Smart SensorWeb

National Military Sensing Symposium

Dr. Jasper C. Lupo
Director, Sensor Systems
Deputy Under Secretary of Defense for Science and Technology
16 November 1999

Smart SensorWeb

- Enhanced Situational Awareness
 - Web-Centric
 - Real-time
 - Local Imagery
 - Micro-Weather
 - Remote Targeting
 - Simulation-based Planning

- Self-configuring
 - Sensor Arrays
 - Environ. Modeling
 & Prediction
 - Micro Sensors
 - Smart Weapons
 - Automatic Target Recognition

- Information Fusion and Visualization
 - Next Gen Internet
 - Immersive User Interfaces

Approved for public release; distribution is unlimited.
Form SF298 Citation Data

<table>
<thead>
<tr>
<th>Report Date</th>
<th>Report Type</th>
<th>Dates Covered (from... to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/11/1999</td>
<td>N/A</td>
<td>(“DD MON YYYY”)</td>
</tr>
</tbody>
</table>

Title and Subtitle
Smart SensorWeb National Military Sensing Symposium

Authors

Performing Organization Name(s) and Address(es)
Deputy Under Secretary of Defense for Science and Technology

Sponsoring/Monitoring Agency Name(s) and Address(es) Monitorign Agency Acronym

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Document Classification
unclassified

Classification of Abstract
unclassified

Number of Pages
15
Smart SensorWeb

Vision: An intelligent, web-centric distribution and fusion of sensor information . . . that provides greatly enhanced situational awareness, on demand, to Warfighters at lower echelons.

“… emphasizes large arrays of local sensors joined with other assets: imagery, weather, weapons, simulations, etc. . . .”

Unprecedented Advances in Commercial Technologies

- Mobile wireless networks
- Micro computers
- Tele-presence
- Geo-location and tracking devices
- Wireless internet connectivity
- Virtual reality (entertainment, video games, immersive interaction)
Relevant DoD S&T

- DARPA
 - Sensor Programs
 - VSAM
 - AVS
 - SensIT
 - Knowledge-Base Programs
 - Dynamic Databases
 - Command Post of the Future
 - Warfighter Visualization
 - Intelligent Integration of Information Technology
 - Rapid Knowledge Formation
 - Comm Network Programs
- Service Programs
 - ACTDs: MOUT, ELB, JISR, FMP
 - Warrior Extended Battlespace Sensors
 - Multifunction RF Sensor Technology
 - Cooperative Engagement Capability
 - Battlespace Infosphere
- DUSD(S&T) Initiatives
 - Cognitive Readiness, ATR, etc.
- DMSO
 - HLA
 - Environmental & HB Reps
- Basic Research
 - MURI
 - Data Fusion in Large Array Micro-sensors
 - Mobile Augmented Battlespace Visualization
 - Real-Time Fault-Tolerant Network Protocols
 - Adaptive Mobile, Wireless Networks for Highly Dynamic Environments
 - Basic Research Plan efforts
 - Sensors, algorithms, environmental and cognitive modeling, etc.

Force Medical Protection ACTD

Phase I:
Chemical Dosimeter
(Non Real-time)

Phase II:
Chemical Dosimeter (Real-time)/Biological Dosimeter
(Non Real-time)

Providing force protection through superior technology!

Estimated unit cost for production: Between $10-$100 per badge
The Evolution

Sensors...
- Multi-domain sensors
- Low cost and micro size
- Capable of target ID (ATR)
- Autonomous & platform based

SensorWeb...
- Sensor arrays
- Wireless, high-bandwidth communications
- Next Generation Internet
- Efficient links to weapons and simulations

Smart SensorWeb...
- Adaptive, intelligent sensor arrays
- Intelligent information management and dissemination
 - Avoids “information overload”
- Dynamic databases and knowledge-bases
- Intelligent agents as mediators
- Multi-sensory, natural user interfaces

Smart SensorWeb: Objectives (FY00 - FY02)

- Identify Warfighter requirements for SSW
- Showcase/illuminate current S&T products and capabilities
- Demonstrate SSW technical feasibility
- Demonstrate enhanced situational awareness
- Assess utility to the Warfighter
- Identify future research priorities
SSW Elements

- **ImageWeb**
 - Adaptive sensor arrays
 - Intelligent data fusion
- **WeatherWeb**
 - Nowcasts & predictions
 - Dynamic weather effects
- **WeaponsWeb**
 - Sensor-shooter links
 - Optimized engagements
- **SimulationWeb**
 - Simulation-based development
 - Mission planning, rehearsal, & training
- **Information Integration**
 - Info fusion & visualization
 - Data standards

No where to hide!

SSW Concept

- **Decision Dominance**
 - ImageWeb
 - ID Sensor Arrays
 - Add Sensor Arrays
"Fire Mission. Enemy Tank in Town."
SSW Concept

Decision Dominance

- ImageWeb
 - ID sensor arrays
 - Add sensor arrays
 - Sensor alerts
 - Visualize data
 - Obtain images

- WeaponsWeb
 - Determine threat
 - Friendly situation
 - Engage target
 - Assess damage

- WeatherWeb
 - Nowcasts & predictions
 - Dynamic effects

SSW Concept

Decision Dominance

- ImageWeb
 - ID sensor arrays
 - Add sensor arrays
 - Sensor alerts
 - Visualize data
 - Obtain images

- WeaponsWeb
 - Determine threat
 - Friendly situation
 - Engage target
 - Assess damage

- WeatherWeb
 - Nowcasts & predictions
 - Dynamic effects

- SimulationWeb
 - Fly-through
 - Planning/rehearsal
Testbeds allow a near-term technology “build-and-demonstrate” that evolves to the long-term vision.

Four Key Testbed Projects to Demonstrate Capability:
- ImageWeb
- WeatherWeb
- WeaponsWeb
- SimulationWeb

Smart SensorWeb: Testbed Approach

Focus on MOUT Scenario

Center for Army Lessons Learned
- Majority of MOUT casualties due to inadequate situational awareness
- Commanders have difficulty “seeing” the fight

Changing Environments

Security Threats
- Rogue Nation States/Alliances
- International Crime Organizations
- Transnational Actors/Terrorists
- Weapons of Mass Destruction

21st Century
- Conflict Increasing
- Proliferation of Military and Commercial Technologies
- Operations in Urban Environments
- Preponderance of Coalitions
- Ethnic Strife

Impact
- Greater Range of Solutions
- No US Monopoly in all Technologies
- Complex Targets/Terrain
- Information Management Critical

“One Ring to rule them all,
One Ring to find them,
One Ring to bring them all, and
in the darkness bind them.”

Data
Understanding
Information
Knowledge
Decision Dominance

Smart SensorWeb:
Testbed Approach

Focus on MOUT Scenario

Center for Army Lessons Learned
- Majority of MOUT casualties due to inadequate situational awareness
- Commanders have difficulty “seeing” the fight

Changing Environments

Security Threats
- Rogue Nation States/Alliances
- International Crime Organizations
- Transnational Actors/Terrorists
- Weapons of Mass Destruction

21st Century
- Conflict Increasing
- Proliferation of Military and Commercial Technologies
- Operations in Urban Environments
- Preponderance of Coalitions
- Ethnic Strife

Impact
- Greater Range of Solutions
- No US Monopoly in all Technologies
- Complex Targets/Terrain
- Information Management Critical

“One Ring to rule them all,
One Ring to find them,
One Ring to bring them all, and
in the darkness bind them.”

Data
Understanding
Information
Knowledge
Decision Dominance

Smart SensorWeb:
Key Players

ImageWeb:
Dr. Don Reago, Army NVESD
Ms. Mun-Won Fenton, ONR

WeatherWeb:
Dr. Douglas Brown, ARL
Dr. John McCarthy, NRL, Monterey

WeaponsWeb:
Col Norman Leonpacher, AFRL-Eglin AFB
Dr. James Chew, ONR

SimulationWeb:
Mr. William Jarvis, US Army NVESD
CAPT Robert Eberth, MCWL

Information Integration:
Mr. John Graniero, AFRL
Mr. George Lukes, DARPA
Dr. Lee Hammarstrom, NRO

ImageWeb
Year 1 - Web on Line

Point, click and see in an urban environment:

- Priority alert to operator
- 3-D visualization
- Multiple sensors
 - IR/EO,
 - acoustic, &
 - seismic
 - µ-sensors
- Internet/LAN real-time access
- Images registered to site map
 (Compact Terrain Data Base)
- Target classification
- Target geolocation
- Target tracking
- Target hand-off

Alerting icon queried for imagery
Year 2 - ImageWeb Assistant

Building on Year 1 to automate target of interest detection/recognition and tracking

- Data fusion between multiple viewpoints
- Multi-modal data fusion (thermal/daylight)
- Random sensor placement experiments
- Weather Web integration
- Image to model registration
- MTI/Change Detection/Cross-cueing
- Sensor arbitration for ‘best view’
- Geolocation via N-camera registration
- Simulation integration via HLA protocol

Multi-modal Data Fusion

Image to model registration

Year 3 - Intelligent Image Agent

Smart Sensor Webs

- Mobile Ad Hoc Network
- Air dropped sensors
- Tactical mobile robots
- Multi-sensor coordination
- Leveraging DARPA’s SUO, IU, DDB, MEMS Programs
- Novel sensors
- Managed video/data streams
- Tactical sensor integration
- 4-D model - live simulation
LADAR Automatic Target Recognition Captive Flight Test Results

SimulationWeb
SSW: From Data to Understanding

Column of enemy tanks is reconnaissance element of larger tank regiment
- Hills provide the enemy cover from friendly direct fire for next 20 minutes
- Indirect fire engagement now can halt regiment’s narrow route of advance until attack air arrives

Enhanced visualization of the battlefield:
- 3D view of the area
- Tank is one of three in a column
- Friendly locations

Managing SSW Information

Approaches for Handling Information

Specific Information Management (registered to discreet objects, locations, & events)
- This patch of ground is swampy.
- These four vehicles are tanks.
- This building is a military HQ. Click for floor plan.

Generalized Information Management (associated with classes of objects, locations, & events)
- Low lying ground tends to be swampy.
- Tanks move in Platoons of four.
- Military buildings are located at the edge of the town and the headquarters building is the largest in the group.
SSW Testbed Plan

Summary

- Broad initiative
 - Large arrays of local sensors
 - Testbed emphasis to prove concept
- Leverages DoD and commercial investments
- Long term research opportunities