SOLAR RADIATION PRESSURE MODELING ISSUES FOR
HIGH ALTITUDE SATELLITES

THESIS

Dayne G. Cook, Major, USAF
AFIT/GSO/ENY/01M-01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

20010525 025




The views expressed in this thesis are those of the author and do not reflect the
| official policy or position of the United States Air Force, Department of Defense, or

the U.S. Government.




AFIT/GSO/ENY /01M-01

SOLAR RADIATION PRESSURE MODELING ISSUES FOR
HIGH ALTITUDE SATELLITES

THESIS

Presented to the Faculty
Department of Aeronautics and Astronautics
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Space Operations

Dayne G. Cook, B.S.
Major, USAF

March 2001

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED




AFIT/GSO/ENY/01M-01

SOLAR RADIATION PRESSURE MODELING ISSUES FOR
HIGH ALTITUDE SATELLITES

Dayne G. Cook, B.S.

Major, USAF
Approved:

,Am'(ﬁ\ I TMW\ 2 MAKOI
Steven G. Tragesser / Date
Committee Chair

N , . . .

il < A 7 Do )

William E. Wiesel Date

Committee Me r

‘///‘ _ 0a /e O/

Gregory S. Agnes Date
Committee Member




Acknowledgements

I would be remiss in my duties as a student if I did not thank all those who
have taught me. My sincere appreciation goes to my AFIT instructors, all of whom
played a role in helping me reach this end state. Out in front of all these, I am truly
indebted to my thesis advisor, Dr. Steven Tragesser, for keeping me on the straight
and narrow path. I thank you for all your assistance, mentoring, and continual

guidance in re-vectoring my efforts when I went astray.

This experience would not have been possible without the camaraderie and
constant bolstering of good friends. Thanks to Don Davis, Charles Galbreath and
Jack Oldenburg for your encouragement and support. Special thanks also to those
behind the scenes; administration, EN laboratory staff, and all other support per-

sonnel who make it possible for us to function as graduate students.

I express heartfelt gratitude to my Heavenly Father from whom which all bless-
ings flow. To my parents, I thank you for everything you have taught me and for
your earnest prayers and words of inspiration when I needed them most. Last but
not least, I thank my loving wife, without whom I would never have made it through
this ordeal. To you I express my sincere love and appreciation for your enduring

patience and understanding.

Dayne G. Cook

iv




Table of Contents

Page

Acknowledgements . . . . . . .. ... Lo e iv
List of Figures . . . . . . . . . . i e vii
List of Tables . . . . . . . . . . e ix
Listof Symbols . . . . . . . . . .. .. . e X
List of Abbreviations . . . . . . . . . . ... . oo xiv
Abstract . . . . . . . .. XV
L. Introduction . . . . . ... ... 1-1
1.1 Motivation . . ... .. ... ... 1-1

1.2 Background .. .. ... ... ... ... 0. 1-2

1.2.1 Orbit Perturbations and Solar Radiation Pressure 1-2

1.2.2 Simplified General Perturbation Model . . . . 1-4

1.3 Problem Statement . . . . . ... ... ... ... ... 1-4

1.4 Research Objectives . . . . ... ... ... ... ... 1-5

IL. Previous Research . . . ... ... ... .. .. .. .. ..., 2-1
21 Early .. ... ... ... o 2-1

2.2 Contemporary . . . . . . . . .o v, 2-3

IIIL. Methodology . . . . . . . . . .. . . ... e 3-1
3.1 Perturbation Techniques . . . . . ... ... . ... .. 3-1

32 Models. . . . .. ... L e 3-4

321 Baseline ... ............ ..., 3-4




Page

3.2.2 Changing Area . ... ... ... ....... 3-16

3.2.3 Diffuse Reflection . . . .. ... ... ..... 3-19

3.2.4 Changing Area Revisited . . . . . . ... ... 3-27

3.2.5 Conical Eclipse . ... ... ... ... ... 3-38

3.3 Coordinate Transformations . . . . ... .. ... ... 3-44
3.4 Calculating and Optimizing Residuals . . . ... ... 3-49
IV. Results . . . . . . . . . e 4-1
4.1 Numerical Examples . . . .. ... ... ... ..... 4-1
4.2 Baseline Behavior. . . . ... ... ... ... ..., 4-2
421 ITUSInGTO .......... ... ...... 4-2

422 DSPinGEO .................. 4-5

4.2.3 Orbital Elements Long-term Periodic Variations 4-9

43 ChangingArea . . ... ... ... . ... ... 4-13
4.4 Diffuse Reflection . . . . .. .. ... ... ... .... 4-15
45 Conical Eclipse . . .. ... ... ... ... ..., 4-16
4,6 Constant Solar Flux . . ... ... ... ........ 4-17
V. Conclusion . . . . . . . . i e 5-1
5.1 Summary and Recommendations . . .. ... .. ... 5-1
52 Future Work . ... ... ... .. ... . ... . ... 5-2
Appendix A. SRP Model FORTRAN Source Code . . . . .. .. .. A-1
A.1 Simulation Algorithm for SRP Study . . . . ... ... A-1
A.2 JPL Planetary and Lunar Ephemerides . . . . . . . .. A-21
Bibliography . . . . . . . .. e BIB-1
Vita . o v e e e e VITA-1

vi




Figure

2.1.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.
3.11.
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21.

4.1.
4.2.

List of Figures

Page
Early Method for Measuring Radiation Pressure . ... ... 2-1
Flat Plate Geometry . . . . . . . . ... ... ... ... ... 3-8
Specular Reflection . . . ... ... ... .. ......... 3-9
Isotropic Solar Radiation . . .. ... .. ... ........ 3-11
Cylindrical Earth Shadow Model . . . . . .. ... ... ... 3-13
Differential Area Projection tothe Sun . . . . ... ... .. 3-16
Solar Force Geometry . . . ... ... ... ... . ...... 3-17
Diffuse Reflection . . . .. ... ... ... ... ....... 3-20
Diffuse Ray Geometry . . . . . . .. .. ... ... .. .... 3-21
Hemisphere Integration . . . ... ... ... ......... 3-23
Earth-Satellite-Sun Vector Geometry . . . . . . . ... .. .. 3-27
Cylinder (IUS) Body-Frame Geometry . . . . . ... ... .. 3-29
Cylinder (IUS) Ends Illumination Geometry . . . . . . .. .. 3-33
DSP Body-Frame Geometry . . ... ... ... ....... 3-36
Conical Earth Shadow Model . . . . . .. ... ... ... .. 3-39
Angular Radius . . . . . .. ... ... oo 3-40
NoEclipse . . ... ... . i e 3-41
Umbral Eclipse . . . . . .. .. ... ... ... . ..., 3-42
Penumbral Eclipse . . . . . ... ... ... ... .. ... 3-43
Inertial to Body-Frame Transformation . . ... .. ... .. 3-45
IUS Body-Frame and Orbital Geometry . . . . ... ... .. 3-47
DSP Body-Frame and Orbital Geometry . . . . . . .. .. .. 3-48
SRP Baseline Behavior for IUS Semi-major Axis . . .. . .. 4-2
SRP Baseline Behavior for IUS Eccentricity . . . . . ... .. 4-3

vii




Figure Page

4.3. SRP Baseline Behavior for IUS Inclination . . ... ... .. 4-4
4.4. SRP Baseline Behavior for IUS Argument of Perigee . . . . . 4-4
4.5. SRP Baseline Behavior for IUISRAAN . . . . ... ... ... 4-5
4.6. SRP Baseline Behavior for DSP Semi-major Axis . . . . . . . 4-6
4.7. SRP Baseline Behavior for DSP Eccentricity . . . ... ... 4-7
4.8. SRP Baseline Behavior for DSP Inclination . . ... ... .. 4-7
4.9. SRP Baseline Behavior for DSP Argument of Perigee . . . . . 4-8
4.10. SRP Baseline Behavior for DSP RAAN . . . ... ... ... 4-8

4.11. SRP Effects on Long-term Variations of Eccentricity . . . . . 4-9

viii




Table

1.1.

3.1.

4.1.
4.2.
4.3.
4.4.
4.5.

List of Tables

Page
Common Spacecraft Perturbations . . . .. ... ... .... 1-3
Properties of Common Surface Coatings . . . . . . ... ... 3-9
Satellite Dimensions and Initial Orbital Parameters. . . . . . 4-1
RMS Convergence for Changing Area Effect . . . . . ... .. 4-13
RMS Convergence for Diffuse Reflection Effect . . . . .. .. 4-15
RMS Convergence for Conical Eclipse Effect . . . . . . . . .. 4-17
RMS Convergence for Constant Solar Flux Effect . . . . . . . 4-18

ix




List of Symbols

English Symbols

Symbol Definition (units)

A Area (m?)

a Acceleration (m/s?)

ayp Accelerating Perturbation Vector

ag Earth Semi-major Axis (km)

c Speed of Light (m/s)

dA Differential Surface Area (m?)

dF Total Differential Force Vector

dﬁdr Diffuse Reflection Differential Force Vector
dF’i Incidence Differential Force Vector

dF;, Perturbing Differential Force Vector

dﬁ‘; Reflection Differential Force Vector

dF., Specular Reflection Differential Force Vector
dz Incremental Change in Height

E Energy (J)

F Force (N)

ﬁn Normal Force Vector

f_;,ot SRP Force Vector on a Cylinder Bottom
ﬁ)sp Total SRP Force Vector on DSP

f_} Us Total SRP Force Vector on IUS

f:ide SRP Force Vector on the Side of a Cylinder
f,;op SRP Force Vector on a Cylinder Top

G Universal Gravitational Constant (km3/kg s?)




s B

S

S TOEE TR X

=3y

Momentum (kgm/s)

Cylinder Height (m)

Joules

Mass (kg)

Satellite Mean Motion

Surface Normal Vector

Radiative Power of Sun (W)

Unit Vector Along Satellite-Sun Line
Satellite-Sun Position Vector
Projection of p into b, — by Plane
Inertial to Body-frame Transformation Matrix

Transpose of R¥®

Inertial to Rotating Frame Transformation Matrix

Earth Radius (km)

Solar Radius (km)

Cylinder Radius (m)

Rotating Coordinate Frame x Axis
Earth-satellite Position Vector

First Time-rate Derivative of 7
Second Time-rate Derivative of 7
Earth Orbital Radius from Sun (km)
Earth-Sun Position Vector

Time

Unit Vector in the Direction of Incident Ray
Unit Vector Opposite

Unit Vector Out of Page

xi




<

<.

o B

[S3

Unit Vector Opposite Reflected Ray
Unit Vector Tangential to Surface
Velocity (m/s)

Satellite Velocity Vector

First Time-rate Derivative of ¢
Watts

Satellite State Vector

First Time-rate Derivative of X
Initial Satellite State Vector

Rotating Coordinate Frame z Axis

Greek Symbols

Symbol

(07

Av

> 3

= > D

Definition (units)

Coefficient of Absorbtion

Euler Rotation Angle (degrees)

Coefficient of Reflection

Angle Between Normal and Diffuse Light Ray (degrees)
Incremental Change in Velocity

Ratio for Specular Versus Diffuse Reflection

Euler Rotation Angle (degrees)

Earth-Satellite-Sun Angle (degrees)

Angle of Incidence (degrees)

Rotating Coordinate Frame y Axis

Longitudinal Position of Sun in Body-Frame (degrees)
Earth’s Gravitational Parameter (km?®/s?)

Apparent Angular Radius of Earth (degrees)
Apparent Angular Radius of Sun (degrees)

xii




Fraction of Solar Disk Visible from Satellite
Solar Flux (W/m?)

Solar Flux Constant (W/m?)

Azimuthal Angle (degrees)
Sun-Earth-satellite Angle (degrees)

Rotational Spin Rate (rad/s)

xiii




Abbreviation
AFRL
AU
DSP
DSST
ECI
GEO
GPS
GTO
1US
JPL
NASA
NORAD
OD
RAAN
RMS
rpm
SGP

SI

SRP
TDRSS

List of Abbreviations
Definition
Air Force Research Laboratory
Astronomical Unit
Defense Support Program
Draper Semianalytic Satellite Theory
Earth Centered Inertial
Geosynchronous Earth Orbit
Global Positioning Satellite
Geosynchronous Transfer Orbit
Inertial Upper Stage
Jet Propulsion Laboratory
National Aeronautics and Space Administration
North American Aerospace Defense
Orbit Determination
Right Ascension of Ascending Node
Root Mean Square
Revolutions per Minute
Simplified General Perturbation
System International
Solar Radiation Pressure

Tracking and Data Relay Satellite System

xiv




AFIT/GSO/ENY/01M-01

Abstract

Current satellite orbit propagation techniques employ a solar radiation pressure
model that makes simplifying assumptions concerning the satellite and its orbital ge-
ometry. The time-intensive nature of orbit determination computations justifies the
use of simplifying assumptions, but at the expense of increased accuracy in orbit
predictions. Solar radiation pressure, a non-gravitational perturbation, significantly
affects satellite motion at high altitudes. The model currently in use by the Air Force
for orbit determination includes the following assumptions: a constant cross-sectional
area projected to the Sun, cylindrical Earth shadow for eclipse, and specular reflec-
tion. In reality, the satellite’s cross-sectional area with respect to the Sun constantly
changes, the Earth’s shadow is conical, and reflection is both specular and diffuse.
Additionally, the solar flux received at the Earth can be either assumed constant or
variably dependent on the distance from the Sun. These four higher order effects
may be modeled in lieu of the simplifying assumptions to obtain greater accuracy
in orbit predictions. Comparison of a baseline that embodies the Air Force’s cur-
rent solar radiation pressure model, and a truth model that simulates the four solar
radiation pressure effects will be presented. The most significant effect relating to
solar radiation pressure is the changing cross-sectional area of the satellite projected
to the Sun. The other higher order effects may be satisfactorily modeled via the

baseline.
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SOLAR RADIATION PRESSURE MODELING ISSUES FOR
HIGH ALTITUDE SATELLITES

1. Introduction
1.1 Motivation

The North American Aerospace Defense Command (NORAD) analyzes and
predicts the position and velocity of all artificial satellites for various military op-
erations. Air Force Space Command and NORAD therefore have the ever-present
goal of increasing orbit determination (OD) accuracy. Ongoing questions exist re-
lating to what degree solar radiation pressure (SRP) limits the accuracy of orbital
predictions and what can be done to obtain better resolution. The former question
with regards to investigation of SRP effects is the main thrust of this research. The

latter question is left as a topic for future work.

The motivation driving the goal of increasing OD accuracy is due to a variety
of reasons. Chapter 2 will outline a multiplicity of space applications that support
the need for highly precise orbit predictions. For the Air Force, the need for increas-
ingly greater OD accuracy is a function of time and cost savings. A topic that has
received much attention in recent years because of the increasing number of space
objects in Earth orbit is collision avoidance. Several research studies have recently
been performed that indicate higher precision in orbit predictions will aid in better
collision avoidance procedures [2, 16, 30]. The impact of this lies in the fact that as
the error ellipsoid surrounding a spacecraft diminishes, the less frequently a maneu-
ver will have to be performed. As stated previously, this translates into savings of
both cost and operations time. Another obvious motivational factor can be found in
an anti-satellite mission or space object targeting for military operations. This appli-

cation may require knowing very precisely the coordinates of a space object targeted
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for either offensive or defensive operations. For these reasons, SRP is an extremely
important factor in modeling the various perturbations acting upon a satellite and

should not be hastily disregarded.

1.2 Background

1.2.1 Orbit Perturbations and Solar Radiation Pressure. All objects in
space experience external forces that influence and characterize their motion. The
primary force acting on an Earth-orbiting satellite is the gravitational attraction
that results if all of the Earth’s mass is assumed to occupy a uniform density sphere.
Influences such as Earth’s uneven mass distribution, gravitational attraction of ad-
ditional Solar System bodies, atmospheric drag, solar radiation pressure, Earth’s
albedo, and other relatively small forces perturb the satellite away from the natural

two-body motion. For this reason, these types of forces are called perturbations.

SRP is the impingement of light energy (photons) on an object’s surface and is
responsible for the subsequent exchange of momentum. Table 1.1 lists the common
perturbations acting upon a satellite orbiting the Earth and gives a general idea of
where SRP fits within the range of other force magnitudes [23]. In Table 1.1, A/M
is the ratio of the satellite’s area to its mass. Assuming an A/M of 0.01m?/kg, the
magnitude of SRP acceleration is approximately 4.6 x 1078 m/s®. The formula for
SRP given in Table 1.1, indicates that an increase in satellite area or a decrease in

satellite mass, will result in an amplified SRP value.

Orbital perturbations may be classified as either gravitational or non-gravitational.

The first four perturbations in Table 1.1 are gravitational and the last three, includ-
ing SRP, are non-gravitational. Note the absence of the Universal Gravitational
Constant term, G, in the formulas for these perturbations. It is evident in Table
1.1 that the gravitational perturbations are dominant for near-Earth orbit. How-
ever, depending on the precision and accuracy required in orbit determination under
specified conditions, non-gravitational perturbations may have a significant effect on

the satellite.
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Table 1.1 Common Spacecraft Perturbations

Acceleration(m/s?) of Geosynchronous

Perturbation Formula Spacecraft with A/M = 0.01m?/kg
Earth Two Body %ﬁ 2.2x1071

Earth’s Oblateness 3GT—MQS(5EQ)QJQO 7.4x10-6

Lunar Third Body 28N ny 7.3x107¢

Solar Third Body 29%9 3.3x1078

Atmospheric Drag 1Cp£&pV? 0

SRP 4% 4.6x1078

Earth’s Albedo A 20 fg(R2)? 4.2x1071°

A poignant example of how significant one of these non-gravitational pertur-
bations can be, namely atmospheric drag, is found in the Skylab space station. One
factor in Skylab’s demise was attributed to an expanding ionosphere, caused by in-
creased solar activity, that eventually decayed the orbit and brought Skylab spiraling
down. Satellites in higher altitudes, as depicted in Table 1.1, are in vacuum and don’t
experience atmospheric drag. Instead, the primary non-gravitational perturbation is
SRP, which is two orders of magnitude lower than the gravitational perturbations.

Still, under certain conditions this perturbation can have a significant impact.

The approximate altitude where SRP becomes the dominant non-gravitational
perturbation is a topic of much debate. Some authors claim the effects of SRP domi-
nate above 900 km altitude [9, 37]. Others maintain that atmospheric drag still may
affect a satellite’s motion up to about 6000 km altitude (e.g. the LAGEOS satellite)
[6, 17, 23]. Conversely, SRP may exhibit undesirable effects at lesser altitudes. A
prime example of the effects of SRP is the 30 meter ECHO balloon satellite launched
in 1960. At an altitude of 1852 km, ECHO experienced a 3.5 km/day initial decrease
in perigee height [9]. This indicates SRP to be a formidable perturbation in orbit
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determination. The challenge then becomes to sufficiently model SRP effects on

satellites in order to accurately make predictions of their motion.

1.2.2 Simplified General Perturbation Model.  Given the perturbations that
may influence a satellite’s motion, a model is required which accounts for these effects
and accurately propagates the satellite’s orbit. One such model used by NORAD in
tracking space objects is the Simplified General Perturbation (SGP) model [24].

Orbital models can be grouped into one of two computational classifications:
numerical and analytical. The former method entails a step-by-step numerical in-
tegration in time of the equations of motion, including any perturbations affecting
the satellite. This method requires pre-determined initial conditions of the satellite’s
position and velocity in order to propagate to the desired point in time. The latter
method involves an analytical solution that directly computes the satellite’s position
and velocity at a specified time. Numerical integration produces highly accurate
predictions, but requires substantial computation time since the satellite’s position

and velocity must be calculated at each time step of the integration.

NORAD is responsible for tracking and cataloging high volumes of objects
in space. The computationally time-prohibitive nature of numerical integration led
NORAD to develop a fully analytical model in the 1970s called SGP. The SGP model
required NORAD to make some simplifying assumptions relating to low satellite
orbital eccentricity and negligible satellite mass compared to the Earth’s mass [17].
Over time, the growing number of Earth orbiting satellites became more complex
in both orbital geometry and physical design. In an effort to reap the benefits of
both computational methods, NORAD refined their SGP model. The result is the
semi-analytical SGP4 model currently used by NORAD [24].

1.8 Problem Statement

The SRP acceleration in NORAD’s SGP4 model, which is approxiamtely 20

years old, incorporates several simplifying assumptions [24]. The satellite orbit is
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propagated assuming a constant cross-sectional area projected to the Sun, a cylin-
drical Earth shadow for eclipse, and specular reflection. As with any simplifying
assumption made for the sake of computational ease and efficiency, these assump-
tions do not reflect the true state of the environment. The satellite’s projected
cross-sectional area with respect to the Sun constantly changes over the course of
one orbital revolution, as well as throughout the course of a year. The Earth’s
shadow is actually conical in shape and includes two distinct regions. Reflection
off the satellite’s surface is both specular and diffuse. These factors cause the SRP
acceleration to fluctuate in time and results in imprecise orbit predictions if not
modeled properly. Furthermore, the SRP perturbation can result in long-term pe-
riodic oscillations in perigee altitude as well as in eccentricity and semi-major axis
of the orbit. Since gravitational perturbations have been modeled quite carefully in
SGP4, improvements to the SRP model, a non-gravitational perturbation, should
improve OD accuracy. The question this research will address is, how beneficial is it

to employ a complex model that accounts for the SRP higher order effects.

1.4 Research Objectives

The objective of this research is to model the effects of SRP in an orbit per-
turbations model. This goal will be realized through the quantification of modeling
errors in order to determine which higher order aspects of SRP must be incorporated
in the OD process. SRP acceleration varies throughout the satellite’s orbit as orbital
characteristics and satellite attitude change. The reasons the SRP acceleration may
fluctuate are the antithesis of the simplifying assumptions identified in Section 1.3,
and hence include:

1. Changes in the satellite cross-sectional area incident to the Sun.

2. Time periods when the satellite is in conical eclipse behind the Earth.

3. Specular versus diffuse reflection off the satellite’s surface.

These higher order modeling effects will comprise the bulk of the research analysis

and will be simulated via a computer algorithm. How advantageous modeling these
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higher order SRP effects can be, hinges on the required accuracy of orbit predictions,

motivation of which was presented in the previous section.

Accomplishment of the research objectives will follow a straightforward pro-
gression. The previous research outlined in the next chapter gives a firm foundation
for developing the SRP acceleration model and its higher order effects. Each re-
search effort cited makes contribution to how SRP can more effectively be modeled.
Chapter 3 will discuss the methodology utilized in the development of a SRP model,
including simplifying assumptions and higher order effects. Chapter 4 will illustrate
and numerically quantify results derived from simulation of the model to be devel-
oped in Chapter 3. Chapter 5 will then formulate recommendations and summarize

any conclusions as well as address the subject of future work.
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II. Previous Research

2.1 Early

Solar radiation pressure has been studied for many years. James Maxwell
theoretically demonstrated the existence of light pressure in 1873. Thirty years later
in 1901-1903, Nichols and Hull at Dartmouth College and Peter Lebedev, a Russian
physicist, were the first to experimentally measure radiation pressure. Nichols and
Hull utilized a torsion balance technique. As shown in Figure 2.1, a beam of light

striking the mirror transfers linear momentum to the balance, causing the balance

torsion
fiber

o mirrors
incident

Figure 2.1 Early Method for Measuring Radiation Pressure

arm to turn and twist the torsion fiber. Nichols and Hull were then able to measure
the tension in the fiber and deduce a numerical value for the radiation pressure
[13]. Later, in 1924, Russian rocket pioneers Konstantin Tsiolkovsky and Fridrickh
Tsander proposed using SRP as a form of spacecraft propulsion. They described the
use of large mirrors to propel a spacecraft via the pressure of sunlight [5]. Around
this same time, John Henry Poynting conducted the first study of SRP effects on
small meteorites and other particles in interplanetary space. In 1937, Howard Percy
Robertson made refinements to Poynting’s research and the result came to be known

as the Poynting-Robertson effect [1, 9.
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With the advent of the Space Age, SRP became an increasingly important
consideration in precise orbit determination. The effects of SRP on the orbits of
Earth satellites first caught the attention of researchers and space enthusiasts in the
early 1960’s. The launch and subsequent perturbations of the Vanguard and ECHO
satellites prompted early researchers to develop models that would suitably account
for SRP effects. Some of these early authors include Musen, Kozai and Koskela
[18, 27]. One thing these authors all had in common was their use of simplifying
assumptions as alluded to in the previous chapter. Namely, these authors assumed
constant cross-sectional area, cylindrical Earth Shadow, and specular reflection, as
well as constant solar flux [18]. The model that these authors describe, minus the
assumption concerning constant solar flux, will be elaborated upon as a baseline
model in Section 3.2.1. Subsequent research began to alter and refine these simplify-
ing assumptions in varying degrees, thereby building up a more complicated but also
more precise model for SRP. The model to be developed in Chapter 3 will consider

each of these effects and explore their impact on SRP acceleration.

The National Aeronautics and Space Administration (NASA) also expressed
concern on the subject of SRP early on in the Space Age. Robert Bryant of the
Goddard Space Flight Center conducted a study on SRP effects for NASA in 1961.
Bryant observed that in the absence of Earth shadow, SRP effects provided only short
periodic terms in the semi-major axis of the orbit. It was only when the obscuring
effect of the Earth was included that SRP manifested a significant perturbation [7].
This observation was later verified by others, the import of which is that the long-
term effects of SRP on the orbit are greater when the satellite encounters eclipsing
of the Sun [27]. Since Bryant’s work took place prior to the advent of the modern
computer, his research focused on developing a system of equations for the osculating
orbital elements, that could then be integrated on a large scale computer mainframe

[7]
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2.2  Contemporary

Since the time Bryant conducted his study, satellites have evolved into highly
complex systems with widely varying missions and orbital characteristics. This has
prompted a number of research endeavors to study the various aspects of SRP un-
der diverse conditions. With regards to satellite shape, the most simple model is
that of a spherically symmetric satellite, resulting in a constant cross-sectional area
and acceleration vector along the Sun-satellite line. One such model is examined
by Harwood et al. who use Lagrange equations to solve for the variations in the
orbital elements [14]. As with other models, simplifying assumptions were made for
computational efficiency. Assumptions include a cylindrical Earth shadow and Sun-
satellite vector parallel to the Sun-Earth vector. Additionally, the Earth’s distance
from the Sun is allowed to vary in this model, thereby causing the solar flux value to
oscillate and produce a time-varying SRP acceleration. Chapter 3 will discuss how

these assumptions may be refined to achieve more precise SRP calculations.

A more complex modeling effort by Marshall et al. discusses the need for very
precise orbital computations of an oceanographic satellite called TOPEX/Poseidon
[22]. This satellite takes altimeter measurements from which the ocean topography
is mapped. Precise modeling of SRP is justified in this case because even minute
inaccuracies in orbit determination can translate into major discrepancies in topo-
graphical measurements. The required accuracy in these measurements stipulate
orbit predictions within 13 cm root-mean-square (RMS) precision in the radial com-
ponent over a 10-day orbit fit span. The authors assumed a box-wing satellite model
consisting of six flat plates arranged as a box and an additional flat plate for the
solar panel. The cross-sectional area projected by each plate was allowed to change
according to predefined attitude and orbital dynamics. Force components on each
plate were computed individually and then summed to get the total vector accelera-
tion. Other assumptions in this model include a cylindrical Earth shadow, Lambert’s
cosine law for diffuse reflection, and constant surface reflective properties. These ba-

sic assumptions will also be applied to the model described in Chapter 3. There is
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one other item of notable mention within Marshall’s model. Even though SRP was
assumed to be the primary non-gravitational force, complementary effects due to the
Earth’s albedo and infrared emissions, as well as satellite thermal emissions, were

also included in order to obtain the most accurate predictions possible.

TOPEX /Poseidon is not the only satellite system that requires extremely ac-
curate orbit predictions. The Global Positioning Satellite (GPS) is responsible for
providing timely and accurate global navigational data to military, civilian, and com-
mercial agencies. It has been shown that the largest error source for a GPS orbit is
due to the effects of SRP. Springer et al. have recently developed a new SRP model
for GPS that outperforms the previous model derived without SRP effects by an
order of magnitude [31]. The new model consists of a 6-element parameterization
of direct solar radiation terms and biases that define the acceleration as a result of
SRP. The residual RMS of this new model on a 7-day orbit fit came in at the 6 cm
level, an improvement of 69 cm over the model that lacked any SRP effects. As this
model demonstrates, careful attention to how SRP is modeled can have impressive
results in the orbit analysis. It must be emphasized however, that while the 13 cm
RMS of the TOPEX/Poseidon and the 6 cm RMS of the GPS appear to be rather
amazing, their fit spans are over relatively short periods of time. The secular effects
of SRP seem to suggest that it might make more sense to perform the analysis over
a longer time period, in order to obtain a broader perspective of SRP effects. To
this end, it is the intention of the model presented in the next chapter to simulate

over a period of one year.

The previous examples of SRP research were of spacecraft in orbit about the
Earth. SRP however affects all objects in interplanetary space to some degree or an-
other. A Japanese project named SELENE, currently underway for a lunar mission
in 2003, is studying the long-term effects of SRP on a relay satellite in orbit about
the Moon [19]. Since the Moon has no atmosphere to speak of, SRP is the most
dominant non-gravitational perturbation acting on the satellite. The force equation

used in this model is consistent with that used by Chobotov [8], Ries et al. [27],
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and Milani et al. [23] and will be explicitly derived in Chapter 3. The satellite
shape is that of an octagonal column, and as such is modeled as a combination of
flat plates much like TOPEX/Poseidon. It is interesting to note that this project
supports Bryant’s research [7], in that no long-term variation in semi-major axis of
the satellite’s orbit is evident in the absence of shadow. This is due to the model as-
sumption that shadowing by the Moon is neglected. The model does however exhibit
variations in other orbital elements, primarily eccentricity [19]. These conclusions

will be demonstrated further in Chapter 4.

Other research efforts have focused on the generalities of perturbation model-
ing. Researchers at the Charles Stark Draper Laboratory have developed a mean
element orbit propagator called the Draper Semianalytic Satellite Theory (DSST).
The DSST model allows a user to tailor force modeling options depending on the
desired accuracy and duration of computation time. This method, reminiscent of the
NORAD SGP4 model, incorporates the high speed of a general perturbations model
and the superior accuracy found in a special perturbations model. DSST assumes
a cylindrical Earth shadow and constant coefficient of reflection for its SRP model.
The Air Force Research Laboratory (AFRL) astrodynamics group has successfully
employed DSST since 1994 [28]. The model developed in Chapter 3 of this thesis is of
the special perturbations type, and as such will place greater emphasis on accuracy

than computational time.

The AFRL further articulated interest with regards to SRP in a 1998 report
by Luu and Sabol [21]. With the use of DSST, the authors applied pre-defined
assumptions to the SRP model in order to determine the overall effects on space
debris in supersynchronous orbit. The design interface of DSST allowed the authors
to define input parameters based on the nature of the orbital characteristics of this
particular scenario, which were the basis for their simplifying assumptions. One of
these assumptions was that an object in circular supersynchronous orbit is constantly
sunlit. While this is not completely accurate, the authors justify this assumption

by showing that the long-periodic variations in semi-major axis are at the submeter
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level and therefore negligible for their purposes. However, SRP-induced variations
in eccentricity and argument of perigee are still significant for objects above Geosyn-
chronous Earth Orbit (GEO) and still require inclusion in the model. The variation
in eccentricity over a six-month period may fluctuate from 0.001 to 0.004 in this
case. A similar conclusion regarding the long-periodic variations in semi-major axis,
eccentricity, and argument of perigee over a period of one year will be illustrated in

Chapter 4.

Another non-gravitational perturbation study by Bowman et al. illustrates the
detrimental long-term effects of SRP, atmospheric drag, and Earth albedo [6]. In
1963, one of the first concepts of space communications was realized with the launch
of the West Ford needles package. The idea was to place a myriad of copper dipoles,
1.78 cm long and 0.00178 ¢m in diameter, in a circular, near-polar orbit at an altitude
of 3650 km. These dipole antennas were intended to relay communications signals
around the country. The orbits of individual needles all decayed within 5 years of
launch. Sixty percent of the needle clusters still remain in orbit and have been tracked
for the past 37 years with rising difficulty. The needle clusters exhibit a large area-to-
mass ratio, which has made them susceptible to the non-gravitational perturbations
mentioned above. Recall in Table 1.1 that a larger area-to-mass ratio (A/M) implies
an increased magnitude in non-gravitational perturbations. The result for the West
Ford needle clusters has been a total displacement of 10 km in the semi-major axis
over the past 34 years. The effects of a varying area-to-mass ratio as related to SRP

will be explored in Chapter 3.

One of the other time-varying factors affecting SRP is the shadowing effect of
Earth eclipses. Up to this point, all previously cited research has assumed either an
Earth cylindrical shadow or has neglected shadowing effects completely. In reality,
the shadow of the Earth is conical in shape and includes both a penumbra and umbra
region. Recall that the consequence of not accurately modeling shadow effects is

diminished precision in predicting long-term variations of the orbit semi-major axis
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[7, 19]. The portent of this conclusion has led some researchers to scrutinize the

shadow model in greater detail.

Vokrouhlicky et al. have written a series of papers on the complete theory
of spacecraft eclipse transition [33, 34, 35, 36]. A similar paper by J. Woodburn
discusses the effects of eclipse boundary crossing on numerical integration [39]. The
supposition in these papers is that the Earth projects a conical shadow with two dis-
tinct shadow regions, penumbra and umbra. As a spacecraft transits the penumbra
region, the perceived size of the solar disk by the spacecraft changes. This transition
determines the fluctuating value of solar intensity, which in turn affects the magni-
tude of SRP [1]. Another item of related interest in Vokrouhlicky’s work, but not
considered hereafter in this thesis, is the inclusion of influences on the Earth shadow
structure due to atmospheric density and flattening of the Earth’s pole [36]. Various
aspects of the Earth shadow model will be investigated in greater detail in Section

3.2.5 and results given in Chapter 4.

Heretofore, previous SRP research examples have focused on exploiting only
some of the SRP effects mentioned in Section 1.4, but none of them have attempted
to combine all effects at once. There is one research study however that comes close
to nullifying all these basic simplifying assumptions. NASA’s Tracking and Data
Relay Satellite System (TDRSS) is a GEO system used for command and tracking
support of user spacecraft. Previously, TDRSS was modeled as a uniform sphere
with constant area for modeling nonconservative forces, including SRP. The model
for TDRSS has since been improved in order to achieve more precise orbit predictions

[20].

TDRSS is now modeled as a combination of twenty-four flat plates, each with
its own radiation force. These individual vector forces are then summed to obtain the
resultant acceleration acting on the spacecraft. The changing area projected by these
flat plates, as perceived by the Sun, is determined by a geometrically defined angle

of incidence. This then nullifies the assumption concerning constant area. Next, the

2-7




new model assumes an Earth umbra/penumbra model versus the cylindrical shadow
model so frequently used before [20]. With regards to surface reflective properties, an
elemental surface behaves as a linear combination of a black body, a perfect mirror
and a Lambert diffuser [23]. This means the model accounts for both specular and
diffuse reflection, and is consistent with the SRP model articulated by Chobotov [8]
and Milani [23]. The authors of this study cite a constant value for the solar radiation
flux, wherein lies the only difference between this model and the one developed in
the next chapter. As will be shown, it is a simple matter to account for the changing

solar radiation flux as a function of distance from the Sun.
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III. Methodology

3.1 Perturbation Techniques

An orbital perturbation is any small deviation away from the two-body or-
bital motion [9]. The equations of motion for the two-body problem without any

accelerating perturbation may be given by

E—— (3.1)

where

7 = the satellite’s position vector
2 =
. 7
7 = the second time-rate derivative of ', equivalent to ¥}
i = Earth’s gravitational parameter
When perturbations are included, the equations of motion become
n KL
P= T + a, (3.2)
where
d, = the vector sum of all perturbations, Z ap(3) (3.3)

1

The perturbations comprising @, in Equation 3.2 may include Earth gravity
harmonics, atmospheric drag, lunisolar gravitational attraction, or SRP. This re-
search will only consider the SRP perturbation. The SRP perturbation on two-body
motion is assumed to be nearly the same as the SRP perturbation on the motion
with all other effects included. The implication here is that SRP is not strongly
coupled to other perturbations. It is interesting to note that in our Solar System,
the magnitude of the sum of all contributing perturbations is at least one order of

magnitude less than the two-body acceleration [9].
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There are two existing categories of perturbation technique that may be used to
solve Equation 3.2. The two techniques are called special perturbations and general
perturbations. The former technique involves a step-by-step numerical integration of
the equations of motion. General perturbations is an analytical approach based on
a series expansion and integration of the equations of variation in orbit parameters
[3,9]. As mentioned in Chapter 2, the perturbation technique utilized in this research

is of the special perturbations type.

The special perturbations technique may further be partitioned into two main
methods. Cowell’s method was developed by P.H. Cowell in the early 20th cen-
tury and is the most straightforward of the perturbation techniques. Some fifty
years earlier in 1857, Johann Franz Encke formulated Encke’s method for solving
perturbations, albeit more complex in nature. The difference lies in the fact that
Cowell’s method performs numerical integration on the sum of all accelerations,
whereas Encke’s method takes the difference between the primary acceleration and
the perturbing accelerations prior to integrating [3]. The method employed in the
derivation found in this chapter is Cowell’s method. Additionally, the Runge-Kutta

method for numerical integration will be used in the computer simulation.

The first step of Cowell’s method is to re-write the equations of motion, namely
Equation 3.2, in the form of first-order differential equations. The process of numer-
ical integration necessitates the equations be in first-order form before proceeding.
Note that the first time-rate derivative of position is velocity. The first time-rate
derivative of velocity is the same as the second time-rate derivative of position, which

yields acceleration. This procedure results in the following set of equations.

Fo= 7 (3.4)
“trra (3.5)

<y
I
ﬁ
+
=
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where

7 = first time-rate derivative of the satellite position vector
v = satellite velocity vector
v = first time-rate derivative of the satellite velocity vector

The state vector of the satellite is comprised of both its position () and velocity

(7). Consequently, the state vector, X, and corresponding time-rate derivative, X,

may be written as

Equations 3.6 and 3.7 may also be expressed in cartesian component form.

X=[myz:tyz'] (3.8)
X =692 4 (3.9)

It should be evident in the two previous equations that z,y, z and their corre-
sponding derivatives, represent the cartesian components of the satellite’s position,
velocity, and acceleration in three-dimensional space. An assumed satisfactory ini-
tial state, X, of the satellite’s position and velocity is known a priori and given as
input into the numerical integration process. The numerical integration of Equation
3.9 yields the position and velocity of the satellite at each moment in time. Prior
to this however, we need to acquire component expressions for each element of the
state derivative (Equation 3.9). This is accomplished by applying the state equa-

tions, Equations 3.6 through 3.9, and expressing Equations 3.4 and 3.5 in cartesian
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component form.

& = X(4)

y = X(5)

z = X(6)

- i A

y = (2 + ’y—QM—IZ—I z2)3/2 + gy

3 = T y‘;‘j T + @y, (3.10)

These six equations therefore comprise the first-order differential equations
suitable for numerical integration, the result of which will be predictions of satellite
position and velocity. Given satisfactory initial conditions, the first three formulas
in Equation 3.10 are ready for integration. The remaining formulas however require
further derivation. The @, components found in these formulas represent the accel-
erating perturbation due to SRP. The derivation of the @, components are the focus

of the remainder of this chapter.

3.2 Models

3.2.1 Baseline. The baseline model presented here will be used as a ref-
erence model from which the other effects of SRP may be quantitatively analyzed.
The baseline model will be represented by the SRP model found in NORAD’s SGP4
model, which obeys the previously made assumptions [24]:

1. Cross-sectional area incident to the Sun remains constant.

2. Earth cylindrical shadow for satellite in eclipse.

3. Reflection from the satellite’s surface is specular.

The derivation of the baseline model begins with the investigation of photon

energy. Photons impinging on a satellite’s surface follow the electromagnetic mass-




energy relationship given by

E =mc? (3.11)

where

E = photon energy (J)
m = photon mass (kg)

c = speed of light (m/s)
If we divide both sides of Equation 3.11 by ¢, we get
=mc (3.12)

Note that the product mc is an increment of momentum, a product of mass and

velocity, and may be re-written as

% — AH (3.13)
where AH is the change in momentum. The average rate of solar energy received
at the Earth is given by the solar flux constant, ®y, and is expressed in units of
W /m?. Energy (E) may now be re-defined as the product of solar flux incident on a
given area and over a specified duration. We can thus substitute this definition into

Equation 3.13 to obtain

Dy AAL
"CA = AH (3.14)
where
A = sunlit surface area of satellite (m?)
At = time interval of sunlight exposure (s)
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Dividing both sides by At yields

®A  AH

— =42 3.15
c At ( )

Setting Equation 3.15 aside for the time being, we now consider the force resulting
from the impinging photons. Newton’s second law states that the force experienced
by an object is proportional to the time-rate change of its momentum. Mathemati-

cally, this is most commonly expressed as

F =ma (3.16)
where
m = mass of satellite (kg)
a = acceleration of satellite (m/s?)

Replacing the product ma in Equation 3.16 with its time-rate derivative form gives

d

muv) (3.17)

where % (mv) is now the time-rate derivative of momentum. This equation applies
to electromagnetic radiation if we substitute the momentum of the photon, H, for

the product muv.
_dH

F=-

(3.18)

Since we are not interested in this equation in differential form, we can replace the

differential operator with standard A nomenclature.

_AH

==
At

(3.19)

3-6




We can now substitute the right-hand side of this equation from Equation 3.15 to

get
_ DA

Cc

F (3.20)

We can also substitute the left-hand side of this equation from Equation 3.16 and

obtain
A
ma = 204 (3.21)
c
Isolate acceleration by now dividing through by mass.
A
o=204 (3.22)
cm

Comparing this equation to the formula for SRP found in Table 1.1, we find that they
are identical. In spite of this, Equation 3.22 is not yet entirely complete. Note that
acceleration is a vector and Equation 3.22 gives only the scalar value. The remaining
elements for this equation include a vector direction for acceleration, a coeflicient that
determines how efficient the surface is in reflecting incident radiation, and a scaling

factor to account for the changing solar flux.

One of the previously made simplifying assumptions for the baseline model
is that the cross-sectional area of the satellite facing the Sun remains constant.
Therefore, the satellite shape may be modeled as either a sphere with equivalent
constant area or a flat plate with fixed orientation normal to the Sun. For illustration
purposes, it is easiest to show the case of a flat plate. Figure 3.1 depicts the solar
force geometry on a flat plate with constant area normal to the Sun. Incident light
strikes the flat plate at a perpendicular angle. Reflected light leaves the satellite
along the surface normal vector, 7. The resultant force vector, F"n, as well as the
corresponding acceleration vector, are in the opposite direction of the surface normal
vector. Note also that the satellite-Sun line is aligned with 7 in this scenario. The

effect is that of a push directly away from the Sun. Based on this conclusion, we can
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Figure 3.1 Flat Plate Geometry

insert the acceleration vector direction into Equation 3.22 to obtain

g= -4, (3.23)
cm

This is not however the final form for the total perturbing acceleration (&p). At this

point, we have only accounted for the incidence portion of light and not the reflected.

The next element to account for in Equation 3.23 is the coefficient of reflection.
This coefficient is a weighting factor that accounts for the percentage of incident
radiation reflected off the surface. Assuming that the surface in question is opaque,
there is no light transmission through the material. Light energy may then be either
reflected or absorbed. In this context, it may be said that what isn’t reflected
is absorbed. Recall that the baseline model assumes specular reflection. Figure
3.2 illustrates the geometry of specular reflection. Specular reflection occurs when
the incident light ray is reflected in only one direction. Additionally, the angle
of incidence with respect to the surface normal vector, 6, is equal to the angle of

reflection. For the baseline model, this angle is assumed to be zero.




»>

Figure 3.2  Specular Reflection

Materials comprising the satellite’s surface all behave differently according to
their respective surface properties. Table 3.1 displays surface properties of the most

common materials used for coating a surface [22]. Note that the coefficient of ab-

Table 3.1  Properties of Common Surface Coatings

Coefficient of | Coefficient of
Surface Coating Absorbtion(a) | Reflection(5)
Solar Array 0.79 0.21
Silver Teflon 0.07 0.93
Black Kapton 0.85 0.15
Aluminum Kapton 0.45 0.55
White Paint 0.18 0.82
Black Paint 0.98 0.02
Gold Plate 0.08 0.92

sorption, «, and coefficient of reflection, 3, sum to one, thereby accounting for the
totality of light incident on the surface. The coefficient 3 is defined as the reflected

fraction of light incident on the satellite’s surface and may take on values 0 < § < 1.

Specularly reflected light produces a total force acceleration consisting of two
distinct components: incidence and reflection. Referring to Figure 3.1 and Equation
3.23, it is evident that both components result in acceleration along the —n vector.
The acceleration due to the specularly incident light ray is equivalent to Equation
3.23 and given by

a; = ———n (3.24)




The acceleration due to the specularly reflected light ray is a fraction of that produced

by the incident ray and is expressed as a function of 3.
a, = —f——n (3.25)

In order to obtain the total perturbing acceleration, we must now sum Equations

3.24 and 3.25. This then gives

—

a, = a;+a;,

= —(1+8)— i (3.26)

Many perturbation models use Equation 3.26 as their model for SRP acceler-
ation [9, 27, 37]. To do so, they must make one additional simplifying assumption.
The implied assumption is that the solar flux constant (®y) does not change. In
fact, the solar flux constant is only valid for the average distance from the Sun to
the Earth. This distance is defined by the semi-major axis of the Earth’s orbit about
the Sun. The magnitude of solar flux thus depends on the distance from the Sun. At
an average distance from the Sun of 1 Astronomical Unit (AU), the time-rate flow
of radiant energy per unit area is called the solar flux constant. This value is given
as ®g = 1367W/m? with a variance of £45W/m? by some authors [22, 27, 37], and
as @y = 1353W/m? with a variance of £20W/m? by others [8]. The latter value will
be adopted for the purpose of this study.

The variance in the solar flux constant given above is due to the eccentricity
of the Earth’s orbit (e =~ 0.0167). Eccentricity results in the Earth being slightly
closer to the Sun than 1 AU for part of the year and slightly farther away for the
remainder. The SRP acceleration given in Equation 3.26 is a function of the solar
flux constant, and as such needs to be scaled accordingly to handle the variations.

SRP for the NORAD SGP4 model includes a scaling factor accounting for the time-
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varying nature of solar flux, and will also be derived here for inclusion in the baseline

model (Equation 3.26).

Figure 3.3 illustrates the isotropic nature of solar radiation. Assuming a uni-

Figure 3.3 Isotropic Solar Radiation

form distribution of solar energy radiating spherically out from the Sun, the solar
flux, ®, at a given orbital radius from the Sun is given by the power divided by the

area of the sphere:
_ e
 4nrd

(3.27)

where P is the radiative power of the Sun and rg is the orbital radius from the
Sun. The radiative power of the Sun is approximately 3.805 x 1026 Watts. As this
equation shows, the solar flux decreases with the square of the orbital radius. The
cone extending out from the Sun in Figure 3.3 depicts this phenomenon. As you
travel radially out from the Sun, the sphere encompassing the Sun at each point
increases in surface area, much the same as the cross-sectional area of the cone
through which the radiation flux must pass. Each consecutive cross-sectional area of

the cone must increase in size in order to capture the same amount of solar energy as
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the previous area. The result is a decrease in the solar flux as measured in radiative

power per unit area.

Note that equation 3.27 is for generic solar flux at a given orbital radius, and
not the solar flux constant. If the orbital radius from the sun is replaced by the
Earth’s semi-major axis, we obtain the expression for the solar flux constant:

Fo

By = 2
0 4mal

(3.28)

where ag, is the Earth’s semi-major axis. Since it is ®y that we already have in Equa-
tion 3.26, we must now simply supply a scaling factor to obtain the generic version
of solar flux. By close inspection of Equations 3.28 and 3.27, we can deduce that the

conversion from ®; to ® is accomplished by multiplying both sides of Equation 3.28

by (ap/ 7‘@)2-
o ao 2 B P, ao 2
0 T@ a 471'0% 7'@
2
ae Py
o, | — = —
0 <’r@) 4mrd

&, (“—®)2 = 0 (3.29)

The desired scaling factor for ®; in Equation 3.26 is therefore (ag/re)?. This will
then give us a value for solar flux as a function of arbitrary orbital radius, versus the
average distance from the Sun as dictated by the solar flux constant. Inserting this

into our expression for SRP acceleration, Equation 3.26 becomes

g, --1+p24 (a—Q)Zﬁ (3.30)

cm To

Equation 3.30 is the final form of SRP acceleration that the baseline model will

incorporate into the equations of motion as derived in Equation 3.10.
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The final effect that the baseline model includes is the eclipse due to a cylindri-
cal Earth shadow. Figure 3.4 portrays the requisite geometry to adequately define

when the satellite is in this type of eclipse. The position vector from the Earth

Figure 3.4 Cylindrical Earth Shadow Model

to Sun is given by 8 and the position vector from Earth to satellite is given by 7.
The angle measured between § and 7 is denoted as 9. The radius of the cylindrical
Earth shadow is equal to the radius of the Earth, Rg. The vertical component, y, is
the perpendicular distance away from —3. The Sun-Earth-satellite angle, 9, can be

expressed in terms of a dot product, which by definition gives
7§ =|r]|§] cosyp (3.31)

Solving this equation for cos then gives

—

78
cosY = == (3.32)
71151

Equation 3.32 reveals the range on % to be 0 < ¢ < 180°. The calculation of 1 is
possible since both vectors are given. The Earth-satellite position vector will be given

a priori and the Earth-Sun position vector will be extracted from the Jet Propulsion
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Laboratory (JPL) Planetary and Lunar Ephemerides [25]. Given the value for cos ),
we can now test whether the satellite is sunlit or in shadow. Solar illumination can
be determined by 2 cases. Case 1: The front side of the Earth facing the Sun is

determined by
If cosy > 0, then satellite is illuminated (3.33)

This is equivalent to saying ¢ < 90°. Case 2: If cosy < 0, then the satellite is
toward the backside of the Earth. When this happens, the angle between —& and
is 180° — 4. Since cos(180° — 9) = — cos %, the bottom side of the triangle is given
by —rcos as shown in Figure 3.4. Next, by Pythagorean theorem, the satellite’s

position in relation to the Earth-Sun line (—3) is

2 = y?+ (—rcosth)?
= y?>+r2cos’y (3.34)

Solving for 4% then gives

y? =12 —r2cos? ¢ (3.35)

Any value for y? in Equation 3.35 greater than Ré, indicates the satellite is outside

of shadow. Case 2 then becomes
If cosy < 0 and r® — r?cos®¢ > R2, then satellite is illuminated (3.36)

Obviously, if the satellite is in shadow, the SRP acceleration (d@,) is zero. Armed
with Equation 3.30 and the test cases for solar illumination, Equations 3.33 and 3.36,

the baseline model for SRP acceleration is ready for inclusion in Equation 3.10.

There is one last item of notable interest before proceeding with the deriva-
tion of more complicated SRP effects. As stated earlier, the SRP model contained
in NORAD’s SGP4 was assumed as the representative baseline model. The SRP
acceleration baseline model, as derived in this section in the form of Equation 3.30,

is identical to the NORAD SGP4 model with a few minor exceptions. First, while
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admittedly incorrect, SGP4 assumes the SRP acceleration vector to be aligned with
the Sun-Earth vector versus the true Sun-satellite vector. Note that Equation 3.30
maintains an acceleration vector direction given by —7 which is aligned with the Sun-
satellite vector. SGP4 documentation acknowledges that this assumption introduces

a small periodic error term which it states is acceptable [24].

The second minor difference lies in the use of units nomenclature. The model
previously derived in this section assumes standard System International (SI) units.
The end result is acceleration in units of m/s?. The SGP4 SRP model makes use
of both SI and canonical units. The canonical units define the SRP acceleration in
terms of Earthradii/kemin®. A kemin is a canonical time unit and is equivalent
to the time it takes a hypothetical satellite at the surface of the Earth to travel one
radian of true anomaly around the Earth. A kemin is approximately equal to 806.8
seconds. After some simplification and substitution, the units of both the SGP4
SRP model and the model derived here, can be made to agree in both form and
function. However, since SGP4 is over twenty years old, values for some of the so-
called constants; such as G, ®, or Rg, as tabulated at that time are not the same
as today. For instance, the semi-major axis of the Earth was previously taken to be
1 AU. In reality, the value is more precisely 1.00000011 AU according to NASA’s
J2000 Planetary Orbital Elements [25]. These minor differences account for very
small discrepancies in the models’ constant coefficients. Otherwise, both models are

the same, and this then constitutes the baseline.

The goal now is to model improvements to the SRP model as discussed in Sec-
tion 1.4. The modeling of these effects will be realized by correspondingly modifying
the baseline embodied by Equation 3.30. A comparison of the results of these more
complex SRP effects with respect to the baseline model will determine the merit of
modeling said effects. The first, and probably most prominent of these SRP effects,

is the changing area of the satellite cross-section as perceived by the Sun.
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3.2.2 Changing Area.  The baseline model assumed that the SRP acceler-
ation vector (d@,) is perpendicular to the effective area of the satellite and pointed
directly away from the Sun. We now complicate matters by stating that the effective
area may or may not be normal to the Sun’s rays at any given time. The result is
an apparent change in effective area as seen from the Sun. Figure 3.5 depicts how

a differential surface area, dA, would appear as seen from the Sun. The angle 6 is

Figure 3.5 Differential Area Projection to the Sun

measured from the surface normal vector to the line connecting the surface and Sun.
The projected area presented to the Sun would then be equivalent to dA cos §. This
value for the projected area can be substituted for the area (A) in Equation 3.30,
but the force vector direction is now a more convoluted matter. Figure 3.6 illustrates

the solar force geometry under these new conditions.

Recall that the baseline model consisted of two force components, incidence
and reflection, both of which pointed opposite the surface normal vector. Referring
to Figure 3.6, the total SRP force on a differential area of the satellite is still given
in terms of the differential force components, incidence and reflection, but now the
direction of the force vector is different. Photons impinging on the differential area

produce an incidence force, d}?’i, given by
dF; = —;dA cosf | — ) (3.37)
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Figure 3.6  Solar Force Geometry

where 4; is a unit vector in the same direction as the incident ray and everything
else is as before. Equation 3.37 may be rewritten in terms of 3 as

dF, = 82244 cos 6 (“—‘9)2@ + (1= ) 2044 coso (39)2@. (3.38)

c To c To

The two terms on the right side of this equation represent the portion of incident
light that will be reflected, and the portion of incident light that will be absorbed,
respectively. It will be shown that by expressing dF. as a function of [, tangential
components of force will cancel each other out. Next, the reflection force, dﬁ,, is due
to the specularly reflected light ray and given as

2
dF. = ﬁ%dA cos (-‘;ﬁ) i (3.39)
O]
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where 4, is a unit vector directly opposite the specularly reflected ray.

Prior to summing the constituent force components, we note that in Figure
3.6, both 4; and 4, can be broken into orthogonal components of the tangential unit

vector, 1, and the normal unit vector, ,.

4; = cosf@u,+sinf i, (3.40)

i, = cosfu, —sinfa, (3.41)

Substituting Equation 3.40 for 4; in only the first term on the right side of Equation

3.38, and algebraically simplifying, the differential incidence force becomes
o ) 2 P 2
dF. = B-2dA cos?d (“—@) i, + B=2dA cosfsind (9-9) i,
c To c To

2
+ (1= 82044 coso (a—Q) i (3.42)
[} Te

Similarly, if we substitute Equation 3.41 for 4, in Equation 3.39 and simplify, dl*z’;
will be given by

2 2
dF, = 2044 cos (“—@> i — B224A cosOsin 0 (5'19) iy (3.43)
C Te C Te

Summing Equations 3.42 and 3.43 now results in the total perturbing force acting
on a differential area of the satellite, dl;";,. Notice that the tangential unit vector ()

components cancel out and the normal unit vector (%,) components combine to give

dF, = dF;+dF,
Py ac\” . D 2, ().,
= (1- ﬂ)?dA cosf | — | u;+ Qﬂ?dA cos’f | — | 4, (3.44)

To Te
By close inspection of Figure 3.6, we observe that 4; = —p, where p represents the
unit vector along the satellite-Sun line and also that 4, = —7. After making these
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simple vector substitutions, Equation 3.44 becomes

dF, = —(1— ﬁ)i{-’cﬂdA cos (%)2 p - 259;%/1 cos? (%S—)zn (3.45)

Summarizing, Equation 3.45 gives the total SRP force on a differential area of
the satellite surface as defined thus far in this thesis. One need only divide through
by mass to obtain the SRP acceleration. The next logical step is to sum up, or rather
integrate, all the differential areas over the entire portion of the satellite’s surface
currently being illuminated. This requires detailed knowledge of the satellite’s shape
and surface geometry, as well as attitude. The baseline model assumed the simple
shape of a sphere or a flat plate. Section 3.2.4 will demonstrate integration of the
differential area elements over the surface of a satellite with a more complicated
shape, namely that of a cylinder. However, there is one other SRP effect that should
be considered before doing this, since it will also need to be integrated over the

surface of the satellite. The new effect is diffuse reflection.

3.2.8 Diffuse Reflection.  The baseline model and Equation 3.45 both as-
sumed only specular reflection, incident light that reflects in only one direction.
Diffuse reflection is where the incident light ray reflects in many different directions.
Figure 3.7 illustrates the concept of diffuse reflection under a three dimensional hemi-
spheric bowl. The dotted lines below the hemispheric bowl represent the direction of
individual force vectors corresponding to each ray of diffusely reflected light, which
eventually will need to be summed. The goal then is to integrate over the hemisphere
to obtain the total SRP force on the differential area, dA, due to diffuse reflection.
First, it is necessary to incorporate into Equation 3.45 coefficients that account for

both specular and diffuse reflection.

Recall 3 is defined to be the coefficient of reflection. Reflection can now be
either specular or diffuse. Therefore, 3 is that fraction of light being reflected (both

specular and diffuse) and (1-3) is that fraction being absorbed. Introducing a ratio
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Figure 3.7 Diffuse Reflection

for specular versus diffuse reflection, d, we may now say that of 3, a fraction 64 is

specular and (1 — §)/ is diffuse. Accounting for the totality of light thus gives
MB+(1-6)p+(1-p)=1 (3.46)

Pure specular reflection yields § = 1 and complete diffuse reflection gives § = 0.
Modeling the effects of diffuse reflection necessitates that Equation 3.39 be subdi-
vided into differential force components resulting from specular and diffuse reflection.
The differential force due to specular reflection, dF.,, is of the same form as Equation

3.39 except now [ is replaced by 63 which yields

2
dF,, = 5ﬁ%dA cos (“—®> i (3.47)

e

The second component of dF. is the differential force due to diffuse reflection, dﬁdr,

and is a little more difficult to derive.
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In order to model the effects of diffuse reflection, we assume that each dif-
ferential surface area on the satellite behaves like a linear combination of a black
body, a perfect mirror, and a Lambert diffuser [23]. Lambert’s cosine law for diffuse
reflection states that for any given direction, the intensity of diffusely reflected light
is proportional to the cosine of the angle between that direction and the surface unit
normal vector. Figure 3.8 isolates one representative diffusely reflected light ray, and

portrays the resulting geometry. For graphical clarity, the corresponding force vector
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Figure 3.8 Diffuse Ray Geometry

beneath the hemisphere has been left out. One need only remember that the actual
force vector is opposite the reflected light ray. The angle + is measured between the
surface unit normal vector and the direction of a representative diffusely reflected
ray. The azimuthal angle, ¢, is measured from 1,, a unit vector directed out of the

page. Additionally, the hemispheric bowl is of unit radius.

As a beginning, dﬁdr is of the same form as Equation 3.39, except now [ is

replaced by the diffuse reflection coefficient, (1—4§)3. Before writing this equation, we
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note one other minor difference. Previously, the solar flux constant (®,) represented
the intensity of light, both incident on and reflected from the satellite surface. Now
because of Lambert’s law, the intensity of each diffusely reflected ray of light is
proportional to cos and not simply equal to ®y. Therefore, scaling @, by the factor

cosy produces the scalar expression

2
dFy = (1 - 5)&% cosydA cos (%Q) (3.48)
®

Equation 3.48 is not yet complete because it gives only the force contribution of
one diffusely reflected ray. Since each individual ray of diffusely scattered light will
contribute a force, they must all be summed to obtain the total differential force due
to diffusely reflected light (dﬁdr). It should be noted that by symmetry, all tangential
force components along both 4; and 4, will cancel. This will be analytically proven

in the following analysis.

Since force is a vector, we need to assign a direction to Equation 3.48. The
unit hemispherical bowl in Figure 3.8 offers a method for defining the force vector
direction in spherical coordinates. Figure 3.8 identifies the components of the force
vector of the representative ray. Trigonometric identities, cos(w/2 — 7) = sin+y and
sin(w/2 — ) = cos~, aid in determining these components. Recalling that the
force vector for each diffuse ray is opposite in direction to that ray, the force vector

direction is given by

sin 7y cos ¢ii,
sin vy sin ¢, (3.49)

coS Yy,

Inserting this vector direction into Equation 3.48, we now have

sin 7y cos ¢,
— (I>0 G,® . . A~
dFy = (1 - 5)ﬁ? cosydA cos 8 - sin vy sin ¢l (3.50)
®

cos YUy,
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It is now time to sum up all force contributions from each diffusely reflected
ray. The way we do this is by summing up differential area elements (in steradians)
corresponding to each ray, over the entire hemisphere’s surface. Figure 3.9 depicts a
differential area element on the hemisphere surface with dimensions of d-y by sinyd¢.

The elemental area to integrate over then is given by (sin~y)d¢dry. Close inspection

NV
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=
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Y
sin’y d¢
A
by dA
Sin
¢ “sinyd¢
déo
i, v

n

Figure 3.9 Hemisphere Integration

of Figure 3.9 reveals the limits of integration for v are [0, 7/2] and the limits on ¢

are [0, 2r]. Integrating dF;, over the entire surface of the hemisphere then gives

- sin 7y cos ¢,
— Z 4 (D
dF = /0 /0 (1~ 6)8°2 cosndA cos (ﬁ—i) sinysin ¢, | sinydpdy (3.51)

cos Yy,

As daunting as Equation 3.51 might appear, it is still not yet entirely correct. It

will be shown that force vector components sum up quite nicely to obtain a resultant
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vector in the 4, direction. However, this process also sums up the intensity of the
diffusely scattered light in a linear fashion, when what is required is an average
intensity. An analogy can be seen in summing up temperatures in various locations
throughout a room. The sum of these temperatures does not represent the room
temperature, but an average would. Intensity, like temperature, sums like a scalar in
this case. The obvious remedy is to divide out the totality of diffuse light to obtain

the average intensity.

Whereas the intensity in any one direction is proportional to cos-, the total
amount of diffuse light is proportional to this value integrated over the hemisphere

as illustrated in Figure 3.9. This is represented by the integral

z 27
/2 / cosysiny d¢ dy (3.52)
o Jo

Therefore, if we divide Equation 3.51 by this integral, we will obtain the correct form

for total force due to diffuse reflection on a differential element of the spacecraft, dA.

sin 7y cos ¢,
2
fo 8)B% cosydA cosf ( ) sinysin ¢t | sinydedy

. cOS Yy,
dFy. = — (3.53)
JZ J; T cosysinyddy

This equation may now be simplified. Factoring out the constants of integration

produces
sin «y cos ¢,
(1—8)B%dA cosf ( ) JiE [ cosy | sinysin ¢, | sinydgdy
. cos YUy,
dFy = (3.54)

fO% fo% cos vy sin ydgdry
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There are a total of four distinct integrals that now need to be analytically evaluated.

The integrals involving @, and 4; both evaluate to zero as previously anticipated.

z 27
/ ’ / cos vy [sin 7y cos ¢ii,| sinydpdy = 0 (3.55)
o Jo

7 27
/ / cos 7y [sin vy sin ¢| sinydpdy = 0 (3.56)
o Jo

The integral involving 4,, evaluates to

2

z 27
/ ’ / cos 7y [cos i, sin ydody = 3 U, (3.57)
o Jo

Finally, the integral in the denominator accounting for the totality of diffuse light,

evaluates as

s 27
/ ’ / cos ysinydedy = 7 (3.58)
0 0

Substituting each of the four integral evaluations into Equation 3.54, we can further

simplify to obtain

2
(1—6)B22dA cosb (‘%) i,

dFy = (3.59)

m
Rearranging variables and canceling the 7 terms gives the final and most desirable
form of dEy,.

2
dfy = (1— 6)822%4A4 cos (‘—‘9) i (3.60)
3¢ To

The total perturbing force on a differential area of the satellite’s surface due
to SRP can now be expressed as a sum of the constituent components. The three
differential force components include incidence (dF‘,) from Equation 3.38, specular
reflection (dF.,) from Equation 3.47, and diffuse reflection (dF,) from Equation
3.60.

dF = dF, + dF.,, + dF,, (3.61)

Directly substituting the expressions for these components as previously derived,

and algebraically subdividing the first term of dF, and expressing as a function of &,
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results in

= @9 a0\’ . D a0\’ .
dF = 6ﬂ7dA cosf | — | u; + (1—6)B7dA cos § )

To o}

D a6\’ . O ao\’ .
+(1-pB)—dAcost|—) 4 + 68—dAcosf | — | iy,
C Te C Te

2@0 (475} 2 n

To

The terms comprising Equation 3.62 denote in order: the incidence force due to
the fraction of light that will be specularly reflected, the incidence force due to the
fraction of light that will be diffusely reflected, the incidence force due to the fraction
of light that will be absorbed, the force due to specular reflection, and the force due

to diffuse reflection.

As seen before in Section 3.2.2, tangential components of force may be made
to drop out by transforming #; and 4, in the first and fourth terms of Equation 3.62,
into components of i, and 4;. Following some algebraic simplification and making
the same unit vector substitutions as before, 4; = —p and 4, = —n, the total SRP

force on a differential area of the satellite’s surface becomes

2
dFF = — [26,8%dA cos? @+ (1 — 5)ﬁ2%d/1 cos 9] (a_@) nt (3.63)
c 3¢ To

—(1- (5,8)%@4 cos 6 (3—2)213
As stated earlier, one need only divide through by mass to obtain the desired per-
turbing SRP acceleration (a@,) that will be included in the equations of motion of
Equation 3.10. Equation 3.63 now needs to be integrated over the entire portion
of the satellite’s surface currently being illuminated, thereby summing the force
contributions of each differential area, and arriving at the total perturbing SRP ac-
celeration on the satellite. This requires insight into the satellite’s attitude and basic

shape.
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3.2.4 Changing Area Revisited. Section 3.2.2 introduced the concept of
changing area and established the notion that satellite cross-sectional area as seen
from the Sun, actually changes with time. This section revisits the effect of changing
area and makes application to a more complex shape than that previously discussed.
Integrating the differential areas over a given surface is highly dependent on the

overall shape.

One of the most common shapes found on a satellite is the cylinder. Two
real-world examples of satellites with this common shape will be presented. The
first is a spent Inertial Upper Stage (IUS) in geosynchronous transfer orbit (GTO).
The second is the Defense Support Program (DSP) satellite in geostationary orbit,
which has the basic shape of a cylinder with four square solar arrays and tubular
telescope. These two choices allow analysis of two distinct high altitude orbits with

different eccentricities and attitude dynamics.

3.2.4.1 IUS in GTO. A payload designed for a GEO mission, sep-
arates from its upper stage at apogee of GTO, leaving the cylindrical upper stage
rocket body in GTO. In order to integrate over the satellite body, definitions of some

basic vectors are required. Figure 3.10 illustrates the three basic vectors. The Earth-

Figure 3.10 Earth-Satellite-Sun Vector Geometry

satellite vector, 7, and Earth-Sun vector, 3, are the same as previously encountered
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in other sections. The Earth-satellite-Sun angle is given by 1. The satellite-Sun

vector is given by 7, the unit vector of which was used in Section 3.2.3 and expressed

as
p=L (3.64)
|l
The relationship of the vectors in Figure 3.10 is clearly seen to be
pP=5-7 (3.65)

The satellite-Sun vector is obtained from the JPL Planetary and Lunar Ephemerides
file in the form of Earth Centered Inertial (ECI) coordinates. However, for the time
being, it is necessary to assume p to be in body-frame coordinates. The transforma-
tion from inertial to body-frame coordinates will be derived in Section 3.3. Hence,

P in body-frame coordinates is of the form
P =p1 by + pa by + ps bs (3.66)

Next, the surface normal vector of a differential area located on the side of a
cylinder (IUS) is depicted in Figure 3.11. The dimensions of the cylinder are shown
in terms of height, A, and radius, . The angle A is measured in the 51 — 52 plane
from b; to D;, the projection of p. The surface normal vector and differential area

expressed in body-frame coordinates are
7 = cos ¢ by + sin ¢ by and dA = rdpdz (3.67)

where ¢ is the azimuthal angle measured from b, in the by — by plane to the 7 vector

and dz is an incremental change in height.

The idea is to analytically integrate dF over that part of the surface which
is illuminated, ignoring the cylinder ends for now. To do so, limits of integration

must be known. Beginning at the center of the cylinder, the height of the cylinder
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Figure 3.11  Cylinder (IUS) Body-Frame Geometry

determines the limits for dz as [—h/2, h/2]. Due to symmetry, only half of the
cylinder side will receive any illumination at any given time. Therefore, it should
be evident from Figure 3.11 that the limits on d¢ are m/2 on either side of the
projected satellite-Sun vector. The projection is obtained by simply dropping the bs
component of p giving

D = P1l;1 + pQBZ (3.68)

Prior to the next derivation, it is important to note that p is a unit vector
whereas pj; is not. In order to define the limits on ¢, we must describe A in terms of

the existing vectors. In Figure 3.11, the dot product of b, and P, is expressed as
by - B = |by||7;] cos A (3.69)

Noting the magnitude of a unit vector is one and solving for A yields

A =cos™! (bl 'pj> (3.70)

1751
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A quadrant ambiguity exists when A > 180°. The appropriate quadrant correction
is performed by checking if p; - by < 0, then A = 27 — X. Having sufficiently defined
), the limits of integration on d¢ are then expressed as [A — 7/2, A+ 7/2].

Integrating over the sunlit side of the cylinder by applying the limits of integra-
tion to dF of Equation 3.63, and substituting for dA from Equation 3.67 produces
the following expression for the total SRP force applied to the cylinder’s side.

- MEorg 2
fside = / / { - [25ﬁ% cos?f + (1 — 5)52& cosﬁ] (EQ) Y
-z J3p c 3¢ To

_a _5/3)%90039 (‘;—Z)2ﬁ}rd¢dz (3.71)
We are not including the cylinder ends in this iteration of integration. The double
integral in Equation 3.71 can immediately be collapsed to a single integral since there
is no term in the integrand involving the height (k). The result is an additional factor
of h. Evaluating the inner integral and rearranging or factoring out some common

terms thus transforms Equation 3.71 to

— At+3 2
fside = / “rh (a_@) { - [2(%% cos? 0+ (1 — 6)ﬂ§%9 cos 0] )
A

Te

-z
2

- (1- 55)%9 cos 6 p } do (3.72)

Equation 3.72 presents an integral that must be evaluated with respect to ¢,
but the integrand is in terms of §. To continue, we must therefore find a way to
describe 8 in terms of ¢. Recall that 6 is defined as the angle measured between the
surface normal vector (72) and the satellite-Sun vector (p) as depicted in Figure 3.6,
but omitted in Figure 3.11 for graphical clarity. By definition of the dot product,
and unit vectors having magnitude of one, these two vectors surrender the needed

relationship.
cosf=n-p (3.73)
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Substituting the component form of both vectors from Equations 3.66 and 3.67 into

Equation 3.73 gives

cosf = (cos (;5131 + sin ¢62) . (p1131 + pgl;g + p3133>
Py €OS ¢ + posin ¢ (3.74)

It is now possible to replace cos 6 in Equation 3.72 with the newly derived expression

from Equation 3.74, thereby resulting in

AT 2
f;ide = /,\Jr rh <a_@> {—- l25ﬁ%(?1cos¢+p2sin¢)2 (3.75)

o

-
2

+ (1- 6)ﬁ—§%q(p1 cos ¢ + po sinqﬁ)]fz

- (1- 55)%(171 cos ¢ + pa Sin¢)ﬁ } de

We now substitute body-frame coordinates for 7 from Equation 3.67 and for p from

Equation 3.66 to obtain

M-I 2
foide = fA ' rh (—GQ—) {— {25ﬂ%9<plcosqb+pzsin¢)2 (3.76)

To

~Z
2

+(1- 5)ﬂ§%(p1 cos ¢ + po sinqb)] (cos¢51 + sinqﬁ@z)

® . 5 - -
- (1- (w)‘f (101 cos ¢ + pz sin ¢) (pl by +p2b2 + p3 bs) } do
The integrand of Equation 3.76 is now given in terms of ¢, allowing us to
evaluate the integral with respect to ¢. The next step is to algebraically simplify

and combine like terms into groups of body-frame elements in by, by, and b. Doing

this results in an expression consisting of three integrals, one for each body-frame
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element.

A+I 2
foaw = [ o (5‘9) %[—zaﬁp%cos3¢—45ﬁp1p2cos2¢sin¢ (3.77)
A

Te

- X
2

—263p2 sin® g cos p — (1 — 5)ﬁ§—p1 cos? ¢ — (1 — 5)ﬂ§p2 sin ¢ cos ¢

—(1- 55)19% cos ¢ — (1 — 6B)p1p2sin ¢:| 51 do

A5 2
+ / i rh (a_@> %9 [ — 203p? cos® ¢ sin ¢ — 460p1pa cos ¢ sin® ¢
A

Te

-
2

—26Bp3sin® ¢ — (1 — J)ﬁgpl singcos¢p — (1 — (5),8§p2 sin? ¢

—(1 —68)p1p2cosp — (1 — 58)p2sin qb] by do

AT 2 R
+ /,\ Th (G—Q) 2o [ — (1 -90)pipscosp — (1 — 6B)papssind| b3 do

T c

-
2

Integrating Equation 3.77 one term at a time, and keeping the body-frame elements

together, the SRP force on the side of the cylinder becomes
Y 4.5 9 .2 8 -3 4.9 3
Foize = - gdﬂpl cos A (sm A+ 2) - §6ﬁp1p2 sin® A — géﬂpz, cos® A

1 .
+ gﬁpﬂr (6 —1) +2p2cos A (68 — 1) + 2pypzsin A (68 — 1)] by

+ { — géﬂpf sin® A — gdﬂplpg cos® X — -3-5,3;0% sin A (cos® A + 2)

1
+ =PBpym (6 — 1) + 2p1pycos A (68 — 1) + 2p2sin A (68 — 1)

b
3 2

" %o

- (3.78)

+ [2173 (68 — 1) (p1 cos A + pysin )\)] bs }rh <a_@)

o

Equation 3.78 is of the form that will be included in the equations of motion to be

numerically integrated after the vector is transformed to the inertial frame. How-
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ever, recall that the force contribution of the cylinder ends was not included in the
derivation of f;,,-de.
We must now account for the SRP force contribution due to incident radiation

on either end of the cylinder. As can be surmised by inspection of Figure 3.12, only

one end of the cylinder will be illuminated at any one time. It will not be necessary to

A A
n/ b,
4—
<—.—
0
b, P . :
‘_.__—
A
b2

Figure 3.12 Cylinder (IUS) Ends Illumination Geometry

integrate dF from Equation 3.63 over the cylinder ends because they are a flat surface
with constant area. However, Equation 3.63 still applies if we simply substitute the
differential area (dA) with the full area (A) of the cylinder ends. The surface normal

vector and area of a cylinder end, expressed in body-frame coordinates are

A = by for the cylinder top (3.79)
f = —bs for the cylinder bottom (3.80)
A = mr? (3.81)

where the top of the cylinder is defined as the end pointing towards +33.

The first thing to resolve is which end of the cylinder is being illuminated.
This may be accomplished via a dot product test. From Figure 3.12 we see that if
®- 53) > 0, then § < 90° and the top is illuminated. In this case, the SRP force
is found by substituting Equations 3.79, 3.81 and 3.66 into 72, A and p of Equation
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3.63, being careful to remember that dA is replaced by A.
- @ 2® 2,
Fop = — 26877 cos® 6 + (1 — 8)B=—mr? cos 6} (a—G) by (3.82)
c 3 ¢ To
Qo a0\, ; 2 2
—(1- 5@‘;7” cos 0 o (p1 b1 + p2 by + p3 bs)
®
It is necessary at this point to express 6 in terms of known variables. Equation 3.73
states cos # as a dot product of # and p. With both of these vectors being previously

defined in Equations 3.79 and 3.66, respectively, cos § becomes

cosf = by (p1bi +pyby+psbs)
_ o, (3.83)

After some algebraic simplification and factoring out of like terms, as well as replacing
cos f with p3, Equation 3.82 becomes

d a 2 (I)O ~ ~

fiop = 1? (—@) 7,)3{ (68— Vp]br+ [@B-Vma]b (389)

e

+[(5ﬂ — 1)ps — 260ps — g(l - 5)ﬁ] 53}

A similar derivation follows for the bottom of the cylinder. If (§- bs) < 0, then
6 > 90° and the bottom is illuminated. Following the same substitution process as
for the cylinder top, and recalling that now n = —53, the SRP force on the bottom

of the cylinder is expressed as

fi = (a—®>2%ps{[(5ﬂ—1)p1]51+[(55—1)192]52 (3.85)

To

+ [(5[3 —1)p3 + 268ps + §(1 - 5)ﬁ] 53}
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Note the only difference between ﬁop of Equation 3.84 and f;ot of Equation 3.85
is a sign change in two terms. One test remains concerning the cylinder ends. If
(p- 133) = 0, then § = 90° and neither end is illuminated. In this case, both equations

would evaluate to zero since there is no b component of p.

In summary for an IUS in GTO, if the total SRP force acting on a cylinder is
given by f}US, then as a function of Equation 3.78 and either Equation 3.84 or 3.85,

we obtain

frus = Frides + fond (3.86)

where

f;nd = ﬁop 1f(ﬁi73)>0 or
.f:md = fl;ot lf(ﬁ63)<0

Once Equation 3.86 is divided through by mass and transformed to the inertial
frame to obtain the perturbing acceleration (@), it can be included in the equations
of motion of Equation 3.10, and is then ready to be numerically integrated via

computer simulation.

3.2.4.2 DSP in GEO. The previous derivation is sufficient in de-
scribing the SRP force on a simplified model of an IUS in GTO. The second satellite
to be modeled is the DSP in a geostationary orbit. Information concerning DSP in
this thesis is available in open source and is in no way classified. Some numerical
values on dimensions have been fabricated for simulation purposes. Sample orbital
elements and physical dimensions of both the DSP and IUS cases used in the simula-
tion of SRP, can be found in Section 4.1. The body geometry of DSP is illustrated in
Figure 3.13. The four solar panels are assumed to be canted downward 45° from the
b — b plane. Solar panel number 4 is in the back of Figure 3.13 and is therefore not
shown. The spin-rate of DSP about b3 is given by €2 in revolutions per minute (rpm).

The telescope assembly mounted on one end of the cylinder is neglected in the SRP
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Figure 3.13 DSP Body-Frame Geometry

force derivation. This is justified because the area of the telescope is assumed to be
small in comparison with the rest of the satellite body. Another assumption is that
shadowing by other parts of the satellite body is negligible and will therefore not be
included in the derivation. What remains then is the main cylindrical body and the

four solar arrays.

The derivation for SRP acceleration on DSP’s main cylindrical body is the
same as that for the cylindrical IUS case given in Equation 3.86. Once the SRP
force contribution of each solar panel is calculated, it is then added to Equation 3.86
to obtain the total SRP acceleration acting on a DSP satellite. The solar panels are
essentially square flat plates with area A = [? where [ is the length of one side. The
surface normal vector for plate 3, 73, is depicted in Figure 3.13 and given in terms of

body-frame coordinates. The surface normal vectors for the other solar panels may
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be expressed in like fashion as

7 mLTNED (3.87)

n, = 9 b2+7b3

2. 2.
fp = —Q‘Cbmulzcb3 (3.88)
fiz = —‘;—5132 —?“3 (3.89)
fl,4 = _5/5814-\/72_83 (390)

Given the surface normal vectors thus defined, it is now possible to compute the SRP
force acting on each solar array. The method is the same as with the cylinder ends;
substitute for area, 72, and p in Equation 3.63. We must first determine which side
of the solar array is being illuminated. As before in the case of the cylinder ends, we
do this with a dot product test. Recall 8 is the angle measured between the surface
normal vector (7) and the satellite-Sun vector (p) and given in Equation 3.73. Then
using solar panel 1 as an example and as depicted in Figure 3.13, we may determine

the surface normal vector to be substituted in Equation 3.63 by

If (A-p) >0, then panel top illuminated, and (7 = 7,) (3.91)

A

else  panel bottom illuminated, and (7 = —7)

Similar dot product tests may be performed for each solar panel by replacing 7,

in Equation 3.91 with the respective panel’s surface normal vector as defined in

Equations 3.87 - 3.90.

Now, making substitutions for area A = [ and cosf = (7 - p) into Equation

3.63, the SRP force contribution of any one of the four solar panels becomes

, @ ) 2
fo= -lseaoarra-osean) (2) s e
-1 _5@%12 (7 - p) <ﬁ@)2 5
[ p Te P
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The subscript ¢ in ﬁ indicates the number of one of the four solar array panels.
It is extremely important to note that while the f; of each solar array panel is
similar in form, the final result is vastly different due to the definition of the surface
normal vector. We could also make substitution to body-frame coordinates for 7
from Equation 3.91 and p from Equation 3.66. However, this gets a little messy,
and as long as these unit vectors are properly defined a priori, the current form is
sufficient for the SRP computer simulation. Finally, from Equations 3.86 and 3.92,

the SRP force acting on a DSP satellite, fDSp, may be given as

4
fposp = frus + Z fi (3.93)

i=1
where f}US accounts for the main cylindrical body if IUS dimensions are replaced
by those of DSP, and f,: represents the SRP force on each DSP solar array panel. If
we now divide by satellite mass and transform to the inertial frame, we obtain the
desired form of the perturbing acceleration @, to be numerically integrated in the

equations of motion.

3.2.5 Conical Eclipse. Previous research has shown that the long-term
effect of SRP on a satellite’s semi-major axis in the absence of shadowing is minor.
The reason for this is because the resultant SRP force is approximately constant in
inertial coordinates [27]. In the presence of shadowing the semi-major axis grows
with time. This statement implies that eclipse modeling is crucial to simulating SRP
with any degree of accuracy. In Section 3.2.1, the baseline model assumed an eclipse
of a cylindrical Earth shadow. In reality, the shadow projected by the Earth can be
illustrated by a dual-cone model. This model, as depicted in Figure 3.14, establishes
an area of total eclipse called the umbra, and a region of only partial illumination
known as the penumbra. SRP acceleration while in umbra is obviously nil since the
satellite is in total eclipse. While in penumbra, the SRP will not be nil because of

partial illumination, nor will it be in full force because the satellite is not receiving
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T ~ penumbra

penumbra

Figure 3.14 Conical Earth Shadow Model

the same solar flux it would while in total illumination. SRP when the satellite is in

penumbra is thus something in between these two values.

The method for computing the SRP force while in penumbra, is to scale the
SRP force when it is in direct and full sunlight, by the fractional area of the visible
solar disk. SRP force in direct sunlight is the same as previously derived. One need
only multiply this value by the scaling factor to arrive at the SRP force while in
penumbra. The goal now is to derive the proper scaling factor, denoted as T in the

remainder of this analysis and with a given range of [0, 1].

Referring back to Figure 3.10, recall the Earth-satellite-Sun angle is defined
by 1. Figure 3.10 renders the necessary geometry in deriving an expression for 7.

Performing the dot product on —7 and p results in
= [7llf] cosn (3.94)

Then solving for 7 yields
n=cos! (—T -p) (3.95)

17112
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The next thing we need in this derivation is the angular radius of both the Sun
and Earth as seen from the satellite’s perspective. Figure 3.15 portrays the angles

and vectors essential to describing the angular radius. From Figure 3.15 and a little

Figure 3.15  Angular Radius

trigonometry, the apparent angular radius of the Earth, p., as seen from the satellite

may be given as

pe = sin™! (%) (3.96)

Likewise, the apparent angular radius of the Sun, p,, as seen from the satellite is

expressed by
: R )
-1 fo
ps = sin — (3.97)
( i

where Ry is the radius of the Sun.

Given the Earth-satellite-Sun angle and the apparent angular radii previously
described, it is now possible to determine if the satellite is in umbra, penumbra, or
not eclipsed at all. The first case to be discussed is when there is no eclipse. Figure
3.16 depicts the scenario when the satellite is just getting ready to go behind the
Earth. Here the disks of both the Earth and Sun, as seen from the satellite, are just
barely touching. As Figure 3.16 shows, the Earth-satellite-Sun angle 7 is equal to
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Earth
Sun

Figure 3.16 No Eclipse

the sum of the angular radii at this instant in time. It should then be evident that

If n > (ps+ pe) then No Eclipse (3.98)

and the scaling factor T = 1 signifies 100% of the solar disk is visible. The next
case is when the satellite is in total or umbral eclipse. This situation is illustrated in
Figure 3.17. The solar disk is portrayed as being totally obscured by Earth’s disk in
Figure 3.17. At the instant when the Sun just disappears totally behind the Earth, n
is equivalent to the difference of the angular radii. Therefore, while the Sun remains

behind the obscuring Earth, the test becomes

If n < (pe— ps) then Umbral Eclipse (3.99)

and a scaling factor of T = 0 signifies 0% of the solar disk is visible. This would

then render the SRP acceleration nil, as previously stated.

3-41




Earth
Sun

Figure 3.17 Umbral Eclipse

The two previous cases were relatively simple to determine. While the remain-
ing case is also easy to determine by default, the associated scaling factor is not.
Figure 3.18 portrays the case of penumbral eclipse. Penumbral, as the name im-
plies, is the partial eclipse occurring before umbral, but just after the case depicted
in Figure 3.16 where the two disks appear to be touching. Since penumbral falls
somewhere in between the two previous cases, we may combine the tests found in

Equations 3.98 and 3.99 to say

If (pe—ps) <n < (pe+ps) then Penumbral Eclipse (3.100)

and the scaling factor will thus be 0 < T < 1. Figure 3.18 depicts the condition
when 7 is equal to p,. While this might give the initial impression that half of
the solar disk is being obscured, closer inspection of Figure 3.18 reveals this is not

the case. There are two areas on the right of the dotted line through the center of
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Sun

Figure 3.18 Penumbral Eclipse

the Sun, that makes the fraction something slightly larger than half. An algorithm

for computing the fraction of solar disk visible when partially obscured is given by

both Baker [1] and the Schriever AFB Technical Order CG-SCF-225C [29] and is

reproduced here without proof.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

1
L=§(Ps+pe+77)

2
q= Ex/L(L—n)(L—ps)(L—pe)
If |0} — pZl <n* then

T = p? sin™* (_q_) + p? sin™? (i> —qn
Ps Pe

Else if |p? — p?| > n* then

T = p? sin™? (g) + [ﬂ' —sin~! (£>] P2 —qn
Pe Ps

T
T=1-25  (0<T<I) (3.101)
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Finally, the previously derived SRP acceleration is now multiplied by the scaling
factor (T) to obtain the most correct value for SRP acceleration due to eclipsing

effects.

The conical eclipse model just derived assumed the angular radius of the Sun
(ps), as seen from the satellite, is smaller than the angular radius of the Earth (pe).
The point at which the angular radius of the Earth becomes as small as the Sun,
may be ascertained by setting Equation 3.96 equal to Equation 3.97 as depicted in
Figure 3.15. This condition yields

Ro _ Fo

5T (3.102)

We therefore seek the value of r from Equation 3.102. The greatest value of |p] is
during eclipse when the satellite is directly opposite the Sun. The value of |p] in this
case is approximately 1AU + r. Substituting this and approximate values for the

constants gives
695508km 6378 km

1.5x 108km +7r r (3.103)

Now solving for r gives a value of r ~ 1.4 x 105 km, which means a satellite would
have to be a little less then 1.5 million km away from Earth before the angular radii
are equivalent. Hence, we are justified in saying ps; < pe for any orbiting satellite in

the near-Earth environment.

3.8 Coordinate Transformations

The satellite-Sun vector (p) was first introduced in Section 3.2.4 and assumed
to be in body-frame coordinates. In actuality, p'is given in the ECI frame and must be
transformed to the body frame prior to being used in any of the previous SRP force
derivation. Additionally, differences in assumed satellite attitude dynamics exist
between the IUS and DSP examples that require separate and distinct transformation
matrices. The transformation from inertial to body-frame coordinates for the IUS

will be presented first.
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A prolate cylindrical body, in the absence of any active thrusting control,
will degenerate to spinning about its maximum moment of inertia. According to
the body-frame illustration in the right half of Figure 3.19, the maximum moment

of inertia for an IUS is aligned with the b, axis. Figure 3.19 also illustrates the

A
k
A
b
A
2 . 93
Q bl
i N A
\ } € ) b,
AN R A Q
b3 ™~ N blzk
A
/i\ l;lp =b1x{+b1y} /‘ b,

Figure 3.19 Inertial to Body-Frame Transformation

transformation from the inertial frame to the body frame. The rotation angle « is
defined as the angle between the unit vector 7 and 51,,, the projection of b, into the
i —5’ plane. The by projection in inertial coordinates, as illustrated in Figure 3.19,
is given by

bip = biai + b1yJ (3.104)

The rotation angle ¢ is likewise defined as the angle between b, and 51,,. The spin
rate about b; is denoted by €. The transformation is accomplished via three single-
axis rotations following a 3 — 2 — 1 Euler rotation sequence. The first rotation is
about the & axis through a positive angle a. Next is a rotation through the angle €
about the —7 axis. The last rotation is a constant spin rate Q about 7, which is now

equivalent to by.
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The three single-axis rotations are then multiplied together to form the in-
ertial to body-frame transformation matrix R®. The transformation involves pre-
multiplying the inertial components by R®. The transformation equation to get from

inertial to the body frame is then given as

b, C.C, CeSq Se i
by ¢ = | —S05.C — CatSa —SeuSeSa+ CanCo SaiCe | § J (3.105)
b —CuS:Ca + SatSa —CaS:Sa — SauCa CarCe | | k

Shorthand in Equation 3.105 is of the form C. = cose or Sg; = sin (2¢).

The transformation from inertial to body-frame coordinates in Equation 3.105
has been expressed in terms of the rotation angles o and €. In order for the trans-
formation to be valid, the rotation angles must be defined as functions of known
parameters. As stated earlier, the IUS will degenerate to spinning about its b, axis.
Therefore, the spin axis (51) will be inertially fixed in space and normal to the orbit
plane for the intent of this analysis. We therefore seek to express b, in the inertial
frame. Figure 3.20 depicts the body-frame geometry for the IUS under these con-
ditions. Since b, is inertially fixed and normal to the orbital plane, it points in the
same direction as the angular momentum vector, H. The angular momentum vector
is given by the cross product of the position and velocity vectors, both of which are
given in ECI frame coordinates. As Figure 3.20 portrays, normalizing H results in

a unit vector equivalent to b, and given in ECI coordinates by

|

by = H = (3.106)

o

Given the fact that b; can be expressed in the inertial frame, it is now possible

to derive definitions of o and e. Inspection of Figure 3.19 reveals a dot product will
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Figure 3.20 IUS Body-Frame and Orbital Geometry

yield the expression for a and is given by

a = cos™} <Z ;blp) (3.107)
|b1p|

A quadrant ambiguity exists when o > 180° and must be accounted for in order to
properly define a. Referring to Figure 3.19, the appropriate quadrant correction is

performed by checking if 7 - Elp < 0, then a = 27 — a.

The derivation for ¢ is even more straightforward than what it was for a. In
Figure 3.19, the vertical component of 131 is denoted as blzl%, and its projection into
the 7 — j plane is labeled as 511, and given in Equation 3.104. Applying trigonometry

to the triangle subtended by € provides the desired expression and thus yields
g =sin™! (by,) (3.108)

A quadrant check is not necessary in this case. When b, is above the i — 7 plane, by,
will be positive and 0 < & < 90°. Conversely, when 51 is below the 7 ——3’ plane, by,

will be negative and —90° < e < 0.
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The previous derivation provides the complete solution for transforming the
IUS example from inertial to body-frame coordinates. The transformation for the
DSP satellite is slightly different. The body-frame geometry of a typical DSP in

geostationary orbit is shown in Figure 3.21. The DSP satellite orbit is assumed to

AN
3 5

Figure 3.21 DSP Body-Frame and Orbital Geometry

lie in the equatorial plane due to its near-zero inclination and eccentricity. This
assumption allows us to equate the inertial frame with the orbit-based, or perifocal
frame. The transformation for the DSP from inertial to body-frame coordinates
follows a similar approach as before; three single-axis rotations dictated by a 3—2—3
Euler rotation sequence. For this derivation, Figure 3.21 depicts the DSP satellite
initially aligned with the ¢ vector. The first rotation is then accomplished by rotating
about k through an angle nt, where n is the mean motion of the satellite and ¢ is
time. The second rotation then tips the k vector by ~90° until it aligns with 133.
Finally, the last rotation is the product of a constant spin rate about by denoted by

Q times t.
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The transformation equation for a DSP satellite to get from inertial to the

body frame is then given as

by —SatSnt SaiCrt Cax | | 1
Z32 = [—CauSnt CatCrnt —Sar 3 (3-109)
Z’3 —Unt —nt 0 k

Shorthand in Equation 3.109 is also of the form as previously described.

Recall the objective of coordinate transformations in this section is to con-
vert the satellite-Sun vector (p) from inertial to body-frame coordinates. The ECI
coordinates of 7 are pre-multiplied by the transformation matrix R® to obtain 7 in
body-frame coordinates. It is the body-frame form of p'that is then incorporated into
the SRP force derivation. The SRP acceleration (a@,) is then transformed back to the
inertial frame by pre-multiplying by the transpose of R®, denoted by (R®)T. Once
this is done, the equations of motion are numerically integrated to obtain new pre-
dictions of satellite position and velocity in ECI coordinates. The remainder of this
chapter describes the process of calculating residuals and subsequent comparative

analysis between the baseline model and the various SRP effects.

3.4 Calculating and Optimizing Residuals

The SRP model in this thesis will be simulated for the duration of one year.
A pre-defined set of classical orbital elements will be converted to initial position
and velocity of the satellite. These initial conditions will then be propagated via
numerical integration in accordance with equations of motion containing the SRP
model found in Equation 3.10. The numerical integrator uses a 5th/6th order Runge-
Kutta with variable step size and a tolerance of 107!2. Prior to simulating, it will
be possible to select from four separate flags that indicate which SRP effect should
be simulated. These simulation control flags include solar flux, area, coefficient of
reflection, and shadow effects. The solar flux flag will permit the user to choose

whether to model a constant or variable solar flux. Similarly, the area flag allows
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the user to toggle between a constant or changing area of the satellite silhouette.
The coefficient of reflection flag switches from specular reflection to both specular
and diffuse reflection, and the shadow flag swaps between the cylindrical or conical

Earth shadow models.

The simulation will actually be performed twice. The first run of the simulation
will propagate the satellite in compliance with user defined flags previously discussed.
This simulation run will hereafter be referred to as the truth model. Satellite position
and velocity at each time step will be archived for subsequent data analysis. The
second simulation run will incorporate the baseline model as derived earlier in the
chapter and will adopt the same name. Recall the baseline model consists of a
variable solar flux, constant area, specular reflection and a cylindrical Earth shadow
model. The second run will also output the satellite position and velocity at each
simulated time step. The two models may further be differentiated in that the truth
model will typically be more complex due to the additional SRP effects, and thus

consumes more computation time.

The objective is to now perform a comparative analysis on the output of the
truth and baseline models, for the purpose of evaluating the merits of modeling higher
order SRP effects as outlined in Section 1.4. This is accomplished by first calculating
residuals at each simulated time step. A residual is defined as the difference between
the actual observed value of some data point, and a prediction of the same point.
Likewise, a residual in this thesis will be defined as the difference between a positional
data point in the truth model, and the corresponding data point from the baseline.
The result will be an array of satellite position residuals computed at 100 second
time increments over the course of one year. In essence, each residual describes how
far off in satellite position, the baseline model is from the truth model at one instant
in time. This data array must now be mathematically summarized in order to assign

some physical dimension to the year-long simulation.
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The function of choice to compress the year’s worth of data is the root-mean-
square (RMS). Equation 3.110 illustrates the computation of the RMS vector where

N is the number of time steps.

o \/ S ) (i = Thsetine)” .10
N
The RMS is a vector at this point in time because the satellite position is a vector.
The RMS first squares each residual and then sums them up. Next, the sum of
the squares is averaged by dividing by the total number of simulation steps. This
mean value is finally square-rooted to obtain the final RMS value. The RMS now
represents the overall variation in satellite position between the truth and baseline
models. It should be obvious that in the final analysis, the lower the RMS, the closer
the truth and baseline models are to each other in modeling SRP. Depending on the
acceptable level of prediction accuracy, a low RMS may indicate that use of the
truth model is not warranted, and hence computation time reduced by employing

the baseline.

Recall the position and velocity of the satellite at each time step are output in
ECI coordinates. The calculated RMS is therefore also in ECI coordinates. However,
the ECI frame does not impart the proper physicality one needs in describing the
relative difference in positions of the satellite, as predicted by the truth and baseline
models. It would be more beneficial to describe the RMS in relative terms of radial,
in-track and cross-track components of one of the models, for example the baseline.
This may be achieved by transforming the RMS from inertial to a frame rotating
with the satellite (76 2). The transformation from inertial (i J k) to (7 2) may be
realized by populating a transformation matrix with the inertial frame components
of (78 2). The position vector of a satellite in the baseline is already given in ECI

coordinates. The unit vector # may thus be obtained by

|~

(3.111)

~3»
Il

=
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The cross-track component 2 is normal to the orbital plane and thus aligned with

the angular momentum vector H. The unit vector % is then given by

| s o]l
=y
3

R X
= T (3.112)

=

]

The third member of the (7§ 2) frame is orthogonal to both # and #, and thus defined

by their cross product and expressed as

(3.113)

>
il
™
X
3>

All three components of the (78 %) frame are now given in ECI coordinates. The

transformation from (2 ] k) to (7 6 2) coordinates is denoted by R and consequently

derived as
P Ty T3
R™= |4, 6, 6 (3.114)
2 Z %

Pre-multiplying the RMS by the transformation R yields an RMS vector in
terms of radial, in-track and cross-track components rooted in the baseline. The

total magnitude of this vector is given by

RMS = \/RMS} + RMS} + RMS} (3.115)

The scalar RMS value of Equation 3.115 now represents the overall relative distance
separating the predictions of the truth and baseline models after one year of simu-
lation. As previously stated, the smaller the RMS, the closer the truth and baseline
are in propagating the satellite to essentially the same point in space. This case
would indicate that the additional modeling complexity is not warranted. A larger
RMS however, may justify the use of the truth model. One would obviously prefer
the baseline model over the truth model if the RMS could be driven to an acceptably

small enough value. The process that follows is known as optimizing residuals.
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The baseline model contains variables or constants that have an impact on the
predicted satellite position, and therefore impact the value of the RMS. Some of these
variables and constants include the radius of the Earth (Rg), effective satellite area
in the form of a flat plate (A), coefficient of reflection (), and solar flux constant
(®p). The first of these, Ry, is employed in the baseline satellite illumination test
case found in Equation 3.36. The latter three, A, (3, and ®,, are primary components
of the baseline model described in Equation 3.30. The RMS may thus be adjusted
somewhat by changing the values of the variables and constants in the baseline.
The objective is to iteratively change these values until a minimum value of RMS is
obtained. Ironically, some of the so-called constants are in fact not precisely known
and are subsequently solved for in the OD process. The residuals calculated in
this manner are therefore more representative of the OD process for which the SRP
model will be used, than the residuals computed when the constants are assumed
to be constant. In essence, this method of calculating and optimizing residuals

functionally mimics the results that one would obtain from an OD filter.

In order to optimize residuals, the baseline model must be iteratively simulated,
changing a selected variable or constant at each iteration, until the minimum RMS is
obtained. When the RMS passes a pre-defined convergence test, the simulation ends
and the RMS, as well as the final value of the variable or constant that was iteratively
changed, are output. If the RMS is at an acceptable level, the conclusion is that the
baseline model is preferred, given the final value of the constant or variable that was
iteratively changed. Otherwise, the new modeling effect in the truth model should
be included to improve OD accuracies. Many optimization techniques exist that may
be employed to minimize the RMS. The method of choice in this simulation is the
Golden Section Search algorithm in one dimension and can be found in Numerical
Recipes by Press et al [26]. Analysis and results of several simulation runs of this

type are found in the next chapter.
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1V. Results

4.1 Numerical Examples

Section 3.2.4 introduced two real-world examples of satellites to be simulated
with the SRP model. These two models include an IUS in GTO and a DSP satellite in
GEO. Representative satellite body dimensions and initial orbital characteristics for

both satellites can be found in Table 4.1. The data contained in Table 4.1 is available

Table 4.1  Satellite Dimensions and Initial Orbital Parameters
[ Property [IUSin GTO| DSP |

Cylinder Length (m) 5.182 4.605
Cylinder Diameter (m) 2.896 3.29
Body Mass (kg) 14741.752 2386
Spin Rate (rpm) 7.5 6
Solar Array Area (m?) — 5.95
Semi-major Axis (km) 24509.625 | 42158.135
Eccentricity : 0.723450073 0.001
Inclination (deg) 25 0.001
Argument of Perigee (deg) 180 180
Right Ascension of
Ascending Node (deg) 90 0
Mean Anomaly (deg) 0 0

in open source and is hence unclassified [4, 10, 11, 12]. The IUS is manufactured by
The Boeing Company and is compatible with both the Space Shuttle and Titan IV
launch vehicles. The IUS is capable of delivering payloads to a wide variety of Earth
orbits. Coincidentally, the IUS is the upper stage employed in launching the DSP
satellite. DSP satellites are operated by Air Force Space Command and are designed

to detect missile launches, space launches and nuclear detonations from GEO.

The body-geometry of both satellites was discussed in Section 3.2.4 and their
respective coordinate transformations given in Section 3.3. Equipped with the satel-
lite attitude dynamics, initial conditions as outlined in Table 4.1 and the SRP model

previously derived; we now explore the baseline behavior of both examples.




4.2 Baseline Behavior

4.2.1 IUSin GTO. The baseline model for an IUS was propagated over a
span of one year. Recall the baseline model simulates a constant area incident to the
Sun, cylindrical shadow for eclipse, and specular reflection. In addition, the solar
flux is modeled as a time-varying fraction of the solar flux constant(®,). Figure 4.1

depicts the behavior of the semi-major axis throughout this time period. By careful
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Figure 4.1 SRP Baseline Behavior for [US Semi-major Axis

examination of Figure 4.1, we may validate the previous conjecture from Section
3.2.5 that there are no long-term effects of SRP on a satellite’s semi-major axis in
the absence of shadowing. It can be seen in Figure 4.1 that just prior to entering
eclipse season, and immediately after exiting, the semi-major axis is nearly constant,
albeit there has been an overall slight increase in value. The thickness of the line that
traces the semi-major axis is due to short-term periodic oscillations on the order of
one orbital revolution. Note that the eclipse season does not represent a continuous
period of eclipse, but rather the time interval where the satellite will pass through

shadow once every orbital revolution.




Periodic variation in other orbital elements can also be seen in Figures 4.2

through 4.4.  Eccentricity, inclination and argument of perigee for the IUS all
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Figure 4.2 SRP Baseline Behavior for IUS Eccentricity

exhibit a sinusoidal variation with a period of one year. Without the perturbing

influence of SRP, the plots in Figure 4.2, 4.3 and 4.4 would be flat lines.

The final plot for the IUS example is the right ascension of ascending node and
given in Figure 4.5. The plot of the right ascension of ascending node (RAAN) is
very interesting in that it behaves somewhat like the semi-major axis. Referring to
Figure 4.5, note that when the IUS is outside of eclipse season, the RAAN is nearly
constant. Once again, the thickness of the line is attributed to short-term periodic
oscillations on the order of one orbital revolution. The most interesting thing here is
that although after entering eclipse season there was a small dip in RAAN, the over-
all trend is to increase very slightly. It is well known that the gravitational effects
of the Earth’s oblateness cause the RAAN to regress over time [9, 38]. However,
Figure 4.5 seems to indicate that when only the perturbing effects of SRP combined

with eclipsing are considered, the nodes progress versus regress. Admittedly, the
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Figure 4.5 SRP Baseline Behavior for [IUS RAAN

values on the Y axis of Figure 4.5 portend a minuscule if not infinitesimal progres-
sion of the RAAN. Nonetheless, when coupled with other gravitational effects, this
behavior will ever so slightly counteract the nodal regression caused by the Earth’s
oblateness. Thus for high precision orbit determination, this might be an effect well

worth keeping in mind.

4.2.2 DSP in GEO. The baseline model for a DSP satellite was also
propagated over the span of one year. It will be seen that the changes in orbital
elements over the year are not dramatically different from the case of the IUS. Figure
4.6 shows the changes in semi-major axis with two eclipse seasons. Any satellite in
geostationary orbit will encounter two eclipse seasons throughout the year, centered
around the Autumnal and Vernal Equinoxes. The semi-major axis outlined in Figure
4.6 exhibits greater short-term periodic oscillations than the IUS example but the

long-term effect is more or less linearly flat.
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Figure 4.6 SRP Baseline Behavior for DSP Semi-major Axis

The eccentricity, inclination and argument of perigee illustrated in Figures 4.7
through 4.9 also demonstrate a sinusoidal period of one year as expected.  Of
particular interest, the inclination of Figure 4.8 displays some short-term periodic
oscillations on the order of a day, but when in eclipse season, these oscillations are
noticeably damped out. Nevertheless, if we were to overlay the IUS inclination plot
in Figure 4.3 on the DSP inclination of Figure 4.8, we would discover the same
general sinusoidal pattern. Also note the diminutive variation in the values on the

Y axis of this plot.

The plot of the RAAN for the DSP example is given in Figure 4.10. Somewhat
surprisingly, the RAAN of the DSP case is unlike that of the IUS. The trend here
follows an overall decrease similar in behavior to nodal regression resulting from the
Earth’s oblateness. The eclipse seasons are obviously centered on the damped out
portion of the daily periodic oscillations. The conclusion that can be made from this
plot is that the presence of shadowing causes the RAAN to regress by an average of

0.2° over the course of a year.
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4.2.8 Orbital Elements Long-term Periodic Variations. In order to give
some physical connotation to the previous analysis, we can make the following anal-
ogy with regards to addition and subtraction of incremental changes in velocity, Av.
Emphasis will be placed on the long-term periodic variations in eccentricity. The
conditions of this analogy may be thought of in context of the DSP case and is meant
to give an appreciation for what is going on from a physical perspective. Recall from
Table 4.1 that the DSP satellite has a very small eccentricity as one of its initial
conditions. It will then be easiest to explain this analogy if we initially consider
a very slightly eccentric orbit with counterclockwise direction, as illustrated in the

Winter Solstice position of Figure 4.11.

Vernal
Equinox

-~

N Winter
—-» \ Solstice
‘_- \
d’e > d’%e
dt dt
\ ‘ --’
\ - / —
Sumn.zer /v Av
Solstice \
. ol

Autumnal
Equinox

Figure 4.11 SRP Effects on Long-term Variations of Eccentricity

Velocity vectors are denoted by ¥ and a solid arrow, whereas a change in

velocity is designated by A7 and a dotted arrow. At the starting Winter Solstice
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position of Figure 4.11, SRP results in the addition of a Av at apogee of the satellite’s
orbit and subtraction of the same A% at perigee. A boost at apogee will cause an
increase in orbital height at perigee, and a corresponding deboost at perigee will
decrease the orbital height at apogee. As a result, the orbit’s eccentricity decreases.
Due to the fact that the Av vectors are aligned with the satellite’s velocity vectors
at both apogee and perigee, the magnitude of the time-rate change of eccentricity is
a maximum. In context of the eccentricity curve of Figure 4.7, this corresponds to
the inflection point occurring just before the plot begins since the simulation has a
start date of 1 Jan 2000. This is where the second time-rate derivative of eccentricity

is zero, and mathematically expressed as

d’e

The implication here is that eccentricity is decreasing on either side of the Winter
Solstice. The average effect as we proceed to the Vernal Equinox is that of a decrease
in eccentricity at a decreasing rate of change. Coupled with the fact that apogee
height decreases while perigee height increases throughout this period, and neglect-
ing any shadowing effects, we observe that the semi-major axis essentially remains
constant. This deduction is validated and numerically proven in Figures 4.1 and 4.6.

The initial orbit is denoted by the dotted ellipse and maintained as a reference orbit.

At the Vernal Equinoz position, the time-rate change of eccentricity has reached

zZero.
de
— =0 4.2
= (4.2)
The significance of this is that eccentricity is neither increasing or decreasing at
this point. This is also the point in Figure 4.7 where eccentricity is a minimum.
As illustrated in Figure 4.11, the Av vectors are now perpendicular to the velocity

vectors at apogee and perigee, and in essence do not effect any change in eccentricity.

This can be demonstrated mathematically by first summing A% and ¥ to obtain a
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resultant vector which we will call ¥, and in which the magnitude is given by
Upew = VU2 + Av? (4.3)

Factoring out a v? under the radical and bringing it to the outside yields

2
Unew = U4/ 1+ (@) (4.4)

v

Equation 4.4 may be approximated by a binomial series expansion which would then

1 /Av\> 1/[/Av\*
ne‘w% ~ - - = R e 4,
v v|:1+2(v) S(v)+] (4.5)

It should be immediately apparent that since the terms containing Av are higher

result in

order expressions, the orbital eccentricity contribution of Aw is effectively nil at
apogee and perigee. The significance of this conclusion is once again that eccentricity
is a minimum and its time-rate of change is zero at the Vernal Equinoz. This analysis
is further supported by the DSP plots in Section 4.2.2. Recall from Section 4.2.2 that
an equinox is coincidental to an eclipse season for the DSP satellite. The first eclipse
season depicted in Figure 4.8 is associated with the Vernal Equinoz and corresponds

to the minimum value of the eccentricity curve given in Figure 4.7.

At the Summer Solstice position, the Av vectors align with the velocity vectors
at apogee and perigee, thereby once again making their greatest impact on the
eccentric changes in the orbit. The addition of a A¥ at apogee and subtraction of
the same A# at perigee, now has the opposite effect that it did at Winter Solstice.
The extra kick at perigee will now increase apogee height and the deboost at apogee
will decrease perigee height. Thus, contrary to the Winter Solstice scenario, the
inference is that eccentricity is increasing on either side of Summer Solstice. To be
precise, from the Vernal Equinox to Summer Solstice, eccentricity is increasing at
an increasing rate of change, and from Summer Solstice to the Autumnal Equinoz,

eccentricity is increasing at a decreasing rate of change.
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Analogous to the Vernal Equinox scenario, the time-rate change of eccentricity
at the Autumnal Equinoz is once again zero for the same reasons as previously
discussed. In contrast however, this zero time-rate of change was arrived at from
the increasing side of eccentricity versus the decreasing side. The import of this
conclusion is that eccentricity is now at a maximum. The Autumnal Equinoz is
associated with the second eclipse season depicted in Figure 4.8 and corresponds to
the maximum value of the eccentricity curve given in Figure 4.7. As time progresses
back to the Winter Solstice, eccentricity begins to decrease at an increasing rate, until
the magnitude of the time-rate change of eccentricity again reaches a maximum and
the cycle begins again. In summary, eccentricity increases over a six month period
from Vernal Equinor to Autumnal Equinoz, and decreases over the following six
month period back to Vernal Equinox. The conclusions of this analogy may be

verified by close inspection of Figure 4.7.

As previously mentioned, this analogy was presented in terms of long-term
periodic variations in eccentricity. Similar long-term periodic variations occur in
inclination and argument of perigee, as depicted in their corresponding plots found
in Sections 4.2.1 and 4.2.2. The semi-major axis and right ascension of ascending
node essentially remain constant throughout this analogy if shadowing effects are
neglected; a conjecture thus supported by their corresponding plots also found in

Sections 4.2.1 and 4.2.2.

Thus far, the results have only included the behavior of the baseline model and
the resulting variation in the orbital elements. This sets the stage for the next phase
of analysis. While it is interesting to note the change in orbital parameters, the main
objective is to increase OD accuracy through modeling of higher order SRP effects.
Since the basic shape of the plots relating to the variation in orbital elements does
not radically change when other SRP effects are modeled, these plots will not be

reproduced for each effect.
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4.8 Changing Area

The simulation of a spacecraft with a varying cross-sectional area projected to
the Sun will follow the basic algorithm discussed in Section 3.4. Table 4.2 displays
the data for both the IUS and DSP examples for the simulation run modeling the

changing area effect. First, the truth model simulates the changing cross-sectional

Table 4.2 RMS Convergence for Changing Area Effect

| RMS Convergence [TUSinGTO| DSP |

Truth Model Sim Time (mm : ss) 07 : 05 11:36
Base Model Average Sim Time (mm : ss) 05:11 05:20
Total Sim Time to Converge (hh: mm :ss) | 02:42:43 | 01:47:40
Variable to be Iteratively Changed A A
Nominal Value of Area (m?) 15.007 15.151
RMS Magnitude of Nominal Area (m) 111, 440 8,641
Optimized Value of Area (m?) 6.704 16.868
Optimized RMS Magnitude (m) 5,614 8,500

area of the satellite in accordance with the previously derived SRP model and equa-
tions of motion. All other SRP effects are maintained the same as in the baseline
model. The time required to simulate the truth model as given in the first entry of
Table 4.2, is just a little over 7 minutes for the IUS and about 11% minutes for the
DSP case. The baseline model in which the satellite is modeled as a sphere, is then
simulated with a nominal area of 15.007 m? for the IUS, and 15.151 m? for the DSP.
The resulting RMS calculated from the nominal area, as specified in the sixth entry

of Table 4.2, is 111,440 m for the IUS and 8,641 m for the DSP.

The intent of computing and optimizing residuals is to match as closely as
possible, the data from the baseline to the data output from the truth model. This
is accomplished by altering a variable in the baseline so that the baseline model
more accurately and functionally emulates the truth model. Since the cross-sectional
area of the satellite projected to the Sun is not very precisely known at any given
point in time, the choice of variable to iteratively change in the baseline is most

logically the area (A). The baseline model is simulated multiple times, iteratively
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changing the value of A until RMS convergence is achieved. The average time to
simulate the baseline on one iteration is just a little over 5 minutes in both examples.
Line three of Table 4.2 indicates the total simulation time required to reach RMS
convergence is on the order of a couple of hours. Each subsequent iteration of the
baseline simulation adjusts the value of A in accordance with the Golden Section
Search algorithm [26]. The bounds on A for the Golden Section Search algorithm
are set to [A/4, 2 A] and denote a range from one-fourth the nominal A to twice that
value. The convergence tolerance is set at 0.001 m, which implies the simulation will
continue until consecutive iterations yield a difference in RMS less than or equal to

0.001m.

The optimized value of A, or in other words the value of A that yields the
smallest residuals, is given in Table 4.2 as 6.704m? for the IUS, and 16.868 m? for
the DSP case. These optimized values for A result in convergence and an optimized
RMS value of 5,614m and 8,500m for the IUS and DSP respectively. One can
quickly observe that the optimized value of A, considerably outperforms the nominal
value by at least 105 km in the IUS case and by only 140m in the DSP case. The
interpretation of the optimized RMS magnitude is that if the optimized value of area
is employed, it will functionally imitate the manner in which residuals are derived
if the satellite area is included as a solve-for parameter in an OD filter. In the
case of the IUS, after one year the baseline prediction will diverge from the truth
model by about 5.6 km. The residuals calculated within an actual OD filter would
be presumably smaller than what was calculated here, and is hence a topic of future
work in Section 5.2. The interpretation of the optimized RMS in the DSP case is
made in like fashion. Compared to the RMS magnitudes of other effects yet to be
presented, the changing area effect seems to have the greatest impact on OD and
should be a concern for precise navigation. The implication for the effect of changing
area is that the baseline model is probably not sufficient for OD, albeit computation

time is much shorter.
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4.4 Diffuse Reflection

Simulation of the diffuse reflection effect follows the same process as the chang-
ing area effect, except now the variable to be iteratively changed is 8. The bounds
on f3 for the Golden Section Search algorithm are set to [—2,2]. The convergence
tolerance for this effect is also set at 0.001m. All other effects are maintained in
accordance with the baseline. Table 4.3 displays the data on both the IUS and DSP

examples for the simulation run modeling the diffuse reflection effect. Note in Ta-

Table 4.3 RMS Convergence for Diffuse Reflection Effect
RMS Convergence ” IUS in GTO | DSP |
Truth Model Sim Time (mm : ss) 05:13 04 : 56
Base Model Average Sim Time (mm : ss) 05: 10 04 :54
Total Sim Time to Converge (hh : mm:ss) || 03:21:22 02:51:35
Variable to be Iteratively Changed Ié; 8
Nominal Value of 3 0.75 0.75
RMS Magnitude of Nominal 3 (m) 14,418 970
Optimized Value of 3 0.625 0.625
Optimized RMS Magnitude (m) 3.198 x 1073 1.331 x 1073

ble 4.3 that the optimized RMS magnitude has been driven essentially to zero by
utilizing a value for B of 0.625. This implies that the baseline model is capable of
exactly matching the orbit prediction of the truth model that simulates the diffuse
reflection effect. There is also little variation in the run times for the baseline and
truth models. Even so, the truth model is still not warranted in this case due to its

complexity and the ability of the baseline to match prediction results.

There is a relationship that can analytically be demonstrated, that correlates
the nominal and optimal values of 8 from Table 4.3. The results in Table 4.3 ef-
fectively connote that the force due to just specular reflection, may be adjusted via
the 3 coefficient and made to be functionally equivalent to the force due to both
specular and diffuse reflection. This is accomplished by first equating Equation 3.45,

which represents the differential SRP force assuming only specular reflection (dﬁp),
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and Equation 3.63 which models both specular and diffuse reflection (dF).
dE, = dF (4.6)

Doing away with the vector notation and dividing out all common terms from both

sides results in
(1= B) + 2B cos 0=25ﬁcos()+(1—5),6§+(1—5ﬁ) (4.7)

Since the baseline models the satellite as a sphere, it also assumes # = 0. Making
this substitution in Equation 4.7 and after some algebraic simplification, we get the
relationship

B==(2+0)8 (4.8)

Wl

The 3 on the left side of this equation comes from dl*:‘;,, and is representative of the
used in the baseline. Equation 4.8 then implies that if the baseline were to append a
factor of % (2 4 6) to its B, it would produce the same results as the truth model, as
long as this is the only SRP effect being modeled. Note that the factor to multiply 8
by is a function of §. For both IUS and DSP simulation cases summarized in Table
4.3, § assumed a value of %, which from Equation 4.8 yields a multiplicative factor
of g. The optimized value for 3 is simply the product of the nominal value, given as
0.75 in Table 4.3, and the g factor. Performing this math yields an optimized value
for B of 0.625, which is consistent with the numerical results of Table 4.3. Both the
factor and optimized value of 3 will take on different magnitudes depending on the
assumed value of §. Nevertheless, the conclusion is the same. The truth model is

not warranted in the case of diffuse reflection.

4.5 Conical Eclipse

Simulation results for the conical eclipse effect may be found in Table 4.4. The

key variable to iterate on for this effect is the radius of the Earth (Rg), with search
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bounds of [Rg — 200, Rg + 200] and a convergence tolerance of 0.001m. Of course

Table 4.4 RMS Convergence for Conical Eclipse Effect

| RMS Convergence [IUSin GTO | DSP |
Truth Model Sim Time (mm : ss) 05: 17 05 : 04
Base Model Average Sim Time (mm : ss) 05:10 04 : 56
Total Sim Time to Converge (hh : mm :ss) | 01:53:54 |[01:14:12
Variable to be Iteratively Changed Ry Rg
Nominal Value of Rg (km) 6378.135 6378.135
RMS Magnitude of Nominal Rg (m) 38.446 13.595
Optimized Value of Rg (km) 6377.277 6283.708
Optimized RMS Magnitude (m) 5.924 3.736

the radius of the Earth is known to much better accuracy than the range indicated.
The aim here again is to simply explore if the baseline parameters can be altered, so
that the baseline model functionally mimics the more sophisticated model. As Table
4.4 indicates, it is possible to increase OD accuracy over the baseline for a twelve
month fit span by about 6 m for the IUS case, and almost 4m in the DSP case, if
the truth model is employed incorporating a conical eclipse. If a 4m to 6 m margin
of error is acceptable, the baseline may be utilized by setting Rg to the optimum
value specified in Table 4.4. Again, there is not much variation in run times, so the

choice of model in this instance may well be dependent on desired OD accuracy.

4.6  Constant Solar Flux

Recall from Section 3.2.1 that the baseline model includes a variable solar flux
as a function of distance from the Sun, and expressed through a scaling factor at-
tached to &g in Equation 3.30. For the purpose of analysis in this section however, we
seek to know the behavior when the solar flux is constant in the baseline. Therefore,
the baseline referenced in this section is not the one referred to in Section 3.2.1, but
is now the model in which the solar flux is constant. Conversely, it is the truth model
that now incorporates a variable solar flux. The baseline will choose ®q to iteratively

vary in the attempt to minimize the RMS. The bounds on the Golden Section Search
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algorithm are set at [®o — 300, ®o + 300] and the convergence tolerance is 0.001m.

Results of simulating this effect are given in Table 4.5.

Table 4.5 RMS Convergence for Constant Solar Flux Effect

[ RMS Convergence [TUSinGTO| DSP |
Truth Model Sim Time (mm : ss) 05:11 04 :54
Base Model Average Sim Time (mm : ss) 05:14 04 : 56
Total Sim Time to Converge (hh:mm:ss) | 02:25:04 |01:28:22
Variable to be Iteratively Changed O N
Nominal Value of &, (W/m?) 1,353 1,353
RMS Magnitude of Nominal @ (m) 4,797 520
Optimized Value of ®; (W/m?) 1,320.82 1,341.16
Optimized RMS Magnitude (m) 583.530 506.405

The simulation time of both models are comparable and are thus not a matter
of great concern. The optimized RMS identified in Table 4.5 indicates that the base-
line model, simulating a constant solar flux, is once again not adequate in modeling
reality. A margin of error of about 500 m in total RMS is probably not acceptable
in most OD applications. It would appear that modeling a variable solar flux as a

function of distance from the Sun is highly justified.
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V. Conclusion
5.1 Summary and Recommendations

This research has shown that SRP is a significant enough non-gravitational
perturbation, that it cannot be ignored in the OD process. The specific effects of
SRP that may be modeled are constant vs. changing cross-sectional area, specular
vs. specular and diffuse reflection, cylindrical vs. conical eclipse, and constant vs.
varying solar flux. One can choose which of these higher order SRP effects to model,
resulting in varying degrees of accuracy in orbit prediction. Explicit derivation of
the SRP model incorporating these effects was developed in Chapter 3. Numerical
and analytical results indicating the utility of modeling these higher order SRP
effects were presented in Chapter 4. The manner in which these results were derived

functionally imitates the results one might obtain by employing an OD filter.

The SRP simulation in this research, essentially propagates the satellite’s initial
state vector over a one year time period by numerically integrating the differential
equations governing its motion, including SRP perturbations. However, the state
vector is never adjusted at any given point in time based on new tracking obser-
vations. Given a sufficient number of tracking observations, the previous satellite
state may be differ_entially corrected to more accurately fit the new observations,
and thus produce a current estimation of the satellite’s orbit prior to generating
more ephemeris. Differential correction is a least squares estimation technique that
iteratively adjusts a state vector in order to minimize the residuals between the state
and the actual observations. This OD filtering process is also capable of solving for
values of A, B8, Rg, or ®, that will best fit the observed tracking data. Inclusion
of these variables as solve-for parameters in an OD filter such as Kalman or Bayes,
will result in decreasing residuals more than what was obtained in this research.
Based on the rigorously derived results of Chapter 4, and assuming that solve-for

parameters will be included in the OD process, the following is recommended.
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The effect of a changing cross-sectional area incident to the Sun is the most
significant of the four SRP effects. It is highly recommended that the body ge-
ometry, time-varying attitude and orbital dynamics of the satellite be modeled in
order to determine the cross-sectional area of the satellite illuminated by the Sun.
With regards to diffuse reflection, it was discovered there is no notable difference in
the prediction results of modeling specular reflection, as opposed to modeling both
specular and diffuse reflection. Therefore, it is recommended that the simple case
of specular reflection be modeled, remembering to append a factor to the coefficient
of reflection (3) in accordance with the analytical derivation given in Section 4.4.
Variation between the cylindrical and conical eclipse models appears to be small,
on the order of a few meters over a one year fit span. Modeling a conical eclipse is
recommended in high-precision applications such as the TOPEX /Poseidon satellite
mentioned in Section 2.2, and the cylindrical Earth model is recommended for all
other cases where computation time is of greater importance. Finally, the inclusion
of a variable solar flux in the SRP model is recommended in all cases. The model
including variable solar flux outperformed the model containing a constant solar flux,

without any considerable difference in computation time.

5.2 Future Work

As with any research endeavor, there is always more work that can be done or
further improvements to be made. Since the changing area effect seems to have the
greatest impact on predictions as a result of SRP modeling, OD algorithms should
incorporate this effect in order to obtain the best predictions possible. The results
outlined in Chapter 4 concerning the changing area effect, merely demonstrated that
it is possible to functionally equate the baseline model, given some optimal cross-
sectional area, to the truth model, which more closely simulates the true state of the
satellite. Be that as it may, recall from Table 4.2 that the optimum RMS achieved
for the IUS was over 5 km, indicating that the baseline does not adequately model

reality.
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An optimum value of the cross-sectional area was shown to minimize residuals
in Section 4.3. However, this optimum value for the cross-sectional area in this
methodology, was still treated as a constant and not allowed to change with time.
The challenge is to model the time-dependent attitude dynamics of the satellite,
including such parameters as satellite dimensions, spin rate, direction of spin axis,
and basic geometric shape; such that a reasonable estimation of the cross-sectional
area at each instance in time, may be more effectively utilized in the OD process. In
short, the objective now is to reduce residuals even further by incorporating attitude

dynamics into an OD filter.



Appendiz A. SRP Model FORTRAN Source Code

A.1 Simulation Algorithm for SRP Study
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* *
* SIMULATION ALGORTIHM FOR SOLAR RADIATION PRESSURE STUDY *
* Maj Dayne G Cook - AFIT Class GSO-01M *
* *
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PROGRAM Solar Radiation Pressure

implicit none
integer neq, ido, caseflag, shadflag, areaflag, corflag, srpflag,
& model, cntr
character(10) date, time
parameter (negq=6) 'number of diff eqs to integrate
double precision x{(meq), t, tend, tol, param(50), mu, c, phi, m,
srp, au, pi, delta, beta, dA, r(3), Re, Rs, tnot,
v(3), e, a, i, w, nu, raan, rad, h, gamma, alpha,
omega, lambda, rhos, rhoe, epoch, MA, n, TO, sma,
DSPomega, DSPmass, DSPn, DSPr, DSPh, DSPsa, edom,
rnot(3), vnot(3), SI, truthr(315570,3),sumres(3),
RMS, rhat(3), zhat(3), mag, thetahat(3), xmin,
Hvec(3), Rir(3,3), res(3), newres(3), toler,
golden, ax, bx, cx, dos

Frreeyereee

common mu, Srp, au, pi, m, delta, beta, dA, rad, h, gamma, alpha,

& omega, Re, Rs, lambda, rhos, rhoe, sma, phi, ¢, DSPn,
& DSPsa, tnot, SI, rnot, vmnot, truthr, caseflag, shadflag,
& areaflag, corflag, srpflag, model

external eoms, RMSbase

open(10,file=’truthl’)
open(20,file=’truth2’)
open(30,file=’truth3’)
open(40,file="truth4’)
open(75,file=’aflag’)

call date_and_time(date, time) lwrite DTG to file to annotate start time
write(75,%) ’DTG = ’,date,’ ’,time

3 2k 3 5 ok ok 3 o o ok ok ke ek o sk sk 3k ok ok ok ok ke sk ok 3k ke e sk ok e ek Sk ok ok 3 3 ok ok ok o ok ok ok e 3k 3k ok ok ok ok o o ok o ok e o ok 3 ok ok ok ke sk ok ok

DEFINE CONSTANTS:
ke ek Kok oo ok o s ke ki ks sk s ek ki sk sk skookok ksl sl sk ok ek skl sk o ook ok ok sk sk sk sk ok ok o s kK ok ok o ok oK

caseflag=1 1 (0) GTO upper stage case. (1) DSP case
shadflag=0 1(0) cylindrical shadow. (1) conical shadow
areaflag=0 1 (0) constant area plate. (1) changing area cyl

corflag=0 1 (0) specular onmnly. (1) both specular & diffuse
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srpflag=1
model=0
toler=0.001d0
Re=6378.135d0
Rs=695508d0
pi=dacos(-1d0)
beta=0.75d0
delta=0.5d0
m=14741.75240
rad=0.001448d0
h=0.005182d0
omega=(pi/4d0)*100d0

DSPomega=(pi/5d0)*100d0

DSPmass=2386d0

1(0) changing solar flux. (1) comstant solar flux
1 (0) truth model. (1) baseline model
Itolerance for golden search algorithm (m)

!Radius of the earth (km)

'Radius of the sun (km)

!define pi=3.14159....

fraction of light reflected (coeff of reflection)
tfraction of beta specular. (l-delta) is diffuse
!satellite mass (kg)

!satellite cylindrical radius (km)

Isatellite cylindrical height (km)

Ispin about bl in 3-21 Euler sequence (rad/100s)
IDSP spin rate about b3 (rad/100s)

IDSP mass (kg)

DSPn=((2d0*pi)/86145.53)%10040 !DSP mean motion (rad/100s)

DSPr=0.00329d0/2d0
DSPh=0.004605d0
DSPsa=5.95d~6
au=149597870.691d0
mu=398600.44180d4
c=299792.4584d0
phi=1353d0
sma=1.00000011d0*au

if (caseflag==1) then
m=DSPmass
rad=DSPr
h=DSPh
omega=DSPomega
end if

if (corflag==0) then
delta=1d0
end if

dA=2dO*rad*h

IDSP cylinder radius (km)

IDSP cylinder height (km)

IDSP solar array area (km"2)

11 astronomical unit (km)

lgravitational parameter (km~3/10072s72)
Ispeed of light in vacuum (km/s)

Isolar radiation flux at sma (W/m"2)
Isemi-major axis of earth (km)

IDSP case

lall specular, no diffuse

!differential area for baseline (km~2)

C kKRR ORR KRR K KK oK o ok o ok ok ok ok sk sk sk sl skl R ok sk sk Rk ko ok ook ok o ok ok ok ok
c Given CDES, convert to r and v
€ kdkskckkok ok ok kKRR R AR K kKR ok sk ok Sk ok sk ok sk ksl sk kR ok ok sk ok sk ok ook ok sk Kok ok ok ok
if (caseflag==0) then !typical GTO orbital elements
a=24509.625d0
e=0.723450073d0
i=25d0%pi/180d0
w=pi
raan=pi/2d0
MA=0d0
else if (caseflag==1) then
a=42158.135d0
e=0.001d0
i=0.001d0*pi/180d0
w=pi

!sample DSP orbital elements
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raan=0d0
MA=0d0
end if

call COEStoRV(a,e,i,raan,w,MA,rnot,vnot) iConvert COES to r and v

ok Rk ok ok ok ok Kk Kok sk KR Kok Rk sk kR Rk sk sk Rtk ok kR ok ok ok ok R ko sk ksl ok ok sk sok ok Kok
————————————————— TRUTH MODEL

START OF INTEGRATION LOOP FOR EOM’S AND ORBITAL ELEMENTS:
t and x are both input & output to ’divprk’. ’divprk’ stands for double
precision initial-value problem for ordinary diffeq using Runge-Kutta.
SET INITIAL CONDITIONS PRIOR TO CALL TO INTEGRATOR:
t=JD of 1 Jan 2001 in 100 seconds. State vector position x(1-3) is in km.
State vector velocity x(4-6) is in km/100s. tol=iteration tolerance.
SRR K KKK KKK K R o K ok R Kok s R R sk ok R ksl ko ok okl ok sk ok sk kiR ok Kok Kok ko oK

tnot=2451910.5d0*864d0

t=tnot

tol=1.d-10

x(1)=rnot (1)

x(2)=rnot(2)

x(3)=rnot(3)

x(4)=vnot (1) *100d0

x(5)=vnot (2)*100d0

x(6)=vnot(3)*100d0

cntr=1
ido=1 !flag indicating state of computation
param(4)=1000000 Isets max # steps allowed

do 100 tend=t,t+315569d0,140 !step size in 100 seconds

call divprk(ido,neq,eoms,t,tend,tol,param,x)

r(1)=x(1) lextract r & v from state x
r(2)=x(2)
r(3)=x(3)
v(1)=x(4)
v(2)=x(5)
v(3)=x(6)

call RVtoCOES(r,v,a,e,i,raan,w,nu) linput r,v & get COES

ok ks ook ook R R Kok ok ok ko K R K sk kK o ok o ko R sk sk sk ks sk ok ok sk ks ko sk stk ok ok ok

Write COES and eclipse times to file.

AR R AR R R R R KRR KKK K KRR K o oK KR K sk ek sk sk sk sk ik sk sk o Kok stk ok ok ok ok
truthr(cntr, :)=r 'Archive truth position for future analysis.
cntr=cntr+l
dos=(tend/864d0)-2451910.5d0 !Day of simulation (0-365)
write(20,*) dos,a,e
write(30,*) dos,i,raan
write(40,*) dos,w,nu

if (shadflag==1) then

if (lambda <= (rhoe-rhos)) then lumbral
write(10,*) dos, 2d0
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else if (lambda>=(rhoe-rhos) .AND. lambda<=(rhos+rhoe)) then !penum
write(10,%*) dos, 1d0

else
write(10,*) dos, 040 Ino eclipse

end if

else if (shadflag==0) then

if (8I==0d0) then

write(10,*) dos, 1d0

else
write(10,*) dos, 040
end if
end if
continue
ido=3 lrelease workspace
call divprk(ido,neq,eoms,t,tend,tol,param,x) !no integration

o ok e 3 3k o ok 3 3k 3 ok ok 3 3K oK ok 3 ke ok ok ok ok ok oK ok K ke ok ok ek 3 3k s ok e s s o 3l ke sk ok ok ok ok e ok ok ok ok Sk ke 3k sk ok 3 3k Sk 3ok ok ok ok ko ok sk ok ok

END OF INTEGRATION LOOP FOR TRUTH MODEL
sk sk ok e ok o o o Ko o o ok ko s ok ok o o ok ks o ks o sk ks o ok ok ok koo o ok koo ok sk s ok ko o e kst ok ok ok sk sk sk koo o ok ok

call date_and_time(date, time) lwrite DTG to file for computation
write(75,*) DTG = ’,date,’ ’,time !time analysis
write(75,%) ’Truth model run is done.’

close(10, status=’save’)
close(20, status=’save’)
close(30, status=’save’)
close(40, status=’save’)

sk 2k 3k ke ke ok ok 3k 3 ok ok ok ke ok ok ok k3 e ok ok sk sk ok Sk ok ok ok sk ok ok 3k ak ok 3 ok s 3k ok sk ke s ok ok e ok ok ok s ok ke sk ok o e ok ok ke ok ok ok ok ok ok ok kK

————————————————— BASELINE MODEL -—-

o 2k ok ok ok ok 3 ok ok ke 3k 3k ok 3 ok ke o ok e ok 3k ok ok e ok ok 2k 3 3¢ s ok e e ke ke ok 3 ok ke ke ok 3 ok ke ek o 3 kKl ok K ok 3k K ke ok 3k ok ok ok ok o ok s ok ok ok %K oK %K

model=1 Iset flag to indicate baseline model
ax=(dA/4d0) !set bounds on dA for golden section search
bx=dA

cx=(2d0*dA)

RMS=golden(ax,bx,cx,RMSbase, toler,dA)

write(75,*) ’Minimum RMS in meters is ’,RMS
write(75,*) ’Optimum dA in meters~2 is ’,dA*1d6

ax=phi-30040 !set bounds on phi for golden section search
bx=phi

cx=phi+300d0

RMS=golden(ax,bx,cx,RMSbase,toler,phi)

write(75,*) ’Minimum RMS in meters is ’,RMS
write(75,*) ’0Optimum phi is ’,phi
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call date_and_time(date, time) 'write DTG to file for computation
write(75,%) DTG = ’,date,’ ’,time Itime analysis

close(75, status=’save’)
end PROGRAM Solar Radiation Pressure
C skokkokoKok koK sk ok ke ke ok o s sk ok o ok o ok ok ok ok o ook ook ok o sk ok ok ok ok ok ok ok ok ok ok ok o ok s o ok sk sk ok ok ok ok o sk ok oK ok ok K K KK K K

¢ END OF MAIN PROGRAM.
C  ksksokokokokaoloR kKRR KR KR R K oK Kok o ok ok ok ook o sk sk koo sk ksl o ok ik ok ok sk sk ok sk skook ook Kok ok sk ok ek sk K

s sk 3k e o 3k e 2K 3 ok 3 3 o oK ok ok ke o ok ok ke o ok ok ok sk s sk ok ok o ok ks s ke ok sk 3 ok sk ok ok ok ok sk ok ok 3k 3k 3k Sk 3k Sk Sk S 3k ok Sk e ke Sk ok ok oK ok ok

The following routines perform vector manipulation as well as
computation of the classical orbital elements from r and v or
vice versa.

O 000000
* X X * *
* ¥ X X ¥

ok ok ok ke ke ok ok ke 3 3 ok ok 3 e ok o 3 3k 3k o ok e ok ok ke sk s o sk sk ok 3k ok ok 3k ke ok ok sk dk sk ok ok ok ak ok sk 3k ke s K ke e Sk Sk ok 3k ok sk ok e sk ok ok %k ok ok ok

ok ok 3 2 3k 6 o 3k 3k 3k 3k 3k 3 3k 3 ok ok 3 ok 36 ok 3k 3 ok o ok ok o o ke 3k ke 3 o ok sk ok e oK ke ke e sk ke s ke S ok e ok ke ok ok ke a Sk ok e ok ok 3k Sk ok ok K e ke ok ok

Vector dot product
C  ksokkokaoR KRR ok Kok Rl ok K sk ok ok sk ok sk sk Rk ksl ksl sk kst ks ks ok sk ok ok sk ok skl ok ok ok

double precision FUNCTION DOT(V,W) lreturns scalar in DOT

a o

implicit none
double precision V(3), W(3)

DOT=V(1)*W(1)+V(2)*W(2)+V(3)*W(3)

return
end

[+ 3k ok ok ok o o 2k ok ke ok ok s ok ok ke ok ok 3k ok ok ok s 3k A ok ok ok 3k e ok ok ok ok 3 3 sk Sk ok ak ok 3 K ke ke ke ok ok K Sk ok ok oK koK 3k ok ok e ok ok ok K

c Vector cross product
€ skoksokokok ok ok ok ok Kok o o KoK oK o koK oo R o ok o Ko o ko ok ok ok s ok ko s ok sk ok ok sk o sk ok s s e ke sk sk ok ke o s ok ok ok ok ok
SUBROUTINE CROSS(V,W,Z) lreturns vector Z = V cross W

implicit none
double precision V(3), W(3), Z(3)

Z(1)=V(2)*W(3)-W(2)*V(3)
Z(2)=V(3)*W(1)-W(3)*V(1)
Z(3)=V(1)*W(2)-W(1)*V(2)

return
end
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Vector magnitude
ok kKR AR sk KR KKK KK R Ko ok K ks sk sk sk o ok e tokoRok sk R Kk ok sk kK ok sk sk ko sk o ok ok ok

double precision FUNCTION MAG(V) !returns magnitude of vector

implicit none
double precision V(3)

MAG=dsqrt (V(1)**2+V (2) **2+V (3) *¥2)

return
end

ok sl ok o ook sk ok R ok ok K Ko o R o ok K ok ok KoKk ok ks K o o ok s ok sk ks ok ok ok ok sk sk R Kok sk ok s ksk ok ok ok o
Position & Velocity to Classical Orbital Elements (coes)
r,v ---> a,e,i,w,raan,nu
ko ok ks o ok ok R R KoK o K Ko R K R R K KR K Ko o ok ks R K R s ks ks sk koo ok ko ok o ok sk sk sk ok ok skokok ok ko ok
SUBROUTINE RVtoCOES(r,v,a,e,inc,raan,w,nu)

implicit none
double precision r(3), v(3), a, epsilon, vmag, rmag, mag, mu,

& pi, H(3), vxH(3), evec(3), e, inc, k(3), dot,

& kxH(3), lon(3), raan, w, nu, londotedive,

& i(3), j(3), rdotv, edotrdivm

pi=dacos(-1d0) !define pi=3.14159....
mu=398600.4418d0 lgravitational parameter (km~3/s"2)
v=v/100d40 tconvert v from km/100s back to km/s

rmag=mag(r)
vmag=mag (v)

*kx*x semi-major axis (km)

epsilon=0.5d0*(vmag**2) - (mu/rmag) lorbital energy

a=-mu/(2d0*epsilon)

*xx% gccentricity

call cross(r,v,H) Ir x v = H (angular momentum vector)
call cross(v,H,vxH) 'find v x H

evec=(1d0/mu) * (vxH - mu*r/rmag) 1find eccentricity vector
e=mag(evec)

i(1)=1d0 Idefine inertial unit vectors
i(2)=0d0
i(3)=040
§(1)=0d0
j(2)=1d0
j(3)=0d0
k(1)=0d0
k(2)=0d0
k(3)=1d0




000 0000

*x*x*k*x inclination (deg)
inc=dacosd(dot (k,H) /mag(H))

xx*xx arg of perigee and right ascension of ascending node cases
if (inc==0d0 .AND. e==0d0) then

raan=0d0

w=0d0

GOTO 50
end if

if (inc==0d0 .AND. e <> 040) then
raan=0d40
w=dacosd(dot (evec,i)/e)
if (dot(evec,j) < 0d0) then

w=360d0-w
end if
GOTO 50
end if
call cross(k,H,kxH) 'find k x H
lon=kxH/mag (kxH) !line of nodes vector

if (inc <> 040 .AND. e==0d0) then
w=0d0
raan=datan2d (lon(2),lon(1))
GOTD 50

end if

*xk*x* right ascension of ascending node
raan=datan2d(lon(2),lon(1))

**x%% argument of perigee and true anomaly correction

Aok sk ok R ok sk R sk sk kKR R sk ok sk sk sk ks kR ok sk ksl sk lok ok ok sk sk ksl sk kiR stk sk ok sk ok o
CORRECTION FOR FORTRAN ANOMALY: If vectors are aligned or opposite, DOT
should be -1 or 1, but there are cases where FORTRAN folds. So, if the DOT
is very, very close to -1 or 1, just assign the value of -1 or 1 directly,

so that ’dacos’ will not produce a ’acos domain error.’
KSR KR Kok o o K K R o K sk ks R KR R R Kk sk ok sk ko sk sk ko sk ke ksl ko ik ok sk ok Kok ok

londotedive=dot (lon,evec)/e
if (londotedive < -0.99999999999999d0 .AND.
& londotedive > -1.00000000000001d0) then
londotedive=-1d0
end if
if (londotedive > 0.99999999999999d0 .AND.
& londotedive < 1.00000000000001d0) then
londotedive=1d0
end if
if (dot(evec,k) > 0d0) then
w=dacosd(londotedive)
else if (dot(evec,k) < 0d0) then
if (londotedive == 1d0) then
w=0d0




50

else
w=360d0 - dacosd(londotedive)
end if
else if(dot(evec,k) == 0d0 .AND.
& dot(lon,evec) > 0d0) then
w=0d0
else if(dot(evec,k) == 040 .AND.
& dot(lon,evec) < 0d0) then
w=180d0
end if

*%*xk true anomaly
rdotv=dot (r,v)
edotrdivm=dot (evec,r)/(e*rmag)
if (rdotv < -0.99999999999999d0 .AND.
& rdotv > -1.,00000000000001d0) then
rdotv=-1d0
end if
if (rdotv > 0.99999999999999d0 .AND.
& rdotv < 1.00000000000001d40) then
rdotv=1d0
end if
if (edotrdivm < -0.99999999999999d0 .AND.
& edotrdivm > -1.00000000000001d0) then
edotrdivm=-1d0
end if
if (edotrdivm > 0.99999999999999d0 .AND.
& edotrdivm < 1.00000000000001d0) then
edotrdivm=1d40
end if
if (rdotv > 0d0) then
nu=dacosd(edotrdivm)
else if (rdotv < 0d40) then
nu=360d0 - dacosd(edotrdivm)
else if (rdotv == 0d0 .AND.

& dot(evec,r) > 0d0) then
nu=040
else if (xrdotv == 040 .AND.
& dot(evec,r) < 0d0) then
nu=18040
else if (rdotv == 040 .AND. rmag == a) then
nu=0d40
end if
return
end

tcircular orbit
tundefined
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Classical Orbital Elements (coes) to Position & Velocity
a,e,i,w,raan,nu ——-> r,v
ook ok oK o R KK o K 3 o ok Ko o oK o o K o K oK s o ko sk ksl sk sk kiR ok okl ksl sk kR ok ki sk sk koK sk ok o
SUBROUTINE COEStoRV(a,e,i,raan,w,MA,r,v)

implicit none
double precision r(3), v(3), a, rmag, mu, pi, e, i, raamn, w, nu,

& MA, EA, p, deltaEA, deltaMA, rpqw(3), vpqw(3),
& Rpi(3,3)

pi=dacos(-1d0) tdefine pi=3.14159....
mu=398600.44184d0 lgravitational parameter (km~3/s"2)
*okokok Solve for eccentric anomaly (EA) via Kepler’s equation
deltaEA=1d0

EA=MA+exdsin(MA)

do while (abs(deltaEA) > 1d-8)
deltaMA=EA-e*dsin(EA)-MA
deltaEA=-deltaMA/(1d0-exdcos(EA))
EA=EA+deltaEA

end do

nu=2d0*datan(dsqrt ((1d0+e)/(1d0-e))*dtan(EA/2d0))
rmag=ax*(1d0-e**2) / (1d0+e*dcos(nu))

rpqw(1)=rmag*dcos (nu)
rpqw(2)=rmagxdsin(nu)
rpqw(3)=0d0

p=a*(1d0-e**2)

vpqw(1)=dsqrt (mu/p)*-dsin(nu)
vpqw(2)=dsqrt (mu/p)* (e+dcos(nu))
vpqw(3)=0d0

Aok kk Transformation matrix from PQW to IJK
Rpi(1,1)=dcos(raan)*dcos(w)-dsin(raan)*dcos(i)*dsin(w)
Rpi(2,1)=dsin(raan)*dcos(w)+dcos(raan)*dcos(i)*dsin(w)
Rpi(3,1)=dsin(i)*dsin(w)
Rpi(1,2)=-dcos(raan)*dsin(w)-dsin(raan)*dcos(i)*dcos(w)
Rpi(2,2)=-dsin(raan)*dsin(w)+dcos(raan)*dcos(i)*dcos(w)
Rpi(3,2)=dsin(i)*dcos(w)

Rpi(1,3)=dsin(i)*dsin(raan)
Rpi(2,3)=-dcos(raan)*dsin(i)

Rpi(8,3)=dcos (i)

r=matmul (Rpi,rpqw)
v=matmul (Rpi, vpqw)

return
end
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* *
* EQUATIONS OF MOTION (EOMS) SUBROUTINE *
* *
Kok Kok o ook o ook sk sk oo ok sk sk sk sk sk ko ok ko ok ok ok ok ok ok o sk sk ko sk sk sk KR K K ok K o
SUBROUTINE eoms(neq,t,x,xdot) Ixdot is the output

implicit none
integer neq, cntr, caseflag, shadflag, areaflag, corflag, srpflag,
& model
double precision t, x(neq), xdot(neq), au, mu, srp, sun(6), r(3),
s(3), svsun(3), mag, dA, dot, Re, Rs, nhat(3), tnot,
svsunhat(3), pi, m, theta, beta, delta, ndotsv, rad, h, sma,
Rbi(3,3), Rib(3,3), gamma, alpha, omega, svsunhatb(3), b1(3),
b2(3), b3(3), Ab(3), Ai(3), svsunhatbpj(3), psi, cylends(3),
rhos, rhoe, SI, lambda, A, U, Q, cosPsi, v(3), Hvec(3), i(3),
j(3), b1i(3), bliproj(3), phi, ¢, DSPn, DSPsa, nihat(3),
n2hat(3), n3hat(3), n4hat(3), SP1(3), SP2(3), SP3(3), SP4(3),
b3i(3), b3check(3), truthr(315570,3), rnot(3), vnot(3)

R RRR

common mu, srp, au, pi, m, delta, beta, dA, rad, h, gamma, alpha,

& omega, Re, Rs, lambda, rhos, rhoe, sma, phi, ¢, DSPnm,
& DSPsa, tnot, SI, rnot, vnot, truthr, caseflag, shadflag,
& areaflag, corflag, srpflag, model

kSRR AR AR AOR R HORF AR AR AR KK oKk AR R AR sk KK K K sk ks sk ek kb sk ok ok ko
EXTRACT SUN VECTOR FROM EPHEMERIS FILE:
’pleph’ (located in ’ephem.f’) returns sun vector (r & v) in AU wrt earth.

Define Sat & Sun vectors(ECI). SRP constant is a function of (sma/l|s|)~2.
kst ok sk ok ok ko sk o R s ok ko ok ok ks sk ok ks ok ks sk ok ke sk ko ok ko ke sk ok ko ks sk ok ke sk ok sk sk o ks ok ok ok ok

call pleph(t/864d0,11,3,sun) 1864 by 100s per block per day
do cntr=1,3
r(cntr)=x(cntr) !r = earth to SV
v(cntr)=x(cntr+3) lv = sat velocity vector

s(entr)=sun(cntr) *au !s = earth to sun (convert to km)
end do
svsun=s-r tdefine vector SV to sun (ECI)
svsunhat=svsun/mag(svsun) lunit vector from SV to sun (ECI)
srp={phi*(sma/mag(s))**2/c)*100d2 ISRP constant (N/10°7m"2)
if (model==0 .AND. srpflag==1) then

srp=(phi/c)*100d2 ISRP constant (N/10°7m"2)
end if

if (model==0 .AND. shadflag==1) then
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CONICAL SHADOW MODEL:

Determine whether SV is in penumbra, umbra, or no eclipse. Additionally,
find the fraction of solar intemsity (SI) in each case.

Umbra(S8I=0), no eclipse(SI=1), penumbra(0<SI<1).
ok ok sk ok ok ok ik KR KRR A Kok KoK KKK SR KR K KRR o R sk sk ok ok ook ok sk ok ok

lambda=dacos (dot (svsunhat,-r) /mag(r)) learth-SV-sun angle
rhos=dasin(Rs/mag(svsun)) !sun angular radius from SV
rhoe=dasin(Re/mag(r)) learth angular radius from SV
if (lambda >= (rhos+rhoe)) then Ino eclipse

SI=1d0
else if (lambda <= (rhoe-rhos)) then !umbral

SI=0d0
else ! penumbral

Q=0.5d0* (rhos+rhoe+lambda)
U=(2d0/lambda) *dsqrt (Q* (Q-lambda) * (Q-rhos) * (Q-rhoe) )
if (abs(rhos**2-rhoe**2) <= lambda**2) then
A=(dasin(U/rhos))*rhos**2+(dasin(U/rhoe) ) *rhoe**2-Usxlambda
else if (abs(rhos**2-rhoe**2) > lambda**2) then
A=rhoe**2xdasin(U/rhoe)+(pi-dasin(U/rhos) ) *rhos**2-Uxlambda
end if
SI=1d0 - A/(pi*rhos**2)
end if
else

KK AR K R KK K s KK o KoK K oK o o R sk sk sk sk ok sk ok sl o ol ksl ok ok ek ok ok ok Kok o
SIMPLIFIED CYLINDRICAL SHADOW MODEL:
For the baseline model, determine if SV is in cylindrical earth shadow or
not. In shadow (SI=0), outside of shadow (SI=1).
SRR R AR K o Ko oK KR K K SR K KK K K K o sk s kR sk ks sk sl ke ok sk sk ks sk ok ik okok ok ok
cosPsi=dot(r,s)/(mag(r)*mag(s))
if (cosPsi<0d0 .AND. (mag(r)#**2-mag(r)**2*cosPsi**2)<Re**2) then
SI=040
else
SI=1d0
end if
end if lend of shadow flag check

o 3 k3 3 ok ok sk 3 3K ok ok ok 3K ok 3k 3 3 o ok o 3k ok ok K ok ok ok ok ok ok ok ok ok ok e e ok o ok e o sk ok ok e ke ok ks ok ok ook ok sk ok 3k e sk ok ok ok ok ok ok 3k ok K ok
DEFINE INERTIAL AND BODY FRAME UNIT VECTORS:
sk 35 ok ok 3k ok 2k 3k ok 5K ok 3¢ 3K 3 3K ok ok 3k 3¢ o 3 ok 3k 3K ok 3K 3K ok 3K ok 3 oK K 3K ok K sk ok 3k 3k 2k ok ok 3 ok 3 sk k3 ok e o ok ke K ok 3 o ok 3 ok ok ok ok ok ok ok koK ok 3k 5k 3k ok %k
i(1)=1d0
i(2)=0d0
1(3)=040
j(1)=0d0
j(2)=1d0
j(3)=0d0
b1(1)=1d0
b1(2)=0d0
b1(3)=0d0
b2(1)=0d0
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b2(2)=1d0
b2(3)=0d0
b3(1)=0d0
b3(2)=0d0
b3(3)=1d0

if (model==1) then
GOTO 500

end if

if (areaflag==0) then
GOTO 400

end if

ok ok o R AR R KR KR KoK o Ko K K KoK K ok ook KoK o o sk R ok ok ok ks sk s ok sk ok ks ok ok o ok ok ok o
EULER ROTATION ANGLES:
For the case of a prolate, cylindrical spent upper stage; the body will
degenerate to spinning about its’ max MOI with spin axis normal to the
orbital plane as equilibrium. Case of a torque-free axisymmetric rigid body.
S R o A AR AK KR HOK KK SR K KoK o K K K Ko s o ko ko ke ok sk sk ki ok ko ok ok ks ok sk stk ok sk ok ok ok ok o
if (caseflag==0) then

call cross(r,v,Hvec)

bili=Hvec/mag(Hvec)

bliproj(1)=b1i(1)

bliproj(2)=b1i(2)

bliproj(3)=040

gamma=dasin(b1i(3))
alpha=dacos(dot (i,bliproj)/mag(bliproj))

if (dot(j,bliproj) < 0dO) then lquadrant correction: alpha > 180
alpha=2d0*pi-alpha
else if (b1i(3) == 1d0) then bl is along k
alpha=0d0
end if
end if

HAAR AR AR AR AR KRR KKK A SR KKK KK R o ek ok ok kK o sk sk ok e ok sk ok ok ok ook
DEFINE TRANSFORMATION MATRIX:
(0) US cylindrical body -- Inertial to {b} via a (3, -2, 1) Euler rotation.
(1) DSP case -- Imertial to {b} via a (3, -2, 3) Euler rotation.
HA AR AR AR AOR KA KR A oK Ao K KK KK s ok Ko Kok K R oK ok ok sk sk ook
if (caseflag==0) then !GTO upper stage case
Rib(1,1)=dcos(gamma) *dcos(alpha)
Rib(2,1)=-dcos(omega*t)*dsin(alpha)-

& dsin(omega*t)*dsin(gamma)*dcos(alpha)
Rib(3,1)=dsin(omega*t)*dsin(alpha)-
& dcos(omega*t)*dsin(gamma)*dcos(alpha)

Rib(1,2)=dcos(gamma)*dsin(alpha)
Rib(2,2)=dcos(omega*t)*dcos(alpha)-

& dsin(omega*t)*dsin(gamma)*dsin(alpha)
Rib(3,2)=-dsin(omega*t)*dcos(alpha)-
& dcos (omega*t)*dsin(gamma) *dsin(alpha)

Rib(1,3)=dsin(gamma)
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O o000

o o000

O o000

Rib(2,3)=dsin(omega*t)*dcos (gamma)
Rib(3,3)=dcos (omega*t)*dcos (gamma)

else if (caseflag==1) then !DSP case
Rib(1,1)=-dsin(omega*(t-tnot))*dsin(DSPn* (t-tnot))
Rib(2,1)=-dcos(omega*(t-tnot))*dsin(DSPn*(t-tnot))
Rib(3,1)=-dcos(DSPn*(t-tnot))
Rib(1,2)=dsin(omega* (t-tnot))*dcos(DSPn*(t-tnot))
Rib(2,2)=dcos (omega* (t—tnot) ) *dcos (DSPn*(t-tnot))
Rib(3,2)=-dsin(DSPn* (t-tnot))
Rib(1,3)=dcos(omega*(t-tnot))
Rib(2,3)=-dsin(omega*(t-tnot))
Rib(3,3)=0d0

end if

Hokkkokok ok koK Rok ARk Ok KRRk KRRk Rk KRk s KR s kKR sk ks ks ks sk sk ok ks Rk sk ok o
TRANSPOSE: Get sv-sun unit vector in {b} components and then calculate the
angle between its’ projection and bl in the bl-b2 plane.
Hokk ook ok Rk Aok kR ok ARk Kok SR K ARk R KRR KKk sk ks sk o s R ok sk ok sk ko
Rbi=transpose(Rib)
svsunhatb=matmul (Rib, svsunhat) ttransform svsunhat from ECI to [b]
svsunhatbpj(1)=svsunhatb(1) tproject svsunhatb into bl-b2 plane
svsunhatbpj (2)=svsunhatb(2)
svsunhatbpj (3)=0d40

psi=dacos(dot (bl,svsunhatbpj)/mag(svsunhatbpj))

if (dot(b2,svsunhatbpj) < 0d0) then !quadrant correction
psi=2d0*pi-psi

end if

R AR AR A AR AR AR R KKK KRR K ok sk ok koo sk ok sk koo koo o o
Calculate SRP component acceleration contribution of cylinder ends in {b}.

dot(svsunhat,b3) determines angle between sv-sun vector and b3 or normal.
kK o K o s ok oK e ok sk ok K ok ok sk ok o sk ok ok ok ok sl ok ok ok ok sk ok ok ok ok sk 3k ok ok ok 3Kk ok oK ok 3 ok 3k ok ook ok sk e e ok ke ok ke ok ok ok e ok o ok ok ok ok

if (dot(svsunhatb,b3) > 0d40) then Itop of cylinder illuminated
nhat=b3
else
nhat=-b3
end if
cylends=-(2d0*delta*beta* (srp/m)*dot (svsunhatb,nhat) **2*pi*
& rad**2 + (1d0-delta)*beta*(2d0/3d0)* (srp/m)*pi*rad**2x*
& dot (svsunhatb,nhat))*nhat - ((1d0-deltaxbeta)*(srp/m)*
& dot (svsunhatb,nhat) *pi*rad*#*2) *svsunhatb

ok kKR R ok R o koK ok R ok KoK o ok ok sk sk ks ok sk ksl st ok ik RoR kiR ekl ko ok ok Kok kR ok ok ok
Calculate SRP component acceleration contribution of the 4 solar array
panels on DSP in {b}.
sk ook ok R ok o Ko o R ok ok ok o ko kR o ok sk ksl ok sk sk sk ok sk sk ok sk ok ksl kol ol ok ok ok ok ok Kok
if (caseflag==0) then !If GTO upper stage case, then pad with
do cntr=1,3 lzeros and skip over panels section to 300
SP1(cntr)=0d0
SP2(cntr)=0d0
SP3(cntr)=0d0
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SP4(cntr)=0d40
end do
GOTO 300
end if

nihat (1)=0d0 Inormal vector to solar pamel 1 in {b}

nihat (2)=-dsqrt(2d0) /240
nihat (3)=dsqrt (2d0)/2d0

n2hat (1) =dsqrt(2d0) /240 tnormal vector to solar panel 2 in {b}

n2hat(2)=0d0
n2hat (3)=dsqrt(2d0)/2d0

n3hat (1)=0d0 Inormal vector to solar panel 3 in {b}

n3hat (2)=dsqrt (2d0)/2d0
n3hat (3)=dsqrt (2d0) /240

ndhat (1)=-dsqrt (2d0) /2d0 Inormal vector to solar panel 4 in {b}

ndhat (2)=040
ndhat (3)=dsqrt (2d0)/2d0

*xx DSP solar panel #1 k*x

if (dot(svsunhatb,nihat) > 0d0) then
nhat=nlhat

else
nhat=-nlhat

end if
SP1=-(2d0*delta*betax* (srp/m) *DSPsa*dot (svsunhatb,nhat)**2 +

& (1d0-delta)*beta*(2d0/3d0) * (srp/m) *DSPsax*

& dot(svsunhatb,nhat))*nhat - ((1d0-delta*beta)*(srp/m)*DSPsa*

& dot (svsunhatb,nhat) ) *svsunhatb

xx% DSP solar panel #2 ¥k
if (dot(svsunhatb,n2hat) > 0d40) then
nhat=n2hat
else
nhat=-n2hat
end if
SP2=-(2d0*delta*beta*(srp/m) *DSPsaxdot (svsunhatb,nhat)**2 +
& (1d0-delta)*betax*(2d0/3d0) * (srp/m) *DSPsa*
& dot(svsunhatb,nhat))*nhat - ((1d0-delta*beta)*(srp/m)*DSPsa*
& dot (svsunhatb,nhat) ) *svsunhatb

*x*x DSP solar panel #3 **x
if (dot(svsunhatb,n3hat) > 0d40) then
nhat=n3hat
else
nhat=-n3hat
end if
SP3=-(2d0*delta*beta*(srp/m)*DSPsa*dot (svsunhatb,nhat) **2 +
& (1d0-delta) *beta*(2d0/3d0) * (srp/m) *DSPsa*
& dot(svsunhatb,nhat))*nhat - ((1d0-deltaxbeta)*(srp/m)*DSPsa*
& dot (svsunhatb,nhat))*svsunhatb
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c *x*% DSP solar panel #4 ok
if (dot(svsunhatb,ndhat) > 0d0) then
nhat=n4hat
else
nhat=-n4hat
end if
SP4=-(2d0*delta*beta* (srp/m)*DSPsa*dot (svsunhatb,nhat)**2 +
& (1d0-delta) *betax*(2d0/3d0) * (srp/m) *DSPsa*
& dot(svsunhatb,nhat))*nhat - ((1d0-delta*beta)*(srp/m)*DSPsa*
& dot (svsunhatb,nhat) ) *svsunhatb

ok Aok A KR KSR KRR AR R AR KK K SR KK kK Rk R ok kK o ok ke s ko sk sk ol ok
Define components of acceleration due to SRP in the b frame.
Analytically integrated over the cyclinder and cylinder ends added in.
Scale srp by SI, the fraction of solar intemsity due to eclipse.
sk sk kaRok kR ok ROk kR R KRRk KRk KRR R R R sk KR sk R sk KR sk sk kK ok sk ko ok ek o
300  Ab(1)=(SI*srp*rad*h/m)*

((-4d0/3d0) *delta*betaxsvsunhatb (1) **2x

dcos(psi)*(dsin(psi)**2+2d0) +

(-8d0/3d0) *delta*beta*svsunhatb(1)*

svsunhatb(2)*dsin(psi) **3 +

(-4d0/3d0) *delta*beta*svsunhatb(2) **2xdcos (psi) **3 +

(1d0/3d0) *beta*svsunhatb(1) *pi*(delta-1d0) +

2d0*svsunhatb (1) **2*dcos (psi)*(deltaxbeta~1d0) +

2d0*svsunhatb (1) *svsunhatb(2) *dsin(psi) * (deltaxbeta-1d0))

+ SIx(cylends(1)+SP1(1)+SP2(1)+SP3(1)+SP4(1))
Ab(2)=(SI*srp*rad*h/m) *

((-4d0/3d0) *delta*beta*svsunhatb (1) **2*dsin(psi)**3 +

(-8d0/3d0) *deltaxbeta*svsunhatb(1) *svsunhatb(2) *

dcos(psi)**3 +

(-4d0/3d0) *deltaxbeta*svsunhatb(2) **2*dsin (psi) *

(dcos(psi)**2 + 2d0) +

(1d0/3d0) *beta*svsunhatb(2) *pi*(delta-1d0) +

2d0*svsunhatb (1) *svsunhatb(2) *dcos(psi) * (delta*beta-1d0) +

2d0*svsunhatb(2) **2*dsin(psi) * (deltaxbeta-1d0))

+ SI*(cylends(2)+SP1(2)+SP2(2)+SP3(2)+SP4(2))
Ab(3)=(SI*srp*rad*h/m)*

(2d0*dcos(psi)*svsunhatb(1) *svsunhatb(3)*(delta*beta-1d0) +

2d0*dsin(psi) *svsunhatb(2) *svsunhatb(3)*(deltaxbeta-1d0))

+ SI*(cylends(3)+SP1(3)+SP2(3)+SP3(3)+SP4(3))

O 00 o000

R PR R R

FrrrrrereR

= =

Ai=matmul (Rbi,Ab) {Transform accel from {b} to ECI

c *** Finalize EOMs for transfer to integration call **x
xdot (1)=x(4) 'Derivative of state vector
xdot (2)=x(5) IElements 1-3 are in km/100s
xdot (3)=x(6) !Elements 4-6 are in km/100°2s°2

xdot (4)=(-mu/mag(r)**3)*r(1) + Ai(1)

xdot (5)=(-mu/mag(r)**3)*r(2) + Ai(2)
xdot (6)=(-mu/mag(r)**3)*r(3) + Ai(3)
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GOTO 600

400 nhat=svsunhat

xdot (1)=x(4) {Derivative of state vector
xdot (2)=x(5) |Elements 1-3 are in km/100s
xdot (3)=x(6) IElements 4-6 are in km/10072s°2
xdot (4)=(-mu/mag (r)**3) *r (1)
& -((2d0*deltaxbeta*xSI*srpxdA/m) + ((1d0-delta)*betax
& (2d0/3d0) *SI*srp*dA/m)+((1d0-delta*beta) *SI*srpxdA/m) ) *
& svsunhat (1)

xdot (5) =(-mu/mag(r)**3) *r (2)

& -((2d0*deltaxbetaxSI*srpxdA/m) + ((1d0-delta)*betax
& (2d0/3d0) *SI*srp*dA/m)+((1d0-delta*beta) *SI*srp*dA/m)) *
& svsunhat (2)

xdot (6)=(-mu/mag (r)**3) *r (3)

& -((2d0*delta*beta*SI*srp*dA/m) + ((1d0-delta)*betax

& (2d0/3d0) *SI*srp*dA/m)+((1d0-delta*beta) *SI*srpxdA/m)) *

& svsunhat (3)

GOTO 600

500 nhat=svsunhat lunit vector normal to surface

3k 3¢ ok ok ok ke ok ok ok ke ok ok 3k 3 ok 3 sk o ok ok e o sk ok ke ok 3 sk ok 3k Sk 3k e sk ok 3 ok s 3 ok ok ke 3k o ok ok ek ok sk 3k ok ok ok 3 sk ok ok 3k ok ok ok ok ok ok kK ok K

c
¢ BASELINE SRP MODEL:
c Simple model using specular reflection, cylindrical shadow model, and
¢ assumes a flat plate with constant area and normal to the sun vector.
C  ksksskokakokoRakok koK KR oK K ok Ko o o ko s ks ko s s ol ok skl sk ok sk kR ok ko ok ok sk sk sk kR etk ook ok ok
xdot (1)=x(4) IDerivative of state vector
xdot (2)=x(5) IElements 1-3 are in km/100s
xdot (3)=x(6) IElements 4-6 are in km/100s"2

xdot (4)=(-mu/mag(r)**3) *r(1) -((1d0+beta)*SI*srp*dA/m)*svsunhat (1)
xdot (5)=(-mu/mag(r)**3)*r(2) -((1d0+beta)*SI*srp*dA/m)*svsunhat (2)
xdot (6)=(-mu/mag(r)**3)*r(3) -((1d0+beta)*SI*srp*dA/m)*svsunhat (3)

600 return
end

[+ 3k 2k ok 3¢ ok 3k 2 3k 3 3k ok 2k 3k o ok 3 sk ok e ak ok ke ok 3k 3k e ok o ak o ke sk ok 3 A ok ke ok 3k 3 S e 3 ok ok ok ok ok Sk ok Sk ok ok K ok 3k ok o K ok 3k ok ok K ok ok Xk %k

¢ END EQUATIONS OF MOTION SUBROUTINE
€ kskkokskkdokRskkokdok Aok ok Rk kol k sk ok kool sk kR Sk ok ok ok ko ko iokok ok okok ok Rk ok skRokok ok
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O 00 0000

O 00000000

s ke ok e ok o ok ok ok ke ok o ok ok e ok sk ok ok o 3k ok ke ok s e ok ke ok s e o ok ok o ok o ok sk ke ok sk ok sk e ok ok sk ok ek ok ok ok ke ook sk ok ok ok ok ke ok sk ok ok ko ok

The next two routines perform baseline calculations as well as
performing a golden section search to find values of dA that
minimize the RMS

* X X ¥ *

* X ¥ X *

s 3k ok o ok o ok 3k ok o ok e ok ok ok s 3 ok ok 3 3k ke ok sk 3k ok ok o ok o ok sk sk e ok ok ok o ke o Sk e ok sk ok ok ok 3k ok ok Sk ke sk sk ok ok ok ok dkokok ok ok ok ke kK k

double precision FUNCTION RMSbase(area)

implicit nomne

integer neq, ido, model, cntr, caseflag, shadflag, areaflag,
& corflag, srpflag

character (10) date, time

parameter (neq=6) Inumber of diff eqs to integrate

double precision x(neq), t, tend, tol, param(50), mu, c, phi, m,
srp, au, pi, delta, beta, dA, r(3), Re, Rs, tnot,
v(3), e, a, i, w, nu, raan, gamma, alpha, omega,
lambda, rhos, rhoe, sma, DSPn, DSPsa, rnot(3), h,
vnot(3), SI, truthr(315570,3),sumres(3), RMS(3),
rhat(3), zhat(3), mag, thetahat(3), Hvec(3), rad,
Rir(3,3), res(3), newres(3), area, dos

R P RPRPRR

common mu, srp, au, pi, m, delta, beta, dA, rad, h, gamma, alpha,

& omega, Re, Rs, lambda, rhos, rhoe, sma, phi, ¢, DSPn,
& DSPsa, tnot, SI, rmot, vnot, truthr, caseflag, shadflag,
& areaflag, corflag, srpflag, model

external eoms

open(15,file=’basel’)
open(25,file=’base2’)
open(35,file="base3’)
open(45,file=’base4’)

A KK Ko ok KKK AR K R R K R s R ok sk sk sk sk sk ok sk ok sk sk ks ok ok ko sk ok kR Kok ok ok sk ok
BASELINE MODEL -

START OF INTEGRATION LOOP FOR EOM’S AND ORBITAL ELEMENTS:

t and x are both input & output to ’divprk’. ’divprk’ stands for double
precision initial-value problem for ordinary diffeq using Runge-Kutta.

SET INITIAL CONDITIONS PRIOR TO CALL TO INTEGRATOR:

t=JD of 1 Jan 2001 in 100 seconds. State vector position x(1-3) is in km.
State vector velocity x(4-6) is in km/100s. tol=iteration tolerance.

AR KKK SOK KHRK oK  K K R R o ook a kok ok ssk skskoksk koo o sk s sk ok ko stk Aok ok ok ok ok

dA=area
write(75,*) ’from within RMSbase, dA = ’,dA

tnot=2451910.5d0%86440
t=tnot

tol=1.d-10
x(1)=rnot (1)
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x(2)=rnot (2)
x(3)=rnot(3)
x(4)=vnot (1) *10040
x(5)=vnot (2)*100d40
x(6)=vnot (3)*10040

cntr=1

sumres=0d0

ido=1 lido = flag indicating state of computation
param(4)=1000000 !sets max # steps allowed

do 200 tend=t,t+315569d0,1d0 !step size in 100 seconds
call divprk(ido,neq,eoms,t,tend,tol,param,x)

r(1)=x(1) lextract r & v from state x
r(2)=x(2)
r(3)=x(3)
v(1)=x(4)
v(2)=x(5)
v(3)=x(6)

call RVtoCOES(r,v,a,e,i,raan,w,nu) linput r,v & get COES
c call EOV(t, w, raan, edom)

Aok ook iR kR KRR KRRk kK ok KKK KSR KK KR sk KR s ok s s ks ks ek ks stk ko
Write COES and eclipse times to file.

€ Rkkkokolkook ROk R KRR AORR AR KRR AR KKK R KRR KK ok oK KR K Rk sk ok ook ok ok ok sk ok
dos=(tend/864d0)-2451910.5d0 'day of simulation

write(25,%) dos,a,e

write(35,*) dos,i,raan

write(45,*) dos,w,nu

a O

if (SI==0d0) then
write(15,*) tend, 1d0
else
write(15,%) tend, 040
end if

C ok KRR KKK KRR R K K KK K R K o o sk sk ko s sk sk sk sk sk ks bk ko ke sksk ok ok ok sk ok
¢ Compute transformation ijk to ric. Transform/sum residuals in new frame.
€ oKk KRR KK KK KRR KR R K ok R Rk sk R sk sk stk Rk sk stk ok ok ko kR kR Kok ok ok ok o
rhat=r/mag(r)
call cross(r,v,Hvec)
zhat=Hvec/mag(Hvec)
call cross(zhat,rhat,thetahat)

Rir(1,:)=rhat
Rir (2, :)=thetahat
Rir(3, :)=zhat

res=r-truthr (cntr, :)
newres=matmul (Rir,res)
sumres=sumres+newres**2
cntr=cntr+i
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200

c

O 0000000

continue
ido=3 Irelease workspace
call divprk(ido,neq,eoms,t,tend,tol,param,x) Ino integration

close(15, status=’save’)
close (25, status=’save’)
close(35, status=’save’)
close(45, status=’save’)

RMS=dsqrt (sumres/315570d0)*1d3 lconvert km to m
RMSbase=mag (RMS)

write(75,%) ’RMSr(m) = ’,RMS(1)

write(75,%) ’RMSi(m) ’ RMS(2)

write(75,%) ’RMSc(m) ’ JRMS(3)

write(75,*) ’mag RMS(m) = ’,RMSbase

call date_and_time(date, time)
write(75,%) ’DTG = ’,date,’ ’,time

return
end

o o e o ok o e 3k 3K ok o 3 3k oK ok ok 3 ke ok o o 3k ok ok ok e ok ke ok ok 3k ok e e sk ok ok ke 6 ok ok e 3 e ke ke ke ke ok ok 3k e ok ok ok 3k sk ok ok e ok ok ok ok ok 3K 3k ok Ok K

Golden Section Search Algorithm
Aok ok sk sk Rk ARk sk ksl sk ko sk sk ok ok sk ok sk ok sk sk R sk skl ok sk ko sk sk sk ks ok ok ok Rk

double precision FUNCTION golden(ax,bx,cx,RMSbase,toler,phi)
implicit none

double precision ax, bx, cx, toler, dA, RMSbase, beta,
& f1, £f2, x0, x1, x2, x3, R, C, phi, Re

external RMSbase
parameter (R=0.61803399d0, C=1d0-R)

K ke o Ko R Ko R Ko s R S R o K o o oK o KK KoK R KR Ko R KR KoK o Kk o o o o K o K o o o o ok ok ok K ek ok oK
Given a function (RMSbase), and given a bracketing triplet of abscissas

ax, bx, cx (such that bx is between ax and cx, and f(bx) is less than

f(ax) and f(cx)), this routine performs a golden section search for the
minimum, isolating it to a fractional precision of about toler. The
abscissa of the minimum is returned as xmin, and the minimum function

value is returned as golden. Parameters: The golden ratios.

3k e e 3k 3k 3k ok 3k 3k 3k ok ok 3 3 3 3k 3k ok Sk ok 3k e 3k 3k 3k 3k 3k ok ok 3K ok 3k K ok 3k 3k 3 ok ok 3k sk 3 ok ok 3k 3k 3k 3k 3k 3k ok sk k¢ 3k ok 3k 3 e ke 3k e Ok S e ok o ok ok K ok ok ok %k

x0=ax 'at any given time, keep track of 4 points;x0,x1,x2,x3
x3=cx
if (abs(cx~bx) > abs(bx-ax)) then !make x0 to x1 the smaller segment
x1=bx
x2=bx+C* (cx-bx) '& fill in the new point to be tried.
else
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X2=bx
x1=bx-C* (bx-ax)
end if

f1=RMSbase (x1)
f2=RMSbase (x2)

linitial function evaluations. note that we never
'need to evaluate the function at original endpoints.

if (abs(f1-f2) > toler) then

write(*,*) ’abs(f1-f2) = ’,abs(f1-£2)
write(75,%) ’abs(f1-f2) = ’,abs(f1-£2)

if (f2 < f1) then
x0=x1
x1=x2
x2=R*x1+C*x3
f1=£2
f2=RMSbase (x2)
else
x3=x2
x2=x1
x1=R*x2+C*x0
f2=f1
f1=RMSbase (x1)
end if
goto 1
end if

if (f1 < £2) then
golden=f1
dA=x1

else
golden=£2
dA=x2

end if

return
end

lone possible outcome
!its housekeeping

land a new function evaluation
'the other outcome

tand its new funstion evaluation

!'back to see if we’re done

!done. output best of current values
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A.2 JPL Planetary and Lunar Ephemerides

sk 3 ke ok ok ok ok e ok sk o o 3k 3k ke ok ok ok 3 e 3 ok ok sk ke a3k ok ok 3k 3 ok 3k o ok ok o sk ok o ke ko s sk ok ok ok ok e e e ok ke ok ok ok s sk sk ok ok ok ok ok ok ok ok ok ok

* *
* JPL Planetary and Lunar Ephemerides *
* *

ok R AR KRR KRR R KKK SR K K sk sk S R R sk sk ko ARk Ak Rk Rk AR dORR Rk Sk ok Kok ok Rk Kk oK
Version : July 8, 1997

Program TESTEPH {First part of main program has been deleted so
as not to conflict with main of SRP.f. See original
file, testeph.f for complete testing code -- Dayne Cook}

TESTEPH tests the JPL ephemeris reading and interpolating routine using
examples computed from the original ephemeris.

TESTEPH contains the reading and interpolating subroutines that are of
eventual interest to the user. Once TESTEPH is working correctly, the
user can extract those subroutines and the installation process is complete.

You must supply "testpo.XXX" to TESTEPH, via standard input. "testpo.XXX
is the specially formatted text file that contains the test cases for the
ephmeris, DEXXX.

After the initial identifying text which is concluded by an "EOT" in
columns 1-3, the test file contains the following quantities:

JPL Ephemeris Number

calendar date

Julian Ephemeris Date

target number (1-Mercury, ...,3-Earth, ,,,9-Pluto, 10-Moon, 11-Sunm,
12-Solar System Barycenter, 13-Earth-Moon Barycenter
14-Nutations, 15-Librations)

center number (same codes as target number)

coordinate number (1-x, 2-y, ... 6-zdot)

coordinate [au, au/day]

For each test case input, TESTEPH

- computes the corresponding state from data contained
in DExxx,

- compares the two sets,

- writes an error message if the difference between
any of the state components is greater than 10*x(-~13).

- writes state and difference information for every 10th
test case processed.

[sNeNeNoNoNoNoNoNoNsNoNolNoNosNoNeNoNoNoNsNoNoNosNeoNoNsNoNsNoNo NN Ns NN NN R R e R 2 N R Ko o o N o Ko 2!

This program is written in standard Fortran-77.
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eNeNoNosNoNosNoEosNsEoEoNsNoNoNeoNeoNsNoNosNoNoNoNeoNosNoNosNoNoNoNoNeoNoNoNo Mo Ne e

HOWEVER, there are two parts which are compiler dependent; both have
to do with opening and reading a direct-access file. They are dealt
with in the subroutine FSIZERi, i=1,3. (There are three versions of
this subroutine.

1)

2)

The parameter RECL in the OPEN statement is the number of units per
record. For some compilers, it is given in bytes; in some, it is given
in single precision words. In the subroutine FSIZER of TESTEPH, the
parameter NRECL must be set to 4 if RECL is given in bytes; NRECL must
be set to 1 if RECL is given in words. (If in doubt, use 4 for UNIX;

1 for VAX and PC)

Also for the OPEN statement, the program needs to know the exact value

of RECL (number of single precision words times NRECL). Since this
varies from one JPL ephemeris to another, RECL must be determined somehow
and given to the OPEN statement. There are three methods, depending
upon the compiler. We have included three versions of the subroutine
FSIZER, one for each method.

a) Use the INQUIRE statement to find the length of the records
automatically before opening the file. This works for VAX’s;
not in UNIX.

b) Open the file with an arbitrary value of RECL, read the first record,
and use the information on that record to determine the exact value
of RECL. Then, close the file and re-open it with the exact value.
This seems to work for UNIX compilers as long as the initial value of
RECL is less than the exact value but large enough to get the required
information from the first file. (For other compilers, this doesn’t
work since you can open a file only with the exact value of RECL.)

c) Hardwire the value of RECL. This number is NRECL*1652 for DE200,
NRECL*2036 for DE405, and NRECL*1456 for DE406.

CH+++++++++++++++++++++++

c

C

SUBROUTINE FSIZER1(NRECL,KSIZE,NRFILE,NAMFIL)

CHttttttttttttttttbtttttt

Version 1.0 uses the INQUIRE statement to find out the the record length

but seems to work for VAX machines.

C
C
C of the direct access file before opening it. This procedure is non-standard,
C
c
c

THE SUBROUTINE ALSO SETS THE VALUES OF NRECL, NRFILE, AND NAMFIL.

aQ Q
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THE PARAMETERS NAMFIL, NRECL, AND NRFILE ARE TO BE SET BY THE USER
sk sk sk ok ook ok ok sk kiR kKRR R KR KK sk KKK s kKRR R sk K ok sk ks sk sk ok ok ok
NAMFIL IS THE EXTERNAL NAME OF THE BINARY EPHEMERIS FILE

CHARACTER*80 NAMFIL

NAMFIL=’c:\cook\sim\ephem\jpleph’
SRR ROk R IR KRR AR R Kok oK R R KK R K K oo sk sk ok sk ok sk ok ko sk
NRECL=1 IF "RECL" IN THE OPEN STATEMENT IS THE RECORD LENGTH IN S.P. WORDS
NRECL=4 IF "RECL" IN THE OPEN STATEMENT IS THE RECORD LENGTH IN BYTES
(for a VAX, it is probably 1)

NRECL=1
ko ook ARk R KAk KRR KRR R K koK Ko oK K R R sk ok Rk K sk ke ok
NRFILE IS THE INTERNAL UNIT NUMBER USED FOR THE EPHEMERIS FILE

NRFILE=12

o 3k 3 3k 3 ok ok 3 ok 3 ok ok e o 3 ke e e ok e o ke ok ok ke ok ok e ok ok ak ok 3 S ok 3 ok ok e ok ok Sk ok 9k ok ok o ok K ok ok ek ke ok ok ok ok 3k ok ok ok ok

FIND THE RECORD SIZE USING THE INQUIRE STATEMENT

IRECSZ=0
INQUIRE(FILE=NAMFIL,RECL=IRECSZ)
IF ’INQUIRE’ DOES NOT WORK, USUALLY IRECSZ WILL BE LEFT AT O

IF(IRECSZ .LE. 0) write(*,*)
> INQUIRE STATEMENT PROBABLY DID NOT WORK’

KSIZE=IRECSZ/NRECL
RETURN

END

CHttttttrtttttttt+++++

c

Qo

SUBROUTINE FSIZER2(NRECL,KSIZE,NRFILE,NAMFIL)

R Lo o R SRS A

THIS SUBROUTINE OPENS THE FILE, °NAMFIL’, WITH A PHONY RECORD LENGTH, READS
THE FIRST RECORD, AND USES THE INFO TO COMPUTE KSIZE, THE NUMBER OF SINGLE
PRECISION WORDS IN A RECORD.
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C THE SUBROUTINE ALSO SETS THE VALUES OF NRECL, NRFILE, AND NAMFIL.
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
SAVE

CHARACTER*6 TTL(14,3),CNAM(400)
CHARACTER*80 NAMFIL

DIMENSION SS(3)

INTEGER IPT(3,13)

ok ok o ok ok ok ¢ ok ok ok 3 3 3k 3 o 3 ok 3k 3 ok ok ok o sk ok 3k ok bk K ok ok e ok 3 ok e ok ok s ok a ok o ok ok e ok k ok 3k ok ke s ok ke ok ok ok ok ok kK
o2k ok 2k ok ok 3 o o ok 3 3K 3k 3k ok 3 ke ok 3 3k o ok ok ok 3k sk 3 e ok ok e o 3 K ke 3 ok ok sk ok e ok ke ok ok e ok 3 oK ok oK ok e ok ok ok o K K oK kK

THE PARAMETERS NRECL, NRFILE, AND NAMFIL ARE TO BE SET BY THE USER

aaoaaaaa

4ok e ok s ok ok sk ok 3k ek ok o ok 3 s s ke 3 ok s o ok 3ok ok ok ok ke ke ok ok ok e sk 3k ok 3k ke e e ok ke 3Kk ok ok ok sk ok ok ok ko sk ok ok ok ok ok ok

NRECL=1 IF "RECL" IN THE OPEN STATEMENT IS THE RECORD LENGTH IN S.P. WORDS
NRECL=4 IF "RECL" IN THE OPEN STATEMENT IS THE RECORD LENGTH IN BYTES
(for UNIX, it is probably 4)

QaQaQa

NRECL=1
C NRFILE IS THE INTERNAL UNIT NUMBER USED FOR THE EPHEMERIS FILE
NRFILE=12

C NAMFIL IS THE EXTERNAL NAME OF THE BINARY EPHEMERIS FILE

NAMFIL=’c:\cook\sim\ephem\jpleph’

C  sokokokokokok ok sk sk ok ok ok o ook sk ok ok ok ok ok 3 ok ok o e o e ok o ok o e ok ok ok ok ke sk ok ok o e ok ok ok ok ok ok ok ok ok ok sk ok ok ok
C sookoskakokakod ok ok ok ok sk ok ok ok 3k ok 3k ok o K ok ok ok ok ok Sk sk ok ok 3k ok ok sk ok ok ko ok ok ok o ke ok ok o o sk ok sk ok ok ook ok ok ok ok ok ok

%% OPEN THE DIRECT-ACCESS FILE AND GET THE POINTERS IN ORDER TO
*x DETERMINE THE SIZE OF THE EPHEMERIS RECORD

aaQ

MRECL=NRECL*1000

OPEN(NRFILE,
FILE=NAMFIL,
ACCESS="DIRECT’,
FORM=’UNFORMATTED’ ,
RECL=MRECL,
STATUS=’0LD’)

* ¥ * ¥ *

READ(NRFILE,REC=1)TTL,CNAM,SS,NCON, AU,EMRAT,
* ((IPT(1,J),I1=1,3),J=1,12) ,NUMDE, (IPT(I,13),I=1,3)
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CLOSE(NRFILE)

C FIND THE NUMBER OF EPHEMERIS COEFFICIENTS FROM THE POINTERS

KMX = 0
KHI = 0
DOI =1,13

IF (IPT(1,I) .GT. KMX) THEN
KMX = IPT(1,I)
KHI = I
ENDIF
ENDDO

ND =3
IF (KHI .EQ. 12) ND=2

KSIZE = 2x(IPT(1,KHI)+ND*IPT(2,KHI)*IPT(3,KHI)-1)
RETURN

END
CHtttttttttttttttttt b+
C
SUBROUTINE FSIZER3(NRECL,KSIZE,NRFILE,NAMFIL)

C
Ctdttttttttttrtttttt bt

(¢

C THE SUBROUTINE SETS THE VALUES OF NRECL, KSIZE, NRFILE, AND NAMFIL.
SAVE
CHARACTER*80 NAMFIL

3k ke 2k ok 3k 3 ke ok ok b ok e ok ok o 3 ok e ok e ke ok s sk ak ke e e ke e ok sk 3k e Sk Sk ok 3k K ok ok ok Sk K K ok ok ok 2k ok sk 3 K ke K K 3 K % ok ok ok
3 ke sk 3k e ok ok ok 3k e Sk e ok e o e sk ok 3 o sk s sk e ok e s ke ke ok o s ok k ok ok Sk ok 3k ok 5 o o ke ok 3 3 ok 3k ok koK ok ok ok ok ok ok ok ko ok ok

Qoo

THE PARAMETERS NRECL, NRFILE, AND NAMFIL ARE TO BE SET BY THE USER

C koo ko ok ok sk ok ok ok sk ok e ok ok ok Sk ok ke ok sk ok 3k ok ok ok ok 3k ok ok ok ok ke ke sk sk s ok ok ok sk sk sk ook ok ok ok sk ok e ok koo sk ok sk ok

C NRECL=1 IF "RECL" IN THE OPEN STATEMENT IS THE RECORD LENGTH IN S.P. WORDS
C NRECL=4 IF "RECL" IN THE OPEN STATEMENT IS THE RECORD LENGTH IN BYTES

NRECL=1
C ook kiR o kool ok kol ok o ko sk ok ook o sk s kolok kol o ksl ook ok ok o o ksl sk o ok ok skok

C NRFILE IS THE INTERNAL UNIT NUMBER USED FOR THE EPHEMERIS FILE (DEFAULT: 12)
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NRFILE=12
sk ok stk ok kKoK oK KKK K K sk ko o Rk s s ks R sl sk ok ok ok ok Kok oKk KoK o
NAMFIL IS THE EXTERNAL NAME OF THE BINARY EPHEMERIS FILE
NAMFIL=’c:\cook\sim\ephem\jpleph’
ko Kok o R R sk oK R KK ROR K KR Ko sk K s Rk ks sk sk sk ksl ko ok kR ok ok ok
KSIZE must be set by the user according to the ephemeris to be read
For de200, set KSIZE to 1652
For de405, set KSIZE to 2036
For ded406, set KSIZE to 1456
KSIZE = 1652
sk 3k s ke 3 3k 3k 3k ok 3K oK 3k ok ok oK oK ok Sk ok sk 3k K 3 ok ¢ sk 3 s 3k ke sk ke 3 sk ok ke ok ok ok ok ok ok ke e e e o ok o ok ok sk ok S ok ke ok ok e ok e ok 3 ok 3 ok

RETURN

END

CHttttttdttttttttt bttt

c

c

SUBROUTINE PLEPH ( ET, NTARG, NCENT, RRD )

CHtttttttttttttrtttttt+++++

sNeNoNoNoNoNeNoNoNoNoNsNoNsNoNoNoNoNoNeoNeoNe Ne!

NOTE : Over the years, different versions of PLEPH have had a fifth argument:
sometimes, an error return statement number; sometimes, a logical denoting
whether or not the requested date is covered by the ephemeris. We apologize
for this inconsistency; in this present version, we use only the four necessary
arguments and do the testing outside of the subroutine.

THIS SUBROUTINE READS THE JPL PLANETARY EPHEMERIS

AND GIVES THE POSITION AND VELOCITY OF THE POINT ’NTARG’
WITH RESPECT TO °’NCENT’.

CALLING SEQUENCE PARAMETERS:

ET = D.P. JULIAN EPHEMERIS DATE AT WHICH INTERPOLATION
IS WANTED.

*x NOTE THE ENTRY DPLEPH FOR A DOUBLY-DIMENSIONED TIME x**
THE REASON FOR THIS OPTION IS DISCUSSED IN THE
SUBROUTINE STATE

NTARG = INTEGER NUMBER OF ’TARGET’ POINT.
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NCENT = INTEGER NUMBER OF CENTER POINT.

THE NUMBERING CONVENTION FOR ’NTARG’ AND ’NCENT’ IS:

1 = MERCURY 8 = NEPTUNE

2 = VENUS 9 = PLUTO

3 = EARTH 10 = MOON

4 = MARS 11 = SUN

5 = JUPITER 12 = SOLAR-SYSTEM BARYCENTER

6 = SATURN 13 = EARTH-MOON BARYCENTER

7 = URANUS 14 = NUTATIONS (LONGITUDE AND OBLIQ)

15 = LIBRATIONS, IF ON EPH FILE

(IF NUTATIONS ARE WANTED, SET NTARG = 14. FOR LIBRATIONS,
SET NTARG = 15. SET NCENT=0.)

RRD = QUTPUT 6-WORD D.P. ARRAY CONTAINING POSITION AND VELOCITY
OF POINT °NTARG’ RELATIVE TO °’NCENT’. THE UNITS ARE AU AND
AU/DAY. FOR LIBRATIONS THE UNITS ARE RADIANS AND RADIANS
PER DAY. IN THE CASE OF NUTATIONS THE FIRST FOUR WORDS OF
RRD WILL BE SET TO NUTATIONS AND RATES, HAVING UNITS OF
RADIANS AND RADIANS/DAY.

The option is available to have the units in km and km/sec.
For this, set km=.true. in the STCOMX common block.
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION RRD(6),ET2Z(2),ET2(2),PV(6,13)
DIMENSION SS(3),CVAL(400),PVSUN(3,2)

LOGICAL BSAVE,KM,BARY
LOGICAL FIRST
DATA FIRST/.TRUE./

INTEGER LIST(12),IPT(39),DENUM

COMMON/EPHHDR/CVAL,SS, AU, EMRAT,DENUM, NCON, IPT
COMMON/STCOMX/KM, BARY , PVSUN

INITIALIZE ET2 FOR ’STATE’ AND SET UP COMPONENT COUNT
ET2(1)=ET

ET2(2)=0.D0

GO TO 11

ENTRY POINT ’DPLEPH’ FOR DOUBLY-DIMENSIONED TIME ARGUMENT
(SEE THE DISCUSSION IN THE SUBROUTINE STATE)
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ENTRY DPLEPH(ET2Z,NTARG,NCENT,RRD)

ET2(1)=ET2Z(1)
ET2(2)=ET2Z(2)

11 DO I=1,6
RRD(I)=0.D0
ENDDO

IF(FIRST) CALL STATE(0.D0,0,0.D0,0.D0)

FIRST=.FALSE.
96 IF(NTARG .EQ. NCENT)

b0 I=1,12
LIST(I)=0
ENDDO

CHECK FOR NUTATION C

IF(NTARG.NE.14) GO T

IF(IPT(35).GT.0) T
LIST(11)=2
CALL STATE(ET2,L
RETURN

ELSE
WRITE(6,297)

297 FORMAT (? sokkxkok

STOP

ENDIF

CHECK FOR LIBRATIONS

97 IF(NTARG.NE.15) GO T
IF(IPT(38).GT.0) T
LIST(12)=2
CALL STATE(ET2,L
DO I=1,6
RRD(I)=PV(I,11)
ENDDO
RETURN
ELSE
WRITE(6,298)
298 FORMAT (° sokxkk
STOP
ENDIF

FORCE BARYCENTRIC

98 BSAVE=BARY
BARY=.TRUE.

RETURN

ALL

0 97
HEN

IST,PV,RRD)

NGO NUTATIONS ON THE EPHEMERIS FILE

0 98
HEN

IST,PV,RRD)

NO LIBRATIONS ON THE EPHEMERIS FILE

OUTPUT BY ’STATE’
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SET UP PROPER ENTRIES IN °’LIST’ ARRAY FOR STATE CALL

DO I=1,2

K=NTARG

IF(I .EQ. 2) K=NCENT
IF(K .LE. 10) LIST(K)=2
IF(K .EQ. 10) LIST(3)=2
IF(K .EQ. 3) LIST(10)=2
IF(K .EQ. 13) LIST(3)=2
ENDDO

MAKE CALL TO STATE
CALL STATE(ET2,LIST,PV,RRD)

IF(NTARG .EQ. 11 .OR. NCENT .EQ. 11) THEN
DO I=1,6
PV(I,11)=PVSUN(I)
ENDDO

pv(i,11)=pvsun(1,1)

pv(2,11)=pvsun(2,1)
pv(3,11)=pvsun(3,1)
pv{4,11)=pvsun(1,2)
pv(5,11)=pvsun(2,2)
pv(6,11)=pvsun(3,2)
ENDIF

IF(NTARG .EQ. 12 .OR. NCENT .EQ. 12) THEN
DO I=1,6

PV(1,12)=0.D0

ENDDO

ENDIF

IF(NTARG .EQ. 13 .0OR. NCENT .EQ. 13) THEN
DO I=1,6

PV(I,13)=PV(I,3)

ENDDO

ENDIF

IF(NTARG*NCENT .EQ. 30 .AND. NTARG+NCENT .EQ. 13) THEN
DO I=1,6

PV(1,3)=0.D0

ENDDO

GO TO 99

ENDIF

IF(LIST(3) .EQ. 2) THEN

D0 I=1,6
PV(I,3)=PV(I,3)-PV(I,10)/(1.DO+EMRAT)
ENDDO

ENDIF
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IF(LIST(10) .EQ. 2) THEN
DO I=1,6
PV(I,10)=PV(I,3)+PV(I,10)
ENDDO

ENDIF

99 DO I-=1,6
RRD(I)=PV(I,NTARG)~-PV(I,NCENT)
ENDDO

BARY=BSAVE

RETURN
END
CHHttttttttttbttttttttttttt 4+
c
SUBROUTINE INTERP(BUF,T,NCF,NCM,NA,IFL,PV)

c
CHt+ittttttttttttttt+ttr+t 44+

THIS SUBROUTINE DIFFERENTIATES AND INTERPOLATES A
SET OF CHEBYSHEV COEFFICIENTS TO GIVE POSITION AND VELOCITY

CALLING SEQUENCE PARAMETERS:
INPUT:
BUF  1ST LOCATION OF ARRAY OF D.P. CHEBYSHEV COEFFICIENTS OF POSITION
T T(1) IS DP FRACTIONAL TIME IN INTERVAL COVERED BY

COEFFICIENTS AT WHICH INTERPOLATION IS WANTED
(0 .LE. T(1) .LE. 1). T(2) IS DP LENGTH OF WHOLE
INTERVAL IN INPUT TIME UNITS.

NCF # OF COEFFICIENTS PER COMPONENT

NCM # OF COMPONENTS PER SET OF COEFFICIENTS

NA  # OF SETS OF COEFFICIENTS IN FULL ARRAY
(I.E., # OF SUB-INTERVALS IN FULL INTERVAL)

FOR POSITIONS ONLY

IFL INTEGER FLAG: =1
2 FOR POS AND VEL

QUTPUT:

PV INTERPOLATED QUANTITIES REQUESTED. DIMENSION
EXPECTED IS PV(NCM,IFL), DP.

[cNoNoNoNoNoNsNoNoNoNsNeoeNeoNoNoNoNoNoNsoNoNoNoNeNoNoNoNoNeoNe oMo No!

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

A-30




aaoaaaan

e RN

QOO0

aQaQ

SAVE

DOUBLE PRECISION BUF (NCF,NCM,*),T(2),PV(NCM,*),PC(18),VC(18)

DATA NP/2/

DATA NV/3/

DATA TWOT/0.DO/

DATA PC(1),PC(2)/1.D0,0.D0/
DATA VC(2)/1.D0/

ENTRY POINT. GET CORRECT SUB-INTERVAL NUMBER FOR THIS SET
OF COEFFICIENTS AND THEN GET NORMALIZED CHEBYSHEV TIME
WITHIN THAT SUBINTERVAL.

DNA=DBLE(NA)
DT1=DINT(T(1))
TEMP=DNA*T (1)
L=IDINT(TEMP-DT1)+1

TC IS THE NORMALIZED CHEBYSHEV TIME (-1 .LE. TC .LE. 1)
TC=2.D0* (DMOD(TEMP,1.D0)+DT1)-1.D0

CHECK TO SEE WHETHER CHEBYSHEV TIME HAS CHANGED,
AND COMPUTE NEW POLYNOMIAL VALUES IF IT HAS.

(THE ELEMENT PC(2) IS THE VALUE OF T1(TC) AND HENCE
CONTAINS THE VALUE OF TC ON THE PREVIQUS CALL.)

IF(TC.NE.PC(2)) THEN
NP=2
NV=3
PC(2)=TC
TWOT=TC+TC

ENDIF

BE SURE THAT AT LEAST °NCF’ POLYNOMIALS HAVE BEEN EVALUATED
AND ARE STORED IN THE ARRAY ’PC’.

IF(NP.LT.NCF) THEN
DG 1 I=NP+1,NCF
PC(I)=TWOT*PC(I-1)-PC(I-2)
CONTINUE
NP=NCF

ENDIF

INTERPOLATE TO GET POSITION FOR EACH COMPONENT
DO 2 I=1,NCM

PV(I1,1)=0.D0
DO 3 J=NCF,1,-1
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PV(I,1)=PV(I,1)+PC(J)*BUF(J,I,L)
CONTINUE

CONTINUE

IF(IFL.LE.1) RETURN

IF VELOCITY INTERPOLATION IS WANTED, BE SURE ENOUGH
DERIVATIVE POLYNOMIALS HAVE BEEN GENERATED AND STORED.

VFAC=(DNA+DNA) /T(2)

VC(3)=TWOT+TWOT

IF(NV.LT.NCF) THEN
DO 4 I=NV+1,NCF
VC(I)=TWOT*VC(I-1)+PC(I-1)+PC(I-1)-VC(I-2)
CONTINUE
NV=NCF

ENDIF

INTERPOLATE TO GET VELOCITY FOR EACH COMPONENT

DO 5 I=1,NCM

PV(I1,2)=0.D0

DO 6 J=NCF,2,-1
PV(I,2)=PV(I,2)+VC(J)*BUF(J,I,L)
CONTINUE

PV(I,2)=PV(I,2)*VFAC

CONTINUE

RETURN

END

CHt+++ttddtttttttttttt+rt+

C

C

SUBROUTINE SPLIT(TT,FR)

CHtttttt+ttttttdttbttttrtbtt+t

s EeoNsNsEsEoNsNeNoNoNoNoNeoNe NN

THIS SUBROUTINE BREAKS A D.P. NUMBER INTO A D.P. INTEGER
AND A D.P. FRACTIONAL PART.

CALLING SEQUENCE PARAMETERS:

TT = D.P. INPUT NUMBER

FR = D.P. 2-WORD OUTPUT ARRAY.
FR(1) CONTAINS INTEGER PART

FR(2) CONTAINS FRACTIONAL PART

FOR NEGATIVE INPUT NUMBERS, FR(1) CONTAINS THE NEXT
MORE NEGATIVE INTEGER; FR(2) CONTAINS A POSITIVE FRACTION.

CALLING SEQUENCE DECLARATIONS
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IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION FR(2)
c MAIN ENTRY -- GET INTEGER AND FRACTIONAL PARTS

FR(1)=DINT(TT)
FR(2)=TT-FR(1)

IF(TT.GE.0.DO .OR. FR(2).EQ.0.DO) RETURN
C MAKE ADJUSTMENTS FOR NEGATIVE INPUT NUMBER

FR(1)=FR(1)-1.D0
FR(2)=FR(2)+1.D0

RETURN

END

Chttttttttttttttt bttt bttt bttt

c
SUBROUTINE STATE(ET2,LIST,PV,PNUT)
C
CHtttttttttttttttttttt bttt b+
C

C THIS SUBROUTINE READS AND INTERPOLATES THE JPL PLANETARY EPHEMERIS FILE
CALLING SEQUENCE PARAMETERS:
INPUT:

ET2 DP 2-WORD JULIAN EPHEMERIS EPOCH AT WHICH INTERPOLATION
IS WANTED. ANY COMBINATION OF ET2(1)+ET2(2) WHICH FALLS
WITHIN THE TIME SPAN ON THE FILE IS A PERMISSIBLE EPOCH.

A. FOR EASE IN PROGRAMMING, THE USER MAY PUT THE
ENTIRE EPOCH IN ET2(1) AND SET ET2(2)=0.

B. FOR MAXIMUM INTERPOLATION ACCURACY, SET ET2(1) =
THE MOST RECENT MIDNIGHT AT OR BEFORE INTERPOLATION
EPOCH AND SET ET2(2) = FRACTIONAL PART OF A DAY
ELAPSED BETWEEN ET2(1) AND EPOCH.

C. AS AN ALTERNATIVE, IT MAY PROVE CONVENIENT TO SET
ET2(1) = SOME FIXED EPOCH, SUCH AS START OF INTEGRATION,
AND ET2(2) = ELAPSED INTERVAL BETWEEN THEN AND EPOCH.

LIST 12-WORD INTEGER ARRAY SPECIFYING WHAT INTERPOLATION
IS WANTED FOR EACH OF THE BODIES ON THE FILE.

[eoNoNoNosNoNesNoNoNoNoNoNosNosNoNsNsNeNosNeNeoNe Ne!
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OUTPUT:

PV

LIST(I)=0, NO INTERPOLATION FOR BODY I
=1, POSITION ONLY
=2, POSITION AND VELOCITY

THE DESIGNATION OF THE ASTRONOMICAL BODIES BY I IS:

MERCURY

VENUS

EARTH-MOON BARYCENTER

MARS

JUPITER

SATURN

URANUS

NEPTUNE

PLUTO

=10: GEOCENTRIC MOON

=11: NUTATIONS IN LONGITUDE AND OBLIQUITY
=12: LUNAR LIBRATIONS (IF ON FILE)

|
W00 N d WN -

DP 6 X 11 ARRAY THAT WILL CONTAIN REQUESTED INTERPOLATED
QUANTITIES. THE BODY SPECIFIED BY LIST(I) WILL HAVE ITS
STATE IN THE ARRAY STARTING AT PV(1,I). (ON ANY GIVEN
CALL, ONLY THOSE WORDS IN ’PV’ WHICH ARE AFFECTED BY THE
FIRST 10 ’LIST’ ENTRIES (AND BY LIST(12) IF LIBRATIONS ARE
ON THE FILE) ARE SET. THE REST OF THE ’PV’ ARRAY

IS UNTOUCHED.) THE ORDER OF COMPONENTS STARTING IN
PV(1,I) IS: X,Y,Z,DX,DY,DZ.

ALL OUTPUT VECTORS ARE REFERENCED TO THE EARTH MEAN
EQUATOR AND EQUINOX OF J2000 IF THE DE NUMBER IS 200 OR
GREATER; OF B1950 IF THE DE NUMBER IS LESS THAN 200.

THE MOON STATE IS ALWAYS GEOCENTRIC; THE OTHER NINE STATES
ARE EITHER HELIOCENTRIC OR SOLAR-SYSTEM BARYCENTRIC,
DEPENDING ON THE SETTING OF COMMON FLAGS (SEE BELOW).

LUNAR LIBRATIONS, IF ON FILE, ARE PUT INTO PV(K,11) IF
LIST(12) IS 1 OR 2.

DP 4-WORD ARRAY THAT WILL CONTAIN NUTATIONS AND RATES,
DEPENDING ON THE SETTING OF LIST(11). THE ORDER OF
QUANTITIES IN NUT IS:

D PSI (NUTATION IN LONGITUDE)

D EPSILON (NUTATION IN OBLIQUITY)
D PSI DOT

D EPSILON DOT
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*  STATEMENT # FOR ERROR RETURN, IN CASE OF EPOCH OUT OF
RANGE OR I/0 ERRORS.

COMMON AREA STCOMX:

KM  LOGICAL FLAG DEFINING PHYSICAL UNITS OF THE OUTPUT
STATES. KM = .TRUE., KM AND KM/SEC
= .FALSE., AU AND AU/DAY
DEFAULT VALUE = .FALSE. (KM DETERMINES TIME UNIT
FOR NUTATIONS AND LIBRATIONS. ANGLE UNIT IS ALWAYS RADIANS.)

BARY LOGICAL FLAG DEFINING OUTPUT CENTER.
ONLY THE 9 PLANETS ARE AFFECTED.
BARY .TRUE. =\ CENTER IS SOLAR-SYSTEM BARYCENTER
= .FALSE. =\ CENTER IS SUN
.FALSE.

DEFAULT VALUE

PVSUN DP 6-WORD ARRAY CONTAINING THE BARYCENTRIC POSITION AND
VELOCITY OF THE SUN.

cHo NN NN Es NN N R RN N R o Ro o Ro R X!

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
SAVE

DIMENSION ET2(2),PV(6,12) ,PNUT(4),T(2),PJD(4),BUF(1500),
. 85(3),CVAL(400) ,PVSUN(3,2)

INTEGER LIST(12),IPT(3,13)

LOGICAL FIRST
DATA FIRST/.TRUE./

CHARACTER*6 TTL(14,3),CNAM(400)
CHARACTER*80 NAMFIL

LOGICAL KM,BARY
COMMON/EPHHDR/CVAL, SS, AU, EMRAT , NUMDE ,NCON, IPT
COMMON/CHRHDR/CNAM, TTL
COMMON/STCOMX/KM, BARY , PVSUN

c ENTRY POINT - 1ST TIME IN, GET POINTER DATA, ETC., FROM EPH FILE

IF(FIRST) THEN
FIRST=.FALSE.

C aeokok ok ok ok ok o e e ok ok sk ok ok ok ke ok ok sk ko ok o ke 3 3ok ok 3k o 3 ok o o o 3 ok ok ok ok o o ok ok ok o o ok ok oK ok ok 3k ok ok o 3k sk ok ok ok ko ok ok ok ok
C ook ok ok ok ok o o ok ok ok ok ok ok ke ok s sk sk sk ok sk sk 3 3 ok ok ok 3k o sk ok ok ke e ok ok ok sk ok ok sk sk ok ok ook ok ok ok ok ok ok sk ok ok ok o s ok ok ok ok ok ok ok ok
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C THE USER MUST SELECT ONE OF THE FOLLOWING BY DELETING THE ’C’ IN COLUMN 1

C sk ok ok sk sk 3k 3 ok ok 3k ok ek ok ok ok ok o 3 ok ok ok 3k 3 3k ok ok o o 3k ok sk ke ok ok sk sk ok o ok ko ok Sk sk ok ok ok ok ok ok ok ok e ek ok ko sk ok sk ok ok

CALL FSIZER1(NRECL,KSIZE,NRFILE,NAMFIL)
CALL FSIZER2(NRECL,KSIZE,NRFILE,NAMFIL)
CALL FSIZER3(NRECL,KSIZE,NRFILE,NAMFIL)

C
c

IF(NRECL .EQ. 0) WRITE(*,%)’ sxik* FSIZER IS NOT WORKING ¥¥xx*’

C skeokokokokook ke sk ok ok ok e ok ok ok ke ok ke ok ke ok ok ok ok ok o ks ke ok ok e ke ok ok ok ok ok 3K 3k ok oK oK 3k ok ok ok 3K o Sk K o s ok ok o ok o o o o o o e ke o e ek
C keokook skokok ok ok ok ok ok ok ke ok o o s o ke ok ok ok ke ok ok ok ok ke o ok o ok ok 3 ok 3k 3k ok ok ok ok ok e ok ok o ok sk sk ok ok sk ok oK ok ok K oK ok ok ok ke ok ok ok ok ok ok ok ok ok

IRECSZ=NRECL*KSIZE
NCOEFFS=KSIZE/2

OPEN(NRFILE,
FILE=NAMFIL,
ACCESS="DIRECT’,
FORM=’UNFORMATTED’ ,
RECL=IRECSZ,
STATUS=’0LD’)

* ¥ ¥ * *

READ(NRFILE,REC=1)TTL,CNAM, SS,NCON, AU,EMRAT,
((rpT(1,1,I1=1,3),J=1,12) ,NUMDE, (IPT(I,13),I=1,3)

READ(NRFILE,REC=2)CVAL
NRL=0

ENDIF

o] saokxokkkokk MAIN ENTRY POINT sokskoskskokokskokk

IF(ET2(1) .EQ. 0.DO) RETURN

S=ET2(1)~.5D0

CALL SPLIT(S,PJD(1))

CALL SPLIT(ET2(2),PJD(3))
PJD(1)=PJD(1)+PJID(3)+.5D0
PJD(2)=PJD(2)+PJD(4)

CALL SPLIT(PJD(2),PJD(3))
PJD(1)=PJD(1)+PJID(3)

C ERROR RETURN FOR EPOCH OUT OF RANGE
IF(PJD(1)+PJD(4).LT.SS(1) .OR. PJD(1)+PJD(4).GT.SS(2)) GO TO 98

C CALCULATE RECORD # AND RELATIVE TIME IN INTERVAL
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o]

NR=IDINT((PJD(1)-8S8(1))/S5(3))+3
IF(PJD(1) .EQ.SS(2)) NR=NR-1
T(1)=((PJD(1)-(DBLE(NR-3)*SS(3)+8S(1)))+PJD(4))/SS(3)

READ CORRECT RECORD IF NOT IN CORE

IF(NR.NE.NRL) THEN

NRL=NR

READ (NRFILE,REC=NR,ERR=99) (BUF (K) ,K=1,NCOEFFS)
ENDIF

IF(KM) THEN
T(2)=85(3) *86400.D0
AUFAC=1.DO0

ELSE

T(2)=88(3)
AUFAC=1.D0/AU
ENDIF

INTERPOLATE SSBARY SUN
CALL INTERP(BUF(IPT(1,11)),T,IPT(2,11),3,IPT(3,11),2,PVSUN)

DO I=1,6
PVSUN(I,1)=PVSUN(I,1)*AUFAC
ENDDO
pvsun(l,1)=pvsun(1,1)*aufac code modified by Dayne Cook
pvsun(2,1)=pvsun(2,1)*aufac
pvsun(3,1)=pvsun(3,1)*aufac
pvsun(1,2)=pvsun(1,2)*aufac
pvsun(2,2)=pvsun(2,2)*aufac
pvsun(3,2)=pvsun(3,2)*aufac

CHECK AND INTERPOLATE WHICHEVER BODIES ARE REQUESTED

DO 4 I=1,10
IF(LIST(I) .EQ.0) GO TO 4

CALL INTERP(BUF(IPT(1,1)),T,IPT(2,I),3,IPT(3,I),
& LIST(I),PV(1,I))

DO J=1,6

IF(I.LE.9 .AND. .NOT.BARY) THEN
PV(J,I)=PV(J,I)*AUFAC-PVSUN(J,1)
ELSE

PV(J,I)=PV(J,I)*AUFAC

ENDIF

ENDDO

4 CONTINUE

DO NUTATIONS IF REQUESTED (AND IF ON FILE)
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IF(LIST(11).GT.0 .AND. IPT(2,12).GT.0)
* CALL INTERP(BUF(IPT(1,12)),T,IPT(2,12),2,IPT(3,12),
* LIST(11),PNUT)

C GET LIBRATIONS IF REQUESTED (AND IF ON FILE)

IF(LIST(12).GT.0 .AND. IPT(2,13).GT.0)
* CALL INTERP(BUF(IPT(1,13)),T,IPT(2,13),3,IPT(3,13),
* LIST(12),PV(1,11))
RETURN
98 WRITE(*,198)ET2(1)+ET2(2),S88(1),S85(2)

198 format(’ *** Requested JED,’,f12.2,
* ? not within ephemeris limits,’,2f12.2,° *kk ) )

stop

99 WRITE(*,’(2F12.2,A80)°)ET2, ERROR RETURN IN STATE’

STOP
END
CHtttttttdtttttttttttttt++++++
‘ SUBROUTINE CONST(NAM,VAL,SSS,N)
g+++++++++++++++++++++++++++++
g THIS ENTRY OBTAINS THE CONSTANTS FROM THE EPHEMERIS FILE
g CALLING SEQEUNCE PARAMETERS (ALL OUTPUT):
g NAM = CHARACTER*6 ARRAY OF CONSTANT NAMES
g VAL = D.P. ARRAY OF VALUES OF CONSTANTS
g SSS = D.P. JD START, JD STOP, STEP OF EPHEMERIS
g N = INTEGER NUMBER OF ENTRIES IN ’NAM’ AND ’VAL’ ARRAYS
C

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

SAVE

CHARACTER*6 NAM(*),TTL(14,3),CNAM(400)

DOUBLE PRECISION VAL(*),SSS(3),SS(3),CVAL(400)

INTEGER IPT(3,13),DENUM
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COMMON/EPHHDR/CVAL,SS, AU, EMRAT ,DENUM, NCON, IPT
COMMON/CHRHDR/CNAM, TTL

C CALL STATE TO INITIALIZE THE EPHEMERIS AND READ IN THE CONSTANTS
CALL STATE(0.D0,0,0.D0,0.D0)
N=NCON
DO I-1,3
885(1)=ss(I)
ENDDO
DO I=1,N
NAM(I)=CNAM(I)
VAL(I)=CVAL(I)
ENDDO

RETURN
END
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