Software Partitioning Technologies

Tim Skutt
Smiths Aerospace
3290 Patterson Ave. SE
Grand Rapids, MI 49512-1991
(616) 241-8645
skutt_timothy@si.com
<table>
<thead>
<tr>
<th>Report Date</th>
<th>29 May 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Type</td>
<td>N/A</td>
</tr>
<tr>
<td>Dates Covered (from... to)</td>
<td>-</td>
</tr>
</tbody>
</table>

Title and Subtitle
Software Partitioning Technologies

Author(s)
Skutt, Tim

Performing Organization Name(s) and Address(es)
Smiths Aerospace 3290 Patterson Ave. SE Grand Rapids, MI 49512-1991

Sponsoring/Monitoring Agency Name(s) and Address(es)
NDIA (National Defense Industrial Association) 211 Wilson Blvd, STE. 400 Arlington, VA 22201-3061

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
12
Agenda

- Software Partitioning Overview
- Smiths Software Partitioning Technology
- Software Partitioning in the Vetronics Domain
The Problem

- How do we implement systems to take advantage of rapidly increasing COTS processing resources while at the same time:
 - Reducing system obsolescence by increasing software portability
 - Enabling new software applications to be integrated into legacy systems with minimal impact on
 • Military system validation process
 • Civil system FAA certification process
 - Reducing life-cycle costs and increasing functionality for “new” systems
 - Enabling the integration of applications at multiple levels of criticality/security on the same processing resource
The Solution -- Software Partitioning

- Integrate software on powerful, standard hardware through Software Partitioning.
- Software Partitioning provides:
 - Application Independence
 - All application interactions (I/O, CPU usage and Memory usage) are controlled and deterministic
 - Hardware Independence
 - Provides an industry standard Application Program Interface (API) to the operating environment (POSIX and ARINC653)
 - Increases portability by providing a “black box” I/O architecture
 - Reduced system modification/certification/validation costs
 - New applications can be added to system spare partitions without affecting the other partitions in the system
 - Only those parts of the system that change must be re-certified/re-validated
The Solution -- Software Partitioning

- **ARI NC 653** defines Software Partitioning and provides an API
 - Developed by aviation community consensus
 - Applicable to other domains (veterronics, medical, industrial)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ports</td>
<td>Semaphores</td>
<td>Events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Partition Level OS					

Core Module Level OS					

API Layer

Partitioning Services
Smiths Software Partitioning Technology

- Smiths has developed the Software Partitioned Operating Environment (SPOE) to embody Software Partitioning
- SPOE in a nutshell
 - Partitions multiple applications on a single CPU in conformance with the ARINC 653 specification
 - Provides CPU throughput, memory, and I/O protection between apps.
 - Guarantees CPU throughput, memory availability, and I/O resource access for apps.
 - Isolates changes in functionality - reducing re-test and re-qualification efforts for upgrades
 - Enables integration of apps. at different criticality/certification levels
 - Provides tiered health management - captures and handles anomalies at the appropriate scope
 - Provides ARINC 653 and POSIX APIs for use by applications
Smiths Software Partitioning Technology

- SPOE in a nutshell (continued)
 - Supports multiple languages (Ada83/95, C, C++, ...)
 - COTS development tool sets (Rational Apex, GNAT Ada, gcc)
 - Hosted on multiple POSIX compliant COTS operating system platforms (LynxOS, Linux, Solaris)
 - Hosted on Multiple COTS Hardware Platforms:
 - Pentium -> Desktop PC Development and Embedded Target
 - PowerPC -> Embedded Target
 - SUN -> Desktop/Server Development Environment
 - Supports multiple physical I/O mediums (VME, PCI, 1553, ARINC 429, Ethernet, ...)
 - Scalable I/O partition provides support for a multi-processor environment
SPOE Implementation Architecture

- Hardware
- POSIX Compliant Operating System
- Applications and I/O Partition(s)
- ARINC653 / POSIX API
- Partitioning Layer
- POSIX Compliant Operating System
- Time and Space Partitions
Smiths Software Partitioning Technology

- Smiths’ technology development efforts
 - Participant in SAE AS-5 committee (Avionics Architecture Definition Language)
 - Integrated Modular Architecture (IMA)
 - Standardized within avionics community
 - Avionics (or Advanced) Computing Resource (ACR)
 - General purpose computing platform for software partitioning
 - Improves logistics (spares) and reduces cost through commonality
 - Applicable to vetronics as well as avionics
 - Safety/mission critical networking technology
 - Participant in WSTAWG OE IPT
 - Developing a demonstration prototype software partitioned WSTAWG API compliant OE
Software Partitioned WSTAWG OE

- Demonstrates:
 - WSTAWG OE API apps. in a partitioned system
 - Interaction between apps. written to dissimilar APIs
 - Portability of WSTAWG OE API apps.
 - Integration enabling features of SPOE
Software Partitioning for Vetronics

Benefits

- Provides “assured” real-time embedded processing for multiple applications on a single or multiple processing resources
 - Guaranteed Quality of Service (QoS) for applications
- Software partitioning will reduce system life-cycle costs
 - Eases initial software integration effort
 - Multiple applications built by different vendors can be integrated by 3rd party vendor at the object level
 - 3rd party and other vendors don’t need to “see” proprietary source
 - Enables new applications to be added to the system while retaining validated status of the existing system
 - New applications (FBCB2 for example) can be added to “spare” partitions
 - Enables impact of changes/upgrades to legacy applications to be isolated to one “partition”
- Reduces amount of processing hardware required
 - reduces initial system costs
 - reduces lifecycle cost of spares, etc.
Software Partitioning for Vetrionics

- **Benefits (continued)**
 - Abstraction of software from hardware (and I/O)
 - Facilitates embedded simulation and training - operational software is used unmodified for simulation and training
 - Software portability is enhanced
 - ACR technology
 - Reduces logistical footprint
 - Common modules - fewer module types to “spare”
 - Upgrades to modules can result in fewer modules for the same platform
 - Provides “pre-validated” hardware environment