizes modified IC processes
 - Production lines tend to have fixed operating costs and are therefore volume sensitive
 - Inspection can be more item specific
 - Like IC’s, smaller production could become sole source
MEMS-Based Sensors

“U.S. MEMs-Based Sensor Markets”
Frost & Sullivan Report # 5999-32, 1999
Military Applications of MEMS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SENSORS/ITEM</th>
<th># ITEMS</th>
<th>=</th>
<th>SENSORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACILITIES</td>
<td>2 10^3</td>
<td>6 10^2</td>
<td>10^6</td>
<td></td>
</tr>
<tr>
<td>SATELLITES</td>
<td>10^2</td>
<td>8 10^2</td>
<td>10^5</td>
<td></td>
</tr>
<tr>
<td>AIRCRAFT</td>
<td>2 10^3</td>
<td>2 10^4</td>
<td>10^7</td>
<td></td>
</tr>
<tr>
<td>SHIPS & SUBS</td>
<td>3 10^5</td>
<td>5 10^2</td>
<td>10^8</td>
<td></td>
</tr>
<tr>
<td>LAND VEHICLES</td>
<td>10^2</td>
<td>10^5</td>
<td>10^7</td>
<td></td>
</tr>
<tr>
<td>PERSONNEL</td>
<td>3 10</td>
<td>3 10^5</td>
<td>10^7</td>
<td></td>
</tr>
<tr>
<td>COMM GEAR</td>
<td>10^2</td>
<td>4 10^5</td>
<td>10^7</td>
<td></td>
</tr>
<tr>
<td>FIREARMS & GUNS</td>
<td>10^2</td>
<td>5 10^6</td>
<td>10^9</td>
<td></td>
</tr>
<tr>
<td>MUNITIONS</td>
<td>10</td>
<td>10^8</td>
<td>10^9</td>
<td></td>
</tr>
<tr>
<td>MISSILES</td>
<td>10^2</td>
<td>10^5</td>
<td>10^7</td>
<td></td>
</tr>
<tr>
<td>TORPEDOES</td>
<td>10^2</td>
<td>8 10^3</td>
<td>10^6</td>
<td></td>
</tr>
</tbody>
</table>
MEMS MANUFACTURE

ECONOMICS

• Utilizing Facilities that are **NOT** fully work loaded -
 • Can be costly (Cost of setup & run plus profit)
 • Generally have lower yields
• Utilizing Facilities that are **FULLY** work loaded -
 • Continue to be costly (Cost of setup, run, plus value of profit lost due to interruption of high volume production)
 • High Volume = more than 200K / week
 • Generally uninterested in small production quantities
 • not profitable to interrupt on-going high volume Production
IRONY

- High volume older fabrication houses have solved the problems of yield, stiction and areas that affect their ability to make a profit.
 - Information is considered proprietary and forms part of their competitive edge.
- Trying to estimate the impacts of these areas adversely affect Government cost projections
 - In most cases Government quantities are too small to interest the large fabrication houses.
MEMS MANUFACTURE

DESIGNER’S DILEMMA

• Prototype houses take too long to fabricate and produce low yields

• Production problems like stiction, yield, variation across the wafer, etc. affect R&D programs and cost to field projections.

• Little or no reliability data is available

• Small fabrication houses do not have the resources to do all the science and engineering needed to resolve these common problems.

Committed To Excellence
MEMS MANUFACTURE

OPTIONS

• Let the marketplace handle the problems
 • End up with Item specific solutions
 • Delayed implementation of new items
 • Creates multiple small sole source situations

• DOD/Weapons Systems Industry –
 • provide support for the establishment of a MEMS Design, Reliability & Manufacturing database.
 • Group technology approach to system designs
 • Consider a CRADA w/ MEMS Industry to find processing solutions to making low rate production affordable and profitable
Conclusion

• MEMS will continue to grow probably similar to IC’s

• MEMS will integrate with micro and Nano electronics to provide today's complicated electromechanical systems on a single chip.

• MEMS could greatly affect the DOD systems by providing Sensor and activator systems with little affect on the parent system.

• MEMS Industry will also follow the IC path in its inability to meet our needs unless we help the industry establish cost effect and profitable low rate production techniques or develop methods to increase the volume for the individual devices.
Recommendations

• Use Commercial Off-The-Shelf (COTS) components wherever feasible

• Limit MEMS device development to 1 or 2 designs to be used across multiple product lines. Modify these designs and their electronics to meet specific application needs.

• Establish a Joint Military/Industry Oversight Committee to monitor the requirements and applications for MEMS devices in weapons and ammunition and develop processes to economically produce reasonably small quantities.
 • Form an Integrated Product Team (IPT)
 • Pursue CRADAs w/Munition & MEMS Industries
Gary Fleming, Tech Executive, Medium Cal Technology Insertion

Phone: 973-724-6067

Fax: 973-724-5962

E-Mail: gfleming@pica.army.mil