Railgun Launcher Efficiency: Useful Measure or Misused Metric?

by Alexander E. Zielinski, James F. Newill, and Trevor Watt

20010510 091

Approved for public release; distribution is unlimited.
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Railgun Launcher Efficiency: Useful Measure or Misused Metric?

Alexander E. Zielinski and James F. Newill
Weapons and Materials Research Directorate, ARL

Trevor Watt
Institute for Advanced Technology
Abstract

The efficiency of an electromagnetic railgun is assessed. In addition to electrical and kinematic loss terms, the portion of useful mass launched downrange is considered. Both integrated and fixed integrated launch package design approaches are considered using a system assessment code. Various current profiles are used to assess the performance of the launcher and integrated launch-package performance for a 3.52-kg launch package at a muzzle velocity of 2.5 km/s in 6 m of travel. It is found that the majority of electrically efficient launchers do not provide the most useful payload. A few percent reduction in the most efficient launcher can provide up to 18% additional useful energy. Furthermore, the launcher designed in concert with the launch package was found to also increase the amount of useful energy by an additional 7%.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>v</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Technical Issues</td>
<td>2</td>
</tr>
<tr>
<td>2.1. Current Profile</td>
<td>2</td>
</tr>
<tr>
<td>2.2. Muzzle-Shunt Considerations</td>
<td>6</td>
</tr>
<tr>
<td>3. Issues and Conclusions</td>
<td>8</td>
</tr>
<tr>
<td>4. References</td>
<td>9</td>
</tr>
<tr>
<td>Distribution List</td>
<td>11</td>
</tr>
<tr>
<td>Report Documentation Page</td>
<td>15</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Generalized-Current Profile</td>
<td>3</td>
</tr>
<tr>
<td>2. Parameters for a Flat-Top-Current Pulse</td>
<td>3</td>
</tr>
<tr>
<td>3. Parameters for a Drooping-Current Pulse</td>
<td>4</td>
</tr>
<tr>
<td>4. Launcher Performance</td>
<td>5</td>
</tr>
<tr>
<td>5. Illustration of 6.2 MJ and 5.4 MJ ILPs</td>
<td>6</td>
</tr>
<tr>
<td>6. Muzzle-Shunt Parameter Space</td>
<td>7</td>
</tr>
</tbody>
</table>
INTENTIONALLY LEFT BLANK.
1. Introduction

Launcher efficiency is defined as the ratio of the kinetic energy at muzzle exit to the electrical energy delivered to the breech. The breech energy can also be defined as the muzzle energy plus the sum of all the electrical and kinematic losses. In railgun experiments and simulations, the breech energy is simply the integral of the product of the breech voltage and current. The electrical-loss terms considered in this report are associated with the bulk-armature conductor, rail and armature interface, and the rails. The current profiles selected for this study assume that the rail current is zero at muzzle exit and therefore the stored inductive energy terms are zero. In reality, the current can be forced to zero either by pulsed power supply design [1, 2], or shunt devices (active [3] or passive [4, 5]), located at the muzzle of the launcher.

A medium-caliber hypervelocity shot (MCL122), which achieved a fairly high transition velocity, had a launcher efficiency of 40%, with a distribution of losses as follows: residual inductive 5%, rail resistive 35%, and armature losses 20% [6]. One of the most recent large-caliber firings had a launcher efficiency of 45% with a distribution of losses as follows: residual inductive 8%, friction 4%, rail resistive 17%, and armature losses 25% [7]. The smaller-rail loss in the large-caliber launcher is primarily due to the larger-rail conductor cross section. Clearly, ~60% of the breech energy was dissipated as heat for both cases. And, to that end, launcher efficiency very accurately depicts the electromechanical-conversion process. However, the medium-caliber test produced more useful energy (i.e., launch of a heavy metal subprojectile) than the referenced larger-caliber test.

If it were not for the nonlinear time and spatial dependence of the resistance of the rails, the distribution of energy could be easily calculated. Action, defined as the integral of the current squared over the acceleration time, is known from the mission requirements. Energy-loss terms are simply the product of the action and the resistance. The final velocity is constant for all the cases examined and, therefore, the kinematic losses (e.g., friction and air-compression) are nearly the same. Moreover, these losses amount to less than a few percent of the total losses.
The current profile affects the amount of rail losses. The system code EMLP [8], in addition to assessing launcher and armature requirements, contains an extensive routine to calculate the resistance and energy loss in the rails [9].

The type of armature can affect the energy distribution in the railgun. For example, use of a plasma armature will greatly reduce the efficiency of the launcher [7]. Similar trends, although not to the same extent, can also be seen with different types of solid armatures, including magnetic obturators, fiber brushes, and trailing-arm armatures. In this assessment, only trailing-arm armatures (or C-shaped armatures) are considered as they have routinely demonstrated operation with heavy-metal payloads at hypervelocity [6, 10, 11].

The subject of this technical report is to determine the efficiency of a railgun and assess to what extent the efficiency can be increased. The performance is for the current Phase 2 goals namely, 3.52 kg to 2.5 km/s in 6 m of travel.

2. Technical Issues

2.1. Current Profile. In order to assess efficiency as a function of the shape of the current pulse, it is convenient to bound the pulse shape in terms of the desired performance. The current profiles in this report are generalized as shown in Figure 1. For all cases, Ix is set to zero and the rise time (tr) is 500 μs, elucidated from inbore structural-dynamic considerations [12, 13, 14]. Two cases are derived—one in which the current after the rise time is constant, and the second in which the current is allowed to droop after attaining its peak value. An inductance gradient, somewhat lower than that calculated for a reference design [14] of 0.6 μH/m, is assumed. Figure 2 shows the parameter space for the flat-top profile. The values for time indicated on the abscissa are for the rail current to start its decay (to) and for projectile exit (tf). The commutation time (tc) is the difference between tf and to.

The data in Figure 2 indicates that for relatively small values of tc, peak currents slightly in excess of 3 MA can meet the design goals with a barrel as short as 4 m. To meet the
performance requirements (3.52 kg to 2.5 km/s in 6 m of travel), a peak current as low as 2.5 MA will suffice.

The second case, illustrated in Figure 3, shows the increase in current required for allowing the rail current to droop after attaining its maximum value. It is assumed that tc = tr = 500 μs.

Initially, four representative pulses were used as input to the EMLP code covering aspects of both the flat-top and drooping cases. The cursory analysis indicated that the most efficient
launcher did not produce the most useful energy. The analysis also indicated that there was virtually no increase in efficiency for using a launcher less than 6 m in length. However, dynamic, vibratory, and cost issues may take precedence.

A more systemic approach was then used to quantify the dependence of performance with pulse profile. For this analysis, $t_r = t_c$ and varied from 250 μs to 1,500 μs. It is assumed that the ILP and launcher system can tolerate the dynamic loads. A flat-top current pulse is also assumed. Additionally, while it is not unreasonable to expect the shape of the pulses illustrated in Figure 1, the time and current characteristics do place some burden on the pulsed power-system components (e.g., high voltage and high-time rate of change in current capacity). The current profiles under consideration have been addressed analytically for capacitor and rotating machine based supplies [1, 2]. Other pulse shapes are possible, but their analysis is beyond the rather simplistic representation illustrated in Figure 1. For the aforementioned time constraints, peak current increased accordingly from 2.6 MA to 3.2 MA in order to maintain the performance conditions at exit (3.52 kg at 2.5 km/s in 6 m). The ratio of the peak to average acceleration ranged from 1.1 for the 250 μs solutions to 1.7 for the 1,500 μs solutions.
Two cases are considered. In the first case, the code EMLP was used to design both the launcher and ILP (i.e., integrated approach). In the second case, the launcher was specified [15] and only the ILP was designed. The dimensions of the bore cross section for the specified launcher were calculated using a related system approach [15] and were relatively close to the dimensions generated for the various launchers using the EMLP code (66 × 126 mm).

A plot of the launcher performance, presented as both launcher efficiency and useful energy, is shown in Figure 4. The results are similar to the cursory analysis and indicate that the most efficient launcher does not produce the most useful energy. This result is because for the long rise and commutation times, a higher-peak current is needed to attain the same exit conditions. This profile produces a lower-average current during the acceleration, and hence, rail losses are somewhat reduced. On the other hand, a larger-peak current requires more armature structure to support the subprojectile loads. Hence, parasitic mass is increased.

![Figure 4. Launcher Performance.](image)

The plot indicates that for a highly-integrated system, with considerations for short rise and commutation times, 6.2 MJ of useful energy can be delivered from the launcher. Specifying a launcher and designing the ILP to fit into the launcher, produces roughly 7% less useful energy (5.7 MJ). Additionally, if the rise and commutation times are rather long, roughly 4.9 MJ of
useful energy is produced irrespective of the degree of integration. It should be noted that energy delivered to the breech is not held constant. For example, the 6.2 MJ solution requires 17.5 MJ, while the 5.4 MJ solution requires 15.8 MJ of delivered energy—nearly one half of the additional 1.7 MJ of breech energy appears as useful energy.

A pictorial representation of the ILP produced by both the integrated approach (6.2 MJ) and specified launcher approach (5.4 MJ) is shown in Figure 5.

![ILP Illustrations](image)

Figure 5. Illustration of 6.2 MJ (Left) and 5.4 MJ (Right) ILPs.

2.2. **Muzzle-Shunt Considerations.** The analysis in the proceeding section assumed that the launcher current at exit was zero. This result can be achieved if the frequency and switching of the pulsed-power supply are appropriately selected. In the event that voltage generation near the end of launch becomes untenable, a device located at the end of the muzzle (i.e., muzzle shunt) can be used to commutate the current from the armature to the circuit path containing the launcher and pulsed-power supply, thereby allowing any residual inductive energy to be transferred back to the system. Rail losses will be increased above those calculated for Figure 4 due to maintaining the flat-top current until projectile exit. For short commutation times, the additional increase in rail loss is expected to be small. Finally, the simulations only consider launcher performance and efficiency up to projectile exit. The process of energy recovery is highly dependent on details for the pulsed-power system and is not considered here.
The penalty for use of a muzzle-shunt device is the resistance inherent in the shunt. This section examines the extent of this loss in a passive muzzle-shunt device. The analysis presented is similar to one found in the literature [5]; however, a time-marching scheme is used and the voltage drop across the armature is taken from recent experimental tests for a solid armature, hypervelocity ILP [6].

In this analysis, the aforementioned exit conditions are used with a launcher having an inductance gradient (L') of 0.5 μH/m and another where L' is 0.6 μH/m. The flat-top profiles calculated from Figure 2 are used for illustration. Inductance and resistance values for the shunt (L_s and R_s) are varied until the ILP exits the launcher with zero current in the armature. A plot illustrating the bounds to achieve zero exit current for L_s and R_s is shown in Figure 6. Values for L_s and R_s are less than 240 nH and 1600 μΩ, respectively. Commutation times are also indicated and are near the values required for the current profiles discussed in the previous section. Additionally, a predominately inductive device tends to minimize the energy dissipated in the shunt. However, even with a predominately resistive device, energy loss is on the order of 0.5 MJ, roughly the same order of magnitude as the kinematic losses. The time to complete the transfer of energy to the pulsed power system is not assessed.

![Figure 6. Muzzle-Shunt Parameter Space.](image)

2.7 MA, 0.6 μH/m
- - - 2.9 MA, 0.5 μH/m

$E_s=0.5MJ$

$t_c=0.5ms$

$t_c=0.9ms$

$E_s=0MJ$
3. Issues and Conclusions

The efficiency of an electromagnetic railgun was assessed and found not to be the most useful metric. Rather, useful energy, determined from the launch velocity of the kinetic energy penetrator, is more beneficial. Furthermore, it is recommended that a highly integrated-design approach, considering the current profile delivered from the pulsed-power supply, launcher topology, and ILP payload can produce an efficient system yielding 6.2 MJ of useful energy.

A passive-muzzle shunt was analyzed and found to contribute marginally to the inefficiency of the launcher. Analysis was terminated at projectile exit and does not consider the details associated with energy recovery after projectile exit. The use of a muzzle shunt did, however, produce commutation times (~700 μs) on the same order as those required by a low-peak current solution (~2.7 MA). The alternative solution (i.e., no muzzle shunt) is not attractive considering efficiency, signature, and structural issues. There still remain ILP-based issues associated with rapid rise and commutation times. These issues must be balanced with pulse power and launcher requirements.
4. References

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 2 | DEFENSE TECHNICAL INFORMATION CENTER
 DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FT BELVOIR VA 22060-6218 |
| 1 | HQDA
 DAMO FDT
 400 ARMY PENTAGON
 WASHINGTON DC 20310-0460 |
| 1 | OSD
 OUSD(A&T)/ODDR&E(R)
 DR R J TREW
 3800 DEFENSE PENTAGON
 WASHINGTON DC 20301-3800 |
| 1 | COMMANDING GENERAL
 US ARMY MATIEREL CMD
 AMCRDA TF
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001 |
| 1 | INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS AT AUSTIN
 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316 |
| 1 | DARPA
 SPECIAL PROJECTS OFFICE
 J CARLINI
 3701 N FAIRFAX DR
 ARLINGTON VA 22203-1714 |
| 1 | US MILITARY ACADEMY
 MATH SCI CTR EXCELLENCE
 MADN MATH
 MAJ HUBER
 THAYER HALL
 WEST POINT NY 10996-1786 |
| 1 | DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL D
 DR D SMITH
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197 |
| 1 | DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CI LL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197 |
| 1 | DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CI AP
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197 |
| 2 | DIR USARL
 AMSRL CI LP (BLDG 305) |

ABERDEEN PROVING GROUND
1
DIRECTOR
DIRECTorate OF FORCE
DEVELOPMENT
C E BRYLA
FT KNOX KY 40121-5000

1
US ARMY MATERIAL COMMAND
AMC DCG T
5001 EISENHOWER BLVD
ALEXANDRIA VA 22333-0001

1
US ARMY AVIATION &
MISSILE COMMAND
AMSMI RD
DR MCCORKLE
REDSTONE ARSENAL AL
35898-5240

2
US ARMY TACOM TARDEC
AMSTA TR D MS 207
J CHAPIN
M TOURNER
WARREN MI 48397-5000

2
US ARMY TACOM ARDEC
FSAE GCSS TMA
J BENNETT
D LADD
BLDG 354
PICATINNY ARSENAL NJ
07806-5000

4
INST FOR ADVANCED TECH
UNIV OF TEXAS AT AUSTIN
P SULLIVAN
F STEPHANI
T WATT
J MCNAB
3925 W BRAKER LN STE 400
AUSTIN TX 78759-5316

5
UNIV OF TEXAS AT AUSTIN
CENTER FOR ELECT
A WALLS
J KITZMILLER
S PRATAP
J PAPPAS
M WERST
PRC MAIL CODE R7000
AUSTIN TX 78712

4
LOCKHEED MARTIN
L FARRIS

1
N WELLS
J NONTE
K COOK
MS WT 21
PO BOX 650003
DALLAS TX 75265-0003

1
INST FOR DFNS ANALYSIS
R KOLBERG
1801 N BEAUREGARD ST
ALEXANDRIA VA 22311

1
KAMAN ELECTROMAGNETICS
CORP
P MONGEAU
2 FOX RD
HUDSON MA 01749

1
UNIV AT BUFFALO
SUNY AB
J SARJEANT
PO BOX 601900
BUFFALO NY 14260-1900

1
UDLP
B GOODELL
R JOHNSON
MS M170
4800 EAST RIVER RD
MINNEAPOLIS MN 55421-1498

1
UNIV OF TEXAS AT AUSTIN
ENS 434 DEPT OF ECE
M DRIGA
MAIL CODE 60803
AUSTIN TX 78712

1
SAIC
G CHRYSSOMALLIS
3800 WEST 80TH ST STE 1090
BLOOMINGTON MN 55431

1
SAIC
J BATTEH
4901 OLDE TOWNE PARKWAY
STE 200
MARIETTA GA 30068

1
SAIC
K A JAMISON
1247 B N EGLIN PKWY
SHALIMAR FL 32579
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>IAP RESEARCH INC</td>
</tr>
<tr>
<td></td>
<td>D BAUER</td>
</tr>
<tr>
<td></td>
<td>J BARBER</td>
</tr>
<tr>
<td></td>
<td>2763 CULVER AVE</td>
</tr>
<tr>
<td></td>
<td>DAYTON OH 45429-3723</td>
</tr>
<tr>
<td>3</td>
<td>MAXWELL TECHNOLOGIES</td>
</tr>
<tr>
<td></td>
<td>P REIDY</td>
</tr>
<tr>
<td></td>
<td>T WOLFE</td>
</tr>
<tr>
<td></td>
<td>9244 BALBOA AVE</td>
</tr>
<tr>
<td></td>
<td>SAN DIEGO CA 92123</td>
</tr>
<tr>
<td>1</td>
<td>ATA ASSOCIATES</td>
</tr>
<tr>
<td></td>
<td>W ISBELL</td>
</tr>
<tr>
<td></td>
<td>PO BOX 6570</td>
</tr>
<tr>
<td></td>
<td>SANTA BARBARA CA</td>
</tr>
<tr>
<td></td>
<td>93160-6570</td>
</tr>
<tr>
<td>21</td>
<td>ABERDEEN PROVING GROUND</td>
</tr>
<tr>
<td></td>
<td>DIR USARL</td>
</tr>
<tr>
<td></td>
<td>AMSRL WM</td>
</tr>
<tr>
<td></td>
<td>E SCHMIDT</td>
</tr>
<tr>
<td></td>
<td>A TANNER</td>
</tr>
<tr>
<td></td>
<td>AMSRL WM B</td>
</tr>
<tr>
<td></td>
<td>A HORST</td>
</tr>
<tr>
<td></td>
<td>AMSRL WM TE</td>
</tr>
<tr>
<td></td>
<td>J POWELL</td>
</tr>
<tr>
<td></td>
<td>AMSRL WM BD</td>
</tr>
<tr>
<td></td>
<td>B FORCH</td>
</tr>
<tr>
<td></td>
<td>AMSRL WM BA</td>
</tr>
<tr>
<td></td>
<td>D LYON</td>
</tr>
<tr>
<td></td>
<td>AMSRL WM BC</td>
</tr>
<tr>
<td></td>
<td>P PLOSTINS</td>
</tr>
<tr>
<td></td>
<td>J GARNER</td>
</tr>
<tr>
<td></td>
<td>V OSKAY</td>
</tr>
<tr>
<td></td>
<td>M BUNDY</td>
</tr>
<tr>
<td></td>
<td>G COOPER</td>
</tr>
<tr>
<td></td>
<td>J SAHU</td>
</tr>
<tr>
<td></td>
<td>P WEINACHT</td>
</tr>
<tr>
<td></td>
<td>H EDGE</td>
</tr>
<tr>
<td></td>
<td>B GUIDOS</td>
</tr>
<tr>
<td></td>
<td>A ZIELINSKI</td>
</tr>
<tr>
<td></td>
<td>M DELGUERCIO</td>
</tr>
<tr>
<td></td>
<td>K SOENCKSEN</td>
</tr>
<tr>
<td></td>
<td>S WILKERSON</td>
</tr>
<tr>
<td></td>
<td>T ERLINE</td>
</tr>
<tr>
<td></td>
<td>J NEWILL</td>
</tr>
</tbody>
</table>
INTENTIONALLY LEFT BLANK.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. AGENCY USE ONLY (Leave Blank)</th>
<th>2. REPORT DATE</th>
<th>3. REPORT TYPE AND DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>May 2001</td>
<td>Final, December 2000–May 2001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5. FUNDING NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railgun Launcher Efficiency: Useful Measure or Misused Metric?</td>
<td>AH80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander E. Zielinski, James F. Newill, and Trevor Watt*</td>
<td>U.S. Army Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSRL-WM-BC</td>
</tr>
<tr>
<td></td>
<td>Aberdeen Proving Ground, MD 21005-5066</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARL-MR-512</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)</th>
<th>10. SPONSORING/MONITORING AGENCY REPORT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute for Advanced Technology, University of Texas at Austin, P.O. Box 202797, Austin, TX 78759</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12a. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th>12b. DISTRIBUTION CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution is unlimited.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. ABSTRACT (Maximum 200 words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The efficiency of an electromagnetic railgun is assessed. In addition to electrical and kinematic loss terms, the portion of useful mass launched downrange is considered. Both integrated and fixed integrated launch package design approaches are considered using a system assessment code. Various current profiles are used to assess the performance of the launcher and integrated launch-package performance for a 3.52-kg launch package at a muzzle velocity of 2.5 km/s in 6 m of travel. It is found that the majority of electrically efficient launchers do not provide the most useful payload. A few percent reduction in the most efficient launcher can provide up to 18% additional useful energy. Furthermore, the launcher designed in concert with the launch package was found to also increase the amount of useful energy by an additional 7%.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. SUBJECT TERMS</th>
<th>15. NUMBER OF PAGES</th>
<th>16. PRICE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>electromagnetic railgun, efficiency, muzzle shunt, integrated launch package</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. SECURITY CLASSIFICATION OF REPORT</th>
<th>18. SECURITY CLASSIFICATION OF THIS PAGE</th>
<th>19. SECURITY CLASSIFICATION OF ABSTRACT</th>
<th>20. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNCLASSIFIED</td>
<td>UNCLASSIFIED</td>
<td>UNCLASSIFIED</td>
<td>UL</td>
</tr>
</tbody>
</table>
USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-MR-512 (Zielinski) Date of Report May 2001

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

Organization

CURRENT ADDRESS

Name
Street or P.O. Box No.
City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or Incorrect address below.

Organization

OLD ADDRESS

Name
Street or P.O. Box No.
City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)

(DO NOT STAPLE)
DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001, APG, MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL WM BC
ABERDEEN PROVING GROUND MD 21005-5066