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Abstract
To evaluate the efficiency of the remote netted acoustic/seismic sensor array (RNADS) [1–6]

for classification, we must investigate the performance of various classification algorithms.
Currently, the U.S. Army Research Laboratory (ARL) is developing an acoustic/seismic target
classifier using a backpropagation neural network (BPNN) algorithm. Various techniques for
extracting features have been evaluated to improve the confidence level and probability of
correct identification (ID) [1,3,6]. For any given feature space, the BPNN creates complex bound-
aries in the hyperspace occupied by the feature vectors and only one hidden layer is required to
create hyperplanes as decision boundaries [7,8]; this, however, may not be the ideal classifier.
Alternately, nonparametric and parametric classifier architectures are being investigated, since it
is the mutual relationship between features and classifiers that allows the maximum recognition
performance. Intuitively, we expect the BPNN to perform well, based on results from k-means
analysis techniques. Using a hierarchical k-means analysis tool, we determined that only a few
feature data clusters exist for each class. These “feature pockets” may comprise about 40 percent
of the training data in some instances and, in fact, have been suggested to be useful in a mini-
mum distance classifier or beneficial in learning vector quantization. The nonparametric classi-
fier architectures make no assumption about the statistics of the feature space distribution [7]
and instead, rely on the data to estimate classification parameters. They have advantages when
the features are created using nonlinear processes with highly non-Gaussian statistics and allow
flexibility in the tradeoff of computation, memory, training, and testing. In this report, we
present results using the BPNN classifier, a nearest cluster classifier (NC), a simplified form of
the k-nearest neighbor algorithm [9–12], and radial basis functions (RBF), which is a neural
network architecture where the hidden units provide a set of functions that constitute an arbi-
trary basis for the input patterns. We will also present several parametric classifier results. These
include a linear regression classifier (LIN), which forms a linear mapping between the output
(class) variable and the input variables (features); the logistic regression classifier, which uses
the logistic function in the mapping; and various multivariate Gaussian classifiers.

1 Introduction
We discuss the research at ARL in the classification of ground vehicles, based on the fusion of
acoustic and seismic collocated sensors. A fundamental problem we have addressed before [1–
6,13] is the selection of robust features that are stable and class specific. At this point, the har-
monic line association features (HLA) and seismic shape statistics have proven to be the best
choice [14]. Further improvements are under investigation using propagation models and
harmonic tracking techniques [15] that will alleviate some of the problems associated with the
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nonstationary nature of acoustic and seismic signatures [5,7]. An issue that we have not thor-
oughly addressed and comprises the bulk of this report is the performance of differing classifier
topologies. It is certain that the Bayes likelihood ratio test is optimal in minimizing the classifi-
cation error, but in most examples, one must estimate the feature space density functions using
a finite number of samples. The estimation can be arduous and often requires a large number of
samples to be accurate. Instead of using this approach, we simply looked at the performance of
several readily available architectures, both nonparmetric and parametric.

2 Parametric and Nonparametric Classifier
Architectures

The parametric classifiers perform quite well when the statistical parameters of the model fit
the underlying multidimensional probability distribution. However, the opposite is often true
and one can expect very poor results when the mismatch is too great between the true statistical
parameters and the assumed ones that ultimately govern class separability and the model. The
LIN classifier generates a multivariate linear relationship between the input variables and the
output or class variable. For example,

y = w0 + w1x1 + ….. + wnxn + error (1)

is the defining relationship with the solution resulting from the minimization of the sum of
squared errors over the data.

The solution of the least-squares problem determines the weights, resulting in the following:

  W* = X TX
– 1

X TD (2)

with W* being a column vector of the weights and

  

X =

1 X 1
1 X 2
... ...
1 X N

, D =

d 1
d 2
...

d N

,
(3)

with Xi being the i-th input vector and di the desired output for the i-th input vector of the
training set.

Linear regression is used as a baseline algorithm to compare all other classification algo-
rithms. When the actual relationship is nonlinear, LIN generates a very poor model.

As mentioned, the logistic regression classifier generates a map between the input variables
and the output according to the logistic function

   y = 1

1 + e –Σ (4)

with
   

Σ = w 0 + w ix iΣ
i = 1

N input

. (5)



See references [11,20] for further information concerning the training of the logistic regres-
sion architecture; for convenience, some of the important relationships for training are given
below in equations (6) and (7).

To fit the logistic function to the data-set, the cross entropy cost function is commonly used.
   E k = d k • ln 1/y k + 1 – d k • ln 1/ 1 – y k . (6)

Here, Ek is the error from the i-th sample pattern, yk is the output produced with the input
vector of the k-th example pattern (xk), and dk is the desired output for the k-th example pattern.
The ln is the natural logarithm.

The computation of the gradient of the cross entropy error summed over the entire training
set allows the weight update, which results in the following:

   ∆w i = ηx ki d k – y k (7)

where η is the learning rate for gradient descent and dk is the desired class output for the k-th
pattern presented. Stopping criteria can be number of epochs, maximum time for training, or
rms error for classification.

A standard parametric classifier is the multivariate Gaussian classifier, which makes the
assumption that the underlying feature distribution is multivariate normal and characterizes
each class by a mean vector and a covariance matrix.

   
p X/c i = 1

2π M/2 R i
1/2 exp – 1

2
X – µ i R i

–1 X – µ i (8)

M = feature dimension
µi = i-th class mean vector
R

i
 = i-th class covariance matrix

Classification of the unknown feature vector X is accomplished by computing the condi-
tional probability p(X/ci) for all classes, the prior probability p(ci) by simple frequency tech-
niques, and then calculating the likelihood ration given by

  L j X = p X/c j p c j , (9)

where the X is assigned to the class j with the maximum Lj.

This technique will not perform as well as nonparametric techniques if the data distribution
is non-Gaussian, but it serves as a useful benchmark for more complex algorithms.

The Gaussian mixture classifier is a refinement of the previous technique. This is actually
considered a nonparametric technique since we are using the data to generate the mixed
Gaussians. In this case, the probability distributions are modeled as a weighted set of Gaussians.
Here, the conditional distributions are given by

   
p X / c j = w kG kΣ

k = 1

Ng

, (10)



where wk is the weight of the k-th Gaussian Gk and the weights sum to one. The Gaussians are
given by

   
G k = 1

2π n/2 R k
1/2 exp – 1

2
X – M k

TR k
– 1 X – m k . (11)

As before, Rk is the covariance matrix for the k-th Gaussian and Mk is the corresponding
mean vector. Training is accomplished using an iterative procedure known as the estimate-
maximize algorithm [16], which maximizes the likelihood of the training set generated by the
probability distribution function. The parameters estimated are simply the weights, mean
vectors, and covariance. See the references [9,10] for the training procedure.

Another nonparametric classifier we considered is the nearest cluster (NC) approach. This
algorithm is very similar to the k-nearest neighbor (kNN) technique but is a simplification of it,
requiring less memory and computation time. The NC classifier first performs k-means analysis
on the training data to form a set of clusters; with each of these clusters, we can calculate a
posterior probability for each class represented in each cluster.

For example, the posterior probability would be expressed as
   

p ω j/N k =
N jk

N k
, (12)

with

ωj = class j,
Njk = number of tokens from class j within the k-th cluster, and
Nk = number of tokens in k-th cluster.

Equation (12) is a simple frequency method for determining probabilities.

Classification occurs by first determining the closest cluster to the unknown feature
vector using a Euclidean metric; the unknown is then classified according to the largest poste-
rior probability in that cluster. Performance of this classifier is suboptimal but useful, since in
some instances, it can perform as well as the kNN classifier.

The third nonparametric classifier we considered is the RBF neural network. This classi-
fier can be described mathematically by

   
p y/c j = y kϕ y/c jΣ

k = 1

N c
, (13)

with:

Nc = number of clusters,
Ck = k-th cluster vector,
λk = weight of k-th cluster centroid,

  = euclidean norm, and
φ( ) = nonlinear transformation function.

The nonlinear transformation function can take several forms. The choice is important only
in a few instances and is not considered crucial to the RBF performance [17]. In this paper, we
used the Gaussian as the nonlinear transformation function. The technique employed for the



RBF classifier is a special case of the linear regression model [18] that exploits orthogonal least-
squares learning. Typical characteristics for the RBF classifier include a moderate training time,
fast classification, and moderate memory requirements.

3 Boundary Decision Architectures
Several boundary decision architectures are available; for example, the simplest and

most often used is the BPNN, which allows for separation of complex hyperboundaries, de-
pending on the number and size of the hidden layers. The fast BPNN is an improvement over
the standard BPNN because of its judicious selection of initial weights and faster convergence.
Some studies have shown superior recognition performance as well [7,12]. The discriminant
neural network is noteworthy because its successive approximations of class boundaries via
linear discriminant functions maximize separability [19]. There are others as well that represent
slight improvements in convergence and/or recognition, but the tradeoff is in the complexity of
the algorithm and its implementation.

Through k-means analysis, we have seen that feature sets exhibit only a few clusters
with minor overlap; in this case, a boundary decision classifier like the BPNN should perform
well. We have used the BPNN with an adaptive learning rate that allows fine-grain adjustments
during training. Smoothing is also incorporated and allows the control of weight adjustment,
based on past values of gradient descent, and can prevent the training process from terminating
in a shallow local minimum. The hyperbolic tangent is used instead of the sigmoid function
because its zero-centered transform reduces training time.

  
y =

1 – e –net

1 + e –net (14)

with

   net = w 0 + w ix iΣ
i

. (15)

For target ID, the artificial neural network (ANN) can provide both a robust classifier
and a measure of confidence in the classification decision. The ANNs derive their computational
power from the parallel-distributed structure and the ability to learn and adapt.

4 RNADS Feature Space
The nonstationary characteristics of the acoustic signatures increase the difficulty in the

feature selection process, but methods to alleviate this difficulty somewhat have been reported
[1,3]; the most notable to date is the use of the HLA algorithm with higher order shape statistics
[6].

The HLA algorithm takes advantage of spectral characteristics that are dominated by
narrow-band spectral peaks. In the past, the narrow-band spectral peaks were used for classifi-
cation purposes, either in hierarchical clustering schemes or as direct inputs into an ANN. The
spectral peaks are typically bandlimited between 1 and 400 Hz, but peak components occur
between 10 and 120 Hz. The majority of tracked and wheeled vehicles of interest are diesel
powered and, thus, the engine firing rate and track slap produce these spectral peaks. When
considering feature methods based solely on the acoustic spectrum, the entire set of spectral



peaks can often be used. Alternately, one can select specific frequency components to improve
signal-to-noise ratio (SNR) by using split-window peak picking and/or HLA, each of which has
the added benefit of appreciably reducing the feature space while maintaining class separability.

The HLA technique selects those peaks that are harmonically related to create harmonic
line sets for each frame (frame = 1 second) of data samples. After split-window peak picking is
performed on the PSE feature set, the algorithm finds the maximum peak in the frequency set
and assumes that this peak is some k-th harmonic line of the fundamental frequency subject to
the following soft constraint for fundamental frequency range,

   f fund ∈ 8,20 Hz , (16)

and then calculates the total signal strength in this HLA set. The integer value k that gives the
maximum signal strength is assumed to be the correct harmonic line number and the harmonic
lines of this particular set are retained as a feature vector. This technique has two advantages: (1)
the feature vector is normalized and is based solely on harmonic line number and not a function
of frequency, and (2) the peak energy is tracked frame to frame, thus producing a predominance
pattern for the acoustic energy source [3].

The naval community has found shape statistic features (SSF) to be beneficial in certain
classification problems. The SSFs have been used in evaluating the discrepancy between the
correlated and uncorrelated components of return energy in low-frequency active target-echo
characterization [7]. Also, shape transition statistics have found use in discriminating biologic
from manmade sounds by exploiting minute differences in broadband energy [7]. When one
looks carefully at the spectrograms for the seismic data, it is apparent that shape statistics could
exploit some of the differences in tracked versus wheeled spectrums and, perhaps, the small
changes in the spectral content of various tracked vehicles. Based on these findings, we have
investigated the use of the higher order shape statistics as well as introducing a temporal shape
transition statistic for classifying the seismic feature sets. A useful temporal shape transition
statistic is simply the absolute change in the shape mean for each subsequent frame. See refer-
ences [7,13,14] for further information concerning the RNADS shape statistic features.

5 Data Collection and Classifiers
We gathered the combined acoustic/seismic data from collocated acoustic and seismic

sensors using a three-axis seismic sensor configured as part of an acoustic sensor array that ARL
uses on typical field experiments. HLA and shape statistic features data [13,14] are extracted
from the set of vehicles and then split into a testing and training file. The training file will
typically consist of 70 percent of the whole data-set for the classifiers. For each classifier archi-
tecture, we performed several train/test experiments to achieve optimization. Crossvalidation
was then performed using vehicle data that was withheld from the original train/test proce-
dure. All the odd class labels used in this experiment are heavy-tracked vehicles with the excep-
tion of class 7, a light-tracked vehicle. All the even classes are very heavy or heavy-wheeled
vehicles. Classes 1 to 4 have similar origins, as do classes 5 to 7.

6 Results
To qualify the classification performance, a confusion matrix is calculated that provides the
percentage of correct identification (CID) for each class of ground vehicles based on the following
expression:



  C ID =
NP CID

K
, (17)

with K being the total number of observations and NPCID
, the number of correct decisions.

The rms error, a measure of the confidence in the classifier and the overall classification error
for each target, was calculated by the following:

   
E rms = 1

2
d ij – y ij

2Σ
j = 1

J
Σ

i = 1

N train
, (18)

where i is indexing each training input pattern and j is indexing each output class. The Erms for
training and crossvalidation was statistically no different. A simple percentage relationship for
all test samples is given by

   Error class = 100 × N misclassed
N total test tokens

, (19)

which is a useful indicator of overall performance.

The following tables are the crossvalidations using the HLA and the SSF feature space de-
rived for the various targets. The values in the tables are the mean score for several train/test
and crossvalidation runs with each classifier architecture. The numbers represent percentage of
correct identifications as expressed in equation 18.

Table 1. Linear Regression

Actual 1 2 3 4 5 6 7

1 78 0 7 0 2 6 5
2 2 73 0 22 7 8 0
3 9 3 85 1 15 3 7
4 0 17 0 68 11 0 0
5 0 7 0 7 47 22 5
6 1 0 0 0 10 47 2
7 10 0 8 3 8 14 81

Erms = 0.285  Errorclass = 32.7%

Table 2. Unimodal Gaussian

Actual 1 2 3 4 5 6 7

1 75 1 7 0 3 6 4
2 0 61 0 8 0 2 0
3 10 1 74 0 1 2 0
4 0 8 0 71 3 0 0
5 8 29 14 21 83 57 44
6 1 0 0 0 5 33 4
7 6 0 5 0 5 0 48

Erms = 0.377  Errorclass = 33.5%

Table 3. Logistic Regression

Actual 1 2 3 4 5 6 7

1 85 2 4 0 7 2 3
2 0 81 0 2 1 0 2
3 10 2 96 2 5 0 6
4 0 9 0 89 11 0 0
5 1 6 0 7 57 2 1
6 1 0 0 0 12 81 0
7 3 0 0 0 7 15 88

Erms = 0.248  Errorclass = 22%

Table 4. Gaussian Mixture

Actual 1 2 3 4 5 6 7

1 89 14 6 4 4 2 9
2 0 76 0 2 2 2 0
3 4 1 79 1 6 1 2
4 0 6 1 88 13 0 3
5 4 3 3 5 70 0 6
6 0 0 0 0 2 79 2
7 3 0 11 0 3 16 78

Erms = 0.377  Errorclass = 19.8%



7 Conclusions
The classifier architectures that gave suboptimal performance include the linear regression

and unimodal Gaussian classifiers, both of which are parametric, and the radial basis function
and nearest cluster classifier, which are nonparametric. One would expect the linear regression
architecture to perform poorly; the generated hyperplanes can only be optimal in a Bayes sense
if the feature distributions can be characterized as normal with equal covariance. Regardless, the
simplicity of the linear regression algorithm is often favorable and has been a choice in the past
[9] for feature distributions that are nonnormal.

The unimodal Gaussian suffers similar setbacks; the feature space is modeled as multivariate
normal where each class is characterized by a mean vector and covariance matrix. Both the large
Erms (as in equation 18) and the percent error demonstrate its ineffectiveness. As we have stated
previously [1,13], a multimodal classifier is more appropriate.

The RBF classifier also performed poorly, but, intuitively, we would expect that its flexibility
in modeling non-Gaussian multimode distributions [8] would assist in classifier performance.
On average, we see a low percentage of correct IDs but without the drastic errors in correct ID
that other classifiers exhibit. The lower Erms indicates higher confidence in the RBF decisions.

Past experience using k-means analysis suggested that the nearest cluster (NC) classifier
might be beneficial. When exploring the dendrograms of hierarchical k-means clustering, we
observed perhaps 3 to 5 clusters for each class of vehicle. In a limited sense, these clusters were
used to classify the vehicles based on a simple distance metric. Here the NC method goes a step
further in generating the posterior probabilities for class membership with respect to each

Table 5. Radial Basis Function

Actual 1 2 3 4 5 6 7

1 67 0 7 0 1 2 2
2 0 58 0 5 6 7 1
3 16 4 79 1 10 5 15
4 0 24 2 67 9 1 4
5 3 6 2 20 56 13 8
6 2 3 1 2 6 64 4
7 12 5 9 5 12 8 66

Erms = 0.2607  Errorclass = 35.6%

Table 6. Nearest Cluster

Actual 1 2 3 4 5 6 7

1 72 1 11 0 2 4 5
2 1 61 0 26 8 4 0
3 19 2 78 0 10 1 11
4 0 17 0 64 13 0 0
5 0 15 0 9 56 58 9
6 0 0 1 0 0 28 3
7 8 4 10 1 11 4 72

Erms = 0.263  Errorclass = 37.5%

Table 7. Backpropagation Neural Network

Actual 1 2 3 4 5 6 7

1 75 0 1 0 1 2 4
2 0 83 0 0 2 1 0
3 11 2 94 1 1 0 8
4 0 7 1 96 8 0 0
5 6 8 0 3 75 5 6
6 1 0 0 0 5 84 3
7 8 0 4 0 8 8 79

Erms = 0.195  Errorclass = 18.6%



cluster and input vector. However, the data-sets are more extensive and apparently there is
great overlap in certain classes as can be seen by the class 5 and class 6 results. Therefore, overall
performance is poor.

Acceptable classification performance was demonstrated by the Gaussian mixture, logistic
regression, and BPNN classifier architectures. The Gaussian mixture classifier estimates the
conditional probability distribution function using a weighted average of Gaussians, which
provides an advantage due to the ability to approximate arbitrary distributions. The identifica-
tion results are favorable, but we still observe a low confidence in this architecture’s decision.
This can be seen by the higher rms error results. This result is not totally unexpected, despite its
advantages; the problem of estimating complex multimodal distributions still exists. The
weighted summation does not completely address this problem.

For all its simplicity, the logistic regression architecture performed quite well. What can
account for this? This parametric model, in effect, closely matches the underlying statistics
primarily because it creates hyperplane boundaries similar to the true distributions. Also, in this
case, a weighted sum of inputs is passed through a sigmoid nonlinearity to generate the output,
which is very similar to more complex neural network architectures. Does this suggest that the
underlying distribution is sigmoid in nature? Perhaps—certainly the underlying sigmoid kernel
function is a better fit to the region of interest and explains why the Gaussian kernel, more
suitable for radially centered data, does not perform as well. The logistic regression architecture
is also considered to be a boundary decision classifier that may improve performance for
multimodal distributions.

Finally, we see that the BPNN gives excellent results. Obviously, there are many similarities
between the BPNN and the logistic regression classifier. The BPNN has the added advantage of
the hidden layer, allowing for a finer parsing of the hyperspace and thus finer boundaries in the
classification scheme.

To conclude, when one accounts for the training and testing time and the amount of memory
required for the classifier, the logistic classifier architecture is a good choice for classification
using this feature space. Its performance is exceptional at very low system cost.
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