
FINAL

FINAL

GLOBAL COMMAND AND CONTROL SYSTEM (GCCS)
Mobile Code

Security Policy Guidance
For

Browser Script Software Development
(JavaScript, JScript, VBScript)

Prepared By:

National Security Agency
9800 Savage Road

Ft. Meade, MD 20755

30 April 1999

Approved by: Approved by:

____________ ___________________
Jeff Watkins LtCol Mike Lopez
Test Director GCCS Security Officer

Form SF298 Citation Data

Report Date
("DD MON YYYY")
30041999

Report Type
N/A

Dates Covered (from... to)
("DD MON YYYY")

Title and Subtitle
Global Command and Control System (GCCS) Mobile Code
Security Policy Guidance For Browser Script Software
Development (JavaScript, JScript, VBScript)

Contract or Grant Number

Program Element Number

Authors Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
National Security Agency 9800 Savage Road Ft. Meade, MD
20755

Performing Organization
Number(s)

Sponsoring/Monitoring Agency Name(s) and Address(es) Monitoring Agency Acronym

Monitoring Agency Report
Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms
"IATAC COLLECTION"

Document Classification
unclassified

Classification of SF298
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
unlimited

Number of Pages
30

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

4/30/99
3. REPORT TYPE AND DATES COVERED

Report
4. TITLE AND SUBTITLE

Global Command & Control System: Mobile Code

Security Policy Guidanc

Fo

Browser Script Software Developmen

5. FUNDING NUMBERS

6. AUTHOR(S)

NSA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

IATAC
Information Assurance Technology Analysis
Center
3190 Fairview Park Drive
Falls Church VA 22042
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

 AGENCY REPORT NUMBER

Defense Technical Information Center
DTIC-IA
8725 John J. Kingman Rd, Suite 944
Ft. Belvoir, VA 22060
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

 A

13. ABSTRACT (Maximum 200 Words)

Information contained in classified computer systems requires protection above and beyond
that required by commercial users. Hence, Web access, and the browsers that implement that
access, must be closely monitored and guarded against both intentional and unintentional
disclosure, alteration, and/or destruction of information. Global Command and Control
System (GCCS) users also need protection from disruption and denial of service. This
document defines policies for the use of browser script languages, including JavaScript,
JScript and VBScript, in web pages developed for use on the GCCS, and defines procedures
for the application of those policies to determine the suitability of code for use within
classified enclaves manipulating highly sensitive information.

14. SUBJECT TERMS

JAVA Script,Information Security,JScript,JBScript
15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

None

FINAL

FINAL

TABLE OF CONTENTS

1 INTRODUCTION .. 1
1.1 BACKGROUND... 2
1.2 SCOPE .. 3
1.3 DOCUMENT ORGANIZATION... 3

2 UNDERSTANDING SCRIPT SECURITY.. 4
2.1 BROWSER SCRIPT SECURITY MODEL ... 4

2.1.1 The Browser Scripting “Sandbox” .. 4
2.1.2 Degrees of Trust in Navigator and Internet Explorer .. 5
2.1.3 Script Security Policies ... 5

2.2 Descriptions of POSSIBLE Script Attacks ... 8
2.2.1 Reading URL Histories ... 8
2.2.2 Accessing A User’s Cookie... 8
2.2.3 Alteration of Browser Settings.. 9
2.2.4 Script Interaction with ActiveX Controls.. 9
2.2.5 Script Interaction with Plug-ins and Helper Applications... 9

3 SCRIPT CERTIFICATION POLICIES.. 10
3.1 General Script Software Development Guidance.. 10
3.2 Script Certification Process... 10
3.3 Script Certification POLICIES.. 11

#1: Script Testing .. 11
#2: Certified Script Libraries... 11
#3: Using Browser Script to Access Java Applets, Objects and Methods... 11
#4: Using Browser Scripts to Access ActiveX Controls ... 12
#5 Using Browser Scripts to Access Browser Plug-Ins ... 12
#6: Browser Information Access... 13
#7: Access to the User’s Local Files ... 13
#8: Browser Preference Access... 13
#9: Access to Browser Privileges and Special Security Features.. 14
#10: Automatic E-mail .. 14

4 SCRIPT CERTIFICATION PROCEDURES ... 15
4.1 Obtain Script Code from Vendor or Web Page... 15
4.2 Inspect the Browser Script Code... 15

4.2.1 Test the Script Code.. 15
4.2.2 Browser Script Reuse.. 15
4.2.3 Use of Java Applets, Objects, and Methods.. 16
4.2.4 Use of ActiveX Controls ... 16
4.2.5 Use of Browser Plug-Ins ... 16
4.2.6 Browser Information Access... 16
4.2.7 File Read and Write .. 16
4.2.8 Browser Preference Access... 16
4.2.9 Browser Privileges and Security Features... 17
4.2.10 Automatic E-mail .. 17

4.3 Digitally Sign Approved Browser Scripts... 17
4.4 Load Certified Browser Scripts on the GCCS... 17

5 CODE CHECKLIST FOR DEVELOPERS/INSPECTORS.. 18

FINAL

FINAL
�

1 INTRODUCTION

Browser scripting languages are extensions to the original hyper-text markup language
(HTML) that are understood by the user’s web browser. These extensions give web pages the
power that today’s web users require by integrating together browser plug-ins, ActiveX controls,
Java applets, and user forms into an interactive web browsing experience. There are three
languages commonly used for browser scripting: JavaScript, JScript, and VBScript. JavaScript
is a cross-platform; object based scripting language created by Mr. Brendan Eich of Netscape
Corporation for its Navigator client and server applications. JavaScript was first known as
Mocha, then LiveScript, before the name JavaScript was finally selected in 1996. JScript and
VBScript are Microsoft’s implementation of browser scripting. JScript is an adaptation of the
original JavaScript, while VBScript is an adaptation of Microsoft’s popular Visual Basic
programming language to web browser scripting. While the term JavaScript was chosen in 1996
to describe the new scripting language’s similarity to the general-purpose language Java, this
common name has often resulted in more confusion than clarity. The two languages are
technically independent and serve different purposes, as described in Appendix B of this
document. Whereas Java is a general-purpose programming language that can be easily used
over a network, JavaScript – and its siblings JScript and VBScript – is an extension to the HTML
that is used for publishing information on the World Wide Web (WWW). This scripting
extension permits web pages incorporating browser scripts to provide the user additional
functionality, and a richer user interface, than could be accomplished using HTML alone.

While the additional capabilities that browser scripting provides to programmers and users
alike are advantageous, they also make it possible for unscrupulous programmers to access
features of the users’ web browser that perhaps should not be made available to them.
Widespread publicity is given to these security holes by the technical press, resulting in a
constant race between programmers and system administrators to protect their data against
hackers equally intent on compromising their systems.

Information contained in classified computer systems requires protection above and beyond
that required by commercial users. Hence, Web access, and the browsers that implement that
access, must be closely monitored and guarded against both intentional and unintentional
disclosure, alteration, and/or destruction of information. Global Command and Control System
(GCCS) users also need protection from disruption and denial of service. This document defines
policies for the use of browser script languages, including JavaScript, JScript and VBScript, in
web pages developed for use on the GCCS, and defines procedures for the application of those
policies to determine the suitability of code for use within classified enclaves manipulating
highly sensitive information.

Throughout the remainder of this document, the terms script or browser script shall be used
to refer collectively to Netscape JavaScript, Microsoft JScript, and Microsoft VBScript, except
where the three are differentiated. When they must be referred to separately, they are referred to
as Netscape JavaScript or JavaScript, Microsoft JScript, or JScript, and Microsoft VBScript, or
VBScript.

FINAL

FINAL
�

1.1 BACKGROUND

 Browser scripts are cross-platform; object based scripting extensions to the HTML that is

used for defining pages for viewing on the WWW. Scripting languages are used as “cut-down
programming” tools to execute simple, often repetitive tasks. It allows web pages to have
dynamic functionality, including active controls, checking of on-line forms and the ability to
upload and download files from remote web servers. This added functionality, although
transparent to the user, requires considerable effort on the part of web developers, who must
contend with multiple versions of scripting languages, incompatible browser features, and
implementation inconsistencies.

 Browser scripting works only on browsers that implement a scripting engine. There are a
large number of versions of scripting engines that have been incorporated into the different
versions of Internet Web browsers from all vendors. Most prominent of these vendors are
Netscape and Microsoft. The first scripting engine to be commercially used was JavaScript
version 1.0, released in 1996 and incorporated into the Netscape 2.0 browser. At that time, the
Microsoft browser, Internet Explorer 2.0, did not support any type of scripting extensions. Not
to be outdone, Microsoft Internet Explorer 3.0, released in 1997, supported a new scripting
extension based upon Netscape’s version 1.0 JavaScript. Since Microsoft did not have a license
to the JavaScript name, they named their scripting language JScript. At this time, Netscape had
moved on to JavaScript 1.1, which was incorporated into their Navigator 3.0 browser.
Microsoft’s early implementation of JScript was significantly less capable than Netscape’s
offering, but Microsoft’s clout in the marketplace put it in a position to compete directly with
Netscape for the control of the browser market, touching off the now infamous “Browser Wars”.
Since the beginning of the browser wars, both companies have refined their technologies
considerably. Microsoft’s Internet Explorer 4.0 and Netscape’s Navigator 4.0 both implement
supersets of the Version 1.2 JavaScript language, with over 90% commonality between the two
implementations. Additionally, Microsoft’s browser supports the VBScript scripting language,
providing developers with more flexibility (and confusion). Hence, a carefully crafted web page
that uses the language capabilities that are common to both browsers can have a consistent look
and functionality, regardless of the browser that is used to view it.

 Both Netscape and Microsoft have collaborated with the European Computer
Manufacturer’s Association (ECMA) to standardize the JavaScript / JScript scripting languages.
The result of this collaboration, ECMAScript, is functionally identical to the original JavaScript
Version 1.1 language found in the Netscape Navigator 2.0 and Microsoft Internet Explorer 3.0
browsers. While the ECMAScript standard gives web developers a well-known standard that is
assured to work on both Microsoft and Netscape browsers, current browser versions offer
significant functionality increases over ECMAScript. Netscape’s Navigator 4.5, released in late
1998, implements version 1.3 of JavaScript, and Microsoft’s Internet Explorer 5.0, scheduled for
release in early 1999, implements version 1.3 of JScript and version 5.0 of VBScript. Both Java-
derived scripting languages are two generations beyond the ECMAScript 1.1 standard that is
their common subset. Once again, though, web programmers can enjoy a commonality between
their current implementations that is over 90%.

Regardless of the implementation, the scripting languages give the web programmer a
great deal of power. Much of this power, such as the ability to highlight a button on the screen,

FINAL

FINAL
�

is benign. However, some features, such as the ability to turn off the browser’s menu bar, or
upload a file from the user’s computer, can be easily misused to cause aggravation, denial of
service, compromises, or corruption of data on a user’s machine.

1.2 SCOPE

 This document addresses security concerns associated with the use of the browser
scripting languages within the GCCS environment (intentional malicious activity, unintentional
user errors, or oversights in development) and establishes policies for browser script code that is
incorporated into web pages that are viewed using GCCS Web browsers. Malicious activities
could possibly be performed by individuals with access to Secret Internet Protocol Router
Network (SIPRNET) or GCCS, outside hackers, or perhaps hackers employed by hostile
organizations or countries. The risks associated with internally developed and deployed browser
scripts can be mitigated through the proper application of this policy.

 While the security policies put forward here can do little to stop the individual who

desires access to GCCS, the proper application of these policies can remove a potential avenue of
attack. The risks from internally developed GCCS scripting languages would also be limited.
These policies are intended for the following audiences:

• GCCS proponent
• GCCS developer
• GCCS integrator/implementor
• GCCS certifier

It should also be noted that some commands and/or communities have banned certain
scripting features, such as file uploading, from their networks. Developers should check with the
local security staff to determine what browser scripting features are not permitted for use on the
network.

1.3 DOCUMENT ORGANIZATION

This document is organized into five Sections and four Appendices. Section 1 is the
introduction. Section 2 briefly describes the browsers’ scripting security model, and how scripts
can test or circumvent the default security of script-enabled Web browsers. Section 3 provides
detailed certification policies to be used by script developers and inspectors. Section 4 provides
certification procedures for the GCCS script inspector, and the integrators who load certified
Web pages containing script code onto GCCS servers. Section 5 contains detailed checklists to
assist developers and inspectors in verifying and certifying web pages containing browser scripts
for use on the GCCS. Appendix A discusses the principles of sound software security, upon
which all browser script-specific policies are based. Appendix B contains a detailed explanation
of the difference between JavaScript and the Java programming languages. Appendix C contains
a list of acronyms and definitions of technical terms used in this document. Appendix D
contains additional references for browser script security.

FINAL

FINAL
�

2 UNDERSTANDING SCRIPT SECURITY

 This section provides guidance for software proponents and systems integrators on the
browser script security model, and how it is used to protect users’ systems from malicious script
code. It outlines current and future security features that are available with the Netscape
Navigator and Microsoft Internet Explorer web browsers.

2.1 BROWSER SCRIPT SECURITY MODEL

Due to the widespread use of browser scripting, considerable effort has gone into ensuring

that browser script languages are safe for use on computers worldwide. Like all complex
systems, though, this has resulted in a “cat and mouse” game between web browser developers
patching holes on one hand, and scientists and hackers bent on finding flaws on the other hand.
Slowly, the developers are winning, as flaws in browser security have been found and patched.
Due to the urgency of this race, as well as the differences between the Microsoft and Netscape
browsers, it is important that system administrators stay informed on the latest developments in
the industry and keep their users updated with the latest versions of software incorporating the
newest security features.

2.1.1 The Browser Scripting “Sandbox”

 Browser security is actually quite good from an engineering perspective. Confusion arises
because the scripting languages have a large number of features that can be accessed in a large
number of ways both directly through function calls and indirectly through plug-ins and ActiveX
controls. These capabilities include reading and writing files on the user’s hard drive,
reconfiguring the browser, and running fully functional applications without the user’s
permission. This inherent capability of the language is limited by the browser security
manager’s “Sandbox,” which is responsible for limiting scripts to only “safe” activities. The
user’s web browser implements this security policy by determining whether a given browser
script is trusted or untrusted. Trusted script code has access to all the features of the scripting
language, including potentially dangerous features such as reading and writing files from the
user’s hard drive. On the other hand, untrusted script code is restricted to a subset of the
language with the following restrictions:

• There is no ability to read and write files.
• There is no access to file system information on the user’s hard drive.
• Scripts cannot execute programs or systems commands on the user’s system.
• Scripts cannot initiate network connections to computers other than the one from which

the web page was loaded. (In other words, no new web connections are created that did
not exist previously.)

• Scripts cannot access the contents of web browser windows that were not spawned from
the web site that the browser is attempting access.

• Scripts cannot change all of the available web browser settings.

 By restricting pages to this subset of the browser’s scripting features, they are prevented from
performing operations that could deny service, mislead the user, or cause compromise or

FINAL

FINAL
�

corruption of data on the user’s system. Much of the debate over browser security has centered
on how the available subset of features can be abused to cause a security violation. Each time a
new violation is found, the available subset of the language is further restricted to make that
particular security violation impossible. Consequently, the subset of the scripting languages and
commands available to untrusted code in Netscape Navigator 4.0 and Microsoft Internet
Explorer 4.0 grows increasingly smaller as more violations are discovered.

2.1.2 Degrees of Trust in Navigator and Internet Explorer

 Both Netscape Navigator 4.0 and Microsoft Internet Explorer 4.0 provide the user with
varying degrees of trust that can be assigned to particular web pages. In Netscape Navigator 4.0,
these are referred to as Privileges, and a web page can ask for either a specific Privilege, such as
the permission to write a file to the user’s hard drive, or groups of privileges, referred to as a
Target. A privilege Target contains a group of individual privileges; for example, the Netscape
Target UniversalBrowserAccess includes the two Privileges UniversalBrowserRead and
UnversalBrowserWrite. The key to this security is that the web site that is asking for such
privileges must be digitally signed by the author, and that the user must explicitly grant the web
site permission to use the Privileges or privilege Targets that it is requesting. This is performed
through the Privilege Request Dialog Box. Use of these features can be risky, since untrained
users can be easily confused by the complexity of this process, and coerced by a malicious web
site into granting it inappropriate privileges.

In Microsoft Internet Explorer 4.0, trust of web pages is ascertained in a similar but
incompatible way. Degrees of trust for particular actions are referred to as URL Policies, which
directly parallel the Netscape Privileges. These policies can be manually set by the user through
the View : Internet Options : Security : Custom Settings… dialog box to a high degree of
granularity. Policies are grouped into four Security Zones: Local Computer, Local Intranet,
Trusted Web Sites, Internet, and Untrusted Sites. Each Security Zone contains different settings
for each of the URL Policies, corresponding to the level of trust that should be afforded to web
sites within that particular zone. For example, while it is permissible for web sites within the
Trusted Web Sites security zone to be able to download files to the user’s system, it should not
be permissible for sites within the Untrusted Sites zone to have this capability, since they should
not be afforded that kind of trust. In Internet Explorer, it is possible for the user to use these
settings to completely reconfigure the browser, turning off all browser-based protection of the
user’s computer, making it possible for JavaScript, applets, ActiveX, and browser plug-ins to
have full control of the user’s machine.

2.1.3 Script Security Policies

There are four security policy implementations that have been fielded with the different
versions of Internet Explorer and Netscape Navigator. These policy implementations utilize very
different techniques for determining the amount of trust that they give to the scripts on a given
web page, and how web pages that need additional capabilities can request them, if at all:

� The Same Origin policy (Netscape 2.0 and up; Microsoft 3.0 and up).
� The Tainted Code policy (Netscape 3.0 Only).

FINAL

FINAL
�

� The Signed Script policy (Netscape 4.0 Only).
� The Security Zones policy (Microsoft 4.0 Only).

Same Origin Policy

The Same Origin policy dates back to the JavaScript 1.0 language that was implemented
in Netscape Navigator 2.0 and Microsoft Internet Explorer 3.0. In this policy, the security of a
script is determined based on the web site from which it was loaded. Scripts that are loaded from
the local machine are considered to be trusted, while all scripts that are not loaded from the local
machine are considered to be untrusted. Moreover, untrusted scripts from remote sites are only
permitted to access information in other browser windows that came from the same site. For
example, scripts from developer.netscape.com are not permitted to access scripts from
microsoft.com, but they can be permitted to access scripts from netscape.com, since they are
both part of the same site. This policy is implemented by both Netscape and Microsoft for all
scripting languages, and is the only one that can be consistently counted on by web developers
who are creating Internet-wide applications that may have to run on multiple platforms.

Tainted Code Policy

The Tainted Code policy was created in Netscape Navigator 3.0 to get around some of
the limitations of the Same Origin policy. Specifically, the Tainted Code policy permits web
developers to get around the Same Origin policy restriction forbidding web pages from different
sites to intercommunicate. It does this by adding JavaScript tags to “taint” web pages and
JavaScript code blocks to mark them as being safe to communicate with another site that has
been similarly “tainted”. In this way, a script on a web page from netscape.com can be tainted to
allow communication with a script on a web page from microsoft.com. This only works, of
course, if the script from microsoft.com is similarly “tainted” using special HTML tags to
indicate that it is safe for scripts from netscape.com to communicate with it. The Tainted Code
policy was only implemented in Netscape 3.0, is not available for Microsoft Internet Explorer,
and has been superceded by Netscape’s Signed Script policy and Microsoft’s Security Zones
policy.

Signed Script Policy

The Signed Script policy is new with Netscape Navigator 4.0, and is not available under
Microsoft’s Internet Explorer 4.0. With this policy, the security of a JavaScript script is
determined based upon a digital signature that is applied to the script. The user determines
whether a web page is to be trusted or untrusted by approving the digital signature that has been
applied to the script. If the digital signature is not approved, then the web page and the
JavaScript on it are considered to be untrusted, and operate within the security restrictions
outlined above. If the digital signature is approved, then the web page and the JavaScript on it
are considered to be trusted. However, before trusted web pages can utilize potentially
dangerous JavaScript features, they must request explicit permission from the user, who must
click in a dialog box to grant the web page security privileges to perform the potentially unsafe
action. This is very different from the Same Origin policy in that it makes it possible for
digitally signed JavaScript code that is downloaded from the web to gain the same security

FINAL

FINAL
�

privileges that were previously only available to JavaScript on the local computer. This is useful
from a developer’s perspective, as it makes it technically possible to write powerful JavaScript
code that accesses the user’s computer. On the other hand, the actual implementation is
complex, and requires a technology-savvy user to differentiate web pages that legitimately
require additional privileges from those that are trying to compromise security. Additionally,
Navigator 4.0 incorporates a development feature called “Codebase Principals” that permits the
Signed Script digital signature checking to be bypassed, permitting unsigned scripts to request
security privileges from the user without having their digital signature checked. This feature can
be abused to create a large security hole in a user’s browser.

Security Zones Policy

Microsoft’s second-generation security mechanism is called the Security Zones policy.
This policy is not available using Netscape Navigator. Using the Security Zones policy, users of
Internet Explorer 4.0 can specify groups of security privileges, called Security Zones, that grant
web sites varying degrees of capabilities within the user’s browser. Web sites from the “Local
Zone” are considered to be fully trusted, and are granted full access to the user’s web browser,
while web sites from the “Untrusted sites Zone” are considered to be untrusted, and are granted
only restricted access. This is comparable to Netscape’s handling of Signed versus Unsigned
Scripts, except that the user determines the zone of a particular web site, and the privileges that
are to be afforded to that zone. Moreover, whereas Netscape’s implementation always pops up a
dialog box when a web page requests security privileges, Microsoft’s implementation makes it
possible for the user to disable notification of security-related activity on the part of web pages.
Consequently, a user can circumvent the browser’s security by reconfiguring their Security
Zones to grant full browser access to web pages downloaded from all sites, including the
Internet.

Browser Implementation Issues

Unfortunately, whereas Netscape and Microsoft have both implemented the Same Origin
policy in compatible and consistent fashions, the Tainted Code policy has become obsolete, and
both companies’ implementations of the other two policies are completely incompatible.
Consequently, web sites that have been digitally signed for Netscape Navigator 4.0 cannot be
recognized and granted additional security privileges by Microsoft Internet Explorer 4.0. On the
other hand, Microsoft’s Security Zones policy can be applied to give additional privileges to sites
that could not receive such privileges under Netscape Navigator. The bottom line for
programmers and system administrators is that these advanced security features should be
carefully used, and only in a homogeneous environment incorporating browsers from only one
vendor. Future versions of the ECMAScript standard promise to bring more uniformity to the
security policy implementations that are available from both Netscape and Microsoft.

FINAL

FINAL
�

2.2 DESCRIPTIONS OF POSSIBLE SCRIPT ATTACKS

Browser scripts that run within the untrusted browser sandbox have only limited
capabilities as per the security policy of the user’s browser. Scripts that run in a fully-trusted
mode, on the other hand, have access to all of the features of the web browser and the user’s
machine. This can happen when a script requests and receives security privileges under
Netscape Navigator, or runs in a Microsoft Internet Explorer Security Zone that has very few
security restrictions. Additionally, scripts that download additional components such as Java
applets, ActiveX controls, and browser plug-ins, can sometimes use the capabilities afforded
those components to bypass the browser’s security features altogether.

Consequently, there are two approaches that can be used by browser scripts to attack a
user’s computer. The first type of attack is that which takes place within the context of the
browser “sandbox.” Flaws have been found in the Netscape and Microsoft web browsers that
permitted script code to access inappropriate information. These flaws in security include
reading the user’s Uniform Resource Locator (URL) history information, compromising the web
browser’s “cookie” mechanism, and manipulating browser configurations. The second type of
attack takes place outside the context of the browser “sandbox.” These attacks involve
manipulating tools that the browser utilizes to handle certain data types or provide extended
functionality to the user. As these tools are still emerging technologies, their security models are
neither complete nor comprehensive. Such tools include ActiveX controls, browser plug-ins and
helper applications.

2.2.1 Reading URL Histories

An early vulnerability of Netscape’s original JavaScript implementation was that a script
could go into the history file of the browser and identify the URLs of the web sites that the user
had visited. This information could then be used by the script’s author, or anyone else, without
the user’s knowledge or consent. This security hole was fixed with the Netscape 2.02 browser,
and is no longer exploitable by web developers.

2.2.2 Accessing A User’s Cookie

An Internet ‘cookie’ is a name=value pair that is kept in a file which is maintained by the
browser. This information is tied to a particular URL and is returned automatically to the web
server whenever the user visits that site. In early versions of the Netscape web browser, it was
possible for a JavaScript programmer to “steal” an Internet cookie that was placed in the user’s
browser cookie file by another web site. Using this technique, a cookie thief could then
impersonate the original user, possibly gaining access to sensitive information on other web sites
that was previously only accessible to the original user. This security hole was fixed with the
Netscape 2.02 browser, and is no longer a vulnerability.

FINAL

FINAL
�

2.2.3 Alteration of Browser Settings

Scripts can be used to manipulate the browser and its user interface, including opening
new windows, closing existing windows, and turning on or off the visual elements of the browser
screen. At a minimum, these capabilities can be irritating, resulting in windows that are
inconveniently placed, or confusing user interfaces. However, at their worst, these capabilities
can be used to damage the system itself, or trick a user into doing damage. Damaging techniques
include creating arbitrarily small windows that permit a web page to stay active unbeknownst to
the user, creating windows that look like other application windows, or password entry windows,
or manipulating the browser’s main window’s scroll bars, menu bars, and status bars to such a
degree that the user cannot properly control the browser program. The security policy
enforcement of modern browsers make these capabilities impossible to execute. However, if the
security policy enforcement of the browser is deactivated, scripting languages have the capability
to perform all of these actions.

2.2.4 Script Interaction with ActiveX Controls

Microsoft’s ActiveX technology is a way for creating portable, reusable, scriptable cross-
platform controls. It can be used to implement functionality in a variety of environments,
including the Windows operating system, Microsoft applications such as Word and Access, and
also the Internet Explorer Web Browser. ActiveX can also be used within Netscape Navigator
via a browser Plug-In. The problem with ActiveX controls is that they are written in low-level
languages, and interface directly with the computer hardware and operating system. Because
they communicate directly with the operating system, their only interaction with the web
browser’s security mechanism is when they are downloaded. At that time, the user has the
option of accepting or denying the ActiveX control. However, once it has been accepted by the
user, a single malicious ActiveX control is all it takes to wreak havoc on a user’s system. Web
developers can use ActiveX controls to perform illicit actions in two ways: first, they can design
malicious ActiveX controls and hope that the user will accept one, and second, they can use
browser scripting to make normal ActiveX controls perform malicious actions.

2.2.5 Script Interaction with Plug-ins and Helper Applications

Plug-ins are similar to ActiveX controls, but are specific to web browser programs. Plug-
ins permit scripts and HTML tags to interact with other programs, or mini-programs, installed on
the user’s computer. For example, when a web page loads a sound file, a sound player plug-in,
such as Netscape’s LiveAudio, is used to play the sound file to the user. Similarly, when a user
clicks on an Adobe Acrobat file, the Adobe Acrobat plug-in is used to show the contents of that
file within a web browser window. Plug-ins, like ActiveX controls, can be manipulated and
controlled via browser scripting. Consequently, some plug-ins, such as Carbon Copy/Net, can be
used to compromise the security of the user’s computer. Users must be careful and cognizant of
what plug-ins they use on their systems.

FINAL

FINAL
��

3 SCRIPT CERTIFICATION POLICIES

 This section provides guidance for developers and code inspectors to mitigate the security
risks posed by browser scripting software. It explains the policies that should be followed when
developing browser scripts that will operate on GCCS machines.

3.1 GENERAL SCRIPT SOFTWARE DEVELOPMENT GUIDANCE

Browser scripts must adhere to the same development guidelines as code written in other
languages for use within the GCCS. The “GCCS Security Guidelines for Developers” document
provides details on security requirements for code development for programs to be deployed in
the GCCS. IEEE 12207, U.S. Software Lifecycle Process Standards, which replaced MIL-STD
498, Software Development and Documentation, in May, 1998 provides general guidance on the
implementation of software systems for military use. These documents provide
recommendations to reduce the risks associated with implementing distributed systems, and
highlight the risks involved with using software that may have been obtained from untrusted
sources. An example of untrusted software is a browser script library that was downloaded from
a non-commercial Internet site and then used within a larger project without a proper security
review of the script code contained within the library.

3.2 SCRIPT CERTIFICATION PROCESS

The “GCCS Security Guidelines for Developers” document identifies two types of
certification:

• Derived certification
• Inspection certification

All mobile code developed in browser scripting languages is subject to certification by one of
these processes prior to installation on a GCCS server. Code requiring inspection is subjected to
code analysis by the Defense Information Systems Agency (DISA) D6 or an appointed
representative. All testing must be conducted on isolated systems that are not connected to the
operational GCCS. Some tests may require an independent expert in JavaScript, JScript or
VBScript to inspect the code. If an independent expert is not available, the software proponent
should consult with the software developer to ensure that all browser scripts are in compliance
with the policies described in this section. If unsatisfactory results are obtained in this inspection
process, the software is returned to the developer for corrective action.

 Upon acceptance of the code analysis by DISA D6, browser scripts are digitally signed

with an X.509 certificate authenticating their certification for use on the GCCS. The digital
signature can then be validated at any time to verify the authenticity of the browser script
software.

FINAL

FINAL
��

3.3 SCRIPT CERTIFICATION POLICIES

The following are minimum guidance for browser scripting use within the GCCS. These
policies must be adhered to by web developers, or justification must be provided documenting
the reasons that they cannot be followed.

#1: Script Testing

Policy: Browser scripts must be tested in a stand-alone environment to ensure that no
damage is done to essential systems. Scripts must not crash or disrupt the use of either
Netscape or Microsoft web browsers. This includes the triggering of run-time error windows
that require user intervention to continue.

Rationale: The use of untested or undocumented scripts dramatically increase the risk of a
potential catastrophic failure or data loss. Examining script code in a test environment
reduces the risk of loss or corruption to a single machine. Correctly written browser scripts
should not disrupt or crash the user’s web browser; scripts that cause such crashes or
disruption cannot be certified for use on GCCS. Script code that causes run-time errors may
lead to increased risk by confusing users or influencing them to change their browser’s
security settings inappropriately in an effort to resolve the problem.

#2: Certified Script Libraries

Policy: Browser scripts embedded in web pages may call script “library code” that is
separated from the web pages and contained in separate script files. These script libraries
must be certified to the same policies as the web pages that call them. Libraries that were
previously certified and are re-used in a new project may be re-used without recertification
provided that the original library source code has not been changed, and any previously
applied certification digital signatures that were applied to the library file are still valid.

Rationale: It is possible to create browser script libraries that can be certified and reused. It
is in the interest of developers to re-use such code in new software development projects, as
this reduces the amount of new software code that must be written. It is in the interest of
DISA D6 to encourage such practice, as it simplifies the process of certifying such products
for use on the GCCS.

#3: Using Browser Script to Access Java Applets, Objects and Methods

Policy: Java code – including applets, standalone objects, and the methods of those objects –
that is called from within browser scripting code must meet the specifications established by
GCCS in the Mobile Code Security Policy Guidance for Java Software Development. Java
objects and methods that are built into the web browsers and the operating systems of users’
machines may be accessed by browser script code provided that that the operation of those
objects is in accordance with the Java policy guidance, and their employment from the
browser script is in accordance with the remainder of this document’s policy guidance.

FINAL

FINAL
��

Rationale: Browser script code can interface with Java code, including applets, standalone
objects, and operating system objects. This is accomplished using the built-in features of
Microsoft Internet Explorer and the LiveConnect plug-in for Netscape Navigator. These
actions are constrained to the security model of the Java “Sandbox” of the user’s browser,
which may not be set to the same security restrictions as the rest of the browser. Specifically,
if Java’s sandbox security is disabled by the user, this technique can be used to bypass the
web browser’s script security, permitting:

• Scripts to interact with the standard Java system classes built into the browser.
• Scripts to interact with Java applets by reading and writing public fields of the applet and

invoking public methods.
• Scripts to interact with other Java-enabled browser plug-ins in the same way.
• Applets and Java-enabled plug-ins to interact with browser scripts by reading and writing

script object properties, array elements, and invoking functions.

#4: Using Browser Scripts to Access ActiveX Controls

Policy: Browser scripts may access ActiveX controls provided that the controls themselves
are in compliance with the GCCS ActiveX policy, and the controls are used in a manner that
is consistent with the remainder of this policy. Scripts may not attempt to download ActiveX
controls that have not been digitally signed by their authors and approved by for use on the
GCCS. The user must have the opportunity to approve or deny all downloads of ActiveX
controls to their machines, and scripts must degrade gracefully when the desired ActiveX
controls are not permitted by the user.

Rationale: ActiveX controls are not subject to the browser’s “sandbox” security models that
are applied to browser scripts or Java applets that run on users’ machines. Consequently, a
malicious ActiveX control could do considerably more damage than malicious controls in
other languages. Similarly, benign ActiveX controls that have the capability to compromise
or corrupt users’ data may be misused by malicious browser scripts or Java code that control
them. Both of these cases must be prevented. Finally, users must have control over the
downloading and installing of such ActiveX controls, such that the users’ denial of a
particular ActiveX control must not cause browser scripts to fail catastrophically.

#5 Using Browser Scripts to Access Browser Plug-Ins

Policy: Browser scripts may access browser plug-ins provided that the plug-ins are used in a
manner that is in compliance with the remainder of this policy. Browser scripts may not
attempt to download and install browser plug-ins that have not been approved for use on
GCCS computers. DISA D6 must approve all downloads of browser plug-ins to the GCCS
machines. Browser scripts must fail gracefully if the user does not permit a required plug-in
to be installed.

Rationale: Browser plug-ins are not subject to the browser’s “sandbox” security models that
are applied to browser scripts or Java applets that run on users’ machines. Consequently, a

FINAL

FINAL
��

malicious plug-in can do considerably more damage than malicious browser scripts or Java
applets. Similarly, benign plug-ins that have the capability to compromise or corrupt users’
data may be misused by malicious scripts or Java applets that control them. Both of these
cases must be prevented. Finally, the user must have the opportunity to grant or deny
permission before any new plug-ins are added to their browser.

#6: Browser Information Access

Policy: The use of browser scripts to access or write the browser program’s internal
information is prohibited. This includes access to the browser’s “history file” or data used
when filling out on-line forms. Also included in this category are Browser Scripts which can
be used to move or resize a browser window outside the viewable area or disguise browser
windows to appear similar to those used by other programs.

Rationale: Private information may be obtained through the use of browser scripts that
access the browser’s “history” or information entered into on-line forms by users. Browser
scripts that modify the appearance of a browser window in an attempt to make them
impossible to understand or appear to be windows from programs, can confuse users. A
denial of service attack could consist of relocating or resizing browser windows to make
them unavailable to the user.

#7: Access to the User’s Local Files

Policy: Browser scripts which attempt to read, relocate, or write files to or from the
browser’s host machine or devices connected to it are prohibited. This does not include the
use of browser cookies.

Rationale: Scripts which attempt to read, relocate, or write files to or from the browser’s
host machine or devices connected to it are sources for potential data compromise, loss, or
corruption. This is a large risk when operating in a protected environment. The browser’s
cookie mechanism provides additional security restrictions that mitigate such risk, and
consequently its use is acceptable.

#8: Browser Preference Access

Policy: Browser scripts must not attempt to access, modify, or write to the user’s browser
settings or preferences without a legitimate need and the user’s consent.

Rationale: Information stored in a browser’s preferences may be used to gain information
about a specific user or the system(s) on which they work. Such information may include a
user’s name, electronic mail (e-mail) address and server connectivity, as well as security
level settings. Once harvested, this information can be employed in attempts to gain or deny
access in other ways. Additionally, reconfiguration of the browser’s settings may be used to
either confuse the user or deny them use of their web browser.

FINAL

FINAL
��

#9: Access to Browser Privileges and Special Security Features

Policy: Browser scripts must not require access to customized security privileges or other
browser security features without written justification from the developer. In the event that
the use of such features is required, the browser scripts must be written such that the features
are enabled just prior to use, and then immediately disabled immediately after use. When
these features are enabled, the user must be notified on-screen, and given the opportunity to
deny them, in which case the browser script must fail gracefully.

Rationale: Most browser scripts operating on GCCS should not require access to advanced
browser security features, and any such use must be examined to determine if it is really
necessary. In the event that such use is required, minimizing the length of availability and
amount of access to the more risky browser privileges will minimize the total risk that is
involved.

#10: Automatic E-mail

Policy: Browser scripts must not use the browser’s e-mail sending capability to send e-mails
that contain hidden fields or surreptitious information from the user’s e-mail account. Use of
this capability must be with the user’s permission, such that the user must have the
opportunity to view the complete text of the e-mail that is to be transmitted and have the
opportunity to change the text of the message before transmission, or cancel the transaction
altogether.

Rationale: Browser scripts, which automatically send or populate e-mail fields, increase the
risk of potential data compromise. Such scripts may allow e-mail to be automatically sent
from a user’s account, in their name, on their behalf. Automatic population of form fields
with user information as well as the automatic sending of e-mail provides a simple method
for transporting private information off of an unsuspecting user’s machine.

FINAL

FINAL
��

4 SCRIPT CERTIFICATION PROCEDURES

This section provides specific procedures to be followed by browser script inspectors to
certify scripts as safe for use on GCCS. These procedures ensure that the subject code meets the
policies specified in Section 3 above, and can be followed roughly in sequence.

4.1 OBTAIN SCRIPT CODE FROM VENDOR OR WEB PAGE

Obtain the complete source code for the software project, including all web pages and
browser scripts. Request any available documentation which pertains to the code including any
information regarding the use of pre-certified code libraries. In order to properly inspect browser
script code, it is necessary to examine both the scripts themselves and the web pages that call
them, as the manner in which a script is employed may determine the level of risk that it poses to
the user.

4.2 INSPECT THE BROWSER SCRIPT CODE

Inspect the browser scripts according to the policies in this document. Following the
procedures below, use the Inspection Checklist provided in Section 5, and the software
certification policies in Section 3 as required. It may be necessary to consult the web developer
during this process.

4.2.1 Test the Script Code
(Ref: Policy #1)

Install the current GCCS-approved Web Browser (Netscape Communicator 4.x) onto a
non-essential network computer that is isolated from the GCCS operational network. Use the
web browser to view the web pages in question, running the browser scripts that are accessed by
them. Become familiar with the purpose and functionality of the web pages that are being tested.
Observe any abnormal browser actions including, crashing, “hanging,” or the triggering of
multiple run-time error windows requiring user intervention. This test may be impossible if the
browser scripts are provided “as-is,” and are not attached to a web page. If this is the case, it
must be noted.

4.2.2 Browser Script Reuse
(Ref: Policy #2)

Examine the browser script source code for calls to other previously written browser
scripts or Java applets. First, determine if each called script is a member of the GCCS-approved
and certified library. If it has already been incorporated into the library, ensure that the code has
not been modified by validating its GCCS-assigned digital signature. All browser scripts must
be inspected or re-inspected for compliance with the policies in Section 3 if the digital signature
is no longer valid or if the script has never been tested and signed.

FINAL

FINAL
��

4.2.3 Use of Java Applets, Objects, and Methods
(Ref: Policy #3)

Check scripts for the use of Java code including applets, standalone code, as well as
objects or their methods. If any calls or references to Java code are found, ensure that the items
referenced are compliant with the specifications in the Mobile Code Security Policy Guidance
for Java Software Development and are used in accordance with this document.

4.2.4 Use of ActiveX Controls
(Ref: Policy #4)

Inspect browser scripts for the use of ActiveX controls. All ActiveX controls that are
accessed by the browser script must conform to the GCCS ActiveX policy. Browser scripts
should not try to download ActiveX controls without the user’s consent, and should degrade
gracefully if the user does not grant permission for downloading. Use of those ActiveX controls
must be consistent with the remainder of this policy to ensure that potentially dangerous ActiveX
controls are not abused by the scripts that call them.

4.2.5 Use of Browser Plug-Ins
(Ref: Policy #5)

Inspect browser scripts for the use of browser plug-ins. Only plug-ins that have been
approved for use on GCCS may be accessed from browser scripts. Browser scripts should not
try to download plug-ins without the user’s consent, and should degrade gracefully if the user
does not grant permission for downloading. Use of those plug-ins must be consistent with the
remainder of this policy to ensure that potentially dangerous capabilities are not abused.

4.2.6 Browser Information Access
(Ref: Policy #6)

Examine browser scripts for code which attempts to read or modify the browser’s internal
information stores. These include the browser’s “history” file, information stored from the
completion and use of on-line forms, and the look, appearance and size of browser windows.
Check that these capabilities are not abused to obtain inappropriate information, confuse the
user, or cause a denial of service attack.

4.2.7 File Read and Write
(Ref: Policy #7)

Check the scripts to ensure that files are not read or written on the user’s system without
the user’s knowledge and consent. The use of “cookies” is allowed, but the implementation and
intended use must be examined for potential security violations.

4.2.8 Browser Preference Access
(Ref: Policy #8)

All browser scripts must be examined for code which attempts to access, modify, or write
to a browser’s settings or preferences. If any access is granted, the information being requested

FINAL

FINAL
��

or written should be examined for private or security related content. The implications of the
increased privileges must be determined and accepted before a script can be certified and signed.

4.2.9 Browser Privileges and Security Features
(Ref: Policy #9)

Check that browser scripts requesting access to browser access privileges and other
special security features request a user’s permission before altering them. If permission is
granted, special accesses and permissions must be enabled just prior to use and then immediately
disabled after use. The need for such browser privileges must be justified and documented by
the developer.

4.2.10 Automatic E-mail
(Ref: Policy #10)

Check that browser scripts ask the user’s permission before automatically sending e-mail.
If e-mail fields are populated on the user’s behalf, the user must have the opportunity to edit
these fields before transmission, and also to cancel the transmission of the message after viewing
it. The use of such automatic e-mail features must be justified and documented by the developer.

4.3 DIGITALLY SIGN APPROVED BROWSER SCRIPTS

Browser scripts that are approved according to section 4.2 above can then be digitally
signed by the inspecting authority using a GCCS-approved digital certificate. This digital
signature is affixed to the code to show that it has passed the certification process.

4.4 LOAD CERTIFIED BROWSER SCRIPTS ON THE GCCS

DISA D6 maintains a Web page that contains all Scripts that have been tested and certified
for use within the GCCS. Load all certified and signed browser scripts onto the GCCS site in
order to make it available as a resource for use by other GCCS web developers.

FINAL

FINAL
��

5 CODE CHECKLIST FOR DEVELOPERS/INSPECTORS

This checklist is provided to assist developers and inspectors in ensuring that browser
scripts are used in accordance with the policies of this document.

Table 1. Browser Script Inspection and Certification Explanations

Test Actions
Expected
Results

Action if Results
Not as Expected

1 Test code.
(Ref: Policy #1)

Test web pages containing
browser scripts on GCCS-
approved web browser.

No run-time errors,
security violations,
or system crashes
encountered. Web
pages do not appear
to compromise
browser security.

Return web pages to
developer for modification.

2 Check library
references.
(Ref: Policy #2)

Ensure that all browser script
libraries are already certified
for use on GCCS, and
digitally signed as necessary.

All libraries are
certified and signed.

Certify the libraries
according to the GCCS
Mobile Code Security Policy
Guidance.

3 Check library use.
(Ref: Policy #2)

Inspect the use of such
libraries, ensuring that library
calls that pose risk to the user
are employed in a safe
manner.

All library calls are
safe and pose no
risk to the user.

Return web pages to
developer for modification.

4 Use of Java
programs, applets,
objects, or methods.
(Ref: Policy #3)

Examine code for the use of
Java programs, applets,
objects, or methods.

No Java references
found.

Ensure that Java use is in
compliance with the Mobile
Code Security Policy
Guidance for Java Software.

5 Use of ActiveX
controls.
(Ref: Policy #4)

Examine code for the
downloading or use of
ActiveX controls.

Only standard
GCCS-approved
ActiveX controls are
used.

Ensure that non-standard
ActiveX controls are
inspected for compliance
with the Mobile Code
Security Policy Guidance for
ActiveX Controls.

6 Use of browser plug-
ins.
(Ref: Policy #5)

Examine browser scripts for
the downloading or use of
browser plug-ins.

Only standard
GCCS-approved
plug-ins are used.

Ensure that non-standard
browser plug-ins are certified
for use on GCCS.

7 Browser “History”
access.
(Ref: Policy #6)

Examine browser script for
code that attempts to access
inappropriate information
from the browser’s “History”
files, or on-line forms that do
not belong to the parent web
site.

Script does not
make inappropriate
use of the “History”
file or on-line forms
information.

Return web pages to
developer for modification.

8 Browser
configuration
changes.
(Ref: Policy #6)

Examine scripts for code
which attempts to modify the
location, size, or appearance
of browser windows.

The browser’s main
window is not
manipulated; sub-
windows are not
modified in such a
way as to mislead
the user.

Return web pages to
developer for modification.

FINAL

FINAL
��

Test Actions
Expected
Results

Action if Results
Not as Expected

9 Use of “Cookies”.
(Ref: Policy #7)

Check for use of “cookies” to
access information that does
not belong to the parent web
site.

“Cookies” are used
safely.

Return web pages to
developer for modification.

10 File read or write.
(Ref: Policy #7)

Examine browser scripts for
code used to move, relocate,
or write files to or from the
host machine or connected
systems.

Files on the user’s
machine are not
manipulated
inappropriately.

All file-access requirements
must be documented. If they
are inappropriate, return web
pages to developer for
modification.

11 Browser preference
access.
(Ref: Policy #8)

Examine scripts for code that
attempts to access, modify, or
write to a browser’s settings
or preferences.

Browser settings are
not changed
inappropriately.

All reconfiguration of the
browser’s settings must be
documented. If they are
inappropriate, return web
pages to developer for
modification.

12 Use of browser
security privilege
features.
(Ref: Policy #9)

Examine scripts for code that
attempts to use browser
security privilege features.

Security privileges
are not used
inappropriately.

All use of security privileges
must be documented. If the
use is inappropriate, return
web pages to developer for
modification.

13 Minimize use of
security privileges.
(Ref: Policy #9)

Check that security privilege
features are enabled just prior
to use and disabled
immediately after use.

Security privileges
are enabled just
prior to use and
disabled
immediately after
use.

Return web pages to
developer for modification.

14 Use of automatic
e-mail.
(Ref: Policy: #10)

Examine scripts for code that
automatically sends e-mail,
or populates the fields of an
e-mail that is to be sent by
the user.

Scripts should not
send e-mail or
populate e-mail
fields without the
user’s knowledge
and permission.

Return web pages to
developer for modification.

FINAL

FINAL
��

Table 2. Browser Script Inspection and Certification Checklist
 Browser Script Package

Developer
Developer Contact Info Address:

Phone / Fax:
E-Mail / Web:

DISA/JS Proponent
Inspection Date & SW Version

Inspector / Certifier
Approval Date

Digital Certificate Used
Test Passed Failed Comments

1 Test code.
(Ref: Policy #1)

2 Check library references.
(Ref: Policy #2)

3 Check library use.
(Ref: Policy #2)

4 Use of Java programs, applets, objects, or methods.
(Ref: Policy #3)

5 Use of ActiveX controls.
(Ref: Policy #4)

6 Use of browser plug-ins.
(Ref: Policy #5)

7 Browser “History” access.
(Ref: Policy #6)

8 Browser configuration changes.
(Ref: Policy #6)

9 Use of “Cookies”.
(Ref: Policy #7)

10 File read or write.
(Ref: Policy #7)

11 Browser preferences access.
(Ref: Policy #8)

12 Use of browser security privilege features.
(Ref: Policy #9)

13 Minimize use of security privileges.
(Ref: Std #9)

14 Use of automatic e-mail.
(Ref: Policy: #10)

FINAL

FINAL
��

APPENDIX A
SOFTWARE SECURITY PRINCIPLES

This section describes the security principles upon which specific software certification
policies are derived. These principles are language independent, and can apply to software of all
types. They are derived from ISO/IEC 12207 Information Technology Software Life-cycle
Processes, which replaced MIL-STD 498, Software Development and Documentation in May,
1998. There are four areas of concern that must be addressed through the software certification
process. They are: denial of service, unusual behavior, the compromise of sensitive data, and
the corruption of sensitive data. All of these areas of concern apply to both the user’s computer
as well as other users’ computers connected through a network or other medium.

Denial of Service

Principle: Software shall not cause software, peripherals, or the central processing unit of the
user’s or connected computers to become unavailable. The software developer shall document
all software incompatibilities that result in denial of service to the user.

Rationale: This condition exists when the subject application software restricts the user’s ability
to access the programs and data stored on either their system or the network. An example of
such behavior is a program that disrupts the computer’s ability to print or access the network.
Another example of such behavior is a program that permits the user to enter data into it, then
crashes before the user can finish his or her work.

Misleading Behavior

Principle: Software shall not have unusual behaviors that are used to maliciously mislead users
to perform actions that compromise or corrupt the data on either their systems or other systems
attached via a network.

Rationale: This condition exists when the subject application software behaves unusually in an
effort to confuse the user or persuade the user to perform actions that would endanger data stored
on the network. An example of such behavior is a program that puts up a dialog box requesting
the user to send data to a third party, or one that requests the user to obtain inappropriate data
from other users. Using these techniques, a program that does not cause data corruption or
compromise on its own can indirectly cause such events by persuading users to do them on its
behalf.

Compromise of Data

Principle: Software shall not compromise the data stored on the user’s or connected systems
without the user’s explicit permission. Such permission will identify the data that is to be sent
and the reason for the transmission. This behavior shall be clearly explained in the software
documentation.

FINAL

FINAL
��

Rationale: This condition exists when the subject application software causes data on the user’s
or connected systems to be compromised without the user’s consent, and possibly without the
user’s knowledge. An example of such behavior is a program that copies user files to another
location on the network without the user’s knowledge, or a program that surreptitiously records
the user’s behavior in order to capture passwords and other sensitive information.

Corruption of Data

Principle: Software shall not corrupt the data stored on the user’s or connected systems without
the user’s explicit permission. Such permission will identify the data that is to be destroyed and
the reason for its destruction. This behavior shall be clearly explained in the software
documentation.

Rationale: This condition exists when the subject application software causes data on the user’s
or connected systems to be corrupted or destroyed in such a way that it is no longer of value to
the user. Examples of such behavior include reformatting of the user’s hard drive or deletion of
user files without the user’s permission.

FINAL

FINAL
��

APPENDIX B
JAVASCRIPT VERSUS JAVA

 Due to the rapid pace of development in the Internet community and the plethora of hype

that accompanies that development, a large number of new buzzwords have erupted onto the
public scene. These buzzwords are presented often without proper definition or differentiation,
and seldom with good descriptions of how “it all comes together” into solutions that end-users
can use to solve real-world problems.

 Two words that have become almost hopelessly embroiled in the hype wars are
JavaScript and Java. Due to the efforts of Sun and Netscape to counter Microsoft’s tremendous
market clout, they have both become the foot soldiers of a cyber-war where - if one is to believe
the press releases – the future of information availability is at stake. The remainder of this
section attempts to describe how JavaScript and Java differ, and how they both fit into the big
picture of web development.

 The Basics

 To begin, both JavaScript and Java are languages that permit computer instructions to be
downloaded over the Internet, and run on a user’s local computer. Both of these languages
follow a similar syntax, which means that software code that is written in JavaScript looks a lot
like software code that is written in Java. However, the similarity ends there, as the languages
are compared in the table below:

 JavaScript Java
 Language Type Object-based Object-oriented

 Creator Netscape Sun Microsystems Inc.
 Used for Scripts within a browser Standalone applications,

Applets, Servlets
 Interaction with Web

pages
 Script placed within HTML
file; can manipulate HTML

and can act as a liaison
between applets and HTML

elements.

Separate program called by
HTML file; confined to

specific region of browser;
cannot manipulate HTML

elements
 Security Model Object Signing (Netscape)

 Authenticode (IE)
Sandbox

Table 3 Java and JavaScript Differences

 Java

 Java is a general-purpose programming language that is written by a programmer,
compiled into an intermediate byte-code, downloaded over the web, and run on a user’s machine
by the Java Virtual Machine. Sun created Java with a large number of virtual machines that
permit the same Java code to run on almost any platform, including Apple’s Macintosh, Sun
Solaris, Unix, Linux, and of course Windows, using both the Netscape Navigator and Microsoft
Internet Explorer browsers. With this large number of virtual machines that can run Java, it is a

FINAL

FINAL
��

truly portable language that permits programmers to create general-purpose software for any
platform.

 JavaScript

 JavaScript, on the other hand, is a web browser scripting language that has the sole
purpose of giving web pages additional functionality when viewed on the Netscape Navigator
web browser. Microsoft’s web browser did not support JavaScript until Internet Explorer 3.0
which supported JScript, which is a Microsoft-only dialect of the language, as opposed to a
straight implementation. This scripting code is used to instruct the browser to perform additional
operations, such as popping up a window, or scrolling a message, that cannot be done with
straight HTML alone. Ironically, for a web page to incorporate a Java applet, JavaScript code
must be written to tell the web browser to run the applet!

 Differences

 Both languages treat program elements – such as icons or pop-up windows – as objects,
which can pass instructions to one another. But a true object-oriented language, as Java is, also
makes heavy use of inheritance. Inheriting functionally from existing objects and adding new
attributes can extend objects. JavaScript does not have this ability. JavaScript objects can be
created, but cannot inherit any other object's properties.

 The languages also differ in how they interact with browsers and web pages. Java, which

requires a compiler (a program that translates human-readable code into machine-readable
executables), can be used to create either stand-alone applications or applets that run with a
browser. JavaScript, on the other hand, works only within a browser and is not compiled. It
cannot be used to develop standalone applications. JavaScript is a scripting language for writing
short programs, or scripts, such as log-on procedures.

 Java applets are downloaded as separate files onto a client machine and are executed

independently of HTML files and images; they are not visible in the source file. JavaScript is
embedded within the HTML file and visible in a document’s source. One can use JavaScript to
manipulate all of the HTML elements on a Web page. A Java applet; however, is a self-
contained application that lies within a web page, and is limited to a small space on the web
page’s window. Whereas Java applets can only handle commands that occur within the
window’s boundaries, JavaScript can capture events anywhere in the browser, and then even
pass those events on to an embedded Java applet.

 Security

 While Java has a formal security model, JavaScript security is based on the
implementation of the browser. Several problems have been reported with JavaScript, including
the ability to upload or retrieve arbitrary files from a user’s machine. These have been
reportedly fixed in newer browsers, but denial of service attacks are still possible.

 JavaScript differs from Java in several important ways that relate to security.

FINAL

FINAL
��

� Java signs classes and is able to protect internal methods of those classes through the
public/private/protected mechanism. Marking a method as protected or private
immediately protects it from an attacker. In addition, any class or method marked
final in Java cannot be extended and is thus protected from an attacker. On the other
hand, because JavaScript has no concept of private and public methods, there are no
internal methods that could be protected by simply signing a class. In addition, all
methods can be changed at runtime, so they must be protected at runtime.

� In JavaScript one can add new properties to existing objects, or replace existing
properties (including methods) at runtime. This is unavailable in Java. Once again,
protection that is automatic in Java must be handled separately in JavaScript.

Conclusions

 Despite all the hype, both JavaScript and Java are important parts of the present and
future of the Internet. They are complementary tools that each have a place in web development,
and programmers must use both of them to create effective web-based applications. Due to their
differences in purpose, implementation, and application, network administrators must pay careful
attention to how both languages are both utilized within their networks, and should stay abreast
of the rapid evolution of the underlying technologies.

FINAL

FINAL
��

APPENDIX C
ACRONYMS AND DEFINITIONS

 TERM DEFINITION

CERT Computer Emergency Response Team

CSS Cascading Style Sheet

DISA Defense Information Systems Agency

ECMA European Computer Manufacture’s Association

E-Mail Electronic Mail

GCCS Global Command and Control System

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

IE Internet Explorer

IP Internet Protocol

SIPRNET Secret Internet Protocol Router Network

SSJS Server Side JavaScript

URL Uniform Resource Locator

 WWW World Wide Web

FINAL

FINAL
��

 APPENDIX D
 SCRIPT SECURITY REFERENCES

 References

Flanagan, D., D. Shafer. JavaScript: The Definitive Guide. Sebastopol, CA: O’Reilly and
Associates, (1996).

Danny Goodman, JavaScript Bible, IDG Books, 3rd Edition (1998).

Web Sources

The following are useful Uniform Resource Locators (URL) for JavaScript and security related
topics:

Netscape
http://developer.netscape.com/docs/manuals/communicator/jsguide4
http://www.netscape.com/products/security/index.html

 JavaScript Security
 http://www.osf.org/~loverso/javascript, 14 Nov 97

CERT Notifications
http://www.cert.org

The WWW security FAQ
http://www.w3.org/security/faq/www-security-faq.html

Princeton University
http://www.cs.princeton.edu/sip/

International Computer Security Association
http://www.ncsa.com

Bugtraq
http://www.geek-girl.com/bugtraq

Microsoft
http://www.microsoft.com/security

	edoc_991743197.sf298.pdf
	Form SF298 Citation Data

