Award Number: DAMD17-98-1-8050

TITLE: Cytochrome p450-17alpha Polymorphism and Risk of Breast Cancer

PRINCIPAL INVESTIGATOR: Habibul Ahsan, M.D.

CONTRACTING ORGANIZATION: Columbia University in the City of New York New York, New York 10032

REPORT DATE: August 2000

TYPE OF REPORT: Preliminary Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

20010925 251
REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 August 2000

3. REPORT TYPE AND DATES COVERED
 Preliminary Final (1 Aug 98 - 31 Jul 00)

4. TITLE AND SUBTITLE
 Cytochrome p450-17α Polymorphism and Risk of Breast Cancer

5. FUNDING NUMBERS
 DAMD17-98-1-8050

6. AUTHOR(S)
 Habibul Ahsan, M.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Columbia University in the City of New York
 New York, New York 10032

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 U.S. Army Medical Research and Materiel Command
 Fort Detrick, Maryland 21702-5012

10. SPONSORING / MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
 Previous studies indicate that circulating estradiol is significantly elevated in breast cancer patients compared to controls in high and low risk populations. A variation in enzyme activity, i.e., the polymorphism of genes encoding the enzymes responsible for the metabolism and binding of estrogen may be related to an altered risk of breast cancer. The cytochrome P45017α, an enzyme involved in estrogen biosynthesis has shown the most potential in the etiology of breast cancer.
 In this study we investigated whether a polymorphism of the CYP17 gene, involved in the biosynthesis of estrogen, is associated with an altered risk of breast cancer among a population-based sample of women (400 cases and 400 controls) participating in the Long Island Breast Cancer Study Project. We also explored whether the effects of reproductive risk factors and exposure to exogenous estrogen or estrogen-like substances are modified by the CYP17 polymorphism.
 In addition we are investigating the relation between urinary estrogen metabolites and the CYP17 polymorphism. Since this polymorphism is prevalent in the population, it may potentially contribute to a high population attributable risk. Unfortunately, at this time, due to the politically sensitive nature of the parent Long Island project (P.I. Marilie Gammon) we are not permitted to release the actual results of this study.

14. SUBJECT TERMS
 Breast Cancer

15. NUMBER OF PAGES
 5

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
 Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE
 Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT
 Unclassified

20. LIMITATION OF ABSTRACT
 Unlimited

NSN 7540-01-280-5500

Page 2
Table of Contents:

1. Front Cover: Page 1
3. Table of Contents: Page 3
4. Introduction: Page 4
5. Body: Page 4-5
6. Key Research Accomplishments: Page 6
7. Reportable Outcomes: Page 6
8. Conclusions: Page 6
9. References: Page 6
10. Appendices: Page 6
4) **Introduction**

The long term goal of this research is to examine whether polymorphisms of genes involved in the biosynthesis and metabolism of estrogen, the key factor in breast cancer etiology, is related to an altered risk of breast cancer in women. The present study focuses on a polymorphism in the CYP17 gene which catalyzes the early steps of estrogen biosynthesis pathway. The variant allele of this polymorphism (A2) is associated with an increased expression of the gene (Feigelsen et al, 1998) and has been shown to be associated with an increased risk of breast cancer among its carriers (Feigelsen et a, 1997; Bergman-Jungestrom et al, 1999). Since CYP17 is involved in estrogen biosynthesis, it is possible that effects of reproductive risk factors (age at menarche, menopause and last child birth and parity) and exposure to exogenous estrogens or estrogen-like substances, e.g., hormone replacement therapy, oral contraceptives and organochlorine pesticides on breast cancer would be modified by the CYP17 genotype. Since we also have laboratory data on the urinary estrogen metabolites (16α and 12α -hydroxyestrone) on the study participants as part of the parent project we are also examining whether these metabolites correlate with CYP17 genotype.

5. **Body**

Task I: During months 1-2 of this grant we randomly selected 400 cases and 400 controls in batches using code numbers from the total 1200 cases and 1200 controls respectively from the parent study who completed the questionnaire and have provided samples. We also identified DNA samples for each of these 400 cases and 400 controls which were isolated and stored as part of the parent Long Island Breast Cancer Study Project (LIBCSP).

Task II: During months 3-12, laboratory assays for CYP17 genotyping on these 400 cases and 400 controls were performed. The DNA was PCR amplified using CYP17
specific primers and digestion of the DNA was performed using specific restriction enzymes. Gel electrophoresis was used to detect RFLPs.

Task III: Laboratory data were entered into the computer and were merged with the main questionnaire data.

Task IV: Data analysis has been completed.

Task V: Manuscript preparation and report writing are being done.

6. **Key Research Accomplishments**: Not applicable at this time.

7. **Reportable Outcomes**: Not applicable at this time.

8. **Conclusions**: Not applicable at this time.

9. **References**:

10. **Appendices**: None