Thoughts on Interoperability

Briefing to the Naval Interoperability Workshop
30/31 May 2001

CAPT Jeffery W. Wilson, USN
<table>
<thead>
<tr>
<th>Report Date</th>
<th>Report Type</th>
<th>Dates Covered (from... to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30052001</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

Title and Subtitle
Thoughts on Interoperability

Author(s)
Wilson, Jeffery W.

Performing Organization Name(s) and Address(es)
US Navy

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes
Proceedings from Armaments for the Navy Interoperability Workshop, 30-31 May 2001 sponsored by NDIA.

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
19
Interoperability is what we say we want when it is least in evidence
Acknowledgements

• Many people contributed to this briefing, including…
 – RADM Mike Mathis
 – Mr. Tom Pendergraft
 – Dr. Wayne Meeks
 – Mr. Reuben Pitts
Purpose

• Workshop
 – Identify courses of action for the Department of the Navy to address issues of Interoperability and Integration within the DoN acquisition process

• Briefing
 – Share thoughts and discuss factors that should be considered when identifying courses of action
Outline

• Vocabulary
• Mythology
• Challenges
• Recommendations
Vocabulary

• “Interoperability” or “Capability”?
 – We often use the word “interoperability”, when what we mean is “capability”
 – “Interoperability” is the outcome of “capability” provided by an ensemble
 – “Capability” is easily measured

• “Integration” or “Interfacing”?
 – In usage, these terms are often interchangeable, but in execution are very different
Vocabulary (cont.)

• “Integration” or “Engineering”?
 – Integration is possible when two or more well-characterized components must be combined, through well-defined and controlled interfaces, to build some larger construct

• We are in the business of using a disciplined system engineering process to design, develop, field, and maintain warfighting capability
 – Integration and interfacing are necessary actions
 – Interoperability is an intended consequence
Mythology

- Government can’t (shouldn’t?) lead engineering efforts
- Industry knows what the government needs or wants
- Industry only does what the Government says
- The Government can issue *independent* performance specifications for two or more devices and expect those devices to work together to accomplish an arbitrary (often unspecified) mission
- Shortcuts are shorter (cheaper, better, …)
- Saying it’s so, makes it so
Mythology (cont.)

• Demonstration-based acquisition is a substitute for a disciplined, requirements-based, system engineering approach
 – Better
 – Faster
 – Cheaper
 – More responsive to warfighter’s needs
• System engineering happens
• I’m okay…you’re okay…so, we’re okay together, right?
It’s high jump, not limbo
It’s closer to football (or soccer) than golf
The *old* math

- Functionality (requirements-driven)
- + Robust implementation (availability)
- + Connectivity
- + Trained operators
- + Resources (dollars and people)

Warfighting capability
Capability shortfalls -- causes

• Physics of the operating environment
• Mission-based system requirements shortfalls
 – Availability of individual systems and equipment
 – Design or implementation within individual units or in the interfaces between them:
 • Adequate specifications but poor implementation (program “bugs”)
 • Ambiguous specifications that are interpreted differently
 • Specifications that are silent or improperly stated
• Shortfalls in tactics, techniques and procedures (TTP) and training
Operating environment

What is the system?
Challenges

• Architecture
 – How does it all fit together?
 – Must be able to objectively assess good ideas in context

• Lack of understanding that interface requirements are really requirements

• Government and industry have inherently different objectives and motivating factors
 – While comforting, the assumption that our interests are aligned is dangerously naïve, incorrect, and doomed to failure
 – Corporate America has no responsibility for the common defense
 – Government has no responsibility for turning a profit
Challenges (cont.)

• Familiarity breeds contempt
 – Government and industry have a *business* relationship, not a *social* relationship

• Demographics of the government workforce, desire to shrink the government bureaucracy, the relentless march of technology, and competition with the private sector for scarce human resources have conspired to reduce the number of people who are competent to lead the engineering and fielding of complex systems to dangerously low levels
 – Emphasis on engineering *leadership*
 – Career path clearly identified?
 – Life-long training and re-training?
Challenges (cont.)

- Our contracts appear to lack the level of detail to communicate the expectations of the government
- Contract definition shortfalls are compounded by inability to verify compliance
- Partnership relationship makes exercise of contractual remedies unpleasant
- Relationship of Award Fee and product quality (as measured in the field) is sometimes unclear
- Crisis management isn’t
Recommendations

• Understand the destination
 – Detailed model of the desired end state
 – Characterize the operating environment
 – Understand the “partials”
 – Make informed trades and decisions
 – Design for success
 • Pay attention to availability and usability

• Demand quality
 – Don’t be amazed when it works – be amazed when it doesn’t

• Incentivize to meet requirements
 – Objectively reward performance
Recommendations (cont.)

- Test wisely
 - Recognize that testing is not a substitute for engineering
- Independent verification and validation
 - Start with the requirement/specification
 - Build the right system
 - Build the system right