Sensors for Chem/Bio Defense
- A Survey -

Presented by:
Dr. Aaron Budgor
Science Applications International Corporation
McLean, Virginia

26 February 1999
Form SF298 Citation Data

<table>
<thead>
<tr>
<th>Report Date</th>
<th>Report Type</th>
<th>Dates Covered (from... to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>("DD MON YYYY")</td>
<td>N/A</td>
<td>("DD MON YYYY")</td>
</tr>
<tr>
<td>26021999</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title and Subtitle</th>
<th>Contract or Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors for a Chem/Bio Defense-A Survey</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Program Element Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budgor, Aaron</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performing Organization Name(s) and Address(es)</th>
<th>Project Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Applications International Corp. McLean, VA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sponsoring/Monitoring Agency Name(s) and Address(es)</th>
<th>Monitoring Organization Number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution/Availability Statement</th>
<th>Monitoring Agency Acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplementary Notes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Abstract</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Subject Terms</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Document Classification</th>
<th>Classification of SF298</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classification of Abstract</th>
<th>Limitation of Abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
</tr>
</tbody>
</table>
Agenda

- Overview
- Operational Needs
- Current System Requirements for Sensors
- Active Research
Acknowledgements

Material for Paper Provided by:

- LTC Michael Lanphere - Joint Service Integration Group
- Eric Eisenstadt - ONR
- Mark Siever - NRL
- Cindy Swim - SBCCOM
Overview

- Three classes of sensor information:
 - detection
 - localization
 - classification

- Multiple robust solutions for chemical sensors

 Point - Manual - colorimetric paper; enzymatic-substrate based wet chem; ionization product diffusion;
 Point - Automated - electrochemical; single-cell/dual cell ion mobility spectrometry; baffle tube ionization cells;
 Standoff/Early Warning - forward looking infrared technology (FLIR); passive, Fourier transform infrared (FTIR) spectrometry;
Overview, Continued

- Current bio identifiers rely on detailed laboratory analysis
 - assays
 - electron and oil immersion microscopy
- Limited, but promising future solutions for biological sensors
 - **Point - Manual** - flow cytometry; ATP luminescence; UV aerodynamic particle sizer; mass spectrometry;
 - **Standoff/Early Warning** - LIDAR
- Detection based on features of biological activity i.e. tryptophan for bacteria
- Biological characterization requires (to date) fusion of information
 - particle #
 - size distribution
 - base pair constitution and sequence
Operational Needs

Enhanced detection, identification, mapping and confirmation of any standard/non-standard hazards including toxic industrial materials (TIMS).
Immediate notification of hazard existence/location.
Automated identification, plotting and hazard density mapping over time.
Obtain and preserve hazard samples.
- Point, aerial, shipboard (multiple platforms) and large area coverage.
- Water test capability.
- Integrated point and remote/early warning.
- Interface with joint C4I architecture.
Chemical Vapor Detector Requirements

- Small Lightweight (pocket size)
- Immediate detection time (seconds)
- Low maintenance
- Broaden from chemical agents to environmental
 - Immediate cleardown time (seconds)
 - No hazardous internal sources
 - Inexpensive
 - Ability to be networked
 - Short term (days) memory; long term download for historical record
 - Flexibility in applications
 - Ability to learn (neural)
Chemical Water Monitor Requirements

+ No false alarms
+ Detect ppb/ppt levels of CB agents and their hydrolysis sentinel compounds in source, treated, distributed and discharge water
+ In-line continuous and batch (<=10 minutes) detection and quantification
 - Low power, light weight, inexpensive
 - Upgradeable, prefer no disposables, few moving parts, easy to maintain and use
 - Modular system
Joint Chemical Agent Detector (JCAD)

OPERATIONAL CONCEPT
- Detect point and cumulative exposures of CW agents.
- Compatible with the Joint Warning and Reporting Network (JWARN).
- Operate from a variety of platforms to support contamination avoidance or reconnaissance.

CAPABILITIES REQUIRED
- Detect, ID and quantify nerve, blister and blood agent vapors.
- Liquid, particulate, specific agents and TIMs are objective requirements.
- Minimize false alarms (MTBFA > 168 hours).
- Capable of rejecting battlespace interferants.
- Will not exceed two (2) pounds and forty (40) cubic inches.

- Nerve and Blister Agent Detection
- Lightweight and Portable
- Expandable for Emerging Threat Agents
- Mass Spectrometry
- GC/SAW Combination
- Paper Size
Biological Aerosol Detector Requirements

+ Sensitive to bacteria (20,000 cfu/ml), viruses (1x10⁷ pfu/ml), toxins (1 ng/ml)
+ Rapid detection
+ Minimal setup time (zero to 1 minute)
 - Small, lightweight and ruggedized
 - Low maintenance
 - On-board filtration/eliminate interferents and dust
 - High specificity without loss of sensitivity
 - Fully automated; no skill required to operate
 - Long operation time and ability to be networked
 - Short term memory (days); long term download for historical record
 - Flexibility of applications
 - Adaptable to new threats
Biological Water Monitor Requirements

- Sensitive to bacteria (20,000 cfu/ml), viruses (1x10^7 pfu/ml), toxins (1 ng/ml)
- Adaptable to any water sampler
- Rapid detection
- Adaptable to new threats
 - Small, lightweight and ruggedized
 - On-board filtration/eliminate organic and inorganic interferents
 - High specificity without loss of sensitivity
 - Minimal setup time
 - Fully automated; no skill required to operate
 - Long operation time and ability to be networked
 - Short term memory (days); long term download for historical record
 - Flexibility of applications
Interim Biological Agent Detector (IBAD)

Yesterday - Only Forward Field Labs
Today - IBAD Can Provide:
- Immediate Capability to Support Contingency Force Deployments
- Responsive in Sea and Land Environments
- Full Detection Capability on the Move
- Timely Threat Warning Notification to Force Command and Control

In the Future---
- Expansion for Additional Agents
- Increased Automation
- Integration with Shipboard Damage Control System
Joint Service Warning and Identification Lidar Detector (JSWILD)

OPERATIONAL CONCEPT
- Provide a laser standoff integrated chemical and bioaerosol detection capability for protection of fixed sites, ships, and possibly for recon.
- Standoff CB detection of aerosols/rains/particulates/liquids in addition to vapors, in real time.
- 20 km range and precise ranging information.

CAPABILITIES REQUIRED
- Max Range: 10 km now, 20 km in 2000
- Provides precise location of threat
- Vapor (nerve): 20 mg/m²
- Vapor (blister): 500 mg/m²
- Aerosols/rains: 20 mg/m² or less
- Surface prediction: 0.01 g/m²
- Bioaerosol detection, discrimination?
- 99.6% probability of detection
- Detects in a few seconds or less (real-time)
Technological Progression

DESERТ STORM

Chemical
- M8/M9 Paper
- M256A1 Kit
- M8A1 CW Alarm
- M272A1 Water Kit
- CAM
- CAPDS
- M21 RSCAAL
- AN/KAS-1

Biological
- SMART tickets

TODAY

Chemical
- IPDS
- ICAM
- SALAD
- ACADA
- M93A1 NBCRS

Biological
- IBAD
- BIDS
- Portal Shield
- LR-BSDS

* including all Desert Storm Capabilities

FUTURE

Chemical
- JSLSCAD
- JCAD
- JCBAWM
- JSWILD

Biological
- JBPDS
- JBDS

NBC Infrastructure
- JSLNBCRS
- JWARN
System Capabilities - Today

Limited or N/A

- M8, M9 Paper
- M256A1 Kit
- M272 Water
- AN/KAS-1
- M21 RSCAAL
- M8A1
- ALAD
- ACADA
- ICAM
- ICAD
- CAPDS
- IPDS
- BIDS
- IBAD
- LR-BSDS
- M93-NBCRS

Applicable and Adequate

- Point
- Stand-off
- Portable
- Low Maint.
- Easy to use
- Low Cost
- Sensitivity
- Low FAR
- Multi-Agent
- Auto Warn
- Networked
- Response Time
- Auto Agent ID
- Range
- Tracking
- Large Area

See list of System Definitions
Future Systems Capabilities Objectives

<table>
<thead>
<tr>
<th>Systems*</th>
<th>CHEM</th>
<th>BIO</th>
<th>Point</th>
<th>Stand-off</th>
<th>Portable</th>
<th>Low Maintenance</th>
<th>Easy to use</th>
<th>Low Cost</th>
<th>Sensitivity</th>
<th>Low FAR</th>
<th>Multi-Agent</th>
<th>Auto Warn</th>
<th>Networked</th>
<th>Response Time</th>
<th>Auto Agent ID</th>
<th>Range</th>
<th>Tracking</th>
<th>Large Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALAD</td>
<td></td>
</tr>
<tr>
<td>JCAD</td>
<td></td>
</tr>
<tr>
<td>JCBAWM</td>
<td></td>
</tr>
<tr>
<td>JSLSCAD</td>
<td></td>
</tr>
<tr>
<td>JBSDS</td>
<td></td>
</tr>
<tr>
<td>JSLNBCRS</td>
<td></td>
</tr>
<tr>
<td>JBPDS</td>
<td></td>
</tr>
<tr>
<td>JWARN</td>
<td></td>
</tr>
</tbody>
</table>

* See list of System Definitions

[SAIC](https://www.saic.com) - An Employee-Owned Company
Future Directions and Issues
Single Particle Fluorescence - Detection Operation (Siever, NRL)

- Particles cross red beam & scatter light. Pulses are proportional to particle size and also trigger the UV laser.
- 1 µsec later, UV laser excites the particle. Its fluorescent intensity indicates particle composition.
- Scattered and fluorescent pulse heights are captured in data record.
Calibration with PSL

Size Calibration

- 4.5 µm PSL
- 2.07 µm PSL
- 1.07 µm PSL
- BG Spores

Fluorescence Calibration

- 2.07 µm doped PSL
- 1.33 µm doped PSL
- 1.07 µm plain PSL
- BG spores
Fluorescence with Particle Number Fusion

T-21 Alarm Window

T-21 Window Comparison

- SPCF data
- DPG ACPLA

4:14 512 Total
4:04 392 Total

Percent Particle Number

Particle Size

An Employee-Owned Company
Calibration with Bacteria

(Individual Bacteria - Lab data)

APS 3320

E. coli
BG spores
Erwinia

Fluorescence (arb.)

scattered light (arb.)

Number of Particles

Aerodynamic diameter (µm)
Bacterial Fluorescence Comparison

![Graph comparing fluorescence and scattered light of B. thuringiensis and B. subtilis](image)
Distinguishing B. anthracis from Its Nearest Neighbors (Leighton, LBNL; Long, NMRI)

Organism

<table>
<thead>
<tr>
<th>B. anthracis</th>
<th>B. cereus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spore Protein Amino Acid Sequence</td>
<td></td>
</tr>
<tr>
<td>TEFATETNVQAVKQANASEAKKAQASGASIQSTNA</td>
<td></td>
</tr>
<tr>
<td>... X: ...</td>
<td></td>
</tr>
<tr>
<td>TEFSTETDVQAVKQANASEAKKAQASGA--QSANAL</td>
<td></td>
</tr>
</tbody>
</table>

Chromatographic Assay 50 ng; 30 min

Ba Bt Bc Bm Bs Bg NT Cont
Conclusions

- Lasers have been employed for detection (point ® limited range)
- Lasers have been used for gross features determination
- Gene-oriented characterization techniques are current research rage for rapid characterization
- Novel active (laser) ideas are ...