The Scalability of Loop-Level Parallelism

by Daniel M. Pressel

ARL-TR-2557 August 2001
The Scalability of Loop-Level Parallelism

Daniel M. Pressel
Computational and Information Sciences Directorate, ARL
Abstract

This report deals with the four main constraints on the scalability of programs parallelized using loop-level parallelism. They are as follows:

1. The available parallelism in the algorithm.
2. The availability and scalability of appropriate hardware (including the operating system and the compilers).
3. Limitations in the design of the hardware.
4. The cost of getting into and out of a parallel section of code.

This, in turn, will lead to two important discussions: (1) the theoretical limitations on the scalability of shared memory codes and (2) the role that the choice of hardware and usage policies play in determining the performance of a shared memory code.

These discussions will include examples from the author's own work in porting the implicit computational fluid dynamics code F3D from the Cray C90 to a variety of shared memory platforms.
Acknowledgments

The author thanks Marek Behr, formerly of the U.S. Army High Performance Computing Research Center (AHPCRC), for sharing his results and the many colleagues who worked on these research projects over the years and helped collect this data and prepare this report. The author would also like to thank the employees of Business Plus, especially Claudia Coleman and Maria Brady, who assisted in the preparation and editing of this report.

Special thanks to Tom Kendall, Denice Brown, and the entire systems staff at the ARL-MSRC for their support of the various projects for which these runs were originally done.

This work was made possible through a grant of computer time by the Department of Defense (DOD) High Performance Computing Modernization (HPCM) Program. Additionally, some of the results mentioned in this work came from projects that were funded as part of the Common High Performance Computing Software Support Initiative (CHSSI) administered by the DOD HPCM Program.
INTENTIONALLY LEFT BLANK.
Contents

Acknowledgments iii

List of Figures vii

List of Tables ix

1. Introduction 1

2. Available Parallelism 2

3. The Availability and Scalability of Appropriate Systems 4

4. Hardware Limitations 5

5. Parallelization Costs 6

6. Conclusions 12

7. References 13

Glossary 15

Distribution List 17

Report Documentation Page 21
INTENTIONALLY LEFT BLANK.
List of Figures

Figure 1. Predicted speedup for loops with various levels of parallelism...3

Figure 2-a. The performance of the shared memory version of the F3D code when run on a modern scalable SMP (1-million grid point test case)...8

Figure 2-b. The performance of the distributed memory version of the F3D code when run on a modern scalable SMP/ MPPs (1-million grid point test case)...8

Figure 3. The effect on performance and the consumption of CPU time from the running of a parallel job on an overloaded HP V-Class..10

Figure 4. The effect on performance and the consumption of CPU time from the running of a parallel job on an overloaded Origin 2000..11
INTENTIONALLY LEFT BLANK.
List of Tables

Table 1. Predicted speedup for a loop with 15 units of parallelism.................3
Table 2. The performance of various versions of the F3D code when run on modern scalable systems (1-million grid point test case)..7
Table 3. The effect on performance and the consumption of CPU time from running a parallel job on an overloaded HP V-Class.........................9
Table 4. The effect on performance and the consumption of CPU time from running a parallel job on an overloaded SGI Origin 2000...10
INTENTIONALLY LEFT BLANK.
1. Introduction

OpenMP supports both task-level parallelism and loop-level parallelism. It appears that at least in the short term, many programs parallelized using OpenMP will use loop-level parallelism. This report addresses the scalability issues of loop-level parallelism, although portions of the discussion will be equally relevant to programs parallelized using OpenMP’s task-level parallelism features. Most of this discussion is based on the author’s work on systems from SGI, SUN, and Convex using their proprietary compiler directives for loop-level parallelism. This work has been recently supplemented with work done on a system from HP using KAI’s guide program to run a program using OpenMP compiler directives. The following are the four main constraints on the scalability of programs parallelized using loop-level parallelism:

1. the available parallelism in the algorithm,
2. the availability and scalability of appropriate hardware (including the operating system and the compilers),
3. limitations in the design of the hardware, and
4. the cost of getting into and out of a parallel section of code.

Most work with parallel computing seems to have assumed that a program will have a nearly infinite level of parallelism. Historically, this assumption was required since achieving meaningful levels of performance on a parallel computer meant using hundreds, or even thousands, of processors. However, in considering the case of using loop-level parallelism to parallelize a loop for a three-dimensional (3-D) problem in CFD, the available level of parallelism will almost always be less than 1,000 and possibly less than 100. In this case, when using larger numbers of processors, the ideal speedup is no longer linear. Instead, the ideal speedup now resembles a stair step. The second constraint refers to the requirement for systems with enough processors. It also requires an appropriate level of support from the operating system and the compilers. The design of the hardware can be of particular importance. With the Cray T3D and the CRAFT programming model (Oberlin 99), it is important to make every effort to minimize the effective memory latency. This includes minimizing the cost of off node accesses for NUMA architectures. Furthermore, not only must an adequate level of memory bandwidth be ensured, but with as few points of contention as possible (e.g., bank conflicts, insufficient bus bandwidth for bus-based systems, or insufficient off-node bandwidth for NUMA- and COMA-based systems).
These lessons are now extremely important, especially when considering the possible production of software distributed shared memory implementations of OpenMP. It is not sufficient for a programming paradigm to be portable; it must also deliver acceptable and predictable levels of performance. Without these guarantees, OpenMP will be no more useful than HPF.

Possibly the most interesting constraint is the final constraint, the cost of getting into and out of a parallel section of code. Many systems seem to have a lower bound for this number of around 2,000 cycles when using 10 or more processors. The upper bound for this number is virtually unlimited and can easily exceed 1-million cycles. The reason for this disparity is that the lower bound is driven by hardware considerations, while the upper bound is strongly affected by usage policies (e.g., the time sharing of processors). A proposed solution is to have the system reduce the number of threads assigned to a job if the system becomes overloaded. However, this can result in very unpredictable run times. In addition, when using larger numbers of processors, this can move the job from the high side of a stair step to the low side of the stair step. Consequently, a significant amount of computer time for a production run can be wasted.

The fourth constraint, the cost of getting into and out of a parallel section of code, also becomes relevant in that it is easy to see the desirability of parallelizing outer loops (middle loops can sometimes be used, but are not as desirable). Additionally, maximizing the amount of work in the parallelized loop may require merging loops. However, even after all of these transformations have been made, some loops, especially those in boundary condition routines, may not have enough work to justify the overhead of parallelization. This implies that Amdahl’s Law may be a significant limitation when using larger numbers of processors. The traditional solution to this problem is to discuss scaled speedup. However, the available parallelism will not be proportional to the problem size unless a loop nest is parallelized in all directions. This violates one of the premises of scaled speedup. Therefore, even for fairly large problem sizes, Amdahl’s Law cannot be ignored. Of course, when dealing principally with large problem sizes, it might be possible to justify parallelizing and optimizing a larger subset of subroutines. However, for many projects this does not appear to be a good assumption.

2. Available Parallelism

Most efforts to parallelize programs have assumed that the available parallelism is nearly infinite. Therefore, they have stressed concepts such as load balancing, optimizing the communications pattern for a grid undergoing domain decomposition, and even some such generic sounding concepts as Amdahl’s Law...
and the need to optimize the ratio between computation and communication. However, when parallelizing loops, there is the very real possibility that one or more of the expensive loops will have a dependency in at least one direction. If this is the case, then the available parallelism will no longer be strictly proportional to the problem size. As a result, the ideal speedup will no longer be linear. Instead, it will resemble a stair step. Table 1 and Figure 1 demonstrate this effect for a 3D problem with dependencies in two out of three directions, where there are only 15 iterations in the loop being parallelized.

Table 1. Predicted speedup for a loop with 15 units of parallelism.

<table>
<thead>
<tr>
<th>Number of Processors</th>
<th>Maximum Units of Parallelism Assigned to a Single Processor</th>
<th>Predicted Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>1.875</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3.000</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3.750</td>
</tr>
<tr>
<td>5–7</td>
<td>3</td>
<td>5.000</td>
</tr>
<tr>
<td>8–14</td>
<td>2</td>
<td>7.500</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>15.000</td>
</tr>
</tbody>
</table>

Figure 1. Predicted speedup for loops with various levels of parallelism.
For larger problem sizes and for two-dimensional problems, it is reasonable to assume that the available parallelism will be greater than 15. However, when scaling to 100 processors, it is likely that this stair-stepping effect will become significant. For example, if the loop being parallelized has 200 iterations, there will be stair steps at 50, 67, and 100 processors (a maximum of 4, 3, and 2 units of work per processor, respectively).

3. The Availability and Scalability of Appropriate Systems

While it may have some educational value (e.g., helping one to get a Ph.D.), creating parallel programs and programming techniques without regard to our ability to efficiently run those programs/use these techniques will not help in getting the job done. In terms of the hardware, this means several things:

1. In theory, peak speed of the hardware must be great enough to meet the performance requirements of a job.
2. Since it is rare to get close to 100% of peak performance, the peak performance must be great enough that even after the serial and parallel performance are discounted to appropriate degrees, a reasonable expectation of success exists.
3. The choice of hardware must be well matched to the parallelization technique. In particular, if the technique relies on shared memory, then a production effort should probably be based on the use of hardware shared memory.
4. To meet the needs of a job, the usage policies must support using a sufficiently large percentage of a system’s resources by a single job.
5. The operating system must be sufficiently scalable to properly support the size of the system, not just the size of the job. For shared memory systems running UNIX, a major rewrite of the operating system (in particular, the way locks are used to protect critical sections/data structures) was required.
6. The compilers must support the paradigm being used, and this support needs to be efficient.

Traditionally, all of these areas have been a problem when it comes to shared memory programming. There were two types of shared memory systems—those with a small number of powerful, but expensive processors, and those with a moderate number of weak, but cheap processors. On systems with powerful processors, it was difficult to get permission to own multiple processors for the life of the run. On the other hand, for a long time, the systems with weak
processors were too weak to be of value for high performance computing (HPC). Therefore, until recently, there was really no appropriate platform for running an HPC job using the shared memory paradigm. Arguably, the SGI Challenge/Power Challenge product line was one of the first systems to support this paradigm in a meaningful way.

4. Hardware Limitations

While the previous section discussed some of the more obvious limitations in the design of the hardware, some of the subtler issues include the following:

1. There needs to be sufficient memory bandwidth. Unfortunately, there is a lot of disagreement as to exactly what this means. However, the presence of a shared bus design (e.g., the design of the SGI Challenge/Power Challenge product line) can be a significant factor in determining a system's scalability.

2. Similarly, large cache/TLB miss latencies can be hard to tolerate.

3. For many designs, the effective cache miss latency is of particular interest. This is best expressed in terms of the number of peak floating point operations per cache miss. This value takes into account the following factors:

 a. the minimum cost of a cache miss,

 b. additional costs due to insufficient memory bandwidth and/or an insufficient number of memory banks resulting in contention,

 c. additional costs associated with an off-node access in a NUMA design,

 d. the cost of bottlenecks associated with going off node in any design with the concept of a node,

 e. the cost of bottlenecks that can arise in designs with the concept of a node when there is contention for a single node's memory banks (e.g., all of the processors are accessing a single page of memory on a system that maps an entire page of memory to a single node's memory banks),

 f. any costs associated with COMA-style DRAM caches, data replication, and similar attempts to avoid high latency operations, and

 g. the tradeoffs that various microprocessor design teams have made in terms of clock speed vs. the number of floating point operations per cycle.
The author's experience on the KSR1 and the Convex Exemplar SPP-1600 clearly demonstrates the importance of the concept of the effective cache latency. On both of these systems, the actual cost of going off node was too large to be easily tolerated by a shared memory program. As a result, even though the SGI Challenge/Power Challenge had the obvious limitation of a shared memory bus, it could easily outperform these systems (Pressel 1999). In some cases, even well-designed systems, such as the SGI Origin 2000 and the SUN HPC 10000 have exhibited problems with contention.

These results come from systems that were designed to be used as a shared memory platform. When considering the obstacles to running software-distributed shared memory (with little or no hardware support), the effective cache miss latency will clearly fare even worse. This can significantly affect the tuning strategies needed for software-distributed shared memory environments, and may even effect the appropriateness of that type of platform for many algorithms (Jiang and Singh 1999). Two examples of this include Oberlin's speech that was mentioned in the introduction (Oberlin 1999) and the results listed in Table 2 and Figures 2-a and 2-b.

5. Parallelization Costs

There is concern about the ratio between the costs of computation and communication with message-passing codes. However, with shared memory applications, there is no explicit communication. Instead, the cost of getting in and out of a parallel section of code is of concern. Obviously, it is desirable to have as much work as possible per section of code, and this is generally achieved using the following techniques:

1. parallelizing outer loops to the greatest extent possible,
2. never parallelizing inner loops,
3. combining loops under a common outer loop,
4. leaving some loops unparallelized, and
5. avoiding usage policies that will significantly increase the overhead associated with a parallel section.

The fourth technique may seem strange, but the following explanation might provide clarity.

On many shared memory systems, the cost of the overhead associated with parallelization is at least 2,000 cycles when using 10 or more processors. Under unfavorable circumstances, it can easily exceed 1-million cycles. To keep the cost of the overhead down to no more than 1% of the total CPU time, the parallel
Table 2. The performance of various versions of the F3D code when run on modern scalable systems (1-million grid point test case).\(^a\)

<table>
<thead>
<tr>
<th>System</th>
<th>Peak Processor Speed (MFLOPS)</th>
<th>No. of Processors Used</th>
<th>Version</th>
<th>Speed (time steps/hr)</th>
<th>MFLOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGI R10K O2K</td>
<td>390</td>
<td>8</td>
<td>Compiler Directives</td>
<td>793</td>
<td>1.04E3</td>
</tr>
<tr>
<td>SGI R12K O2K</td>
<td>600</td>
<td></td>
<td>SHMEM</td>
<td>382</td>
<td>4.99E2</td>
</tr>
<tr>
<td>SGI R10K O2K</td>
<td>390</td>
<td>32</td>
<td>Compiler Directives</td>
<td>2138</td>
<td>2.79E3</td>
</tr>
<tr>
<td>SGI R12K O2K</td>
<td>600</td>
<td></td>
<td>SHMEM</td>
<td>989</td>
<td>1.29E3</td>
</tr>
<tr>
<td>SGI R10K O2K</td>
<td>390</td>
<td>48</td>
<td>Compiler Directives</td>
<td>2725</td>
<td>3.56E3</td>
</tr>
<tr>
<td>SGI R12K O2K</td>
<td>600</td>
<td></td>
<td>SHMEM</td>
<td>1083</td>
<td>1.42E3</td>
</tr>
<tr>
<td>SGI R10K O2K</td>
<td>390</td>
<td>64</td>
<td>Compiler Directives</td>
<td>2601</td>
<td>3.40E3</td>
</tr>
<tr>
<td>SGI R12K O2K</td>
<td>600</td>
<td></td>
<td>SHMEM</td>
<td>1050</td>
<td>1.37E3</td>
</tr>
<tr>
<td>SGI R10K O2K</td>
<td>390</td>
<td>88</td>
<td>Compiler Directives</td>
<td>3619</td>
<td>4.73E3</td>
</tr>
<tr>
<td>SGI R12K O2K</td>
<td>600</td>
<td></td>
<td>SHMEM</td>
<td>1320</td>
<td>1.73E3</td>
</tr>
<tr>
<td>SGI R12K O2K</td>
<td>600</td>
<td></td>
<td>Compiler Directives</td>
<td>5087</td>
<td>6.65E3</td>
</tr>
<tr>
<td>Cray T3E-1200</td>
<td>1200</td>
<td>8</td>
<td>SHMEM</td>
<td>349</td>
<td>4.56E2</td>
</tr>
<tr>
<td>IBM SP 160 (MHz)</td>
<td>640</td>
<td></td>
<td>MPI</td>
<td>1062</td>
<td>1.39E3</td>
</tr>
<tr>
<td>Sun HPC 10000</td>
<td>800</td>
<td>8</td>
<td>Compiler Directives</td>
<td>1431</td>
<td>1.87E3</td>
</tr>
<tr>
<td>HP V-Class</td>
<td>1760</td>
<td>8</td>
<td>Compiler Directives</td>
<td>1705</td>
<td>2.23E3</td>
</tr>
</tbody>
</table>

\(^a\) For additional details, see Behr et al. (2000).

section must process between 2,000,000 to an excess of 10-billion cycles worth of work (in terms of serial time). If there are 1-million grid points, and this section of code is processing all of those points, then it is easy to satisfy the lower bound, although there will likely be trouble satisfying the upper bound. However, for boundary condition routines, the amount of work per section is likely to be two orders of magnitude less (in this case), making it difficult to satisfy even the lower bound. Therefore, it is frequently desirable to leave some of the boundary condition routines unparallelized.
Figure 2-a. The performance of the shared memory version of the F3D code when run on a modern scalable SMP (1-million grid point test case).

Figure 2-b. The performance of the distributed memory version of the F3D code when run on a modern scalable SMP/MPPs (1-million grid point test case).

*The speeds have been adjusted to remove startup and termination costs.
Furthermore, as the processors get faster, the lower bound will almost certainly continue to get larger.

If the cost of getting into and out of a parallel section of code is not well constrained, then it is very difficult to show parallel speedup. As Tables 3 and 4 and Figures 3 and 4 show, this can be a serious problem when a system becomes overloaded. Some people have suggested that the solution to this is to have the operating system automatically decrease the number of threads (and by inference the number of processors) assigned to a job. However, the following are three objections to this approach:

Table 3. The effect on performance and the consumption of CPU time from running a parallel job on an overloaded HP V-Class.

<table>
<thead>
<tr>
<th>No. of Processors Used</th>
<th>Wall Clock Time (s)</th>
<th>User CPU Time (s)</th>
<th>System CPU Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3524</td>
<td>3244</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>1698</td>
<td>3301</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>1203</td>
<td>3303</td>
<td>186</td>
</tr>
<tr>
<td>4</td>
<td>1974</td>
<td>3625</td>
<td>2302</td>
</tr>
<tr>
<td>5</td>
<td>1871</td>
<td>3630</td>
<td>2696</td>
</tr>
<tr>
<td>6</td>
<td>2554</td>
<td>3837</td>
<td>4955</td>
</tr>
<tr>
<td>7</td>
<td>3166</td>
<td>4051</td>
<td>7089</td>
</tr>
<tr>
<td>8</td>
<td>2915</td>
<td>3915</td>
<td>7223</td>
</tr>
</tbody>
</table>

Note: The job was run for 200 time steps.

(1) Even if it is assumed that the ideal speedup is linear speedup, the result can be an undesirable variability in the run time. It can be difficult for the user to identify the cause of this variability, resulting in the hardware and/ or the paradigm getting a bad reputation.

(2) The proposed solution would take processors away from shared memory jobs, but not from message-passing jobs. Again, this would result in the paradigm getting a bad reputation, while inadvertently rewarding the owner of the message-passing job.

(3) For jobs where the ideal speedup is a stair step, reducing the number of processors by just one or two can result in a significant decrease in performance. Unfortunately, the decrease in performance is not the only issue. Since the run time has significantly increased with presumably only a modest decrease in the number of processors being used, the total
Table 4. The effect on performance and the consumption of CPU time from running a parallel job on an overloaded SGI Origin 2000.

<table>
<thead>
<tr>
<th>No. of Processors Used</th>
<th>Wall Clock Time (s)</th>
<th>User CPU Time (s)</th>
<th>System CPU Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>503</td>
<td>390</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>225</td>
<td>512</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>256</td>
<td>729</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>360</td>
<td>935</td>
<td>11</td>
</tr>
<tr>
<td>20</td>
<td>1322</td>
<td>2263</td>
<td>36</td>
</tr>
<tr>
<td>25</td>
<td>2119</td>
<td>3423</td>
<td>138</td>
</tr>
<tr>
<td>30</td>
<td>3691</td>
<td>4414</td>
<td>188</td>
</tr>
</tbody>
</table>

*a The job was run for 40 time steps.

Figure 3. The effect on performance and the consumption of CPU time from the running of a parallel job on an overloaded HP V-Class.
Figure 4. The effect on performance and the consumption of CPU time from the running of a parallel job on an overloaded Origin 2000.

amount of CPU time has increased. At many sites, the users (or their allocations) are charged on the basis of CPU time, and in some cases, on the basis of memory usage (MB hours).

The solution to this problem that was adopted at the U.S. Army Research Laboratory has been to implement a queuing system that actively manages the load factor. This is done by quiescing some of the jobs (primarily background jobs that are not charged to a user’s allocation). This allows the use of background jobs to keep the system busy while waiting for a foreground job to be runnable and/or to finish a nonparallelized section of code (e.g., input/output). Another consequence of the need to leave some portions of the code unparallelized is Amdahl’s Law. Even if the cost of these sections is limited to 1% of the serial CPU time, the effect of Amdahl’s Law will be noticeable when using more than about 30 processors. Furthermore, when using 100 or more processors, the effect is likely to be dominant. For a well-parallelized job using loop-level parallelism, there is likely to be a sweet spot between 32 and 64 processors. For most jobs, the incremental benefit of using additional processors may not justify the cost.
6. Conclusions

Shared memory programs can be successfully scaled past the commonly quoted limitation of 4-16 processors. However, there are a number of constraints that limit the ultimate scalability of these jobs. Of particular interest is the effective cost of a cache miss. This value is sufficiently important to generally preclude using software-distributed shared memory in production HPC jobs.

The effect of usage policies on performance was also discussed. Overloading a system can waste a significant amount of CPU time. Furthermore, at production sites, the preferred solution to this problem is not to reduce the number of processors assigned to a shared memory job. Instead, the preferred solution is to actively manage the load (including the quiescening of background jobs) in an attempt to avoid overloading the system.
7. References

INTENTIONALLY LEFT BLANK.
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFD</td>
<td>Computational fluid dynamics</td>
</tr>
<tr>
<td>COMA</td>
<td>Cache only memory architecture</td>
</tr>
<tr>
<td>CPU</td>
<td>Central processing unit</td>
</tr>
<tr>
<td>DRAM</td>
<td>Dynamic random access memory</td>
</tr>
<tr>
<td>HPF</td>
<td>High performance Fortran</td>
</tr>
<tr>
<td>MB</td>
<td>Million bytes</td>
</tr>
<tr>
<td>NUMA</td>
<td>Nonuniform memory access</td>
</tr>
<tr>
<td>OVERLOADED</td>
<td>The load factor exceeds the number of processors in the system, resulting in the time sharing of processors.</td>
</tr>
<tr>
<td>TLB</td>
<td>Translation lookaside buffer</td>
</tr>
<tr>
<td>NO. OF COPIES</td>
<td>ORGANIZATION</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>USA E WATERWAYS EXPERIMENT STATION CEWES HV C J P HOLLAND 3909 HALLS FERRY RD VICKSBURG MS 39180-6199</td>
</tr>
<tr>
<td>1</td>
<td>US ARMY CECOM RSCH DEVELOPMENT & ENGRNG CTR AMSEL RD C2 B S PERLMAN FT MONMOUTH NJ 07703</td>
</tr>
<tr>
<td>1 SPACE & NAVAL WARFARE SYSTEMS CTR K BROMLEY CODE D7305 BLDG 606 RM 325 53140 SYSTEMS ST SAN DIEGO CA 92152-5001</td>
<td></td>
</tr>
<tr>
<td>1 DIRECTOR DEPARTMENT OF ASTRONOMY P WOODWARD 356 PHYSICS BLDG 116 CHURCH ST SE MINNEAPOLIS MN 55455</td>
<td></td>
</tr>
<tr>
<td>1 RICE UNIVERSITY MECHANICAL ENGRNG & MATERIALS SCIENCE T TEZDUYAR MS 321 6100 MAIN ST HOUSTON TX 77005</td>
<td></td>
</tr>
<tr>
<td>1 ARMY HIGH PERFORMANCE COMPUTING RSCH CTR B BRYAN 1200 WASHINGTON AVE S MINNEAPOLIS MN 55415</td>
<td></td>
</tr>
<tr>
<td>1 ARMY HIGH PERFORMANCE COMPUTING RSCH CTR G V CANDLER 1200 WASHINGTON AVE S MINNEAPOLIS MN 55415</td>
<td></td>
</tr>
</tbody>
</table>
INTENTIONALLY LEFT BLANK.
This report deals with the four main constraints on the scalability of programs parallelized using loop-level parallelism. They are as follows:

1. The available parallelism in the algorithm.
2. The availability and scalability of appropriate hardware (including the operating system and the compilers).
3. Limitations in the design of the hardware.
4. The cost of getting into and out of a parallel section of code.

This, in turn, will lead to two important discussions: (1) the theoretical limitations on the scalability of shared memory codes and (2) the role that the choice of hardware and usage policies play in determining the performance of a shared memory code.

These discussions will include examples from the author's own work in porting the implicit computational fluid dynamics code F3D from the Cray C90 to a variety of shared memory platforms.
INTENTIONALLY LEFT BLANK.
USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author: ARL-TR-2557 (Pressel) Date of Report: August 2001

2. Date Report Received:

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

Organization

CURRENT ADDRESS

Name
Street or P.O. Box No.
City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or Incorrect address below.

Organization

OLD ADDRESS

Name
Street or P.O. Box No.
City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)

(DO NOT STAPLE)