Unsteady Flow Model for Forecasting Missouri and Mississippi Rivers

Technical Paper No. 157

February 1997
Papers in this series have resulted from technical activities of the Hydrologic Engineering Center. Versions of some of these have been published in technical journals or in conference proceedings. The purpose of this series is to make the information available for use in the Center's training program and for distribution within the Corps of Engineers.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
UNSTEADY FLOW MODEL FOR FORECASTING MISSOURI AND MISSISSIPPI RIVERS¹

by

D. Michael Gee² and Ming T. Tseng³

ABSTRACT

This paper describes development of the Mississippi-Missouri UNET [1] Forecast Model. This project utilizes the UNET unsteady flow model and much of the geometric and flow data developed in the Floodplain Management Assessment study (FPMA) [2]. This effort includes development of a graphical user interface (GUI) reflecting the unique needs of real-time forecasting and design of data protocols for storage, retrieval, presentation and transfer of forecast information from upstream to downstream offices. The data management system uses the Hydrologic Engineering Center’s (HEC) Data Storage System [3]. The modeling system is being developed to encompass low flows, routine day-to-day forecasting needs (such as lock and dam operations), as well as the simulation and forecasting of flood events. The status of this effort is described herein.

BACKGROUND

The U.S. Army Corps of Engineers has built and operates a large number of reservoirs, levees, floodways and flow diversion structures in the Mississippi River Basin for flood control and navigation. These projects are operated and maintained by five Corps Divisions in a coordinated manner. The Great Flood of 1993 demonstrated the need for an integrated model to operate and manage flood control projects under a widespread storm system covering a geographic region as large as the upper Mississippi River basin. Subsequent to the 1993 flood the Corps committed to development of a model for the following objectives; 1) improve and facilitate communications between Corps offices, other agencies and Corps customers, 2) provide real-time discharge and stage data during flood events to support emergency management activities, 3) provide a means for assessment of impacts due to levee failures, 4) provide displays of areal extent of flooding

² U.S. Army Corps of Engineers Hydrologic Engineering Center (HEC)
609 2nd St. Davis, CA 95616

³ Headquarters, U.S. Army Corps of Engineers
20 Massachusetts Ave., N.W.
Washington, DC 20314-1000
for various weather and levee failure scenarios, 5) identify navigation hazards, and 6) provide data for real-time damage assessment.

The Mississippi River Model extends from St. Paul MN to the Gulf of Mexico and is configured as a distributed model. The model consists of a network of seven unsteady flow sub-models; four for the mainstem Mississippi River, two for the Missouri River and one for the Ohio River. It covers thousands of miles of river, including hundreds of inflow points and numerous gauges. The area of the initial application is shown in Figure 1. Many of the experiences and much of the data obtained during the FPMA study have contributed to the forecast model development. Although the emphasis of this work to date has been on flood event forecasting activities, the modeling system is being developed to include low flow, routine day-to-day forecasting needs and project operation activities.

Figure 1. Initial Study Area
THEUNETMODELINGSYSTEM

UNET[1]wastheprimaryhydraulicanalysistoolusedintheFPMAstudy. It simulates one-dimensional unsteady flow through a network of open channels. One element of open channel flow in networks is the split of flow into two or more channels. For subcritical flow, the division of flow depends on the capacities of the receiving channels. Those capacities are functions of downstream channel geometries and backwater effects. Another element of a flow network is the combination of flow; which is termed the dendritic problem. This is a simpler problem than the flow split because flow from each tributary depends only on the stage in the receiving stream. A flow network that includes single channels, dendritic systems, flow splits, and looped systems such as flow around islands, is the most general problem. UNET has the capability to simulate such a system.

Another capability of UNET is the simulation of storage areas; e.g., lake-like regions that can either provide water to, or divert water from, a channel. This is commonly called a split flow problem. In this situation, the storage area water surface elevation will control the volume of water diverted. This volume, in turn, affects the shape and timing of downstream hydrographs. Storage areas can be the upstream or downstream boundaries of a river reach. In addition, the river can overflow laterally into storage areas over a gated spillway, weir, levee, through a culvert, or via a pumped diversion.

In addition to solving the one-dimensional unsteady flow equations in a network system, UNET has the capability to apply several external and internal boundary conditions, including; flow and stage hydrographs, gated and uncontrolled spillways, bridges, culverts, and levee systems.

To facilitate model application, cross sections are input in a modified HEC-2 [4] forerwater (upstream to downstream) format. A large number of river systems have been modeled using HEC-2 and, therefore, those existing data files can be readily adapted to UNET format. Boundary conditions (flow hydrographs, stage hydrographs, etc.) for UNET can be input from any existing HEC-DSS [3] data base. For most simulations, particularly those with large numbers of hydrographs and hydrograph ordinates, HEC-DSS is advantageous because it eliminates the manual tabular input of hydrographs and creates an input file which can be easily adapted to a large number of scenarios. Hydrographs and profiles which are computed by UNET are output to HEC-DSS for graphical display and for comparisons with observed data.

AdditionalLeveeFailureAlgorithm

As a result of the 1993 flood on the Missouri River, a new capability for simulating levee failures was added to UNET. The previous approach had been to
consider the area behind the levee to be a storage area. That is, it would fill and empty through a levee breach or overtopped area, but not convey water in the downstream direction. For most situations, particularly with lesser floods than that of 1993, this is an adequate assumption. During 1993, however, virtually all of the agricultural levees along the Missouri were overtopped, resulting in significant overbank conveyance. A new algorithm was developed that allows the overbank storage areas to change to conveyance areas (and back) based upon a triggering river flow or stage.

Graphical User Interface

The GUI adapted for the UNET system was developed by the Corps Cold Regions Research and Engineering Laboratory for the Missouri River Division. That work involved management of releases from mainstem Missouri River dams to prevent damage to endangered species habitat. It was primarily a “simulation” application. That interface was expanded to meet the needs for forecasting applications. The enhancements to the interface included; consistent file management, implementation of a UNET hotstart capability, easy time window selection, and interaction with DSS-DISPLAY in a fashion consistent with water control needs. The GUI runs under UNIX. Additional GUI work is underway to more completely integrate UNET into the water control system. Figure 2 shows an entry window. The GUI also interfaces with a geographic information system (GIS) to provide map-based interaction with the data displays. Figure 3 provides an example of such a display. These displays are active in the sense that access to DSS data can be obtained by clicking on the location of interest.
TWO-DIMENSIONAL CAPABILITY FOR OVERBANK AREAS

An accurate description of combined channel and overland flood flow requires a blend of one (1-D) and two-dimensional (2-D) surface water flow modeling concepts. Two-dimensional computations in a floodplain can range from being fully 2-D and dynamic to consisting of only a few large storage cells with momentum effects completely neglected. For example, through the use of storage cells, UNET provides a method to account for floodplain storage and allows a highly skilled modeler to approximate kinematic floodplain routing through a coarse network of storage cells. A recent evaluation of surface water flow models suggests that it is possible to link 1-D channel flow models, such as UNET, with a 2-D finite volume overland flow model. The overall objective has been to develop the 2-D model and then to formulate, implement, and test a linkage methodology which will allow combined channel and overland flood modeling. This methodology permits 2-D dynamic routing of flows across a floodplain.
represented by moderate to high resolution finite volume grids. The same linkage methodology could be applied to a number of different 1-D and 2-D routing models. This work is being performed by the Corps Waterways Experiment Station.

The 2-D floodplain routing model is similar to UNET in that conservation of mass and momentum equations are solved. However, for purposes of model flexibility an explicit numerical solution has been selected. The 2-D finite-volume method divides the system into an unstructured grid of cells where stage is defined at the center of the cell. Flows are defined along one-dimensional channels that link the centers of the finite volume cells.

The linkage between UNET and the 2-D floodplain model was evaluated via a series of idealized grid and interior boundary condition tests. These tests demonstrated that the coupling between the two models performed well in a highly stable manner and that flow volume was conserved. Following these tests, a 2-D model grid, Figure 4, was

![Diagram of a grid model](image)

Figure 4. Two-Dimensional Model Grid for Crossover Area
developed representing a portion of St. Charles County, MO, where cross-basin flows from the Missouri River into the Mississippi River occur during large floods. This 2-D model was linked with UNET and used to simulate the 1993 flood event.

DATA REQUIREMENTS

A continuing area of concern is the trade off between the cost of obtaining increased accuracy of topographic data and the accuracy of the results computed from those data. This has been studied and documented for the use of HEC-2, a steady flow model [5]. That study determined that the primary source of uncertainty in computed results was the estimation of energy loss coefficients, not topographic data accuracy using normal surveying standards at that time. Experience with one-dimensional unsteady flow models, such as UNET, has confirmed and expanded that conclusion. It is important, in the application of an unsteady flow model, that storage as well as conveyance be properly represented. This requires accurate definition of the conveyance and the flow-controlling elevations and locations (e.g., levees, weirs, etc.). Ground elevations in storage areas such as overbanks and leveed areas are not as critical, if the volumetric capacity of those areas is correct. Information based on topographic maps with 1.5m (5 ft.) contours is usually adequate for overbank areas for systems with broad floodplains. When applying a two-dimensional flow model, however, the ground topography becomes more important, particularly in areas of little vertical relief. It was decided that 0.5m (2 ft.) vertical resolution was needed in the cross-over area between the Missouri and Mississippi Rivers for reliable two-dimensional modeling. This requirement depends on the relationship between water depth and bed elevation changes. When applying any of these hydraulic modeling approaches, one must be aware that there is substantial uncertainty in past inflows to the system as well as the forecasted inflows, all of which will influence the accuracy of the computed results.

CALIBRATION

Model parameters were adjusted to improve reproduction of stages for the 1993 flood. While this effort focused primarily on modifying energy loss coefficients (roughness values) in some areas additional geometric or flow data were needed. During the floodings of June 1995 and May 1996 the Rock Island and St. Louis Districts successfully utilized the previously calibrated UNET data in a real time forecasting situation.

A need for improved forecasting of flows from ungauged areas has been identified. This need is being addressed through the development of improved hydrologic models which parallels the development of HEC’s Hydrologic Modeling System [6].
OPERATION OF THE FORECASTING SYSTEM

Forecast operation of the initial UNET forecasting modeling system involves three Districts at this time; Rock Island, Kansas City, and St. Louis (Fig. 1). During day-to-day forecasting operation, upstream Districts will develop their forecasted flows and stages at a selected data transfer point and electronically provide these data to the downstream District; which will, in turn, use these hydrographs as upstream boundary conditions.

In general, the data transfer location (i.e., the passing of the upstream forecast to the downstream office) is within the upstream District. The downstream boundary condition used for the upstream District model is located at that District’s downstream geographic boundary. The overlap area minimizes the influence from uncertainties in the downstream boundary condition data on the computed results at the data transfer location. Within the overlap area, both Districts use the same river geometry. Forecasting local inflows within the overlap areas, if any, is done by the upstream District.

ACKNOWLEDGMENTS

This work is being performed for Headquarters, U.S. Army Corps of Engineers. Cooperating Corps offices include the North Central Division (St. Paul and Rock Island Districts), the Missouri River Division (Omaha and Kansas City Districts), the Ohio River Division, the Lower Mississippi Valley Division (St. Louis District), the South Western Division, the Cold Regions Research and Engineering Laboratory and the Waterways Experiment Station. The opinions expressed herein are those of the authors and not necessarily those of the U.S. Army Corps of Engineers.

REFERENCES

TP-1 Use of Interrelated Records to Simulate Streamflow
TP-2 Optimization Techniques for Hydrologic Engineering
TP-3 Methods of Determination of Safe Yield and Compensation Water from Storage Reservoirs
TP-4 Functional Evaluation of a Water Resources System
TP-5 Streamflow Synthesis for Ungaged Rivers
TP-6 Simulation of Daily Streamflow
TP-7 Pilot Study for Storage Requirements for Low Flow Augmentation
TP-8 Worth of Streamflow Data for Project Design - A Pilot Study
TP-9 Economic Evaluation of Reservoir System Accomplishments
TP-10 Hydrologic Simulation in Water-Yield Analysis
TP-11 Survey of Programs for Water Surface Profiles
TP-12 Hypothetical Flood Computation for a Stream System
TP-13 Maximum Utilization of Scarce Data in Hydrologic Design
TP-14 Techniques for Evaluating Long-Term Reservoir Yields
TP-15 Hydrostatistics - Principles of Application
TP-16 A Hydrologic Water Resource System Modeling Techniques
TP-17 Hydrologic Engineering Techniques for Regional Water Resources Planning
TP-18 Estimating Monthly Streamflows Within a Region
TP-19 Suspended Sediment Discharge in Streams
TP-20 Computer Determination of Flow Through Bridges
TP-21 An Approach to Reservoir Temperature Analysis
TP-22 A Finite Difference Method for Analyzing Liquid Flow in Variably Saturated Porous Media
TP-23 Uses of Simulation in River Basin Planning
TP-24 Hydroelectric Power Analysis in Reservoir Systems
TP-25 Status of Water Resource Systems Analysis
TP-26 System Relationships for Panama Canal Water Supply
TP-27 System Analysis of the Panama Canal Water Supply
TP-28 Digital Simulation of an Existing Water Resources System
TP-29 Computer Applications in Continuing Education
TP-30 Drought Severity and Water Supply Dependability
TP-31 Development of System Operation Rules for an Existing System by Simulation
TP-32 Alternative Approaches to Water Resources System Simulation
TP-33 System Simulation for Integrated Use of Hydroelectric and Thermal Power Generation
TP-34 Optimizing Flood Control Allocation for a Multipurpose Reservoir
TP-35 Computer Models for Rainfall-Runoff and River Hydraulic Analysis
TP-36 Evaluation of Drought Effects at Lake Atitlan
TP-37 Downstream Effects of the Levee Overtopping at Wilkes-Barre, PA, During Tropical Storm Agnes
TP-38 Water Quality Evaluation of Aquatic Systems
TP-39 A Method for Analyzing Effects of Dam Failures in Design Studies
TP-40 Storm Drainage and Urban Region Flood Control Planning
TP-41 HEC-5C, A Simulation Model for System Formulation and Evaluation
TP-42 Optimal Sizing of Urban Flood Control Systems
TP-43 Hydrologic and Economic Simulation of Flood Control Aspects of Water Resources Systems
TP-44 Sizing Flood Control Reservoir Systems by Systems Analysis
TP-45 Techniques for Real-Time Operation of Flood Control Reservoirs in the Merrimack River Basin
TP-46 Spatial Data Analysis of Nonstructural Measures
TP-47 Comprehensive Flood Plain Studies Using Spatial Data Management Techniques
TP-48 Direct Runoff Hydrograph Parameters Versus Urbanization
TP-49 Experience of HEC in Disseminating Information on Hydrological Models
TP-50 Effects of Dam Removal: An Approach to Sedimentation
TP-51 Design of Flood Control Improvements by Systems Analysis: A Case Study
TP-52 Potential Use of Digital Computer Groundwater Models
TP-53 Development of Generalized Free Surface Flow Models Using Finite Element Techniques
TP-54 Adjustment of Peak Discharge Rates for Urbanization
TP-55 The Development and Servicing of Spatial Data Management Techniques in the Corps of Engineers
TP-56 Experiences of the Hydrologic Engineering Center in Maintaining Widely Used Hydrologic and Water Resource Computer Models
TP-57 Flood Damage Assessments Using Spatial Data Management Techniques
TP-58 A Model for Evaluating Runoff-Quality in Metropolitan Master Planning
TP-59 Testing of Several Runoff Models on an Urban Watershed
TP-60 Operational Simulation of a Reservoir System with Pumped Storage
TP-61 Technical Factors in Small Hydropower Planning
TP-62 Flood Hydrograph and Peak Flow Frequency Analysis
TP-63 HEC Contribution to Reservoir System Operation
TP-64 Determining Peak-Discharge Frequencies in an Urbanizing Watershed: A Case Study
TP-65 Feasibility Analysis in Small Hydropower Planning
TP-66 Reservoir Storage Determination by Computer Simulation of Flood Control and Conservation Systems
TP-67 Hydrologic Land Use Classification Using LANDSAT
TP-68 Interactive Nonstructural Flood-Control Planning
TP-69 Critical Water Surface by Minimum Specific Energy Using the Parabolic Method
TP-70 Corps of Engineers Experience with Automatic River Calibration of a Precipitation-Runoff Model
TP-71 Determination of Land Use from Satellite Imagery for Input to Hydrologic Models
TP-72 Application of the Finite Element Method to Vertically Stratified Hydrodynamic Flow and Water Quality
TP-73 Flood Mitigation Planning Using HEC-SAM
TP-74 Hydrographs by Single Linear Reservoir Models
TP-75 HEC Activities in Reservoir Analysis
TP-76 Institutional Support of Water Resource Models
TP-77 Investigation of Soil Conservation Service Urban Hydrology Techniques
TP-78 Potential for Increasing the Output of Existing Hydroelectric Plants
TP-79 Potential Energy and Capacity Gains from Flood Control Storage Reallocation at Existing U.S. Hydropower Reservoirs
TP-80 Use of Non-Sequential Techniques in the Analysis of Power Potential at Storage Projects
TP-81 Data Management Systems for Water Resources Planning
TP-82 The New HEC-1 Flood Hydrograph Package
TP-83 River and Reservoir Systems Water Quality Modeling Capability
TP-84 Generalized Real-Time Flood Control System Model
TP-85 Operation Policy Analysis: Sam Rayburn Reservoir
TP-86 Training the Practitioner: The Hydrologic Engineering Center Program
TP-87 Documentation Needs for Water Resources Models
TP-88 Reservoir System Regulation for Water Quality Control
TP-89 A Software System to Aid in Making Real-Time Water Control Decisions
TP-90 Calibration, Verification and Application of a Two-Dimensional Flow Model
TP-91 HEC Software Development and Support
TP-92 Hydrologic Engineering Center Planning Models
TP-93 Flood Routing Through a Flat, Complex Flood Plain Using a One-Dimensional Unsteady Flow Computer Program
TP-94 Dredged-Material Disposal Management Model
TP-95 Infiltration and Soil Moisture Redistribution in HEC-1
TP-96 The Hydrologic Engineering Center Experience in Nonstructural Planning
TP-97 Prediction of the Effects of a Flood Control Project on a Meandering Stream
TP-98 Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience
TP-99 Reservoir System Analysis for Water Quantity
TP-100 Probable Maximum Flood Estimation - Eastern United States
TP-101 Use of Computer Program HEC-5 for Water Supply Analysis
TP-102 Role of Calibration in the Application of HEC-6
TP-103 Engineering and Economic Considerations in Formulating Water Resources Systems for Water Quality
TP-104 Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat
TP-105 Flood-Rainfall Forecasting with HEC-1F
TP-106 Flood-Rainfall Forecasting with HEC-1F
TP-107 Application of Rainfall-Runoff Simulation for Flood Forecasting
TP-108 Role of Small Computers in Two-Dimensional Flow Modeling
TP-109 One-Dimensional Model for Mud Flows
TP-110 Subdivision Froude Number
TP-111 HEC-5G: System Water Quality Modeling
TP-112 New Developments in HEC Programs for Flood Control
TP-113 Modeling and Managing Water Resource Systems for Water Quality
TP-114 Accuracy of Computed Water Surface Profiles - Executive Summary
TP-115 Application of Spatial-Data Management Techniques in Corps Planning
TP-116 The HEC's Activities in Watershed Modeling
TP-117 HEC-1 and HEC-2 Applications on the MicroComputer
TP-118 Real-Time Snow Simulation Model for the Monongahela River Basin
TP-119 Multi-Purpose, Multi-Reservoir Simulation on a PC
TP-120 Technology Transfer of Corps' Hydrologic Models
TP-121 Development, Calibration and Application of Runoff Forecasting Models for the Allegheny River Basin
TP-122 The Estimation of Rainfall for Flood Forecasting Using Radar and Rain Gage Data
TP-123 Developing and Managing a Comprehensive Reservoir Analysis Model
TP-124 Review of the U.S. Army Corps of Engineering Involvement With Alluvial Fan Flooding Problems
TP-125 An Integrated Software Package for Flood Damage Analysis
TP-126 The Value and Depreciation of Existing Facilities: The Case of Reservoirs
TP-127 Floodplain-Management Plan Enumeration
TP-128 Two-Dimensional Floodplain Modeling
TP-129 Status and New Capabilities of Computer Program HEC-6: "Scour and Deposition in Rivers and Reservoirs"
TP-130 Estimating Sediment Delivery and Yield on Alluvial Fans
TP-131 Hydrologic Aspects of Flood Warning - Preparedness Programs
TP-132 Twenty-five Years of Developing, Distributing, and Supporting Hydrologic Engineering Computer Programs
TP-133 Predicting Deposition Patterns in Small Basins
TP-134 Annual Extreme Lake Elevations by Total Probability Theorem
TP-135 A Muskingum-Cunge Channel Flow Routing Method for Drainage Networks
TP-136 Prescriptive Reservoir System Analysis Model - Missouri River System Application
TP-137 A Generalized Simulation Model for Reservoir System Analysis
TP-138 The HEC NexGen Software Development Project
TP-139 Issues for Applications Developers
TP-140 HEC-2 Water Surface Profiles Program
TP-141 HEC Models for Urban Hydrologic Analysis
TP-142 Systems Analysis Applications at the Hydrologic Engineering Center
TP-143 Runoff Prediction Uncertainty for Ungauged Agricultural Watersheds
TP-144 Review of GIS Applications in Hydrologic Modeling
TP-145 Application of Rainfall-Runoff Simulation for Flood Forecasting
TP-146 Application of the HEC Prescriptive
Reservoir Model in the Columbia River
System
TP-147 HEC River Analysis System (HEC-RAS)
TP-148 HEC-6: Reservoir Sediment Control
Applications
TP-149 The Hydrologic Modeling System (HEC-HMS):
Design and Development Issues
TP-150 The HEC Hydrologic Modeling System
TP-151 Bridge Hydraulic Analysis with HEC-RAS
TP-152 Use of Land Surface Erosion Techniques
with Stream Channel Sediment Models
TP-153 Risk-based Analysis for Corps Flood
Project Studies - a Status Report
TP-154 Modeling Water-Resource Systems for Water
Quality Management
TP-155 Runoff Simulation Using Radar Rainfall
Data
TP-156 Status of HEC Next Generation Software
Development
TP-157 Unsteady Flow Model for Forecasting
Missouri and Mississippi Rivers
Unsteady Flow Model for Forecasting Missouri and Mississippi Rivers

11. SUPPLEMENTARY NOTES

UNLIMITED. Approved for Public Release.

13. ABSTRACT (Maximum 200 words)

The objective of this paper is to present methods that can be used to estimate the quantity and gradation of sediment produced from a watershed. These values are necessary for mobile boundary hydraulic modeling and other sedimentation studies. These quantities are needed for designing flood control channels, estimating sediment deposition in reservoirs or navigation channels, and evaluating the sedimentation impacts of proposed projects or land use modifications. Considerable information is available for the estimation of sediment yield from a watershed. These methods use both empirical techniques and land surface erosion theory. The same is true for quantifying sediment transport and sorting processes in rivers. This paper focuses on procedures for using land surface erosion computations to develop the inflowing sediment load for a river sedimentation model, specifically, HEC-6.

The limitations of currently available methods and their ranges of applicability are presented and procedures for evaluating computed results for watershed erosion and sediment transport modeling are described. Included herein are the results of an assessment of numerical models for the prediction of land surface erosion. It was concluded from this assessment that these models have not yet evolved from the experimental/developmental phase to routine engineering use. Therefore, this paper presents a suggested strategy for the use of several traditional methods of computation of land surface erosion to prepare inflowing sediment loads for the operation of HEC-6.