NDIA 45th Annual Fuze Conference
Ordnance Fuzing/Safety & Arming
Programs Overview

Anh N. Duong
Explosives & Undersea Weapons Program Manager
NSWC - Indian Head
Report Documentation Page

<table>
<thead>
<tr>
<th>Report Date</th>
<th>Report Type</th>
<th>Dates Covered (from... to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16Apr2001</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title and Subtitle</th>
<th>Contract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordnance Fuzing/Safety & Arming Programs Overview</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duong, Ann N.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performing Organization Name(s) and Address(es)</th>
<th>Program Element Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSWC - Indian Head</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sponsoring/Monitoring Agency Name(s) and Address(es)</th>
<th>Project Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDIA (National Defense Industrial Association) 211 Wilson BLvd., Ste. 400 Arlington, VA 22201-3061</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performing Organization Report Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sponsor/Monitor’s Acronym(s)</th>
<th>Task Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sponsor/Monitor’s Report Number(s)</th>
<th>Work Unit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution/Availability Statement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplementary Notes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Classification</th>
<th>Classification of this page</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classification of Abstract</th>
<th>Limitation of Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>UU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
</tr>
</tbody>
</table>
OUTLINE

♦ Current Development Programs
♦ Product Improvement Programs
♦ Applied MEMS Technology Programs
Current Development Programs
Navy Assault Breaching Systems

Navy Assault Breaching Systems

- **LCAC**
 - SABRE
 - Launches

- **140’ to Cabin**
- **407’ SABRE**
- **10’ Deep**
- **3’ Deep**

- **10’ Deep**
- **3’ Deep**

- **50’ Overlap**

- **171’ to Cabin**
- **150’ DET**
DET Fuze/S&A

♦ Distributed Explosive Technology (DET)
 • 180’x180’ Explosive Net Used in Surf Zone Mine Clearance
♦ All Mechanical Fuze/Safety and Arming Device
♦ DET Technical Evaluation Completed
♦ DET Operational Evaluation Currently on Hold
 • May be Combined with SABRE OPEVAL Scheduled FY03
NEW START -- New Fuze/S&A for Shallow-water Assault Breaching (SABRE) System

♦ Contractor Development - Contract Award in Process
♦ Fire-and-Forget Fuze/Safety and Arming System
♦ Requires Extremely High Reliability
♦ Support SABRE System MS III Production Decision of March 2003
P3I Programs

- NSFS ERGM EX171 M80 Submunition PIP Proximity Fuze Insertion

- Next Generation Small Active Electromagnetic Torpedo Fuze

M80 Submunitions

EM Fuzed Torpedo Shell Section
Program Goals:

- Develop an Add-on Proximity Fuze System
 - Inserted within the M234 SD Fuze Envelope
 - Minimal Impact to M234 SD Fuze High Rate Production Equipment
 - Meet ERGM Safety, Performance, Environmental, & Life Cycle Requirements
TECHNICAL APPROACH:

♦ One-for-One Replacement of the M234 Self-Destruct (SD) Fuze Slide Assembly

• Utilize Gun Launch Environment for Battery Activation

• Miniaturize the FM/CW RF Proximity Sensor of the M734A1 Mortar Fuze

• Assemble Expertise from Army / Navy Labs and Industry to Achieve Technical Goals and Reduce Critical Risk Areas
Proof-of-Principle Demonstrated
- **7:1** Reduction Input Power
- Multiple Transmitter Designs
- Suitability of EM Fuzing for Small Diameter torpedoes

Successful Torpedo Sea Run Tests
- Dynamic Environments
- Target Detection
- Model Validation
Applied MEMS Technology

♦ Surface Ship ATT F/S&A Device

♦ Standard Missile Embedded Sensors

♦ Ordnance Inventory & Surveillance
NAVY MEMS-BASED F/S&A PROGRAM

OBJECTIVE:

♦ Apply & Transition MEMS Technology to Undersea Weapon F/S&A Systems

APPROACH:

♦ Capitalize on the MEMS Industrial Base
 • Commercial (COTS) Sensors & Devices

♦ Leverage DARPA Funded Infrastructure
 • Design, Modeling & Analyses Capability

♦ Demonstrate MEMS F/S&A Reliability
 • Assure Weapon Safety with Miniaturized Modular Architecture
MEMS F/S&A TECHNOLOGY
COTS / Modular Components

Typical Building Block Components
for MEMS-Based Exploder

Impact Sensor
Flow Sensor: Pressure Differential
Inertial Measurement Rate Sensor

Initiation System Slapper, Fire-set & Optical Charging Circuit
DRIE MEMS CHIP
LIGA S&A Chip
Main Objective: Transition MEMS F/S&A Technology for FY 02 CCAT E&MD Start

Technology Focus:
♦ MEMS Fabrication
♦ Packaging Reliability and Robustness
♦ Inertial Sensor (IMU) Technology
♦ Remote Initiation Systems
♦ Optical Interruption

Prototype Development:
♦ Develop/Build 15 S&A Prototypes
♦ Conduct Environmental and Field T&E
♦ Utilize IHD MEMS Clean Room for MEMS S&A Prototypes Packaging, Assembly, & Test
◆ Installing Temperature Data Loggers to Canisters
◆ Funded to Develop Embedded Stress Gauges
◆ Funded to Develop Embedded Ultrasonic Sensors
Advanced Technology Ordnance Surveillance (ATOS)

- Selected by OSD as an FY 01 Advanced Concept Technology Demonstration
- Demonstrate operational utility of miniature radio frequency identification (RFID) tags coupled with micro-electromechanical sensor (MEMs) technology for use in tracking/monitoring critical items:
 - Joint “high dollar/low density” munitions
 - Category I munitions (high potential of theft/terrorist use)
 - Future Potential: Medical and biological supplies, perishable substance and other environmentally sensitive commodities, DU munitions, etc.
MEMS Sensors

- Temperature
- Humidity
- Stress/Strain
- Acceleration
 - Shock/Vibration History
- Chemistry Lab on a Chip
 - Presence of Degradation Products
 - Stabilizer Depletion
FUZE / SAFE & ARMING
FOR THE 21ST Century

- **Approach**
 - Focus on electronics & emerging MEMS technology in industry
 - Increase joint service collaborative efforts
 - Develop “building Block” approach for universal application

- **Challenges / Opportunities**
 - Shrinking DOD budgets / downsizing
 - Affordable weapon systems / reduced LCC
 - Smarter, multipurpose weapon systems
 - Acquisition reform
 - Maintain critical smart F/S&A core within DOD
 - Miniaturization