REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate, or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1244, Arlington VA 22202-4302, and to the Office of Management and Budget Paperwork Reduction Project (OIRA-0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)
2. REPORT DATE
 4/25/01
3. REPORT TYPE AND DATES COVERED
 Interim Progress Report - 3/01 - 5/01

4. TITLE AND SUBTITLE
 Sea surface micro-structure: Relation to air-sea fluxes, bubble transport and electromagnetic wave radiation

5. FUNDING NUMBERS
 N00014-99-1-0191

6. AUTHOR(S)
 Dr. Charles Cox

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 University of California, San Diego
 Scripps Institution of Oceanography
 Physical Oceanography Research Division
 9500 Gilman Drive
 La Jolla, CA 92039-0230

8. PERFORMING ORGANIZATION REPORT NUMBER
 UCSD 99-1166

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Office of Naval Research
 800 North Quincy Street
 Arlington, VA 22217-5660

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
 Available to public

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
 Please see attached progress report

14. SUBJECT TERMS
 sea surface structure, dispersed capillary trains, heat flux

15. NUMBER OF PAGES
 1

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
 Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE
 Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT
 Unclassified

20. LIMITATION OF ABSTRACT
 Same as report
Sea surface micro-structure: Relation to air-sea fluxes, bubble transport and electromagnetic wave radiation

Award Number: N00014-99-1-0191
March 2001 – May 2001

Charles Cox
Scripps Institution of Oceanography
9500 Gilman Drive, La Jolla, CA 92030-0230
tel: (858) 534-3235 fax: (858) 822-4307 cscox@ucsd.edu

Two directions of this program have progressed.

1) Analysis of sea surface structure on the millimeter scale. Past analyses have focussed on the spectrum of waves. This approach does not provide full information because of the non-linear relations between short gravity waves and capillary waves. We are focusing on typical dispersed capillary trains and attempting to relate them to the sharp crested short gravity waves on which they ride. Some of the statistical features that need quantification are the rates of production and decay of the trains and the energy flux implied by the decay rates.

2) We are designing a system to estimate the heat flux from to ocean to the atmosphere in relation to the shortest waves. It is known that the existence of capillaries greatly increases various fluxes across the air-sea boundary, but it is not at all clear how this occurs. Several processes may be at work -- convergence/divergence of orbital motions in waves disturbs the boundary layer at the top of the water where heat flux is throttled by laminar flow. This will lead to variable temperatures at the various phases of capillary waves. Another process derives from the decay of capillary trains. This delivers horizontal momentum to the water in patches corresponding to the locations of the trains. Such a patchy driving force will encourage turbulent motions of a size corresponding to the length of the train. A third process is brought about by wind stress on short gravity waves and the capillaries. This is again a patchy forcing and should lead to a natural scale of turbulence. Surface active films on the water surface are a complicating but very important factor. We have available an infra red camera that we expect to help us identify these processes. This camera will be able to identify temperature anomalies of a few hundredths of a degree and on a spatial scale capable of discriminating capillary scale from large- scale processes. We are engaged in mounting this camera, first on a laboratory wind wave channel. Only after finding how this works will we then proceed to open sea observations.