COMPOSITION AND CALORIC DENSITY OF WEIGHT LOSS DURING CALORIC RESTRICTION IN THE COLD
DEFENSE TECHNICAL INFORMATION CENTER
REQUEST FOR SCIENTIFIC AND TECHNICAL REPORTS

Title

1. Report Availability (Please check one box)
 - This report is available. Complete sections 2a-2f.
 - This report is not available. Complete section 3.

2a. Number of Copies Forwarded
2b. Forwarding Date
 28 Jun 01

2c. Distribution Statement (Please check ONE box)
 - DISTRIBUTION STATEMENT A: Approved for public release. Distribution is unlimited.
 - DISTRIBUTION STATEMENT B: Distribution authorized to U.S. Government Agencies only.
 - DISTRIBUTION STATEMENT C: Distribution authorized to U.S. Government Agencies and their contractors.
 - DISTRIBUTION STATEMENT D: Distribution authorized to U.S. Department of Defense (DoD) and U.S. DoD contractors only.
 - DISTRIBUTION STATEMENT E: Distribution authorized to U.S. Department of Defense (DoD) components only.
 - DISTRIBUTION STATEMENT F: Further dissemination only as directed by the controlling DoD office indicated below or by higher authority.
 - DISTRIBUTION STATEMENT X: Distribution authorized to U.S. Government agencies and private individuals or enterprises eligible to obtain export-controlled technical data in accordance with DoD Directive 5230.25, Withholding of Unclassified Technical Data from Public Disclosure, 6 Nov 84.

2d. Reason for the Above Distribution Statement (In accordance with DoD Directive 5230.24)
 - Originators deemed the information unclassified and suitable for public release

2e. Controlling Office
 AMS 58-OS4 (N)

2f. Date of Distribution Statement Determination
 28 Jun 01

3. This report is NOT forwarded for the following reasons. (Please check appropriate box)
 - It was previously forwarded to DTIC on __________________ (date) and the AD number is __________________ (if applicable).
 - It will be published at a later date. Enter approximate date if known.
 - In accordance with the provisions of DoD Directive 3200.12, the requested document is not supplied because:

Print or Type Name: Carl E. Taylor, Jr.
Signature:
Telephone: 508-233-5527

TOTAL P. 06
COMPOSITION AND CALORIC DENSITY OF WEIGHT LOSS DURING CALORIC RESTRICTION IN THE COLD

P. F. Iampietro M. Mager
R. F. Goldman D. E. Bass

Physiology Branch
FOREWORD

The simplest method for determining the amount of food a soldier requires is to provide him with sufficient food to maintain a constant weight and to measure the calories consumed. Many of the established requirements for calories have been derived from this simple approach. When, however, a loss in weight occurs despite more than adequate availability of food, calculations must be made of the calories which the body itself has supplied in terms of tissue breakdown and the final estimate of caloric requirements must be corrected accordingly. Such corrections require a rather precise knowledge of how many calories the body tissues have provided, i.e., the caloric density of the weight lost. The present report provides values which may be used for this purpose with reasonable confidence.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>IV</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. EXPERIMENTAL DESIGN AND METHODS</td>
<td>1</td>
</tr>
<tr>
<td>3. RESULTS</td>
<td>2</td>
</tr>
<tr>
<td>a. WEIGHT LOSS</td>
<td>2</td>
</tr>
<tr>
<td>b. COMPOSITION OF WEIGHT LOSS</td>
<td>3</td>
</tr>
<tr>
<td>c. CALORIC VALUE OF WEIGHT LOSS</td>
<td>3</td>
</tr>
<tr>
<td>4. DISCUSSION</td>
<td>3</td>
</tr>
<tr>
<td>5. ACKNOWLEDGMENTS</td>
<td>6</td>
</tr>
<tr>
<td>6. REFERENCES</td>
<td>6</td>
</tr>
</tbody>
</table>
ABSTRACT

Two groups of 6 men each lived for 14 days in a cold chamber at 60°F (15.6°C); activity was sedentary and only athletic shorts were worn. During this period one group (A) was semi-starved (600 kcal/day) and the other (B) was completely starved (0 kcal/day). Changes in body composition were measured and caloric density of weight loss was calculated. Mean weight loss was 5.66 kg for A, and 8.56 kg for B. Composition and caloric density of weight loss was almost identical for both groups. Composition of weight loss with regard to fat, protein, and water was: 39, 10, and 51% for A; 39, 11, and 49% for B. Caloric density was 3.91 kcal/gm for A and 4.06 kcal/gm for B.
COMPOSITION AND CALORIC DENSITY OF WEIGHT LOSS DURING CALORIC RESTRICTION IN THE COLD

1. **Introduction**

Estimates of man's daily caloric requirements may be made with reasonable validity if the body composition and weight do not change during the experimental period. This may be done simply by careful measurement of daily caloric intake. If, however, changes in body weight and/or composition occur, corrections must be made for the caloric equivalent of the tissue exchanges. Values for the caloric equivalent of weight changes have been reported which range from 2.5 to 6.2 or more kcal/gm (1, 2). This variability indicates that appreciable uncertainties may attend calculations of caloric requirements when large changes in weight occur.

An opportunity was presented recently to measure changes in body composition and, thus, to calculate values for the caloric equivalent of the weight lost during two studies in which men were fed, respectively, 600 and 0 kcal/day for 14 days. This report presents the results of these studies.

2. **Experimental design and methods**

Two studies were performed. In the first (Study A), 6 young men lived in a chamber maintained at 60°F (15.6°C) for 2 weeks. Air movement was approximately 40 ft/min; relative humidity was 50%. During this period they were nude except for cotton shorts and socks and were engaged only in minimal, sedentary activity, e.g.; card-playing, reading, writing, watching TV. Each subject was permitted one Army woolen blanket during the night. Caloric intake was restricted to 600 kcal/man/day. This was in the form of a milk drink served in equal portions 3 times daily. The composition of this drink was as follows: carbohydrate 41%, protein 17%, fat 42%, caloric density 1.2 kcal/gm. The experimental period was preceded by 2 weeks at 80°F (26.7°C), during which time sufficient calories in the form of the above-mentioned milk drink plus toast and butter were provided to maintain body weight. During this control period a multi-vitamin supplement was given morning and evening.

In the second (Study B), all conditions were identical with those of Study A except that during the cold period no calories were provided, i.e., complete starvation prevailed. In Study B the test subjects were 6 men who were not involved in Study A.

The mean ages of the 2 groups were 19.7 and 21.2 years and the mean weights were 69.3 and 70.3 kg, respectively. Water was permitted ad libitum, and 4 cups of hot coffee, without cream or sugar, were served daily in both studies.
Body specific gravities of the test subjects were determined on the day preceding and again on the day following the 2 weeks of caloric restriction. This was determined by weighing the test subjects in air and while completely submerged in water, using a water tank similar to that described by von Döbeln (3) and correcting for residual lung volume by nitrogen dilution as described elsewhere (4). From these determinations the body fat contents of the test subjects were calculated. Nitrogen balances were determined and, from the cumulative negative balance, the amount of fat-free tissue lost was determined. Nude body weights were determined each morning after the test subjects had voided.

From the measurements described above it was possible to calculate the relative contributions of fat and protein to the total weight loss over the periods of caloric restriction, and thus to calculate the caloric equivalent of the weight lost.

3. RESULTS

A. WEIGHT LOSS

Weights at the beginning and end of both studies are shown in Table 1. Mean weight losses were 5.66 and 8.56 kg for groups A and B, respectively. The pattern of daily weight loss was similar for both groups; after the first 2 days, the daily weight loss was essentially linear (Fig. 1). Thus, during the last 12 days Group A showed a daily weight loss of 0.317 kg/day and Group B lost 0.525 kg/day. The comparatively large weight loss during the first 2 days of the experimental periods (1.9 and 2.3 kg/man/day for Studies A and B) will be discussed below.

![Figure 1: Daily weight loss during caloric restriction in the cold (means of 6 men).](image-url)
b. Composition of weight loss

For the purpose of this report, the composition of the weight lost will be expressed in terms of fat, protein, and water. Fat and protein losses were calculated from changes in body specific gravity and from cumulative negative nitrogen balances, respectively. The difference between the total weight loss and the sum of fat and protein lost is here termed "water." It is realized, of course, that a moiety of this "water" is represented by electrolytes and glycogen stores. The electrolytes represent a negligible fraction of weight loss and provide no calories. Glycogen may have accounted for as much as 150 grams of the weight loss, representing a total of 634 calories (5); failure to take this into account represents an error of 5% of water loss in Study A and 3.0% in Study B. Table 1 shows that although the absolute amounts of fat, protein, and water lost in Study A were smaller than in Study B, the contribution to the total weight loss of each of these components is remarkably similar for both studies: 39% and 39% for fat, 10% and 11% for protein, 51% and 49% for "water." These values are in close agreement with those of Brozek, et al (5) if their values are averaged for a 12-day period.

The total amounts of protein, fat, and water lost in Studies A and B were: protein, 0.52 kg and 0.96 kg; fat, 2.15 and 3.31 kg; "water," 3.00 and 4.29 kg, respectively (Table 1).

C. Caloric value of weight loss

Standard values for the caloric equivalent of protein (4.1 kcal/gm) and fat (9.3 kcal/gm) were used in calculating the calories derived from tissue breakdown (Table 11). Thus calculated, fat was the source of 90.3% of the calories in Study A, and 88.6% of those in Study B. Protein provided 9.7 and 11.4% in Studies A and B, respectively. It is interesting that, despite the fact that the weight loss in Study B was 51% greater than in Study A, the relative contributions of fat and protein were quite similar in both studies. The total calories realized from tissue breakdown (excluding glycogen) was 22,131 kcal in Study A and 34,727 kcal in Study B.

Caloric density of weight loss, calculated from total calories and weight loss, was essentially the same for both studies, Study A = 3.91 kcal/gm; Study B = 4.06 kcal/gm (Table 11).

4. Discussion

The assessment of caloric density of weight loss is complicated, on the one hand by difficulties in the techniques of measuring the composition of the lost weight, and on the other hand, by the fact that the mixture of tissues which are "cannibalized" to supply calories is not fixed, but varies with the duration and severity of caloric restriction. Values based on estimates of energy expenditure and/or caloric intake may lead to large errors unless the intakes and expenditures are adequately and accurately measured or controlled during the entire experimental period; this is indeed a most difficult task. If estimates of caloric deficit
TABLE 1

Composition of Weight Loss During 2 Weeks of Caloric Restriction

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>Body Weight (kg)</th>
<th>Body Fat (kg)</th>
<th>Protein Lost (kg)</th>
<th>"Water" Lost (kg)</th>
<th>Composition of Weight Loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Δ</td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>1</td>
<td>71.54</td>
<td>65.14</td>
<td>6.40</td>
<td>17.16</td>
<td>15.36</td>
</tr>
<tr>
<td>2</td>
<td>58.39</td>
<td>53.78</td>
<td>4.61</td>
<td>5.88</td>
<td>2.80</td>
</tr>
<tr>
<td>3</td>
<td>75.53</td>
<td>69.85</td>
<td>5.68</td>
<td>16.98</td>
<td>14.42</td>
</tr>
<tr>
<td>4</td>
<td>67.10</td>
<td>61.59</td>
<td>5.51</td>
<td>12.78</td>
<td>11.53</td>
</tr>
<tr>
<td>5</td>
<td>76.34</td>
<td>70.09</td>
<td>6.25</td>
<td>15.50</td>
<td>13.61</td>
</tr>
<tr>
<td>6</td>
<td>67.17</td>
<td>61.64</td>
<td>5.53</td>
<td>13.91</td>
<td>11.62</td>
</tr>
<tr>
<td>MEAN</td>
<td>69.34</td>
<td>63.68</td>
<td>5.66</td>
<td>13.70</td>
<td>11.55</td>
</tr>
</tbody>
</table>

Study A (600 kcal/day)

Study B (0 kcal/day)

<p>| 1 | 71.66 | 63.14 | 8.52 | 17.57 | 14.62 | 2.95 | 0.88 | 4.69 | 36.0 | 10.7 | 53.3 |
| 2 | 69.24 | 60.71 | 8.53 | 15.65 | 12.79 | 2.86 | 1.10 | 4.57 | 32.9 | 12.6 | 54.5 |
| 3 | 65.72 | 56.92 | 8.80 | 11.74 | 7.55 | 4.19 | 0.89 | 3.72 | 48.7 | 10.3 | 41.0 |
| 4 | 61.45 | 56.87 | 4.58 | 9.21 | 5.75 | 3.46 | 1.03 | 3.09 | 44.9 | 13.4 | 41.7 |
| 5 | 71.28 | 62.32 | 8.96 | 13.74 | 10.34 | 3.40 | 1.02 | 4.54 | 38.2 | 11.5 | 50.3 |
| 6 | 79.18 | 70.20 | 8.98 | 15.48 | 12.48 | 3.00 | 0.85 | 5.13 | 35.3 | 10.0 | 54.7 |
| MEAN | 70.26 | 61.69 | 8.56 | 13.90 | 10.59 | 3.31 | 0.96 | 4.29 | 39.4 | 11.4 | 49.2 |</p>
<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Weight Loss (kg)</td>
<td>5.66</td>
<td>8.56</td>
</tr>
<tr>
<td>(a) Protein (kg)</td>
<td>0.52</td>
<td>0.96</td>
</tr>
<tr>
<td>(b) Fat (kg)</td>
<td>2.15</td>
<td>3.31</td>
</tr>
<tr>
<td>Caloric Equivalent of Protein (kcal)</td>
<td>2,136</td>
<td>3,944</td>
</tr>
<tr>
<td>Caloric Equivalent of Fat (kcal)</td>
<td>19,995</td>
<td>30,783</td>
</tr>
<tr>
<td>Total Calories</td>
<td>22,131</td>
<td>34,727</td>
</tr>
<tr>
<td>Caloric Density of Weight Loss (kcal/gm)</td>
<td>3.91</td>
<td>4.06</td>
</tr>
</tbody>
</table>

Table II: Caloric Density of Weight Loss

The more direct approach is to determine body fat content before and after a period of restriction and at the same time calculate protein breakdown from the measured negative nitrogen balance. This method was used in the present study which has the following additional advantages: (a) controlled activity, which varied minimally during any given day or from day to day; (b) controlled environment; (c) minimal fecal production.

Our results, as well as those of other workers (5, 7) show that relatively large amounts of water are lost during the first days of caloric restriction. Since, in the present study, the men were exposed to cold, the early weight losses are in part the result of cold diuresis. In a similar study with adequate calories, it was found that the cumulative negative water balance was only 0.3 liters during the first 4 days (8). Estimates of the "caloric value" of the weight loss during short-term (1 to 4 days) studies are usually low (2, 5) due to the high proportion of water in the weight lost. Curves of weight loss further indicate that the weight loss (water loss) in the first days of restriction is not constant and this leads to increased variability in the estimation of the caloric density of weight changes. Studies which are conducted over longer periods of time obviate at least one of these difficulties, i.e., after the first 2 or 3 days of restriction, weight loss curves are nearly linear (Fig. 1) although the proportion of fat, protein, and water in the weight lost may still vary from day to day (5). During long-term studies, therefore, the impact of the large weight (water) losses during the first days is minimized.
Our results are in close agreement with those recently reported by Brozek, et al (5), using less direct techniques. In 2 studies of caloric restriction (580 kcal/day and 1010 kcal/day) and with their subjects performing moderate activity, they arrived at values of 4.3 and 4.7 kcal/gm of weight loss over a 12-day period. In the present studies the values for the caloric density of the weight loss were 3.91 and 4.06 kcal/gm over a 14-day period. This indicates that the composition of the weight loss is quite similar over a wide range of rates at which weight is lost.

5. Acknowledgments

We wish to thank the 12 EM who voluntarily underwent the rigors of these experiments. Our gratitude is also extended to E.B. Green, J.A. Vaughan, R.B. Barrueto, T. Maliszewski, A. MacLeod, F. Masucci, and Dr. M.B. Kreider for valuable assistance.

6. References

GENERAL STAFF
1 Deputy Chief of Staff for Logistics
 Department of the Army
 Washington, D.C.
2 Deputy Chief of Staff for Personnel
 Department of the Army
 Washington, D.C.
3 Deputy Chief of Staff for Military Operations
 Department of the Army
 Washington, D.C.
4 Chief of Research & Development
 Department of the Army
 Washington, D.C.

ARMY
5 The Quartermaster General
 Department of the Army
 Washington, D.C.
6 Commanding General
 Philadelphia QM Detachment
 U.S. Army
 2500 South 39th Street
7 Commanding Officer
 QM Food & Container Institute for
 the Armed Forces
 U.S. Army
 3735 W. Pershing Rd.
 Chicago, Illinois
8 Commanding Officer
 QM AE Field Evaluation Agency
 U.S. Army
 Ft. Lee, Virginia
 Attn: Chief, TSO
9 QM Liaison Officer, WMD-8
 Wright Air Development Center
 Wright-Patterson AFB
 Dayton, Ohio
10 Commanding General
 The QM School
 Ft. Lee, Virginia
 Attn: Library
11 Commanding General
 Frankford Arsenal
 Philadelphia, PA
 Attn: Engr. Psychology Div. (LS)
12 US Army Electronic Pricing Group
 Ft. Huachuca, Arizona
 Attn: Aviation & Meteorological Dept.
 Tech. Information Br.
 Attn: Deputy for Meteorology
13 Commanding General
 The Engineer Center
 Ft. Belvoir, VA
14 Commanding Officer
 Diamond Ordnance Fuze Labs.
 Washington, D.C.
 Attn: Tech Reference Section
 (ORDFL-03)
15 Commanding General
 Aberdeen Proving Ground
 Aberdeen, Maryland
16 Chief Signal Officer
 Department of the Army
 Washington, D.C.
 Attn: Res. & Dev. Div.

ARMY (Cont.)
1 Commanding Officer
 Signal Corps CTR. Lab.
 Ft. Monmouth, N. J.
2 Office of Chief of Engineers
 Department of the Army
 Temp. Bldg. T-2
 Gravelly Point
 Washington, D.C.
 Attn: Research & Dev. Div.
3 CO, Chemical Warfare Laboratories
 Army Chemical Center
 Maryland
 Attn: Technical (LAB) Library
4 CO, Chemical Officer
 Department of the Army
 Temp. Bldg. T-2
 Gravelly Point
 Washington, D.C.
 Attn: Res. & Dev. Div.
5 CO, Jr., Medical Nutrition Lab.
 Fitzsimons Army Hospital
 Denver, Colorado
 (Jr., Chief)
6 Armed Forces Institute of Pathology
 Washington, D.C.
7 Chief, Armed Services Medical
 Procurement Agency
 4046 S. D.C.
 Attn: Property Officer
 Medical (Mark 2 Division)
8 Chief of Transportation
 Department of the Army
 Temp. Bldg. T-2
 Gravelly Point
 Washington, D.C.
9 Commanding Officer
 Transportation R & E Command
 U.S. Army
 Ft. Leonard, Missouri
 Attn: Tech Services Div.
10 The Army Library
 Pentagon Bldg.
 Washington, D.C.
11 Commandant, Command & General Staff
 College
 Ft. Leavenworth, Kansas
12 Commandant, U.S. Military Academy
 West Point, New York
 Attn: Res. & Dev. Div.
13 Commanding General, CSFD
 U.S. Army Medical Research
 and Development Command
 Attn: R&D/PSA
14 Commanding General
 U.S. Army Airborne Systems
 Test Div.
15 Commanding Officer
 QM AE Field Evaluation Agency
 U.S. Army
 Airborne Systems Test Div.

NAVY
16 Commanding Officer, Naval Ordnance
 Laboratory
 4th & Chase Street, S.W.
 Washington, D.C.
17 Chief, Bureau of Ordnance
 Department of the Navy
 Washington, D.C.
 Attn: 5005N Div.
18 Naval Medical Research Institute
 National Naval Medical Center
 Bethesda, Md.
19 Chief, Naval Research
 Washington, D.C.
 Attn: Code 0926
20 Chief, Bureau of Ships
 Department of the Navy
 Washington, D.C.
 Attn: Code 032

NAVY (Cont.)
21 Commanding Officer
 Bureau of Medicine & Surgery
 Dept. of the Navy
 Washington, D.C.
 Attn: Code 031

NAVY (Cont.)
22 Commanding, U. S. Naval Ordnance
 Test Station
 China Lake, Calif.
 Attn: Code 073
23 Chief, Bureau of Aeronautics
 Dept. of the Navy
 Washington, D.C.
 Attn: Code 063
24 Chief, Bureau of Supplies & Accounts
 Dept. of the Navy
 Washington, D.C.

GUARD
1 C.G., U.S. Continental Army Command
 Ft. Monroe, Va.
2 President
 U.S. Army Training & Doctrine
 Command
3 President
 U.S. Army Material Command
4 President
 U.S. Army Space and Strategic
 Command
5 President
 Chief of Engineers
 U.S. Army Corps of Engineers

BOARDS, COMMITTEES
1 Army Committee on Environmental
 Policy
 Washington, D.C.
2 Armed Forces Post Command
 Washington, D.C.
3 Naval Research
 Washington, D.C.
4 Army Research Committee
 Washington, D.C.

NATIONAL RESOURCES COUNCIL
1 National Resources Council
 235 Constitution Ave., Washington, D.C.
 Attn: Advisory Bd. on QM R&D
2 Armed Services Technical Information Agency
 Arlington Hall Station
 Arlington, Va.
 Attn: TIPX
3 Gift and Exchange Division
 Library of Congress
 Washington, D.C.
4 Conference Services
 Library of Congress
 Washington, D.C.
5 U. S. Department of Commerce
 Weather Bureau Library
 Washington, D.C.
6 Central Intelligence Agency
 Publications Distribution
 Washington, D.C.
7 National Library of Medicine
 Washington, D.C.
8 General Services Administration
 Office of Purchasing
 Washington, D.C.
9 United States Government Printing
 Office
 Washington, D.C.
10 United States Senate
 Library
 Washington, D.C.
11 Marine Corps Equipment Board
 Marine Corps Base
 Quantico, Va.
12 Office of Technical Services
 U.S. Department of Commerce
 Washington, D.C.
 Attn: Tech Info Sec (CMC)
Quartermaster Research & Engineering Center, Natick, Mass.

Two groups of 6 men each lived for 14 days in a cold chamber at 60°F (16.6°C). Activity was sedentary and only athletic shorts were worn. During this period one group (A) was semi-starved (600 kcal/day) and the other (B) was completely starved (0 kcal/day). Changes in body composition were measured and caloric density of weight loss was calculated. Mean weight loss was 5.66 kg for A, and 5.56 kg for B. Composition and caloric density of weight loss was almost identical for both groups. Composition of weight loss with regard to fat, protein, and water was: 39, 10, and 51% for A; 39, 11, and 50% for B. Caloric density was 3.91 kcal/gm for A and 4.06 kcal/gm for B.

Quartermaster Research & Engineering Center, Natick, Mass.

Two groups of 6 men each lived for 14 days in a cold chamber at 60°F (16.6°C). Activity was sedentary and only athletic shorts were worn. During this period one group (A) was semi-starved (600 kcal/day) and the other (B) was completely starved (0 kcal/day). Changes in body composition were measured and caloric density of weight loss was calculated. Mean weight loss was 5.66 kg for A, and 5.56 kg for B. Composition and caloric density of weight loss was almost identical for both groups. Composition of weight loss with regard to fat, protein, and water was: 39, 10, and 51% for A; 39, 11, and 50% for B. Caloric density was 3.91 kcal/gm for A and 4.06 kcal/gm for B.