4. TITLE AND SUBTITLE
Dynamic Network Techniques for Autonomous Planning and Control

5. FUNDING NUMBERS
F49620-98-1-0376

6. AUTHOR(S)
Dr. Pearl

8. PERFORMING ORGANIZATION REPORT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California, LA
4532 Boelter Hall
Computer Science Department
School of Engineering and Applied Science
Los Angeles, CA 90095-1596

10. SPONSORING/MONITORING AGENCY REPORT NUMBER
F49620-98-1-0376

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NM
801 N. Randolph St, Rm 732
Arlington, VA 22203-1977

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
Starting with functional description of physical mechanisms we were able to derive the standard probabilistic properties of Bayesian networks and to show: (1) how the effects of unanticipated actions can be predicted from the net-work topology, (2) how qualitative causal judgments can be integrated with statistical data, (3) how actions interact with observations, (4) how counterfactuals sentences can be interpreted and evaluated, (5) how explanations and single-event causation can be defined in a given causal model.

14. SUBJECT TERMS

15. NUMBER OF PAGES
7

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT
UL
Dynamic Network Techniques for Autonomous Planning and Control
F49620-98-1-0376 – Final Report
(April 1, 1998 – November 30, 2000)
Judea Pearl – Principal Investigator

1 Summary of research progress

Starting with functional description of physical mechanisms we were able to derive the standard probabilistic properties of Bayesian networks and to show:

- how the effects of unanticipated actions can be predicted from the network topology,
- how qualitative causal judgments can be integrated with statistical data,
- how actions interact with observations,
- how counterfactuals sentences can be interpreted and evaluated,
- how explanations and single-event causation can be defined in a given causal model.

Additionally, we have established an axiomatic characterization of causal dependencies, analogously to the characterization of informational dependencies. Finally, we have demonstrated that network-based identification techniques, in the presence of hidden variables, have a broad scope of new applications, ranging from skill acquisition by autonomous agents, to the analysis of treatment effectiveness in clinical trials.

The following specific results were obtained during the period of performance:

- Computer programs were developed to assist clinicians with assessing the efficacy of treatments in experimental studies for which subject compliance is imperfect [Chickering and Pearl, 1999].
• Methods were developed for selecting sufficient set of measurements that permit unbiased estimation of causal effects in observational studies [Greenland et al., 1999].

• Polynomial algorithms were developed for finding minimal separators in a directed acyclic graphs, namely, finding a set S of nodes that d-separates a given pair nodes, such that no proper subset of S d-separates that pair. Versions of this problem include finding a minimal separator from a restricted set of nodes, finding a minimum-cost separator, and testing whether a given separator is minimal. We have confirmed the intuition that any separator which cannot be reduced by a single node must be minimal [Tian et al., 1998].

• Methods for estimating or bounding counterfactual probabilities from statistical data were developed (e.g., John, who was treated and died, would have had 90% chance of survival had he not been treated) [Balke and Pearl, 1997].

• A formal model has been developed, based on modifiable structural equations, which generalizes and unifies the structural and counterfactual approaches to causal inference, explicates their conceptual and mathematical bases and resolves their technical difficulties [Galles and Pearl, 1998].

• It has been proven that the structural and counterfactual formalisms are equivalent in recursive causal models (i.e., systems without feedback) but not when feedback is considered possible. A simple rule was devised for translating a problem back and forth, between the structural and counterfactual representations [Galles and Pearl, 1998].

• Basic causal concepts such as “confounding” and “exogeneity” were given mathematically precise explication. It has been shown that, contrary to folklore, there is no statistical test for confounding. Traditional statistical criteria do not ensure unbiased effect estimates, nor do they follow from the requirement of unbiasedness [Greenland et al., 1999; Pearl, 2000].

• A new semantics for “actual causation” was developed based on a construct named “causal beam,” that is, a minimally modified causal model, in reference to which the standard counterfactual criterion is adequate for identifying causes of singular events [Pearl, 1998a, 2000].
• Formal semantics was developed, based on structural models of counterfactuals, for the probabilities that event x is a necessary or sufficient cause (or both) of another event y [Pearl, 1999].

• Conditions were discovered under which probabilities of necessary and sufficient causation can be learned from data [Pearl, 1999; Tian and Pearl, 2000].

• New methods were developed for eliciting probabilities of causes from a combination of actions and observations. It was found that data from both experimental and nonexperimental studies can be combined to yield information that neither study alone can provide [Pearl, 1999].

• Universal bounds were established for probabilities of causation from both observational and experimental studies [Tian and Pearl, 2000].

• New definition of causal explanation was formulated in which explanation is treated as a fragment of knowledge needed to support causation [Halpern and Pearl, 2000].

2 List of publications resulting from the AFOSR grant (April 1, 1998 – November 30, 2000)

Awards

J. Pearl received the 1999 IJCAI Award for Research Excellence, for his “fundamental work on heuristic search, reasoning under uncertainty, and causality.”

J. Pearl received the 2000 AAAI Classic Paper Award, for his 1982 paper “Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach.” The paper was recognized for “revolutionizing uncertain reasoning through the introduction of efficient Bayesian inference methods.”