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Abstract

The detection of low signature or camouflaged targets in cluttered backgrounds is a crucial
problem in tactical reconnaissance. In the past few years, imaging spectral and polarimetric
sensors have been evaluated for this application. Although these sensors have separately
generated promising results, each imaging modality alone appears to have not achieved the
desired level of target detection. Fusion of data from multiple sensing modalities may potentially
improve performance to acceptable levels. In the case of, a key issue is the correlation of the
spatial location of the false detection within spectral and polarimetric imaging. This paper
presents a study of a data set consisting of near simultaneous spectral and polarimetric images
recorded from sensors  colocated on North Oscura Peak in the White Sands test range. The
sensors overlooked a scene composed of natural background, military vehicles, and camouflage
material. The sensors operated in the visible band with nearly equal, simultaneous field of view.
The RX anomaly detection algorithm was separately applied to each data set to obtain a two
dimensional map of  target and false detections. The paper will analyze the correlation of false
detections for image fusion. Background segmentation of the hyperspectral and polarization data
sets was also examined.

Introduction

Target detection amid natural background clutter can be achieved through collection and
analysis of data derived from optical multispectral or hyperspectral sensors. The reflection or
emission spectral signatures depend on the elemental composition of objects residing within the
scene. Targets whose elemental composition deviates substantially from the backgrounds may be
more easily detected using radiation wavelength selective detectors. Although the schemes
applied to the optical spectral data are highly selective in discriminating targets, it is necessary to
vastly improve the sensitivity. Detection of an additional feature of suspected targets has been
postulated to help in discriminating objects within a given scene. Radiation polarization is
sensitive to surface features such as relative smoothness or roughness1. It has been suggested that
detection of radiation polarization, in combination with radiation wavelength sensitivity maybe
enhance target detection. The hyperspectral data were recorded to enable a preliminary
assessment of the utility of polarimetric / hyperspectral data fusion. Mathematical fusion of data
sets has been examined to enhance target detection using a different imager2.
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A field collection of polarimeteric image data was conducted during the period 12-16
October 1998 at North Oscura Peak, White Sands Missile Range, NM.  The collection was
coordinated by Nichols Research Corporation (NRC) and ERIM International.   A Naval
Research Laboratory (NRL) team recorded companion hyperspectral data using the Dark Horse 1
(DH1) sensor.  A University of Alabama, Huntsville (UAH) visible spectrum polarimetric camera
was operated by the NRC team.

This report concentrates on the data fusion analysis.  Since the hyperspectral data was
visible spectrum only, visible spectrum polarimetric data was the logical choice for fusion with
the hyperspectral data.  The UAH visible polarimetric camera was a good match in IFOV to the
hyperspectral sensor.  For this reason the UAH data set was chosen for detailed analysis.

In order to provide a context for the fusion analysis itself, an overview of the
characteristics of the Dark Horse 3 and UAH sensors is provided.  The various steps in the data
reduction chain are also outlined.

The final sections of the report summarize the results of the fusion assessment.  It is
found that data fusion based on “AND” processing provides the best results.  Approximately one
order of magnitude improvement in false alarm reduction appears to be possible from fusion of
the two data sets.

Sensors

Several sensors were employed during the field test.  NRC provided separate MWIR and
LWIR imaging polarimeters, ERIM supplied a second MWIR imaging polarimeter and UAH
provided a visible imaging polarimeter.  NRL provided the DH1 visible hyperspectral sensor
outfitted with a computer-controlled scanning table.  Detailed descriptions of the polarimetric
sensors are available in separate reports from NRC and ERIM.  Some information on the DH1
sensor is provided here for easy reference.  More detailed information is available from NRL.
Since the polarimetric data of interest in this report was collected by the UAH instrument, a brief
description of this instrument is contained below in the polarimetric analysis section.  More
information is available from UAH.

Hyperspectral Sensor (Dark HORSE)

The Dark HORSE hyperspectral imaging sensor3 consists of a standard 1" CCTV lens
(Navitar, DO-5018), an f/2 imaging spectrograph (Instruments S.A., CP140) and a high-frame-
rate CCD camera (Sarnoff, VCCD512).  Imagery collected via the 50mm focal length lens is
dispersed using a high throughput f/2 imaging spectrograph.  The spectrograph employs an
aberration-corrected concave holographic grating, providing a flat field spectral range from 400
to 850 nm.  A 25 µm slit width was used for all data collections.  However, it should be noted that
the size of the binned CCD pixels (not the spectrograph slit width) defines the sensor’s maximum
spectral resolution of 7nm.



Digital collection of the hyperspectral imagery is achieved using a custom high-frame-
rate CCD camera.  The camera is a 16-port split frame transfer CCD with 12-bit digitizers
operating at a maximum frame rate of 200 Hz.  A custom high-frame-rate interface box is used to
merge the 16 12-bit digital camera output channels into a single 32-bit channel that is then read
via a digital frame grabber board (MuTech, MV-1100).  The 512 x 512 silicon focal plane array
(FPA) is capable of capturing digital hyperspectral data cubes with a maximum of 512 cross-track
spatial pixels and 512 wavelength bands.  During this field test the spectral pixels were binned via
hardware to provide 64 wavelength bands.  Spectral pixel binning provided adequate signal-to-
noise levels at the relatively short integration times (0.1 seconds per frame) used for this collect.
The instantaneous field of view (IFOV) is 0.22 mrad.

The sensor is controlled using a 266 MHz Pentium II PC and a custom software
application run under the Microsoft Windows NT operating system.  The user interface provides
the user a means of entering required input parameters, such as archival file names, desired
binning parameters and camera frame rates.  In addition to controlling the sensor the controller
computer is used to unscramble the frame grabber’s 32-bit image output.

The sensor operates in a pushbroom mode by forming a spectrally dispersed image of the
entrance slit onto the two-dimensional FPA.  One dimension gives spectral information and the
other dimension gives spatial information in the cross-track direction.  Scanning the slit across the
scene of interest gives spatial information in the down-track direction and results in a three-
dimensional hyperspectral data cube. Typically, the required scanning motion is achieved by
mounting the sensor to a moving airborne platform.  For this data collection, motion in the down-
track direction was achieved via a computer-controlled azimuth-elevation scanning mount.  For
all data collected the sensor was scanned at a rate of 0.125 degrees/sec while holding the
elevation angle constant.

Sensor and Target Sites

All data were collected at North Oscura Peak, White Sands Missile Range, NM.  All sensors were
located at the top of North Oscura Peak at the “Atom Site”.  Sensors were placed on a concrete
platform (previous page) that
overlooked the “Target Site”
(Figure 1).  The “Target Site”
was at the base of North
Oscura Peak at a depression
angle of approximately 30
degrees and a distance of
approximately 1500 meters
from the sensor platform.

Targets

A variety of targets
were examined during the
course of the field test,
ranging from military
vehicles to simple geometric
shapes.  For the purposes of

Figure 1. North Oscura target site.



this study, The Camouflage, Concealment and Deception (CC&D) related targets are the focus of
this study.  These targets included military vehicles, vehicle decoys, and Chemical Agent
Resistant Coating (CARC) panels.  The targets were positioned along a jeep trail and arranged
such that the military vehicles were in pairs (Figure 2), with one vehicle obstructed (via natural or
manmade cover) and one in clear view.

General Observations

The DH1 sensor and system worked well over the course of the field test with no significant
hardware problems.  Poor field conditions (high winds, dust storms and lack of power) during the
later portion of the week limited data collection to the first two days of the field test.  Despite this
limitation, a significant amount of data was collected.  Most image scans covered the entire target
region and a considerable amount of ground adjacent to the targets.  Image scans were also
collected both above and below the target region, with only a subset of the targets within the
sensor’s field of view.

 In addition to the hyperspectral data, simultaneous video imagery was collected.  Additionally,
digital photos of all of the CC&D targets were acquired and a map of the targets’ relative
positions was drawn  (see above).  A detailed listing of the targets’ exact geolocations with
respect to the sensor is available through NRC and ERIM.

Figure 2. Enlarged picture of targets (indicated with lines).



Wind was a constant concern during the course of the field test.  Mild winds caused the
scanning mount to sway during data collections, high winds made it necessary to abort data
collections completely.  During mild winds it was found that frame rates of 10 Hz provided the
best results.  At this rate, data were sampled rapidly enough to minimize image pixel smearing yet
slow enough to avoid the use of high scan velocities. Scan rates higher than 10 Hz did not
produce reliable data.

Spatial Correction

The spectrometer optical configuration which directs radiation to the focal planar array is not
perfectly ideal.  To correct spatial aberrations, the spectrometer is calibrated by exposing it to
mercury and krypton lamps placed at fixed positions. Software corrects each pixel within the two
dimensional array to generate a linear spatial response. This correction reduced the observed
aberration from as much as 10 pixels in the outer regions of the focal plane array down to 1 pixel.
Central portions of the array displayed much smaller spatial distortions.

Flat-fielding

Radiometric corrections to the raw data are also required because the spectrometer radiation
transport  efficiency depends on wavelength.  Flat-fielding procedures were used to correct for
the wavelength dependent responsivity.  This software correction was applied to each pixel within
the image following exposure to a spatially uniform radiation source of known intensity. The
figures show profiles before and after flat-fielding corrections.   After flat-fielding corrections
were applied to the data editing limited the hyperspectral image set to data residing between the
black vertical lines.

Destriping

The visible hyperspectral image contains  “streak” artifacts (Figure 3a). Most of the streaks
appear as lines that run along the in-track  (horizontal) direction. These streaks are attributed to
unstable electronics used to process signals in the CCD array. Additional instability is attributed
to the variable, random movement of the Dark HORSE 1 spectrometer under windy conditions at
the test site.

Figure 3a. Horizontal stripes displayed in one band within visible hyperspectral data cube.prior to
“destriping”



The streaks ar e particularly
deleterious for anomaly
detection algorithms. The
presence of regions showing
sharp gradients will generate
false anomalies. Figure 3b
depicts the vertical profile
(after taking the median in the
horizontal direction) in bands
10, 20, 30.

To help enhance the search for anomalies, the streaking was ameliorated by post processing of the
image set.  Custom software reduced the apparent streaking by a complex procedure applied to
each spectral band image.  The method involved computation of the row medians, determination
of the row offsets needed to produce the smoothed median profiles shown in the figure below,
and finally correction of all the pixel values by these offsets. Following application of the
destriping algorithm, the horizontal streaking was substantially reduced as seen in the image
Figure 4a and the profiles shown in Figure 4b.

Figure 4a. Prominent horizontal stripes removed from band displayed in Figure 3a.

Figure 3b depicts the vertical profile (after taking the median in
the horizontal direction) in bands 10, 20, 30.

Figure 4b depicts the
smoothed vertical
profile (after taking
the median in the
horizontal direction)
in bands 10, 20, 30.



Additional Editing of the Hyperspectral Data

 Following flat fielding and spatial distortion corrections, the hyperspectral image data set
required further editing. Although the calibrations corrected most distortions, image editing was
still required to provide a valid image set. Specifically, the image set was reduced from 512 pixels
in the cross track direction down to the central 256 pixels.  Additionally, spectral bands 1-6 and
50-64 were eliminated due to remaining distortions.  The remaining bands (7-49), correspond to
the spectral range 820-500 nm.

Polarimetric Analysis

Stokes images can be used to characterize the degree of linear and circular polarization at each
individual pixel within a digital image scene 4,5. The individual Stokes parameters are S0 (total
intensity), S1 and S2 (linear polarization), and S3 (circular polarization). The University of
Alabama, Huntsville polarimetric camera was used to collect the polarimetric data.  The key
elements of this camera are a 320 x 192 element CCD array positioned behind a rotating retarder
plate / fixed polarizer combination. The IFOV is .23 x .26 mrad.  In the field, the retarder was
rotated to12 angular positions separated by intervals of 15 degrees and an image, I(n), was
recorded for each position.   The 12 images were spatially registered to each other using custom
software based on tiepoints and polynomial fitting.  The 12 images are related to the Stokes
images and degree of linear polarization (DOLP) in the following manner.

The Stokes images were computed by inverting this equation.  Imperfect registration generated
some artifacts in the Stokes images (especially S3).  Improvements in registration would be
desirable.  Shown below (Figure 5)are processed Stokes images derived from the UAH
polarimeter.  The S1 and S2 images (Figure 5b, 5c) suppress clutter significantly while permitting
observation of some of the targets in the scene.  A number of targets were not detected.
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Figure 5b. S1 Stokes imageFigure 5a. S0 Stokes image



                      Figure 5c. S2 Stokes image                                    Figure 5d. S3 Stokes image

Registration of Hyperspectral Images with Polarimetric Images

The hyperspectral images are generally similar to the polarimetric images.  However, the overlap
between the two sets of images is not perfect and consequently some manipulation of the image
set was required.  We adopted the strategy of warping the hyperspectral images to the
polarimetric images.  This involved translation, rotation, magnification, and resampling of the
hyperspectral images to achieve a 1 to 1 correspondence between hyperspectral pixels and
polarimetric pixels.   Part of this process is spatial co-registration of the two sets of images.  To
register the data, common points called ground control points (GCP) were identified within each
image set. These reference points were used to connect the two sets together. A total of 7 ground
control points were employed.   Since our linear registration method required four GCPs,  three
remained to assess the quality of the registration.  Typically, the hyperspectral and polarimetric
image sets were registered to within <0.8 pixels. The final result of the warping process was an
320 x 192 pixel image size for both data sets.

RX  anomaly detection

Manmade targets located within natural backgrounds often appear as spectrally anomalous
objects.  However, the detailed spectral signature of the target is usually not available a priori.
Anomaly detection algorithms, such as the RX algorithm 6, search for pixels within the image set
exhibiting a spectrum significantly different from that of the background.  The RX value for the
pixel at a row, column position  i,j  is

RX(x i,j)=(x i,j-mean)T  ∗  (M-1) ∗ (x i,j-mean)

where x i,j  is the spectral vector at position i,j, mean refers to the mean band value, and  M-1 is the
inverse of the covariance matrix. Figure 6 pictorially outlines the RX anomaly search process.

. Figure 6 pictorially outlines the RX anomaly search process.
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The “three-dimensional” image cube
(having 40 bands in the hyperspectral
image set) is thus reduced to a two
dimensional RX map displaying the
degree of anomaly within the image.
Relatively large RX values are to be
associated with detections (either true
or false).  Images useful for
diagnostics can be created by
thresholding the RX maps to show
the pattern of detections.  A further
refinement is to overlay an image
mask corresponding to the known
position of the real targets.   Maps
created in this way from the
hyperspectral data and for the
polarimetric data are shown in
Figures 7a, 7b.   The known target
overlays are in color.  The white
areas are false detections. Raising the
threshold decreases the number of
false detections at the expense of
missing more true targets.  In
generating these images a
preprocessing step called principal
component analysis was used.  This
statistical tool is discussed in more
detail below.  Principal components
(PC) 2 through 7 were used for the
hyperspectral data and PCs 2 and 3
were used for the polarimetric data.

ROC Curve

Receiver Operating Characteristic (ROC) curves are used to visualize a classifier's performance
and to aid in selecting the proper decision threshold.  To generate a ROC curve,  a series of
detection results for different threshold values are compared with ground truth information in
order to determine how many detections are true and how many false. Each pixel within the
image is examined to determine whether or not the RX output value at that pixel exceeds a given
threshold and, if so, whether the pixel resides within the ground truth region of interest (ROI)
corresponding to one of the targets. The ROC curves display the target detection  probability
versus probability of false detection. Individual target ROIs typically contain multiple pixels. In

Figure 7a Target mask superimposed on RX
output from HSI data.

Figure 7b Target mask superimposed on RX
output from polarization data.



this study, a target was considered to have been detected if  any pixel within a target ROI
exceeded a given threshold value. The percentage of false detections is defined as the percentage
of pixels lying outside all target ROIs with RX value exceeding the threshold value.

Principal Component analysis

The hyperspectral data set has 40 bands of spectral information.  From a statistical point of view,
this corresponds to 40 degrees of freedom.  Past experience has shown that the effective number
of independent degrees of freedom is far less – typically on the order of 6 or 7.   Principal
component (PC) analysis is a convenient way to reduce the data set to a dimension of this order
and separate image information from noise.   The method works by forming orthogonal linear
combinations of the 40 band images and ranking these combination images by variance.   PC 1
(highest variance)  is usually close to the arithmetic average of the 40 bands.   Since it is nearly an
average, it is dominated by background clutter and is usually discarded.  The PCs with the lowest
variance (e.g 37th , 38th, 39th and 40th) are dominated by noise and so are not useful.  Best results
in this study were obtained by retaining PC 2 through 7.  This choice has several advantages.  It
rejects a good deal of “ordinary” clutter (contained in PC 1).  It reduces remaining streaks and
rejects some of the sensor noise (contained in PCs 8-40).  It reduces the size of the data set
thereby easing computational requirements.   The PC algorithm itself is not computationally
intense.

The same idea can be applied to the polarimetric data set.  The initial data set is 4 dimensional in
this case (S0, S1, S2, S3).   The S0 component was rejected because it is clutter dominated.   PC
analysis was applied to the remaining 3 components.  The last PC is nearly equal to S3
(mostly noise and artifacts).  It was rejected and the other two PC were retained.

Fusion of Hyperspectral Images with Polarimetric Data .

Two sets of independent imaging modalities, visible hyperspectral and polarimetry, viewed a
common set of targets and backgrounds. These two image sets depict common targets but
differing false alarms. Combining
imaging modalities, or fusing the data,
was investigated as a possible way to
enhance target detection for constant
false alarm rates. There are a variety of
ways to fuse registered sets of images.
Four possibilities are examined below.
It was not possible to use data recorded
at the same time from the two sensors
for this exercise.  There was no time
when the UAH polarimetric camera
and the DH1 spectral sensor were both
functioning well.  Fortunately the
scene did not change very much during
the course of the test.  The
hyperspectral scene used was recorded
on Oct 13 at 1 pm.  The polarimetric
scene used was recorded on Oct 12 at
5:40 pm.
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Figure 8a. Schematic showing fusion algorithm using
summation of RX output from HSI and polarization.



Sum RX Images

In this approach, the RX anomaly algorithm was run separately on the hyperspectral and
polarimetric data.  In the case of the polarimetric set, only S1, S2, and S3 were used in the data set
because S0 (total intensity) was clearly dominated by clutter.  An “OR” type of fusion can be
implemented simply by summing the RX outputs (Figure 8a).  This is referred to as “OR”
processing because
anomalies in either data
set have a good chance of
being selected as
detections.

shown Figure 8b is the
effective ROC curve from
summing the individual
RX outputs of the
hyperspectral , and
polarimetric imaging sets.
Summing the RX outputs
(at the pixel level) of the
hyperspectral (HSI) and
polarization data results in
a modest enhancement in
the detection of targets at
constant false alarm rate. The hyperspectral set was taken from 40 bands (following editing) and
selecting the principal components (PC) 2 through 7 (in order of decreasing eigenvalue and
variance). The polarimetric set was derived using Stokes images S1, S2, S3 (S0 was excluded as
being clutter-dominated).

1. Multiply RX Images

Observation of many
uncorrelated false detections in
the RX output from the
hyperspectral and polarimetric
image sets suggests another way
of fusing the data to enhance
target detection.  Instead of
summing the data, the two RX
images can be multiplied at the
pixel level with the idea of
suppressing false detections not
present in both RX images.  This
approach is sometimes denoted
as the “AND” algorithm because
only pixels anomalous in both
data sets are likely to be selected
as detections.
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Figure 9a. Schematic showing multiplication of HSI and
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Figure 9b is the effective ROC
curve derived by multiplying the
individual RX outputs of the
hyperspectral (HSI), and
polarimetric imaging sets.
Multiplying the outputs (at the
pixel level) of the hyperspectral
and polarization data results in
greater enhancement in the
detection of targets at constant
false alarm rates than does
summing the image sets.

3 Combine Hyperspectral and
Polarimetric data sets and
perform Anomaly
Detection on large
image set

A third approach
(illustrated by Figure
10a) tried to combine
the hyperspectral image
set with the polarimetric
image set to form a 42
dimensional data set
(only S1 and S2 images
were used). The PC
transformation was then
performed, and only PC
2 – 7 retained.  The RX
algorithm was then run on this 6 dimensional data set. This approach
is motivated by the idea that the
large data set might be
characterized by joint Gaussian
statistics.

Figure 10b shows the effective
ROC curve from performing an
RX calculation on a combined
image set. The large image set is
generated by combining 40
bands from the hyperspectral set
with the S1 and S2 images from
the polarization set. The RX
algorithm was subsequently
applied using principal
components 2 through 7 (in
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registered HSI and
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Figure 10b. ROC curve from registered cube, HSI, and polarization



order of decreasing eigenvalue and variance). As a comparison, the hyperspectral (HSI), and
polarimetric RX outputs are also shown. Performing the RX on the combined image set results in
no significant improvement in the detection of targets at constant false alarm rates.

4. Combine Principal Component Analysis of Hyperspectral data with Polarimetric data
and perform Anomaly Detection on large Image Set

The fourth approach tried
was a variant of the third.
The PC transformation was
applied to the hyperspectral
(HSI) data set before
combining the data sets
(Figure 11a).  The
motivation here is to
optimize the hyperspectral
data set before fusion.
Figure 11b shows the
effective ROC curve
obtained in this way. The
large image set is generated by
combining PCs 2 through 7
from the hyperspectral set and
Stokes images
S1 and S2  from the
polarimetric set. The RX
algorithm was applied using
(PC) 2 through 7 (in order of
decreasing eigenvalue and
variance). As a comparison,
the hyperspectral (HSI),
polarimetric RX outputs are
also shown. Performing the
RX on the combined image set
results in no significant
improvement in the detection
of targets at constant false
alarm rates.

RX Scatter Plot

Additional insight may be achieved by generating a scatterplot of the registered RX outputs from
the hyperspectral imager and polarimetric camera.  The graph plots the pixel value of the
registered RX output from the hyperspectral image set against the pixel value of the RX output
from the polarimetric data. It can be shown (figure not shown) that low RX values from the
polarimetric data correlate with higher RX values from the hyperspectral imager. Conversely,
pixels with high RX values from the polarization data correspond with low RX values from the
hyperspectral imager.  In addition, it can be noted that pixels showing high polarization anomaly
and low hyperspectral anomaly values tend to appear at the edges of targets while those with low
polarization anomaly and high hyperspectral anomaly values tend to appear in the central area.

Figure 11a. Schematic showing fusion involving PC from HSI
forming a cube with polarization
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Used in this way, hyperspectral and polarized images may complement each other in detecting
targets in the clutter.

Preliminary Fusion of Clustered Image Cubes

This paper has examined searches for anomalies with in the background clutter. Clustering of the
background clutter provides another approach for analyzing the data. A preliminary examination
of clustering the clutter is summarized.

Prior to segmentation of the
hyperspectral visible data,
illumination suppression7  was
applied to all pixels within the image
cube. Figure 12 illustrates
illumination suppression in two
dimensions. The first principal
component direction depicts the region
of highest variance and presumably runs parallel to the illumination direction. Surfaces
orthogonal to first principal component therefore depict regions of constant illumination. The
surface of constant illumination was chosen to intersect the mean value. Each pixel was projected
onto a hypersurface using the virtual shade point (minimum pixel value). Prior to shade
correction, a median filter was applied to the hyperspectral image cube to eliminate singularities
generated in the projection.

Background clutter clustering is achieved by using the unsupervised classifer k-means8. The
hyperspectral visible spectra  was partitioned into six clusters plus a cluster composed of pixels
residing beyond the fixed distance from the designated cluster means. The partitioned regions
correspond to targets (Figure 13a). Similarly, the S1 and S2 components from the registered
visible polarimetric data were partitioned into two components plus the null segment (null
segment shown in Figure 13b).

Fusion was accomplished by multiplying the two sets of registered segmented data sets
on a pixel by pixel basis (see Figure 9b). To evaluate the potential gain from this version
of data fusion, ROC curves were generated from the previously used target masks. Again,
the false alarms in the data sets were uncorrelated and some enhancement (reduction of

Shadow Point

Illumination Direction
(First Principal Component)

Projection

Mean

HSI, 6 Clusters Polarization, 2 Clusters

Figure 12. Illumination equalization method illustrated.

Figure 13. Segmented output from HSI (a) and polarization (b)



FAR by one order
of magnitude at
60% target
detection level) in
the data can be
achieved using
these independent
data sets. Other
clustering schemes,
such as those
testing supervised
classification
algorithms and
number of
segments are being
investigated.

Summary and Conclusion

Using ground control points to register the hyperspectral and polarimetric image data, the data
sets were combined in a variety of ways.  The best ROC curve results were obtained with the
“AND” algorithm.  Thus, it appears that false alarms are largely uncorrelated in the two types of
imaging modalities.  A more modest ROC curve benefit was obtained with the “OR” algorithm.
Combining image cubes does not appear to enhance the detection of targets at constant false
alarm rates. Scatter plots reveal that polarimetric RX anomaly imagery tends to detect the edges
of targets while the hyperspectral methods preferentially select the central regions.  This suggests
that the two modalities may complement each other, particularly in target segmentation or image
understanding.

Confidence in these results is limited by the quality of the hyperspectral image and polarization
data sets. Destriping reduced or eliminated spurious streaks in the hyperspectral images, but there
remained a number of artifacts in the data that appeared as false detections. These artifacts also
precluded the use of matched filter hyperspectral detection algorithms since these methods are
particularly susceptible to artifacts, especially in combination with illumination equalization. This
study would have benefited from availability of better quality hyperspectral data. Benefit also
would have been gained from better internal registration of the raw polarimetric image set.
Suboptimal registration led to some artifacts in the polarimetric data set.
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