The synthesis of a series of diazatrichia-15-crown-5 and diazatrichia-16-crown-5 ligands containing two 8-hydroxyquinoline side arms are reported. The ligands were prepared by a two-step process. First, diazatrichiacrown ethers 11 and 12 were prepared by treating bis(a-chloroamide) 5 with various dimercaptans followed by reduction using a boron-THF complex. Hydroxymethyl-substituted macrocycle 12 was rearranged to hydroxy-substituted diazatrichia-16-crown-5 in refluxing aqueous HCl. Macroyclic diamines 11-13 were converted to either 5-chloro-8-hydroxyquinolin-7-ylmethyl-substituted diazatrichiacrown ethers 14-16 by a Mannich aminomethylation reaction or to 8-hydroxyquinolin-2-ylmethyl-substituted diazatrichiacrown ethers 17-19 by reductive amination using 8-hydroxyquinoline-2-carboxaldehyde.
Synthesis of Bis-8-Hydroxyquinoline-Armed Diazatrinthia-15-Crown-5 and Diazatrinthia-16-Crown-5 Ligands

by

R. Todd Bronson, Jerald S. Bradshaw, Paul B. Savage, Krzysztof E. Krakowiak, and Reed M. Izatt

Department of Chemistry and Biochemistry
Brigham Young University, Provo, UT 84602-4678

April 17, 2001

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
Synthesis of Bis-8-Hydroxyquinoline-Armed Diazatraithia-15-Crown-5 and Diazatraithia-16-Crown-5 Ligands

R. Todd Bronson, Jerald S. Bradshaw, Paul B. Savage,
Krzysztof E. Krakowiak, and Reed M. Izatt
Brigham Young University

Results and Discussion

Synthesis of Diazatraithia Crown Ethers. Secondary ring nitrogen atoms in crown ethers offer a convenient site for attachment of alkyl substituents. The crab-like synthesis of diazacrown ethers using the bis(α-chloroacetamide) provides a relatively high yield method to form macrocycles containing two secondary amine functions. In this regard, bis(α-chloroamide) 5 was treated with various dimercaptans in MeCN using a carbonate base to form macrocyclic diazatraithiadiamides 6-8 in good yields (Scheme 1). As expected, the larger 2:2 cycloaddition products, macrocyclic tetraamides 9 and 10, were also isolated in two cases in small yields. The NMR spectra of 9 and 10 were similar to those of 6 and 8, respectively. High dilution techniques helped minimize the production of these undesired by-products. Macrocyclic diazatraithia ligands 11 and 12 were prepared by reducing macrocyclic diamides 6 and 8, respectively, using a borane-THF complex. Initially, work up of the borane reduction products was done in refluxing 6 M HCl, but this process caused the formation of unexpected rearrangement and ring opened products as discussed below. Exposure to 6 M HCl at room temperature for a period of 10 minutes, along with extraction, was adequate for freeing the desired product from boron giving diazatraithia-18-crown-6 (11) and hydroxymethyl-substituted diazatraithia-15-crown-5 (12) in good yields.

The rearrangement product of 12 proved to be a new hydroxy-substituted diazatraithia-16-crown-5 (13) (Scheme 2). Ligand 13 is also of value in our research program. In an acid environment with heating, the protonated primary hydroxyl group from 12 becomes a leaving group when attacked by the neighboring ring sulfur atom. This leads to a charged epithio intermediate that is in turn attacked by water at the carbon atom most able to support a positive charge, forming 13. A minor product from this reaction resulted from the intramolecular attack by a neighboring ring nitrogen atom forming 13a in a very low-yield. A trace amount of another compound which has very similar properties to those of 13a was also observed. This material could be a result of the attack of the other ring nitrogen atom on the epithio intermediate.

Synthesis of 8-Hydroxyquinoline-substituted Ligands. Ligands 14-16 with the CHQ units attached at the CHQ 7-position were formed using Mannich reaction conditions as shown in Scheme 3. The best results were achieved by first forming the N,N'-bis(methoxymethyl)diazacrown ethers by stirring the diaza crowns in methanol and a slight excess of paraformaldehyde. After removal of methanol and addition of benzene to the mixtures, CHQ was added and the mixtures were refluxed. Benzene
proved to be a good reaction solvent since there were few side products. Products 14-16 were purified using radial chromatography.

Compounds 17-19 (Scheme 4) were obtained in good yields using a reductive amination procedure.1a,1b Ligands 17-19 with the 8-hydroxyquinoline side arms attached at their 2-positions were more readily isolated than compounds 14-16 with CHQ units attached at their 7-positions.

References

Scheme 1. Syntheses of diazatrithiacrown ethers 11 and 12 containing two unsubstituted nitrogen atoms
Scheme 2. Rearranged crown ethers 13 and 13a

Scheme 3. Syntheses of 5-chloro-8-hydroxyquinolin-7-ylmethyl-substituted crown ethers via the Mannich reaction
Scheme 4. Syntheses of 8-hydroxy-quinolin-2-yilmethyl-substituted crown ethers via reductive amination