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Abstract

We present in this report a summary of the research supported by the AFOSR during the period
May 1 1997 to December 31 2000 on the formulation and analysis of integration algorithms for
different dynamical systems in solid mechanics. The main goal is the development of robust time-
stepping algorithms with improved stability properties in the fully nonlinear range in this type of
systems. In this way, we have developed new time-stepping algorithms for the integration of the
equations defining the contact/impact of solids that preserve the physical conditions of energy con-
servation for the normal contact interactions and of energy dissipation for the tangential frictional
Ye,ws, improving considerably on the performance of existing schemes. The algorithms also exhibit
t*¢ conservation laws of linear and angular momenta of the physical system by construction. We
have also developed new arbitrary Eulerian-Lagrangian finite element methods for the analysis
of finite deformation problems in solid mechanics, with a direct application to the Lagrangian
treatment of viscous fluids. This extension allows the analysis of fluid-structure interfaces through
the Lagrangian contact logic previously developed. Similarly, we have developed new integration
algorithms for nonlinear elastodynamics that exhibit the controllable high-frequency dissipation
required to handle the high numerical stiffness characteristic of the mechanical systems of interest.
The numerical properties of the newly developed algorithms have been supported with rigorous
mathematical analyses and evaluated through their implementation in the framework of the finite
element method. Additional tools, like the formulation of new enhanced strain finite elements
for finite deformation problems and a new contact sorting/search data structure for the efficient
analysis of multi-body elastic systems, have been developed as needed in the solution of the highly
nonlinear problems of interest in this work.

KEY WORDS: frictionless and frictional contact of solids, nonlinear elasto-
dynamics, energy-momentum conserving algorithms, numer-
ical stiffness, high-frequency dissipative time-stepping algo-
rithms, finite element method, ALE methods.
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F. Armero

1. Research Goals

The research considered in this project addresses the formulation, analysis and im-
plementation of numerical methods in solid mechanics. The two specific applications of
interest are the dynamic contact of elastic solids and fluid-structure surface interactions,
accounting specifically for their unilaterally constrained character. Physically significant
properties (like conservation of momenta, or frictional dissipation) are translated into
mathematical properties of the governing equations and of the resulting continuum dynam-
ical system (like the rich genmetric structure of the system of elastodynamics including
the so-called momentum maps in the presence of symmetries). The approach proposed
in this project views the numerical scheme as defining a discrete dynamical system whose
properties are to be analyzed. The comparison of these properties with their continuum
counterparts (e.g. conservation laws) leads to the identification of improved integration
algorithms. Given the sound theoretical basis of this approach, the newly developed nu-
merical methods exhibit the robustness necessary to deal with the complex problems of
interest to the Air Force mission.

Both Hamiltonian and dissipative dynamical systems are considered. In the case of
dynamic contact of solids, the first goal is the development of conserving numerical schemes
for the enforcement of the unilateral constraint of non-penetrating solids, continued by the
development of dissipative schemes for the resolution of the tangential frictional interac-
tions between the solids. All the schemes must preserve exactly the linear and angular
conservation laws characteristic of the dynamical systems with symmetry under investiga-
tion. Emphasis is given to both the rigorous analysis of the numerical properties of new
schemes, as well as to the development of an efficient computational structure for their
numerical implementation. The problems of interest common to many Air Force applica-
tions involve multiple bodies in contact (e.g., fragmentation). Motivated by the need of
numerical efficiency in the resolution of these systems, the goals of this project includes
the implementation of the newly developed contact algorithms in an efficient contact sor-
rting/searching data structure.

In addition, this research project includes investigating the application of these ideas
to the analysis of fluid-structure interactions. These systems are viewed as constrained
dynamical systems, with two independent sub-systems (the fluid and the solid) constrained
by the interface conditions. These fluid problems involve large strains necessarily, leading
to an unacceptable distortion of the spatial discretizations (e.g., finite element meshes) if a
fully Lagrangian approach is considered. A numerical solution becomes the impossible to
obtain. This limitation motivates the development of new arbitrary Lagrangian-Eulerian
(ALE) finite element methods that can avoid this mesh distortion and accommodate at
the same time the methods developed previously for contact problems for the resolution
of the fluid-solid interfaces.

During the work in this grant, and given the success in the development of energy-
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momentum time-stepping algorithms for dynamic contact problems, we identified the for-
mulation of numerical schemes for general nonlinear elastodynamics that exhibit a control-
lable energy dissipation in the high-frequency range as a new and very important objective
of the current research effort. This goal was not present in the original proposal of this
grant. The main objective is the development of time-stepping algorithms that are able to
handle the high numerical stiffness of the systems of interest. The numerical instabilities
observed when using existing numerically “dissipative” schemes (usually developed and
analyzed in the linear range) emphasizes the need to develop these schemes in the nonlin-
ear range. The main issue is the introduction of tiis controllable numerical dissipation in
the high-frequency response only, maintaining the second or higher order accuracy of the
method and, more importantly, the qualitative features of the phase dynamics (e.g., mo-
mentum conservation laws and the associated relative equilibria). The need for this type
of dissipative schemes in the full geometrically nonlinear range is clear given the many
practical applications of interest in structural dynamics.

The different algorithms developed in this project have been implemented in the con-
text of the finite element method. In particular, the need of finite element formulations
that avoid volumetric and shear locking while being stable (in the sense that they avoid
hourglassing) in the fully nonlinear finite deformation range has motivated the develop-
ments of new mixed/enhanced finite element formulations. These developments include
complete mathematical analyses of the new and existing methods in the general context
of finite strain elastoplasticity. '

2. Research Accomplishments

We present in this section a summary of th- research accomplishments obtained in
this project, addressing the objectives describes in the previous section as identified in
the original proposal. Complete references to the publications where they appeared are
included (see list in page 12 of this report). :

The major results accomplished under this project can be summarized as follows:

1. The formulation of energy-momentum conserving algorithms for frictionless contact
[6,11,20]. A new time-stepping scheme has been developed for the numerical resolu-
tion of the displacement contact constraint that does not lead to an energy increase of
the system, in contrast with traditional schemes. The method is based on a penalty
regularization of the problem, and results in full energy restoration upon release, that
is, upon deactivation of the penalization potential. These properties arise from the
proper definition of the gap between the solids and a conserving approximation of the
contact pressure. Both linear and angular momenta are conserved.

2. Imposition of the velocity constraints. [6,11,20]. During persistent contact, not only
the normal component of the displacement of the points in contact is constrained
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to be the same, but also their normal velocity. We have developed an extension of
the numerical scheme of the previous item that enforces this constraint and preserves
the conservation properties of the scheme. A new mass-penalization scheme has been
developed to this purpose, with an augmented Lagrangian variant enforcing exactly
the constraint.

. Contact schemes with controllable numerical dissipation [6,11,20]. Continuing with
the previous item, a variant exhibiting a controllable numerical (positive) dissipation
has been developed. Numerical experiments have shown that the resulting numerical
scheme is especially appropriate for the resolution of the contaci intervals in short-
term simulations of high-velocity impacts, avoiding the typical oscillatory (and even
unstable) response associated to traditional implicit schemes in resolving this type of
problems.

. A new dissipative numerical scheme for frictional contact [5,10,18]. We have de-
veloped a new time-stepping algorithm for the integration in time of the frictional
interactions between solids that leads to a positive energy dissipation, in contrast with
more traditional schemes. The method is based on a new time integration of the
relation defining the slip between the contacting surfaces, as well as the definition of
the tangential forces between the solids through a trial/corrector scheme. The contact
contributions are again linear and angular momentum conserving. The method has
been implemented in combination with the numerical schemes developed previously
for the normal contact component, leading altogether to (energy) stable schemes very
appropriate for the long-term simulation of multi-body systems.

. Development of an efficient contact detection scheme [17]. The previously developed
methods have been implemented in the framework of the finite element method. In
particular, we have developed a complete computational structure for the efficient (and
stable) long-term simulation of multi-body systems. The numerica' implementation
consists of two phases: contact sorting and searching. The contact logic involves
primary structures (like bodies, surfaces, facets and particles) and secondary or derived
structures (like body/particle pairs). The sorting phase is based on a binary space
partition (BSP) scheme, and identifies the active body/particle pairs. The searching
phase identifies through the closest-point projection the actual facet/particle pairs in
contact. Numerical tests confirm a substantial improvement in the computational cost:
O(Nlog N) versus O(N?) of a non-sorted contact search (N = number of bodies).

. Complete analyses of existing “dissipative” schemes [4,15,16,21]. We have performed
rigorous analyses of the time-stepping algorithms commonly used in continuum and
structural dynamics (Newmark and HHT families of schemes). These schemes were
developed to exhibit high-frequency dissipation and unconditional stability in the lin-
ear range. These analyses not only identify the lack of this dissipative character of the
schemes in the nonlinear range, but also the fundamentally incorrect qualitative dy-
namics obtained by them. The analyses were performed for the simple model problem
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of a nonlinear spring/mass system rotating around a central fixed point. In this con-
text, we have shown the non-existence of relative equilibria in the discrete dynamics,
except for the trivial static equilibrium, thus missing completely the phase portrait
of the dynamical system (relative equilibria in this case correspond to pure rotations
with no axial oscillations in the elastic spring).

. New high-frequency dissipative time-stepping algorithms for nonlinear continuum elas-

todynamics [3,4,9,14,15,21]. We have developed a new class of time-stepping algo-
rithms for nonlinear continuum elastodynamics that exhibit numerical high-frequency
dissipation, while maintaining fundamental qualitative properties of the dynamics of
the system. More specifically, the linear and angular momenta conservation laws, as
well as the corresponding relative equilibria, are exactly preserved. We have proven
these properties in the general context of nonlinear elastodynamics. We have de-
veloped first and second order schemes, with a complete control of the numerical
dissipation introduced in the simulations (e.g. zero if desired) through the consid-
eration of algorithmic parameters. Complete spectral analyses of these methods for
the linearized problem have identified the dissipative spectral properties of the new
methods. In particular, the new second order schemes are shown to be L-stable. As
indicated in the section on objectives above, the newly proposed methods have shown
a big improvement over existing “dissipative” and conserving schemes in problems
with a high-frequency content.

. A new ALE framework for finite deformation problems [1,8,12,13]. We have devel-

oped a new arbitrary Lagrangian-Eulerian (ALE) finite element formulation for the
treatment of finite deformation problems to accommodate the large distortions of the
finite elements in this class of problems. The proposed approach is based on a direct
treatment of both the material map moving the finite element mesh with respect to
the material particles and the spatial map defining the deformed configuration of the
solid. The direct use of the material remap, in contrast with existing formulations
based on the interpolation the physical deformation between material and deformed
configurations, has shown to be especially suited for the advection of any internal
variables characteristic of inelastic models. In fact, this advection is accomplished by
an efficient particle tracking scheme based on the connectivity graph of the reference
mesh. We have already considered successfully finite strain multiplicative models of
elastoplasticity in the dynamic range. Our main goal as related to the current re-
search project is the treatment of viscous fluids in this non-Lagrangian framework for
the study of fluid-solid interactions through the appropriate contact treatment of the
material interfaces.

. New mixed/enhanced finite element methods for finite deformation problems [2,7,19].

We have developed new enhanced finite element methods for finite deformation prob-
lems in the general context of finite strain elastoplasticity. The main challenge is the
formulation of finite elements avoiding both volumetric and shear locking, and the
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hourglass instabilities observed in the finite deformation range. To this purpose, we
have explored a framework that considers an assumed strain finite formulation of the
volumetric strain component with an enhanced treatment of the deviatoric part. We
have gained a complete understanding of the locking and stability properties of these
new and existing finite element formulations with a series of modal analyses in the
full finite deformation range. Additional stabilized enhanced finite element techniques
have been developed to handle the aforementioned instabilities.

3. Impact of the Research. Relevance to the Air Force

We believe that the research developed in this project has led to important advances
in the understanding of time-stepping algorithms for nonlinear dynamics. In particular,
we have developed new integration algorithms that improve on existing techniques for the
solution of the complex problems in nonlinear solid mechanics, including the always difficult
treatment of the contact between solids. These results have led to the interaction with
the Computational Mechanics group of the Munitions Directorate at Eglin AFB. These
contacts are expected to continue in the extensions that we are currently considering of
the work developed in this project; see Section 4 below.

These results have been presented in a number of refereed publications as well as in
many conference contributions and invited lectures. A complete list of the publications pre-
pared in this project is presented in page 12 of this report, and in page 15 for the transitions
of the research funded by this AFOSR project. These lists include only the publications
and presentations linked directly to the objective of the current research project. A list of
additional publications prepared by the PI during this period acknowledging the support
of th~ AFOSR is available upon request.

Recognition to the research developed in this project has come in different forms.
In particular, we can quote the many invitations received by the P.I. to present these
findings in national and international conferences, including keynote lectures and addresses
in major national and international meetings (like in the World Congress on Computational
Mechanics held in Buenos Aires, Argentina, in June 1998, and the European Congress on
Computational Mechanics held in Munich, Germany, in September 1999, among others).
During the period of performance of this project, the P.1., Francisco Armero, was awarded a
NSF CAREER Award in June 1997, and the Juan C. Simo Award and Medal in June 1999
given by SEMNI (the Spanish Society of Numerical Methods in Engineering) every three
years to “a young investigator in recognition of his/her scientific career”. Furthermore,
he received the Best Paper in Engineering Computations in June 1997 for the paper [7]
co-authored with the postdoctoral fellow Dr. S. Glaser.

We would like to mention also the strong educational component of the research de-
veloped in this project. The graduate student Mr. Ignacio Romero (PhD expected May
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2001) has been supported entirely during his doctoral studies. Other graduate students,
Dr. Eva Petocz (PhD October 1997) and Dr. Edward Love (PhD December 2001), have
also been involved with the development of the research in this project. The P.I., Fran-
cisco Armero, received partial support during the summer terms. Additional collaborators
include visiting postdoctoral fellows and visiting professors, not financially supported by
this grant.

4. Future Work and Extensions

The improved performance of the numerical methods developed in this project has
motivated us to consider their extension to additional situations. For example, we have
extended these methods to the treatment of plane rods in the context of geometrically exact
theories of the Cosserat type. The extension of these methods to the general case of three
dimensional rods require, however, a different and more complex treatment of the finite
rotations appearing in these theories if a frame indifferent formulation is to be obtained.
In fact, this identifies the goals to be pursued in this area, iilcluding the development of
conserving /dissipative time-stepping algorithms for the solution of nonlinear shells of the
Cosserat type. The finite element resolution of the relative equilibria of these systems,
and the complete characterization of their stability in this numerical context, arise also as
important issues to be explored. '

Similarly, we have identified the need for the extension of all the previous develop-
ments to handle inelastic problems in solid mechanics More precisely, it is our goal to
develop new time-stepping algorithms for finite strain plasticity and damage that exhibit
rigorously the positive energy dissipation characteristic of the physical system. Given the
applications of interest to the Air Force, the development of these schemes to handle the
fracture and fragmentation of solids in dynamic conditions is of the main interest. All these
new objectives are being supported by a continuing grant from the Computational Math-
ematical Program of the AFOSR. This continued support is gratefully acknowledged. We
believe that the combination of all these results will lead to powerful novel computational
tools, with the sound theoretical basis necessary for the analysis of the complex practical
problems of interest to the Air Force.

5. Outline of the Rest the Report

After presenting a complete list of the publications prepared under the support of the
AFOSR and the invited lectures and conference contributions on the research concerning
this project, we present in different appendices a summary of the technical results obtained
in this grant. More specifically, we present the following five appendices:
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I. Conserving algorithms for frictionless dynamic contact problems.
II. A new dissipative time-stepping algorithm for frictional contact problems.

II1. An alternative formulation avoiding the deficiencies of existing “dissipative” al-
gorithms in nonlinear dynamics.

IV. A new second-order high-frequency dissipative time-stepping algorithm for non-
linear elastodynamics

V. An ALE finite element method for finite strain plasticity and viscous fluids.

As summarized in the following sections, these appendices describe the main results related
to the main objectives of the project as identified in the original proposal. No discussion
is made of a number of additional important results obtained in this project, including
development and finite element implementation of an efficient sorting/searching data base
structure for multi-body elastic systems, and the formulation and analysis of new enhanced
strain finite element methods for finite deformation problems. We refer to the different
publications presenting these results as indicated in Section 2.

5.1. Appendix I: Conserving algorithms for frictionless dynamic contact
problems

This appendix presents the formulation of conserving time-stepping algorithms for
frictionless dynamic contact of solids. A new class of finite element methods is proposed
for the solution of these problems that exhibit the same conservation laws as the underlying
continuum dynamical system. The proposed methods are based on a penalty regulariza-
tion of the constrained contact problem, and lead to full conservation of the total energy
of the system (including the regularization penc.cy potential) during persistent contact,
and restoration of the original energy upon relecse. Both linear and angular momenta are
conserved by the scheme. Furthermore, the newly developed methods have the ability to
enforce the associated constraints in the velocity besides the impenetrability constraint in
the displacements, while preserving the conservation/restoration properties of the final nu-
merical scheme. A modification of these schemes is described that assures positive energy
dissipation if desired (even in the highly nonlinear setting of contact/impact problems),
leading to contact schemes with high-frequency energy dissipation. Representative nu-
merical simulations are presented illustrating the performance of the proposed numerical
schemes.
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5.2. Appendix II: A new dissipative time-stepping algorithm for frictional
contact problems

This appendix presents a new time-stepping algorithm for frictional contact problems
that exhibits unconditional positive energy dissipation. More specifically, the proposed
scheme preserves a-priori stability estimates of the continuum problem for both friction-
less and frictional contact, leading to improved numerical stability properties in particular.
For the normal contact component, the algorithm exhibits full energy conservation between
released states, while the energy does not increase over its initial value due to the enforce-
ment of the normal contact constraint during persistent contact. A pcnalty regularization
is considered to this purpose. A new regularization of the stick conditions is considered
for the frictional part. The new scheme is shown rigorously to exhibit positive energy
dissipation like the continuum physical problem in this frictional case. Coulomb friction
is assumed. Complete analyses of these considerations, as well as a detailed description of
their finite element implementation, are included in the general finite deformation range.
Representative numerical simulations are presented to assess the performance of the newly
proposed methods.

5.3. Appendix III: An alternative formulation avoiding the deficiencies of
existing “dissipative” algorithms in nonlinear dynamics

This appendix presents the development of a class of time-stepping algorithms for
nonlinear elastodynamics that exhibits the controllable numerical dissipation in the high-
frequency range required for the robust solution of the resulting numerically stiff systems.
To motivate and illustrate better the developments in this general case, we present first the
formulation and analysis of these methods for two simple model problems. Namely, we con-
sider a nonlinear elastic spring/mass system and a simplified model of ‘hin elastic beams.
As it is discussed in detail in this appendix, the conservation by the numnerical algorithm
of the momenta and corresponding relative equilibria of these characteristic Hamiltonian
systems with symmetry is of the main importance. These conservation properties lead for
a fixed and finite time step to a correct qualitative picture of the phase space where the
discrete dynamics takes place, even in the presence of the desired and controlled numer-
ical dissipation of the energy. This situation is contrasted with traditional “dissipative”
numerical schemes, which are shown through rigorous analyses to not only loose their dis-
sipative character in the general nonlinear range, but also the aforementioned conservation
properties, thus leading to a qualitatively distorted approximation of the phase dynamics.
The key for a successful algorithm in this context is the incorporation of the numerical
dissipation in the internal modes of the motion while not affecting the group motions of
the system. The algorithms presented in this work accomplish these goals. The focus
in this first part is given to first order methods. Representative numerical simulations,
ranging from applications in nonlinear structural dynamics to nonlinear continuum three-
dimensional elastodynamics, are presented in the context of the finite element method to
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illustrate these ideas and results.

5.4. Appendix IV: A new second order high-frequency dissipative time-
stepping algorithm for nonlinear elastodynamics

This appendix presents the formulation of a new high-frequency dissipative time-
stepping algorithm for nonlinear elastodynamics that is second order accurate in time.
The new scheme exhibits unconditional energy dissipation and momentum conservation
(and thus the given name of EDMC-2), leading also to the conservation of the relative equi-
libria of the underlying physical system. The unconditional character of these properties
applies not only with respect to the time step size but, equally important, with respect
to the considered elastic potential. Moreover, the dissipation properties are fully con-
trolled through an algorithmic parameter, reducing to existing fully conserving schemes,
if desired. The design of the new algorithm is described in detail, including a complete
analysis of its dissipation/conservation properties in the fully nonlinear range of finite
elasticity. To motivate the different constructions that lead to the dissipative properties
of the final scheme, the same arguments are used first in the construction of new linear
time-stepping algorithms for the system of linear elastodynamics, including first and sec-
ond order schemes. The new schemes exhibit a rigorous decay of the physical energy, with
the second order schemes formulated in a general two-stage formula accommodating the
aforementioned control parameter in the dissipation of the energy. A complete spectral
analysis of the new schemes is presented in this linear range to evaluate their different
numerical properties. In particular, the dissipative character of the proposed schemes in
the high-frequency range is fully demonstrated. In fact, it is shown that the new second
order scheme is L-stable. Most remarkably, the extension of these ideas to the nonlinear
range is accomplished avoiding the use of multi-stage formulas, given the freedom gained
in using general nonlinear relations, while preserving the conservation laws of the momenta
and the corresponding relative equilibria. Several representative numerical simulations are
presented in the context of nonlinear elastodynamics to evaluate the performance of the
newly proposed schemes.

5.5. Appendix V: An ALE finite element method for finite strain plasticity
and viscous fluids

This appendix presents an implicit Arbitrary Lagrangian-Eulerian (ALE) finite ele-
ment formulation for solid mechanics. The interest in this work lies in the consideration
of finite strain elastoplasticity based on a multiplicative decomposition of the deforma-
tion gradient in an elastic and plastic part, and the use of an hyperelastic relation for
the stresses in terms of the elastic part. This situation is to be contrasted with typical
ALE treatments found in the literature based on rate (hypoelastic) forms of the governing
equations. In contrast with more classical approaches, the ALE approach presented herein
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considers the direct use and interpolation of the material motion with respect to the ref-
erence mesh. This aspect leads to a considerable simplification of the numerical resolution
of the advection of the plastic internal variables. In fact, this advection is accomplishes
through a simple particle tracking scheme based on the connectivity graph of the reference
mesh, avoiding the use of more complex strategies for the solution of the pure advection
equation. These ideas are implemented in an efficient staggered framework, involving a La-
grangian step, a material remap, and the aforementioned advection of the plastic internal
variables. Representative numerical simulations are presented to assess the performance of
the proposed formulation. Both quasi-static and fully dynamic problems are considered.
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I.1. Introduction. |

The accurate modeling of contact interfaces in solids is one of the main difficulties in
common engineering applications. Typical examples are rashworthiness analyses and the
simulation of metal forming processes. See the contributions in REID & YANG [1993] and
DESIDERI et al [1996], respectively, for recent accounts of these considerations. The ex-
perience accumulated in the past regarding the numerical analysis of contact problems
indicates the inherent difficulty of their solutior, the cause being not only the highly non-
linear nature of the problem, but also its unileterally constrained character. The lack of
robustness of current implicit methods that impose the contact constraint has led in the
past to the consideration of explicit schemes for the numerical solution of contact problems.
The difficulties in the enforcement of this constraint appear often as oscillations between
contact and released states.

Additional difficulties arise when dynamic problems are considered. The limited condi-
tional stability in time of explicit integration schemes appears as a clear drawback. Implicit
schemes may be employed to recover better stability properties but, as it is well-known, sta-
ble numerical schemes for linear problems may lose this property in the nonlinear context,
leading to an unstable increase of the energy during the numerical simulations. Character-
istic examples are the trapezoidal and mid-point rules, two energy conserving schemes for
linear problems that may result in energy increase (and actual blow up of the computation)
in nonlinear problems. See e.g. SIMO & TARNOW [1992] for representative simulations.
These drawbacks have led to the consideration of energy-momentum conserving schemes
that do not suffer of this limited (energy) stability properties, as described in SiMO &
TARNOW [1992], CRISFIELD & SHI [1994], SIMO et al [1995], among others. We can an-
ticipate that the presence of the high nonlinearitv due to the contact constraint may lead
to similar instabilities, as the simulations of Ccction 1.4 show. The goal of the research
presented in this paper is the formulation ci time-stepping algorithms that possess the
desired temporal stability properties by controlling the evolution of the energy and that,
at the same time, lead to a stable (non-oscillatory) enforcement of the contact constraints.

A complete account on the numerical analysis of contact problems until the late 1980’s
can be found in KIKUCHI & ODEN [1988]. Finite element methods for dynamic contact
problems can be found in HUGHES et al [1976], HALLQUIST et al [1985], BELYTSCHKO &
NEAL [1991], CARPENTER et al [1991] for explicit integrators, and BATHE & CHAUD-
HARY [1985], KIKUCHI & ODEN [1988] involving implicit integrators for frictionless and
frictional problems, to cite just a few references. The recent works presented in TAYLOR
& PAPADOPOULOS [1993], LEE [1994], and MUNJIZA et al [1995], among others, show the
current interest in the formulation of more robust implicit algorithms for frictionless con-
tact. See also the results presented in ARMERO & PETOCZ [1996]. The robustness of the
numerical scheme requires good stahility properties in the limit conservative case, without
relying in the physical dissipation introduced by frictional effects.
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The approach proposed herein makes use of the properties of the continuum dynami-
cal system for the formulation and analysis of new and more robust implicit time-stepping
algorithms for contact problems. Assuming no external forces, the total energy, linear
and angular momenta of a system of solids in frictionless contact are conserved. These
conservation properties are introduced in the newly developed schemes by construction,
thus leading not only to a better modeling of the physical system but also to improved
numerical properties. The new schemes are second order accurate and unconditionally (en-
ergy) stable even in the fully nonlinear finite strain range, as implicd by the conservation
of the total energy of the system. The (unilaterally) constrained p.oblem is regularized
via a penalty formulation. Both the constraint in the displacements and the associated
constraint in the velocities are enforced in this manner. The (positive) energy correspond-
ing to the penalty potential is taken into account in the evolution of the energy, leading
to full restoration of the initial energy of the system of solids upon release (i.e., when the
regularization potentials are inactive), while the energy never increases beyond its initial
value during persistent contact. The total energy of the system (solids plus regulariza-
tion potentials) is conserved at all times, leading to the unconditional (energy) stability of
the numerical schemes. These properties are combined with full conservation of angular
and linear momenta. Numerical experiments have shown that these improved stability
properties lead to a superior numerical performance when compared to similar traditional
schemes (like the second order mid-point and trapezoidal rules). As noted above, high-
order standard numerical schemes usually involve an artificial increase of the energy, which
eventually leads to the actual blow-up of the numerical computation.

Fully energy conserving schemes are appropriate for the long-term simulations of the
interactions of solids in contact, where the main interest is the accurate resolution of the
configuration of the system in the long-term (and thus its energy content). On the other
hand, short term simulations are employed for the study of high-vciocity frontal impacts
(e.g. a rod impacting a rigid wall), requiring then the resolution oi a wide frequency spec-
trum. In fact, weak shocks (discontinuities in the velocity and strain) dominate completely
the solution at these time scales. In these conditions, high frequency energy dissipation is
a desired feature. We emphasize that the application of standard dissipative schemes de-
veloped typically for linear problems do not assure in general a positive energy dissipation
in the numerical scheme, the cause being again the highly nonlinear nature of the contact
problem. We propose herein a simple modification of the conservative schemes previously
developed that accomplishes this feature, and whose dissipative properties can be proven
rigorously.

An outline of the rest of the paper is as follows. Section 1.2 includes a complete de-
scription of the problem under consideration. The governing equations are summarized
in Section 1.2.1, with the conservation laws for frictionless contact described in Section
1.2.2. The finite element implementation considered in this paper is described in Section
1.2.3. Next, the formulation of the new energy-restoring, momentum-conserving scheme
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proposed herein is described in detail in Section 1.3.1, when only the gap constraint in
the displacement is enforced. Rigorous proofs of the conservation properties of the pro-
posed methods as well as extensions involving high-frequency dissipation are described in
detail. Section 1.3.2 considers the enforcement of the velocity gap constraint, arriving to a
similar class of conserving algorithms. Representative numerical simulations are presented
in Section 1.4 to assess the performance of the proposed methods. Section 1.5 includes
some concluding remarks. Finally, the consistent linearization of the proposed methods is
summarized in a separate appendix.

I.2. Problem Description.

We describe in this section the problem and numerical simulation of dynamic contact
of elastic bodies. Section I.2.1 summarizes the governing equations. Section 1.2.2 describes
the conservation laws associated to this Hamiltonian system. Finally, the finite element
implementation of the governing equations is described in Section I1.2.3.

1.2.1. The governing equations.

Consider the motion of two elastic bodies with a reference placement 2% (a = 1, 2),
characterized by the deformations % : 2% x [0,T] — R™™ (ngim = 1,2, or 3). The
results presented herein extend trivially to multi-body interactions, as well as to self-contact
of solids. We identify the material particles of each solid with the reference coordinate
X cunNec R™=, Let % := ¢*(X,t) be the current placement of the material particle
X € 2% of the solid « at time t € [0, T}, for some time interval T'.

Denote by P® the nominal stresses (first Piola-Kirchhoff stresses) in each solid. The
case of interest corresponds to two hyperelastic solids characterized by respective storea
energy functions W(F®), where F® = Grade®, and

_awe

P =pe

(1.2.1)

By the principle of material frame indifference, the stored energy function is invariant
under the action of the proper orthogonal group (the rotation group) SO(n4im), that is,

WS (QF®) = W(F?)  ¥Q € SO (naim) - (1.2.2)

Considering a one-parameter group of rotations Q(n) with Q(0) = 1,,,, . (the identity in
R™™) so

d —~
%Q(n) =0 =W ¢ so(ndim) , (1.2.3)
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(where so(ngim) denotes the linear space of skew-symmetric tensors), and taking the deriva-
tive of (1.2.2) with respect to n at n = 0, we obtain the relation

owe — —
B—ZZ—&-FQT W =0 YW € so(ndim) ) (124)
implying the symmetry of the Kirchhoff stress tensor
84
T = ?;Za FoTl = 70T (1.2.5)

The symmetry relation (1.2.2), or equivalently, the relation (I.2.5), leads to the classical
conservation law of the total angular momentum as discussed below. Furthermore, a
classical argument (see e.g. TRUESDELL & NOLL [1965]) leads then to the dependence of
the stored energy function on the Green-Lagrange strain tensor E = %(FTF - 1), ie.,

We(F) = W(E®) (1.2.6)

As an example, the simulations presented in Section 1.4 consider the Saint-Venant Kirch-
hoff model, characterized by

W(F)=W(E)=1E:CE, (1.2.7)

where C denotes the material secant tangent.

Let V@ := ¢“ be the material velocity field of the solid a, and p® the corresponding
reference density. The superimposed dot () refers to the (material) derivative with respect
to time t. We denote by v* := 0p®*({2°) the boundary of the current configuration of solid
o, with its reference counterpart I'® = ¢®~1(y®) = 0£2%. Denoting the current and
referznce boundaries in contact by v& and I' := ¢ _1(72‘), respectively, the weak form

ot the balance of linear momentum equations reads

2
S([o v b
a=1 £2e

P2 : Grad(6p®) dﬂ} =y { / p%b - 6% df2
_Qa

o=l (1.2.8)
+/ t-0p® dl’ +/ t- [&pl(X) ——54,02(17()())] ar,
re r}
for all admissible variations §® : 2% — R™i™ (o = 1,2) such that
§¢%|ra =0. (1.2.9)

Here, I' denotes the part of the reference boundary of solid o with imposed displacements,
and I'? is the part of the reference boundary with imposed external tractions £. The specific
body forces are denoted by b. The decomposition

r“=reulrgulrs  with IJnIynNnIg=0 (a=1,2), (1.2.10)
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FIGURE 1.2.1 Definition of the gap function g(X ) and unit normal
V through the closest-point projection mapping at the current config-
uration of the solids in contact.

is assumed for a well-posed boundary value problem.

The vector ¢ in the last term of (I.2.8) denotes the contact nominal traction between
the solids along the contact boundary. For frictionless contact, this traction is given in
terms of the (nominal) contact pressure p > 0 as

t=pv, (I.2.11)

with v denoting the unit outward normal to the current contact boundary 2. The contact
pressure p corresponds to the Lagrange multiplier imposing the unilateral contact constraint

9(X) = v+ [ (X) - p*(P(X))] 2 0, (1.2.12)

for the gap g(X) of a particle X € I''. In (1.2.8) and (1.2.12), the mapping ¥ = Y(X) €
I'? defines the closest-point projection of a material point X € I'' on the contact surface
to I'? at the current configuration of the solids, that is,

~

Y(X) = arg min {[¢'(X) -’ @)}, (1.2.13)
Yer:
where || - || denotes the usual Euclidean vector norm. Figure 1.2.1 depicts the geometrical

construction behind the definition of the gap function g(X) and the normal v(Y (X)) in
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(I.2.12). In the continuum problem, the current contact boundaries are defined by the
condition g = 0, that is, v} = 72 = Ny 7¥* in this case, thus allowing the use of I'}
or, alternatively, I'? in (I.2.8) without a preference for the role played by each particular
body in the governing equations. In the discrete problem, the contact boundaries are
approximated by the discrete enforcement of the gap constraint (I.2.12), as described in

Section 1.2.3.

We note for future use the relation

~ —~

0! (X) - ¢*(Y(X)) = g(X) v(Y (X)) (1.2.14)

as a consequence of the definition (I1.2.13) for the closest-point projection. The unilaterally
constrained system under consideration is then completely characterized by

p>0, ¢g>0, pg=0, (1.2.15)

the so-called Kuhn-Tucker conditions (see SIMO & LAURSEN [1992]).

During persistent contact, the time derivative of (1.2.12), which now holds as an
equality, implies
hi=g=uv- (Vl(X) - VZ(Y’(X))) =0, (1.2.16)

where we have made use of the property
o ((pl(X) - ¢2(?(X))> —0, (1.2.17)

a consequence of the the closest-point projection ¥ = ?(X ). Therefore, the velocity field
is constrained by (I.2.16). After using the Kuhn-Tucker conditions (I.2.15), the condition

(I.2.16) can be recast as _
pg =0, (1.2.18)

commonly referred to as the persistency condition (see SIMO & LAURSEN [1992]).

1.2.2. The conservation laws.

The system of nonlinear elastodynamics equations described in the previous section
is a characteristic example of an infinite dimensional Hamiltonian system; see SIMO et al
[1988]. The consideration of contact states converts the system in a unilaterally constrained
Hamiltonian system of evolution. The presence of symmetries like (1.2.2) leads to the
conservation laws described in this section.

Consider the following standard definition of the total linear momentum

2
L:= Z/ p® Ve dQ , (1.2.19)
a=1 « '
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and the total angular momentum
2
J = Z/ 0 X p* Ve, (1.2.20)
a=1 «

of the system of solids. The symbol x denotes the cross product of two vectors in R* if
Ndim = 3, and their equivalent reductions (embeddings of R™™ C RB) in lower dimensions
Ngim < 3. Similarly, denote the total energy of the system by

2 2
e=3 [ veveaac D [ weaa-gaw,  gaa
a=1 a=

o

N e

K w

for the total kinetic energy K and strain energy W.

The case of interest for the analysis presented below corresponds to the homogeneous
Neumann problem, characterized by no imposed boundary displacements and no external
loading. In this case, the total energy £, linear momentum L and angular momentum J
are conserved as summarized in the following proposition

Proposition 1.2.1 Let I'f =@ (@ =1,2), =0 and b= 0. Then, the linear momentum
L, the angular momentum J, and the total energy £ are constants of motion.

ProoF: The proof is based on classical arguments, and is included herein for completeness.
The discrete counterpart presented in Section 1.3 follows closely the same arguments.

i. Conservation of the linear momentum. Since I’ = (), an ~dmissible variation is
obtained by

0p*=a for a=1,2, (I.2.22)
with @ € R™™ constant. Hence, Grad (6¢p*) = 0 in this case.' Using (I1.2.8) with the
admissible variations (I1.2.22) and noting that £ = 0 and b = 0 by assumption, we have

dL o B i
a--d?&;/upv cad?=0 VaecRWnm, (1.2.23)

Therefore, dL/dt = 0 or equivalently L(t) = L(0) = constant. The conservation of linear
momentum follows then from the invariance of the equations under the variations (1.2.22),
i.e., the action of the linear (additive) group R™¥™ (spatial translations).

ii. Conservation of the angular momentum. Similarly, we can consider the admissible

variations defined by
dp*(X) =wxz* for a=1,2, (I.2.24)
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where w € R™™ constant, and % = ¢*(X). Thus, we have
Grad (6p°) = WFe (1.2.25)

where W ¢ 50(nqim) is the skew-symmetric tensor with axial vector w (i.e. Wa=wxa
Va € R™¥™). Writing (I.2.8) with the variations defined by (1.2.24), we obtain after making
use of (1.2.20) and (1.2.25)

M2
d.]_ .o axra a ayro
w S =w. Z/[m x p°Ve va]dn

=w - 2/ % x poV d Z/ Ve . (wx %) df

:—Z pe . WFe dQ-I—/ - [ x " (X) ~w x @2(¥(X))] dr
e Fl

_ apal | 37 1 a2

— Z/ P°F Wd!?—l—/rcpz/ [wx\(cp (X) go(Y(X)))JdF]
= 0 by (I.2.5) = g v by (1.2.14)

:/ pgrv-(wxv)dl=0 VYweR™m~, (1.2.26)

r: T .

=0

Therefore, dJ /dt = 0 or equivalently J(t) = J(0) = constant. The conservation of angular
momentum follows then from the invariance of the equations under the variations (1.2.24)
(infinitesimal rotations), i.e., the action of the rotation group SO(ngim)-

iii. Conservation of energy. Finally, the evolution of the total energy is obtained usiug
the weak equation (I1.2.8) with the variations d¢p® = V* and (1.2.21) as

2

a& ayra a 8Wa. ‘01
E_Z{/Gpv Ve dR + . OFa .Grad(V)dQ}

a=1

= /F t- (Vl(X) - V2(17(X))) dl = /rg pg dl =0, (1.2.27)

after using the persistency condition (I.2.18). Therefore, the total energy is conserved
E(t) = £(0) for all time ¢. O

The goal of this paper is the design of time-stepping algorithms that possess these
conservation laws.

1.2.3. Finite element implementation.
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The weak equation (I.2.8) is discretized in space through a standard isoparametric
finite element formulation,

n‘:oda N ngode
X= Y NAOXLen* and ¢*(X)=X+ ) NAEdiee™(R), (12.28)
A=1 A=1

(o = 1,2) based on the shape functions N A" ] — R defined in the parent domain £ € [J
for A = 1,n® _,., the number of nodes for solid «, with references coordinates X{f € RMdim,
The nodal displacements d4 € R™= (4 = 1,n% ) are grouped in d € R™? where

Tleq = Mdim X Mnode, With Npoge = Yo Mo oqe being the total number of nodes.

Following a standard procedure, the above interpolations lead to the semi-discrete
system of equations

d(t) = M~'p(t) ,

(1.2.29)
B(t) = —fine (d(t)) + Fc (A(t)) + fear
where we have introduced the nodal (linear) momenta
p = Mv, with v:=d(t), (1.2.30)

as an intermediate vagiable. Here, M is the mass matrix defined by the standard assembly
el

procedure M = A . Me€ of the elemental mass matrices M® (ng = total number of
e=

elements). For an element with n., nodes, we have

Mlllndim e M]-nen 1ﬂdim
ME = 5 : : (1.2.31)
Mnen 117""dim e Mnennen lndim

where 1, is the rank-two identity matrix in R™*™, and the mass coefficients Map are
given by the usual expression

Mup = / p®NANE 40 . (1.2.32)

In Section 1.3.2, we make use of the lumped mass matrix obtained, for instance, by the
standard row-sum technique

Musp = Madap (nosum), where My :=/ p*NA d2 | (1.2.33)
Qe

for the element 25
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M4

Master Segment
Vn+

[Ny,

g>0
M2

2

¢ (Y(X9)
2
Slave node

@l%(XS)

M1

n+

g<o

FIGURE I.2.2 A slave node contacts a master segment consisting of
four master nodes.

The external force foz: € R™? corresponds to the contributions of the volumetric
external force b and imposed external tractions . The internal force vector fin: € R”e‘f
corresponds to the stress-divergence term in the continuum, and is given by the usual

expression
2

fme=Y | Bfnde, (1.2.34)

a=1 $2«

for the standard linea.1zed strain operator B;, with
B6d = V;6u = sym [Grad [6u] F, ]

for the displacement field u := ¢;(X)— X . Here, the subscript ¢ refers to the configuration
at time ¢.

The force of contact f. in (1.2.29) is obtained with the use of the now standard mas-
ter/slave data structure; see HALLQUIST et al [1985] for details. In this context, S denotes
the slave node in contact with a master surface, at a point located in a master surface
element defined by nodes {M1,M2,...}; see Figure 1.2.2. Thus, we can assign two or
more master nodes (belonging to the same master surface element) to each slave node in
contact, thus establishing a contact element. The slave and master surfaces approximate
the contact boundaries I'} and I'2, respectively. Double pass schemes can be easily ac-
commodated to avoid the bias associated to a particular ordering of the two surfaces (see
HALLQUIST et al [1985]).
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The force of contact f. is then expressed as

Nslave

fo= A\ Foer with foo=p.Gs, (1.2.35)
s=1
where A:;’i‘"e denotes the assembly over the nggqe Slave nodes/master segment pairs, and
. v, 1
| ~NMg | Gt
= Tnaster Tidim 12
Gs _NM2 (gs)us eR 3 ( 36)
where n? is the number of master nodes in the master segment in contact with the

master
slave node S. The normal component of the contact force (= nominal contact pressure

x nominal contact area) at the slave node S has been denoted by p, in (1.2.35) and it
what follows, with a slight abuse of notation given the symbol p employed in the previous
developments for the nominal contact pressure in the continuum.

In (1.2.36), NMI(¢,) denotes the standard shape function of node M1 in the master
segment at the point of contact &; with normal v, obtained by the closest-point projection
mapping as in equation (I1.2.13); see Figure 1.2.2. The discrete counterpart of (1.2.14) holds
as '

s
master

z® - Z NMI(Es)mMI = g(XS)Vs ) (1.2.37)
I=1

where % = p!(X®) and =M = ?(XMI) are the current positions of the slave and
master nodes, respectively. We note that )

3
master

> ONMIig) =1, | (1.2.38)

I=1
at any point § of the master segment.

For later use, we introduce the notation

ds vs
R dMl ,UMl
ds := and v, := ao | o (1.2.39)

that is, objects denoted by (-), refer to individual slave nodes/master segment pairs. The
simulations presented in Section 1.4 consider linear master elements consisting of two mas-

ter nodes (i.e., n5,,.:er = 2). The subscript a referring to the solid under consideration
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has been omitted in (1.2.37), (1.2.39) and the following developments, since it should be
clear from the different role played by the slave and master nodes.

1.2.3.1. Temporal discretization of the continuum contributions.

We consider a mid-point approximation of (1.2.29) and (1.2.30) leading to the discrete

equations
1

Y (dnt1—dn) =vo1,

(1.2.40)
M('Un-H o) = — _(n+ )+ f(n+ 3) 4 f;::_ )

int

At
where At = t,41 — t, for a given time partition Up{tn,tn+1} = {0,t1,...} of the time
interval of interest, d, =~ d(tn), vn = v(tn), and v,41/2 = (Un41 + vn)/2. The momenta

have been eliminated in (I.2.40).

The discrete force of contact fe¢ (n+1/2) is defined in the following section. The vec-

tor £, 43 in (I.2.40) corresponds to the time discretization proposed in SiM0O & TARNOW
[1992]. It defines a second order conserving approximation of the internal force vector
at tni1/2, and is given by (1.2.34) with B, evaluated at the mid-point configuration

Prt1/2 = (Prs1+ ©n)/2 as
Fta) Z / BI ™D dg, (1.2.42)

with the discrete Kirchhoff stresses 7("+1/2) calculated as

Fn+3) Foi1 (C (En + Ent1)) Fn+1 : (1.2.43)

for the Saint-Venant Kirchhoff model defined by equation (1.2.7). In (I1.2.43), the defor-
mation gradient Fy,/5 := Gradg,41/; is computed at the mid-point configuration, and
the Green-Lagrange strain tensors F, and E,,; are evaluated at the configurations n and
n+1, respectively. The case involving a general stored energy function W (FE) can be found
in GONzZALEZ & Simo [1995].

As shown in SIMO & TARNOw [1992], the following properties hold for the time
discrete internal forces (1.2.42):

i. Internal linear momentum contributions

Nnode 2
{Z fors) } ‘e = Z/ Vori (@) : 7T 42 =0  VaeRMm (1.2.44)
a=1 e
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l »
where the vectors fA§Zt+ 2) ¢ R™im refer to the nodal forces corresponding to (1.2.42).

We conclude that the summation in the left-hand side of (I.2.44) vanishes.

ii. Internal angular momentum contributions

Nnode (+1)A 2 ngode T L

A n+3 _ A A (n+3)
Y ah, xf L w= Y Z/ (B2 (2h,y x w)] w0 ao
A=1 a=1 A=1 Y4

2
Z/ Vil (-’Bn+% X 'w) (" 3) 40
a=1Y02%

2

= W.r("t) 4 =0  vVw e R™m (1.2.45)

given the symmetry of +("*2) in (I1.2.43). We conclude that the summation in the
left-hand-side of (1.2.45) vanishes.

iii. Internal energy contributions

114 2 1
fi(nt+2) : (dﬁ-f-l - dﬁ)] = E /Q Vot (Ungy — un) : 7VF2) 42
A=1 a=1 @

2
= Z/ [En-i-l - En] : %C [En+1 -+ En] d.Q
a=1 “

=Wk, - Wk, (1.2.46)

where the superscript (-)* refers to the discretized system of solids.

General (non-conserving) time discretizations of the internal force term, involving m
particular high-frequency dissipation, are considered in Section 1.4 in combination with
the contact scheme developed next.

I.3. Conserving Algorithms for Frictionless Dynamic Contact.

Our goal is the design of the time-discrete counterpart of the nodal contact forces
(1.2.35), that enforces the unilateral contact constraint and retains the conservation prop-
erties of the final algorithm. We develop in Section 1.3.1 a penalty scheme that possesses
these properties. An extension is presented in Section I1.3.2 that imposes the velocity
constraint (1.2.16).

I.3.1. An energy-restoring, momentum-conserving scheme.
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TABLE 1.3.1 Contact/release logic.

Let cont, ,, = contact flag at t, (.true. or .false.), and gsn+1 the
(real) gap at t,+; for slave node S. Then, cont, »41 is defined as

IF (conts, .or. (gsnt1-le.0)) THEN
Compute g2, ., using (1.3.1).
IF (g¢,,,.1e.0) THEN

cont; 41 = .true.
ELSE
conts ny1 = .false.

IF (gsnt1.g€.0) THEN
The dynamic gap will be initialized to the current
gsn+1 when evaluating (I.3.1) in the next time step.
ELSE
The dynamic gap will be initialized to the current
gg’n 41 When evaluating (I.3.1) in the next time step.
ENDIF

ENDIF
ELSE
conts 41 = .false.

ENDIF

Consider for a typical time interval [t,,t,+1] the second order approximation of the
gap evolution equation (1.2.16) given by

Ghnir =8+ Ve - | (Phaa(X%) = e (B (X))
(13.1)

- (4 - 2oy (X)) |

involving the unit normal v, ,,/, defined by the closest-point projection f/'n +1 (X5) of
the slave node S at the configuration ¢, /2. The evaluation of the current positions of

the contact particle f/'n +1 (X S ) at the times t, and t,1; is to be noted. We refer to the
scalar quantity g‘s{n the dynamic gap (at t,) in contrast with the real gap gs n defined by
the closest-point projection algorithm given by (1.2.13) at t,.
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Expression (I.3.1) can be written equivalently in the notation introduced in the pre-

vious section as
gs,n+1 - gs,n + Gs,n-{-% ds,n+1 - ds,n] P (132)

for the corresponding displacements of slaves and master nodes at ¢, and t,4;. The
evolution of the dynamic gap (1.3.2) is initialized with the real gap gs » for the last time step
before contact. See details in Table I1.3.1 and the discussion below for the contact/release

logic.

The difference g ;’,n +1 7 9sm+1 (real gap) as employed in traditional treatments of the
problem is to be noted. We point out that (I.3.1) corresponds to a second-order approxi-
mation of the equation (I.2.16) for the evolution of the real gap g,, and accounts for the
(geometric) change of normal during contact. In one dimensional problems, for instance,
both gaps coincide. No loss of accuracy has been observed because of this approximation.
We note in this regard that the definition of the gap function in terms of the closest-point
projection (I.2.13) is, from a physical point of view, completely arbitrary.

The normal component of the contact force ps for the slave node S at the time step
[tn,tns1) is defined by the penalty regularization of the contact constraint (I.2.12) given
by the difference quotient

U(gg,n-}-l) B U(gg,n) if d d
d _ Ld 1 gs,'n.+1 7& gs,n ’ .
Ps = gs,n+1 gs,n (1.3.3)

—U'(3(g¢, +92,.1)) if gl =92,

where U(g) is a penalty regularization potential of the form, e.g.

Lg,g? if g<o,
Ug)=4 2" 9= (13.4)
0 otherwise

with a (large) penalty parameter k,. We observe that, given the approximation (I1.3.3) of
the derivative of the (decreasing) potential (1.3.4), ps > 0 as required by (I1.2.15);. The
force of contact is then given by

fIntt/?) = p G (1.3.5)

s,n+% ’
with ps as in (1.3.3). The evaluation of the normal contributions G, in (1.3.2) and (I1.3.5) at
the mid-point ¢, 11/2 = (¢n + ¥n+1)/2 configuration becomes crucial for the conservation
of the total angular momenta as shown in the following section. A standard calculation
shows that the final numerical scheme is formally second order accurate in time.

The contact/release logic is summarized in Table 1.3.1, and proceeds as follows. The
computation of the dynamic gap gg,n +1 begins when a negative g; 41 is encountered. As
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noted above, the dynamic gap gg,n is initialized with the value of the real gap at the last
converged value before initial contact. Contact is detected if gg’n +1 1S negative, as implied
by the check in (I.3.4) following (1.3.3) with g%. We note that the normal contact force
depends on the contact states at t,4; and t,, and vanishes when both states at ¢, and
tny1 are released states. We observe that p, # 0 while releasing (i.e., cont, , = .true.
and conts 41 = .false., following the notation in Table 1.3.1). It has a positive value
given by the contribution U( gg’n) at t,. This final “kick” restores the energy to the system
of solids upon release.

Observe also that the same contribution to (1.3.3), U( gin), vanishes in the first contact
increment. Therefore, the proposed penalty formulation enforces the gap constraint at the
end of the time step ¢,4;. This situation is to be contrasted with schemes enforcing only
the velocity constraint (I.2.16) (the rate of the gap), thus requiring small time steps to
avoid excessive penetrations of the solids, like in the conservative schemes of WASFY [1995]
or LAURSEN & CHAWLA [1996], as it has come to our attention recently.

1.3.1.1. Properties of the proposed scheme.

The consideration of the interpolation functions in the definition of the linear momen-
tum (I1.2.19) leads to the expression

Nnode

> MapvP, (1.3.6)
A,B=1

for its discrete counterpart at t € U, {tn,tn11}, where v2 (B =1,n,04.) denote the nodal
velocities. We note that the same expression is reached by the consistent mass (1.2.32) or

lumped mass (1.2.33).

We define the total angular momentum for the discretized system at ¢ € Up{tn,tns1}
as

Nnode

Z Map x x vf . (1.3.7)
A,B=1

For the consistent mass matrix, this expression follows from the inclusion of the isopara-
metric interpolations in (1.2.20). Similarly, we define the total energy of the discretized
solids as

Er =K} +WP, with KP:=1loTMv, and Wh:= Z W (F(dy)) de2,

(1.3.8)
for the mass matrix considered in the numerical simulation. The superscript (-)* refers to
(finite element) discrete quantities.
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Noting that by (1.2.41)

Nnode

pf=) Mipv® A=1nn, (1.3.9)
B=1

we can write the equivalent expressions

Nlnode
Ly :=> pf, (1.3.10)
A=1
for the discrete linear momentum, and
Mnode
J = Z zd x pft | (I.3.11)
A=1

for the discrete angular momentum. The evolution of these quantities in the scheme defined
by equations (1.3.2) to (I1.3.4) is characterized by the following proposition.

1
Proposition 1.3.1 LetI'Y =0 (= 1,2), and fé;ljz) = 0 for a time increment [t,, ty41]

(i.e., a homogeneous Neumann problem in that time interval). Then, the following evolu-
tion relations hold

i. The linear momentum is conserved, i.e.

Lh =1Lk, (1.3.12)

ii. The angular momentum is conserved, i.e.

Jhoo=Jk. (1.3.19)
iii. The ‘energy evolves as
Eh o +Ph =&t Pl (1.8.14)
. where
Nslave
Pli= > Ulgl,) >0 fort€Unf{tn,tns1}, (1.3.15)
. s=1

with PP = 0 in a released state.
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ProoF: The proof follows closely the proof of the Proposition 1.2.1, its continuum coun-
terpart.

i. Conservation of linear momentum. Adding the nodal components of the equation
(1.2.40),, we obtain

Nnode Tinode

B
Lia-Lh= ) (Pha-ph)= Y Map(vi, —v))
Nnode A (nJ,—l) Nnode A (n+—1-)
= —At Z f’in’t AL Z foo ' ?
A=1 A=1
=0 by (1.2.44)
Nslave n:vtaster
= At Z Ds 1- Z NMI(&s,n-}-%) Vs,n+% =0 ) (1316)
s=1 I=1
= 0 by (1.2.38)

1
n+5

after using the definition (I1.3.5) of the contact force f.

ii. Conservation of angular momentum. We first note the algebraic identity

A A A A_ A A A A A A -
Tnt1 X Ppy1 — Ty X Pp = wn+% X (pn+1 - pn) + (mn—i-l - wn) X pn+% ) (1'3'1‘)

for A =1,np04e- Equation (1.2.40); reads in nodal components

Nnode

Ty — T =dp —di = At =AY (M), PP, (1.3.15)
B=1
which leads to
Nnode Nnode
A A - B
Z (mn+1 - mn) X pﬁ.{.% = At Z (M l)AB p'n+% X pf+% =0 y (1319)
A=1 A,B=1
by the symmetry of the mass coeficients (M), , = (M~1) ,,, and the skew-symmetry
of the cross product.
By equation (1.2.40),, we also have
Nnode A 4 4 Mnode 4 A (n—{—l) Ninode 4 A (n—}-l)
S 0ty o (=) = -t 3wty SV AT gt
A=1 A=1 B A=1
= 0 by (1.2.45)

(1.3.20)
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Combining the definition (1.3.7) and equations (I.3.17) to (I1.3.20), we obtain

Nnode Nnode 4 ( +1)
h h _ A A T a
Jn+1_Jn—Z($n+1XPn+1 z x pa) Ath 11 % fe
A=1
Nslave n’:naster
S MI MI
= At Zps :Dn_,r%_—— Z N (ss,n%—%) n+1 Xus,n+%
S=1 I=1
Nslave
=AY P Gonl (Vs,n+% X Vs,n+%) =0, (1.3.21)
s=1

after using (1.2.37).

iii. Energy evolution. Combining the evolution equations (1.2.40) with the symmetry
of the mass matrix M, we can write

’CZ—H - Ky = n+1 Muvpy - é'vrq; Muv, = v;ﬂ% M (vp41 — Un)
+1
= — (dnsr — )T i P 4 (dgr — dn)T FEHY)
Nglave N
=~ (W1 - Z psGr,, ( st — ds,n) . (13.22)

where we have used the relation (1.2.46) for the internal forces. After noting that £* =
KP + W", and using the definitions of the dynamic gap (I1.3.2) and the normal contact
force (1.3.3) from the regularization potential U(g?) , we conclude that

Nslave

5n+1 Eh Z Ds (gg,n—l—l - gg,n)
s=1

Nglave

== 2 (UGn) ~ VL) = ~(Phia—PE) . (323)

which proves (I.3.14). We note that P! = 0 in a released state given the definition (I.3.4)
of the regularization potential. ]

Proposition 1.3.1 shows that the time-stepping defined by (1.3.2) to (I1.3.4) conserves
the total linear and angular momentum of the system of solids in a homogeneous Neumann
problem, as the original continuum system does. The relation (I.3.14) indicates that the
total energy of the system solids plus the regularization potential is conserved during
persistent contact. We note the important role of the definition of the dynamic gap for
this property to hold. Furthermore, given the definition of the regularization potential
(I.3.4), we have U = 0 in a released state, so we conclude that the energy of the system
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of solids is conserved upon release. We summarize these observations in the following

corollary.

Corollary 1.3.2 Let E* denote the initial energy of the system of solids, corresponding to
a released state (in the sense that P = 0). Consider a homogeneous Neumann problem.
Then, the energy at any time 0 > t, € Up{tn,tnr1} is such that EF = EM for a released
state and EF < EM for a contact state.

PROOF: The resul* tollows from (I1.3.14) and the fact that P* > 0. O

We note that the Corollary 1.3.2 indicates that the energy of the system of solids will
never increase beyond its initial value during the numerical simulation regardless of the
size of the time-step At. We conclude the unconditional (energy) stability of the pro-
posed scheme. The numerical simulations presented in Section 1.4 illustrate these stability
properties.

I.3.1.2. A contact scheme with positive energy dissipation.

As noted in the introduction, when short-term simulations are employed for the study
of high-velocity impacts, high-frequency energy dissipation may be a desired feature. We
describe in this section a simple modification of the conserving contact scheme developed
above that incorporates this property.

During persistent contact, the expression (1.3.3) for the normal component of the
contact force reduces to

bs = "% Kp (gg,n-}-l +gg,n) . (1324)

A contact scheme with (positive) energy dissipation can be easily obtained by replacing

(1.3.24) during persistent contact (i.e., conts, = .true. and contgn41 = .true., fol-
lowing the notation in Table 1.3.1) by

Ds = —Kp (ﬂgg,n-f-l + (1 - "9) gg,n) ) (1325)

for ¥ > 1/2. The difference scheme (I.3.3) is maintained during initial contact and release.
Expression (1.3.24) is recovered with ¢ = 1/2 in (I1.3.25). The accuracy of the scheme drops
to first order for ¥ # 1/2.

With this modification, the balance of energy (1.3.23) reads

Nslave
57’:+1 - gr’LL = Z Ds (gg,n+1 - gg,n)
=1
snslaue
=- Z Kp (79 gg,n+1 + (1 - "9) gg,n) (gg,n+1 - gg,n)

s=1
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Mslave

== Z Kp [% (gg,n+1 + gg,n) + (9 - %) (gg,n+1 - gg,n)] (gg,n+1 - Qg,n)
ni;ie Nslave 5
= (Pg,n-f-l - 7Dsh,n) — (9 - %) Z Kp (gg,n+1 - Qg,n) ) (1.3.26)
s=1 s=1

for a time step in persistent contact. We conclude that
Er + P SER+PE, (1.3.27)

if 9 > 1/2. The conservation of linear and angular momentum still holds, since the proof
of these properties in Proposition 1.3.1 does not depend on the actual value of the normal
contact force p;.

It is important to emphasize that energy dissipation is not assured for schemes that
are dissipative for linear problems (e.g. HHT type schemes). This fact is illustrated
in the numerical simulations presented in Section I.4. The normal contact force may
create positive work on the initial and final release gaps (see MUNJIZA et al [1995]). In
contrast, the proposed scheme has the proper dissipative properties as required. We note
the important role played by the use of the dynamic gap (I1.3.1) in this argument.

1.3.2. Enforcement of the velocity constraint.

In situations where an extended time of contact appears, penalty schemes imposing
only the gap constraint are known to lead in general to oscillations of the contact forces.
These oscillations are also present in traditional schemes, and their origin can be traced in
part to the lack of satisfaction of the constraint in the velocities (1.2.16). As discussed in
Section 1.2.1, the velocity field is constrair :d by (I1.2.16) during persistent contact. Finite
element formulations where this constrairi is enforced explicitly can be found in TAYLOR
& PAPADOPOULOS [1993], and LEE [1994], among others. It is the goal of this section to
present a modification of the penalty scheme described in Section 1.3.1 that accomplishes
the imposition of (1.2.16) while maintaining the appropriate conservation properties.

To this end, we modify (I.2.41), and write the nodal linear momenta for a typical slave
node/master segment pair as

——

ﬁS,t = [MS,L + Mt és,tézt] 6s,t
(1.3.28)

——

= s,LUst + Mg ¢ hs,t Gs,t 3

for t € Up{tn,tn+1}, where

8
master

hey = GLise=v- |vf - Y NMI(g, )oMT| (1.3.29)
I=1

n
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the discrete counterpart of (1.2.16), the normal gap of the velocity. We consider the lumped
mass matrix M, 1, of the slave and master segment pair, 1.e.,

MSlndim
——— MMllndim

MS,L = Mlendim (= R(1+nmast2r)x(1+nmaater) , (1.3.30)

to simplify the final numerical implementation. In (I.3.28), m; 41 denotes a mass added
to the contacting slave and master nodes, which depends on the contact state as follows

m, if g%, <0 or >0,
Mt 1= { P Iop = Pert (1.3.31)

0 otherwise ,

for a large penalty parameter m, > 0. In (I1.3.31), ps ¢+ denotes the normal contact force for
a slave node S at time ¢ obtained via (I.3.3). We note that we consider the penalty mass
active when this normal force component is positive, including the time increment when the
contact is released. We have observed a better performance of the final numerical scheme
with this combination (less oscillatory response of the final contact force, as described in
Section I.4). As m, — oo, the constraint hs ,4+1 = 0 for a typical time interval [t,,t,+1]
in contact is effectively imposed. |

A mid-point approximation of equations (I.2.29) is considered again. This leads, after
the elimination of the momenta P41, to the following contribution of a typical slave
node/master segment pair

1 ~ —~ —— —~ o~~~
—_ 1 -1
A‘ ; (ds,n+1 - ds,n) = vs’n-{—% + M, L (ms,n+1hs,n+1Gs,n+1 + ms,nhs,nGs,n) ’

E MS,L ('Us,n-i-l - vsyn’) = —-fs(,intZ) + fs(;n(’c,"i;)a,ss) + A.S(;th) ?
o (1.3.32)
where the modified contact force 'fs(jz:n{ags) is given by
1 1 1
f:j’(':,;})ass) — ’}:"}'2) __'i‘gn‘l'z) (1333)
with F{5*? given by (1.3.5), and
o +l 1 o~ o~
,';gn ) = A—t (mS,n+1hg,n+1Gs,n+1 - ms,nhg,'nGS,n) ’ (1'3'34)
1
Physically, ?ﬁ"*z) corresponds to the impulse enforcing the velocity constraint (1.2.16).
1
We denote by €§"+2”A (A = 1,n404e) the corresponding nodal components, which vanish

for the nodes not in contact.
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1.3.2.1. Properties of the proposed scheme.

The evolution of the linear momentum (1.3.6), the angular momentum (1.3.7), and the
energy (1.3.8) in the scheme defined by equations (1.3.32) and (1.3.33) is characterized by
the following proposition.

1
Proposition 1.3.3 Let 'Y =0 (o =1,2), and fé;:z) = 0 for a time increment [tn, tni1]
(i.e., a homogeneous Neumann problem in that interval). Ther,

i. The linear momentum is conserved, i.e.

Lh . =1L!. (1.8.35)

n

ii. The angular momentum is conserved, i.e.

Jh=J%. (1.8.36)

iii. The energy evolves as
Eh - Pr A ME =EE PR M (1.8.37)

where P > 0 is defined in (1.5.15), and

Nglave

Mbi=S" mgh2, [ 1+ 3me GT M 1G] 20, (1.3.38)

s=1

fort € Un{tn,tns1}

PRrOOF: We first observe that the equivalent expressions (1.3.10) and (I1.3.11) for the linear
and angular momenta in terms of the nodal momenta pA (A = 1,7mn04e) still hold for
the modified momenta (1.3.28). Indeed, we have for the linear momentum at any time

Nnode

h _ E B
A B=1
Nnode Nslave n:naster Tinode

=Y Pt = > meshes [1- > NMI(g) | ve= > pf, (1.3.39)
A=1 s=1 I=1 A=1

»

= 0 by (1.2.38)
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and for the angular momentum

Nnode
E A B
A,B=1
Nnode Nslave nfnaster

A A S MI MI
== Z Ty X Py — Z ms,ths,t T — Z N (gs,t)mt XVt
A=1 s=1 I=1

= gs,tVt by (1.2.37)

Nnode Nslave Nnode
A
= E T E Ms ths st (Ve X V) E x4 x Pt . (1.3.40)
A=1 s=1 -0 A=1

The conservation of linear and angular momentum by the scheme follows then easily
by rewriting the equations (1.3.32) in terms of the modified momenta p given by (1.3.28)

1 [~ - i
E (ds,n+1 - ds:n> = MS Ilzps ﬂ“l"; ?
(1.3.41)
Lo~ o +1 +1
'A“t' (ps,n-f-l _ps,n) = _J?s(:r'::nt ) + ’\(n ) 3

for the homogeneous Neumann problem under consideration. After noting that the equa-
tions (1.3.32) are the same as the original equations (I.2.40) in terms of the momenta p,
the equivalences (I.3.39) and (I.3.40) imply the conservation properties

Lh =LY and Jt,=J", (1.3.42)
by the results (1.3.12) and (1.3.13) of Proposition 1.3.1 (whose proof has been develori in

terms of the momenta p).

Similarly, using again the result (I.3.14) of Proposition 1.3.1, we can write for the
scheme defined by (I.3.41) and (I1.3.28) the following relation

,Ch+1 + Wh+1 + 'P1’11-+-1 - ’Ch+1 + Wn+1 + Pn—{-l ) (1-3-43)

where
’C?' TML Pt (1.3.44)

for t € Up{tn,tny1}. With the use of the definition (I.3.28), we can write

Niglave
RE=Kb+ Y meh? g [ 1+ im,,GT, M 16, t] , (1.3.45)
s=1

o

-~

= Mh
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which combined with (1.3.43) results in (1.3.37). O

We observe that an extra contribution appears in this case in the energy balance
corresponding to a kinetic energy contribution associated to the mass penalty introduced
in the formulation. Given the energy balance (1.3.14) and the fact m; = 0 after full release
as defined by (1.3.31), we conclude that the total energy of the system is restored upon
release. We can say that, during persistent contact, part of the energy is stored in the
spring-like and the mass-like penalty regularization potentials. In fact, Corollary I1.3.2 still
holds in this case resulting in the no increase of energy beyond its initial value during the
numerical simulation and the desired nonlinear energy stability of the proposed method.

Remarks 1.3.1.

1. An augmented Lagrangian scheme for the velocity constraint can be introduced easily
by adding to (1.3.28) a Lagrange multiplier field of the form

—— o~

ﬁs,n+1 = Ms,L'Bs,rH—l + (ms,n-{—l hs,n+1 + As,n—i—l) Gs,n+1 . (1346)
The Lagrange multiplier A 41 is obtained by the update

k+1 k ~

’\.g,'n-i-i = .(S,T)L+1 + Ms;nt1 g1 (L.3.47)

in the iteration (k) of an iteration procedure nested with the solution of the equations

of motion, accomplishing the satisfaction of A, 41 = 0 with finite values of the mass

penalty msnt1. See GLOWINSKI & LETALLEC [1989], SiMO & LAURSEN [1992],
among others, for details on augmented Lagrangian methods.

2. The mass penricy scheme described in this section can be combined with the energy
dissipative sct.cme proposed in Section 1.3.1.2. 0

I.4. Representative Numerical Simulations.

The goal of this section is to evaluate the performance of the newly proposed numerical
schemes in several representative numerical simulations. To this end, we consider in Section
1.4.1 the impact of a linear elastic rod on a rigid wall, and the impact of two nonlinear
elastic cylinders in Section 1.4.2.

1.4.1. Impact of a rod on a rigid wall.

The purpose of this simulation is to show the important role that an energy restoring
contact algorithm plays in the overall stability of the numerical scheme. As noted in Section
[.3.1, numerical schemes that are (unconditionally) dissipative for linear problems, and
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FIGURE 1.4.1 Impact of a rod on a rigid wall. Problem definition.

consequently (unconditionally) stable, do not possess this property in general nonlinear
settings. As an example, we consider the well-known dissipative HHT schemes (or a-
method as sometimes called), and show that the energy increases due to contact if the
numerical scheme is not used with an adequate contact algorithm.

To this end, we consider an one dimensional model of a rod impacting a rigid wall using
a combination of different continuum and contact algorithms. The problem is sketched in
Figure 1.4.1. Linear elasticity is assumed for the one dimensional continuum, so that the
only nonlinearity arises from the contact conditions. We consider general discretizations
in time of the continuum to accommodate dissipative schemes. In this setting, the three
parameter family of HHT algorithms (see HILBER et al [1977])

Man+1 + K [Oldn+1 -+ (1 - a)dn] = fc,n+a y : (141)
dnt1 = dn + Atv, + 1at? [28an41 + (1 - 28) ay) (1.4.2)
Uni1 =Vn + At[yani1 + (1 —7)a,] (1.4.3)

is considered, where K denotes the usual stiffness matrix of linear elasticity. We note that
equation (I.4.1) has been written in the form presented in SIMO et al [1995], which differs
from the original presentation of the a~-method in HILBER et al [1977] (the o parameter in
(I.4.1) corresponds to 1 4+ « of HILBER et al [1977]).

We consider the following schemes:
1. Trapezoidal rule: o = 1.0, 8= 0.25 and v = 0.5.
2. Midpoint rule: a =0.5, 8 =0.5 and v = 1.0.
3. HHT: o = 0.51, § = 0.555025 and v = 0.99.

All three schemes are combined with a standard penalty scheme for the contact, with the
contact constraint imposed at t,14, consistent with (I.4.1). We consider also:
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4. The new energy restoring contact scheme, with midpoint rule for the continuum
(as in Algorithm 2).

5. The new energy dissipative contact scheme of Section 1.3.1.2 ( = 1.0), with HHT
for the continuum (as in Algorithm 3).

We note that for the linear elastic continuum under consideration the conserving algo-
rithm considered in Section 1.2.3.1 reduces to the midpoint rule and trapezoidal rule, which
would coincide in this linear setting. As it is well-known, both cchemes are conservative for
linear problems. Similarly, the HHT Algorithm 3 is energy dissipative in the linear elas-
tic case. However, the nonlinearity of the contact conditions when the simulation starts
at a non-zero gap, destroys these conservative and dissipative properties respectively. In
essence, the work done by the contact force on the initial gap is not zero, and without
control, leading to an increase of energy; see MUNJIZA et al [1995]. This situation is to be
contrasted with the newly proposed schemes. For Algorithms 4 and 5 the energy will not
increase during the simulation, and for Algorithm 4 it will be restored completely upon
release.

The rod considered in the simulations has unit length (L = 1) and unit cross section
area (A = 1). The Young’s modulus is F = 1, and density p = 1. The initial velocity of the
rod before impact is vg = 0.5. The initial configuration of the rod is located at a distance
of d, = 7.5 1072 from the wall. The exact solution consists of a constant stress front
propagating along the rod with the elastic wave speed ¢ = \/E/p = 1. The magnitude
of the compressive stress is o = p v,c = 0.5. This front reaches the right end at a time
L/c after impact where it is reflected. This reflection results in an unloading front that
propagates back along the rod reaching the wall at a time 2L/c after impact. At this time
the rod is released, that is, at

d 2L

t=—"+4 = =2015, (1.4.4)
Vo c

accounting for the initial time before impact (d,/v, = 15-1073). Therefore, the total force
of contact is constant, and given by the value

fe=0A=pv,cA=0.5, (I.4.5)

during the contact interval 151073 < ¢ < 2.015.

The rod is discretized with 100 linear finite elements in the numerical simulations
presented herein. A Courant condition of CFL = 2 is considered, being therefore outside
the range of stability of explicit methods like e.g. central differences (@ = 1.0, 8 = 0,
v = 0.5). In all the cases, the contact penalty parameter is x, = 108, and the mass
penalty parameter has the value m, = 10 for the Algorithms 4 and 5.

Figures 1.4.2 to 1.4.4 show the results obtained with these schemes. The gap, velocity
gap, contact force, and total energy of the rod are plotted versus time. With respect to the
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FIGURE 1.4.2 Impact of a rod on a rigid wall. Results obtained with
the trapezoidal rule, Algorithm 1.

standard schemes, Figures I.4.2 and 1.4.3 (left column) depict the results for the trapezoidal
and midpoint rule, respectively, showing the severe oscillatory behavior associated with
these schemes when trying to enforce the contact constraint. Oscillations between contact
and released states lead to a clear unsatisfactory performance of the scheme. Furthermore,
these oscillations lead to an increase of energy when they occur due to the associated non-
linearity. The trapezoidal rule, with the contact constraint imposed at t,3, improves the
performance, as shown in Figure 1.4.2, but the oscillatory response remains, as it does the
non-physical increase of energy. Figure 1.4.4 (left column) shows the results for the HHT.
We still observe an initial oscillatory response, as well as an energy increase thus leading
to potential instabilities of the scheme. Although the oscillations are eventually damped,
this is obtained at the cost of a clear energy lost.

The performance of the standard schemes is to be contrasted with the newly proposed
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FIGURE 1.4.3 Impact of a rod on a rigid wall. Results obtained with
the midpoint rule, Algorithm 2 (left column), and the energy restoring,
Algorithm 4 (right column).
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FIGURE 1.4.4 Impact of a rod on a rigid wall. Results obtained with
the HHT scheme, Algorithm 3 (left column), and the energy restoring
scheme, Algorithm 5 (right column).
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methods. Figure 1.4.3 (right column) shows the results obtained with the energy restoring
contact scheme. The good enforcement of both constraints (¢ = 0 and § = 0) is to be noted.
Even though small oscillations are observed, these are not between contact and released
states. Persistent contact is maintained during the theoretical contact interval, as reflected
in the persistent positive value of the contact force. The energy of the rod is under control
during all the simulation, and it is restored upon final release. The total energy in the
discrete system (rod and regularization spring) is conserved at all times. Figure I.4.4 (right
column) shows the results for the energy dissipative scheme proposed in Section I1.3.1.2.
As expected, we observe a damping of the oscillations in this problem involving the high-
frequency part of the spectrum in the solution. The energy never increases beyond its
initial value, avoiding any type of instabilities.

To gain a better understanding of the proposed methods, we have included in Figure
1.4.5 the results obtained with the previously considered energy restoring scheme, without
mass penalty (m, = 0), i.e., no enforcement of the velocity constraint. Whereas the gap
constraint is enforced equally for both schemes, we note the improvement accomplished in
the imposition of the velocity constraint and the contact force. This improvement is to
be traced to the impulse (I.3.34) introduced by the mass penalty in the definition of the
contact force, and leads to better resolution of the small-time scales in problems where the
contact intervals need to be resolved.

1.4.2. Impact of two cylinders.

We consider next the impact of two nonlinear elastic cylinders in plane strain. The
cylinders have a diameter of 3.6, and are discretized with displacement bilinear finite
elements, as shown in Figure I.4.6. The Saint-Venant Kirchhoff material model is assumed
for both cylinders with Lamé constants, A = 2-10% px = 1-10% and density p = 1.
These properties lead to the consideration of quasi-rigid cylinders. A penalty parameter
of k, = 1-10° is considered with myp = 0, i.e., no imposition of the velocity constraint. We
note that we are interested in the overall response of the system in this case (the long time
scales), rather than resolving the different contact intervals in detail. A constant time step
of At = 0.1 is considered.

Figure 1.4.6 depicts the results obtained with the proposed new scheme in a simulation
involving rigid walls as depicted. The left cylinder is given an initial velocity of {vg, vy} =
{1, -2}, hitting the bottom rigid wall at ¢ ~ 1.5. Figure 1.4.7 shows the plots of the total
energy of the cylinders (kinetic plus strain energies), the two components of the linear
momentum (L and L), and the angular momentum (J). The z-direction corresponds
to the horizontal direction in the plots of Figure 1.4.6, with the y-direction being the
perpendicular direction. We have included the results for the newly proposed contact
energy-restoring scheme, and a standard midpoint rule contact (non conserving), both in
combination with the conserving scheme considered in Section I.2.3.1 for the continuum.
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FIGURE 1.4.5 Impact of a rod on a rigid wall. Results obtained
with the energy restoring scheme with no mass-penalty, mp, = 0. To
be compared with the use of the mass penalty (mp = 20%) in Figure
1.4.3, right column. As observed in this last case, the »1dition of the
mass-penalty impulse enforces the velocity constraint and eliminates
the oscillation of the contact force, as observed in this figure, when
trying to resolve the contact time interval (short-time scales).

Therefore, the energy and momenta will be conserved for both schemes between contact

interactions.

We observe that the initial hit of the left cylinder with the bottom wall leads to an
increase in the y component of the linear momentum (L,) and a change of the angular
momentum, as expected. The increase of L, corresponds to the total force applied during
contact, positive since it is pointing in the positive y-direction. The z-component of the
linear momentum is conserved for both schemes, whereas the energy is only conserved
(restored) after bouncing by the newly proposed scheme. In fact, we observe a sudden
increase of the energy for the midpoint rule contact (to almost four times the original
value), which is accompanied with a large change of linear momentum in the y-direction
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FIGURE 1.4.6 Impact of two (quasi-rigid) cylinders. Deformed con-
figurations at different times obtained with the newly proposed energy
restoring scheme. The left cylinder impacts the right cylinder, which is
at rest, after bouncing from the bottom rigid wall.
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FIGURE 1.4.7 Impact of two (quasi-rigid) cylinders. Results obtained
with the energy conserving scheme for the continuum in combination
with a midpoint-rule contact (left column) and energy restoring contact

scheme (right column).
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FIGURE 1.4.9 Skew impact of two elastic cylinders. Results obtained
with the energy conserving scheme for the continuum in combination
with a midpoint-rule contact (left column) and energy restoring contact
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(indicating an excessively large force of contact). The computed solutions will then differ
afterwards. We note that due to the quasi-rigid character of the solids, the total energy is

mostly kinetic energy.

After bouncing from the bottom wall, the left cylinder impacts the right cylinder which
is at rest. This happens at t ~ 2.2 for the energy-restoring scheme, and earlier, at t =~ 2.0,
for the midpoint rule contact, due to the excessive energy that the previous impact added
to the left cylinder. As expected, no change of momenta (linenr or angular) is associated
to this impact for both algorithms. The energy, on the other hand, is increased again for
the midpoint rule contact, whereas the energy-restoring scheme recovers again the initial
energy after the small interval where the contact constraints are imposed. We note the
good resolution of the gap constraint g = 0.

Next, the right cylinder impacts the right wall close to the upper right corner (at
t ~ 3.8 for the energy-restoring scheme, and ¢t ~ 2.6 for the midpoint rule). The z
component of the linear momentum L, is reduced due to the application of the contact
force (pointing to the negative z-direction). A larger contact force is observed again for
the midpoint rule, compared to the value obtained with the energy-restoring scheme. The
total energy doubles in the former.

After bouncing, the right cylinder hits the upper wall (at ¢t ~ 4.3 for the energy-
restoring scheme, and ¢ ~ 3.3 for the midpoint rule). This can be observed by the corre-
sponding decrease (the contact force points in the negative y-direction) of the component
L, of the linear momentum for both schemes. The left cylinder hits the left wall for the
midpoint rule at ¢ = 3.7, due to the excessive velocity that has gained in the previous
impacts, leading to the increase of L, observed for this case. This does not happen for the
energy-restoring scheme.

After these interactions, the two cylinders impact each other again in the middle of
the domain. This occurs at ¢t =~ 6.0 for the energy-restoring scheme and ¢ ~ 4.2 for the
midpoint rule. This impact cannot be resolved with the midpoint rule contact scheme.
The numerical computation blows up in this case (no convergence is obtained), with an
unrealistic high value of the energy. The computation with the energy-restoring scheme can
be continued without problems after the impact of both cylinders (no change of momenta,
energy conserved again upon release). After this impact, the left cylinder hits the left wall
at t =~ 8.0 (with the change of L, and angular momenta, no increase of energy again).

These results show the improved stability properties of the newly proposed scheme.
These properties are achieved by the proper control of the energy during all the compu-
tation. The correct conservation of energy and momenta has been verified. On the other
hand, the artificial increase in energy for a standard contact scheme, like the midpoint
rule, has been shown to lead to numerical instabilities that force the termination of the
computation. ‘We point out that physically dissipative effects (like friction) would not
stabilize the computations of standard schemes in general, as observed in ARMERO &
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SiMo [1993] in the analysis of the stability of staggered algorithms for thermomechanical
problems.

The above results considered quasi-rigid cylinders. In order to test the performance of
the scheme with large finite elastic strains (and thus significant changes of the normal to the
contact surface), we consider the same cylinders with Lamé constants A = 130, p = 43.33,
and density p = 8.93. The left cylinder is given an initial velocity {vs,vy} = {—1,0.1},
while the right cylinder is at rest. Figure 1.4.8 shows the impact of the two cylinders for
this case. The large finite strains are apparent. Figure 1.4.9 depicts the evolution of the
energy, the two components of the linear momentum, and the angular momentum, for
both the midpoint rule contact and the new energy-restoring scheme, both in combination
with the conserving scheme developed in Section 1.2.3.1 for the continuum, as before. The
non-physical increase of energy for the former is to be contrasted with the no increase
and final conservation for the latter. The two schemes conserve all the momenta for this
case. A penalty parameter of k, = 10* is assumed, leading to a good satisfaction of the
unilateral constraint (I1.2.12), as the small energy associated to the regularization potential
Ul(g) indicates (the ripples in the plot of the energy) in Figure 1.4.9. The same conclusions
as for the previous simulations involving quasi-rigid cylinders apply to this case.

I.5. Concluding Remarks.

We have presented the formulation of a new class of implicit time-stepping algorithms
for dynamic contact problems. The main characteristic of the proposed methods is the con-
servation laws that the discrete numerical schemes inherit from the continuum dynamical
system by construction. In particular, it has been shown that the energy is under con-
trol at all times during the numerical simulation, leading to the proper (energy) st »blhty
properties, while efficiently enforcing the contact constraints.

These properties lead to improved performance in comparison with standard numerical
techniques currently in use. The simplicity of the implementation of the proposed scheme,
a modification of standard penalty formulations, is to be noted. Modifications involving
the imposition of the velocity constraint and the introduction of positive high-frequency
energy dissipation have been discussed in detail. Several numerical simulations have been
presented that show the improved numerical stability properties of the new schemes over
standard time-stepping algorithms.

Appendix I.1. Consistent Linearization of the Proposed Schemes.

We develop in this appendix the consistent linearization of the time stepping algo-
rithms developed in this paper. To this purpose, we derive in Section I.1 the linearized
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equations of the problem. The contributions of the contact arrays to the tangent stiffness
matrix are derived in Section I.2.

I.2. The linearized equations.

We consider the discrete equations (1.2.29) in terms of the nodal momenta p. As
indicated below, the final implementation is carried out in terms of the nodal velocities
v. Only the nodal momenta p of the nodes in contact need to be considered for a non-
vanishing mass penalty m,. Define the residuals

1
(L1)

nt1 n+l +1 1
R, = fe(:ct 2)+fc( T i(:t ? T At (Pr+1—Pn) -

Given the nodal values {d,,, v, }, and corresponding p, (see below), at time ¢,, a consistent
linearization of these equations leads to

i 1 vy 1 i+1
RY + EMAdgil) - §AP£+1) =0,
. (1.2)
. n+i n4-1 i ;
RO + AffH - agfitd - — apliY =0,
With . . . « . .
dii) =d0, +adltY,  and  pliY =pl, +aplY, (L.3)

- for the update between iterations (¢) and (i+1) in time step [t,, tn41] of 2 Newton-Raphson
scheme for the solution of (I.1). The elimination of Apffill leads to the final expression

5 (RO + KO) + v adit? = RY - 2R, @
where we have introduced the notation
AFFD - g adfy)  (with AdSyY = éAdgﬂ) ), (1.5)
for the continuum contributions to the tangent stiffness, and
AFTE) = g AgltD (L6)

1
n+§ ’

(note the change of sign) for the contribution of the contact arrays. A closed-form expres-
sion for the contact stiffness K éz) is derived in Section 1.3 below.
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Once the updated nodal displacements dgj:ll ) and nodal momenta pffj:ll ) are known,
the nodal velocities v,(f:_rll ) are recovered using the definition (1.3.28) of pﬁfill ) ie.,
Nslave ( ( ) ( )
i+1 i+1) Ai+1 A(i+1 i+1 -
P£1+1) = (M + A mgz,n+)1Gs'L,n+)1 QG iy ) ”n1+1 ; (L.7)
s=1

in the general cose involving the mass penalty my, # 0. For the case of no mass penalty,
m, = 0, the dvramic update equation (I.1); is linear, leading to R((;H) = 0 and to the
standard update

WHD = @) AL Z ) 2 A 46D

n-+1 :vn+1 n+1 _vn+1 At n+1l (18)

without the need to consider the extra array pﬁfill ). As noted in Section 1.3.2, we consider

a lumped mass matrix M = M for the general case where we enforce the velocity gap
constraint (m, # 0), leading to the standard update (I1.8) for the nodes not in contact,
and the update (1.7) involving the nodes in contact only.

Remark 1.2.1 An implementation avoiding the use of nodal momenta p for the nodes
in contact can be easily devised by considering the linearized version of equation (I.7).
Details are omitted.

I1.3. The contact stiffness.

The linear‘zation of the contact force f., defined by (1.2.35) as

1 Nglave 1 1 .
S | W 2SI A G L N e (L1)
s=1
is given by
1 ~ ~
A ’\‘9(,1';_!_2) = ApsGS,n+_§_ +p3AGs7n+_§_ . (1.2)
ma;rial geon;,etric

The material part of the tangent is defined by

194 gdn —-p .
_ (g s, +_1) . 8 Agg,n+1 if gg,n+1 # gg,n ’
Aps = gsyn“i'l gs’n (1.3)

_U” (gg,n+1) Agg,n+1 if gg,n+1 = gg,n ’
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and
d ~ -~ S~ T T
Ags,n—+—1 = 2Gs,n+% - chs,n—i-% - CZTs,n—f—%] Ads,n+% ) (14)
At -~ —~ gs,n-{-—l- .
c; = ZTSTn,ﬁ-—’vs n+2 + ls 2 I/g;_l_% (‘T'n+1 — Tn) y (IO)
Ca = VZ:,_% (Tn+1 - Tn) ) (16)
with
- 0 - - Tn+% -
e, R T
D = d T = 1.7
n+3 _N,JEJZ(&C)V”_*_% y an n+ i _NM2(€C)7.”+% ( )

Here, we employed the notation

- s - T .S -
Adn_}_% vn-f--é—
M1 M1
N Ad l vn+%
Ads,n—i—% = AdMZ ) and Usnil = M2 (IS)
+3 n+3

The expression g, , +1 refers to the real gap found through the closest point projection at
the configuration at ¢, 1y Tntl is the normalized tangent vector to the master surface at

the point of contact (i.e. v, ,7,.1 =9), and I is the length of the surface element of
n+3

n+~é~
the master surface corresponding to the given slave node S.

The geometric part of the tangent arises from the change of normal and contact point
in Gs n+l, and is obtained as follows

AG!s,n+% =7

s i (L9)
4 2772 Ds,n-}-% ®D3’n+%] Ads et

after an involved calculation. The final expression of the contact stiffness is then given by

Nislave U/ (gd +1) _ps —~ — o~ ~
K. = A { ( 2 4 Gni1 ® ‘:2Gs,n+% - Cle,'fH-% - CzTS,n_{_%]

d
s=1 9sn+1 — YIsn

p - gs’n+l ~ ~
+f [Tsn+1 ®Dsn+1 +D %® s,n+%+ 2 Ds,n+%®Ds,n+%J} ,
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with the difference quotient in the first term replaced by U” (ggyn +1) Of gf’n 41 = g‘in.
We note the non-symmetry of the material part as it occurs with its counterpart for the
energy-momentum conserving algorithms considered in this paper for the continuum.
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I1.1. Introduction

The numerical analysis and simulation of contact problems is probably one of the most
difficult and demanding tasks in typical practical applications of computational solid me-
chanics. The cause of this inherent difficulty can be traced to the unilaterally constrained
character of the impenetrability constraint between solids. The introduction of frictional
effects adds on these difficulties with the need to model non-smooth stick/slip conditions.
As a consequence, th2 resulting problems are numerically stiff, highly non-smooth, and
strongly nonlinear. ¥xplicit integration schemes are popular nowadays to avoid some of
these difficulties. Explicit methods, however, are known to be only conditionally stable
in time. In fact, the stability restriction becomes a severe limitation in usual applications
involving contact, due again to the very stiff nature of constrained problems.

The improved stability properties of implicit schemes are often needed for efficient
analyses of problems that do not require the resolution of short time scales. However,
standard implicit schemes are known to exhibit instabilities in nonlinear problems. In
fact, time-stepping algorithms that are unconditionally stable, or even dissipative, for lin-
ear problems may become unstable in a nonlinear setting. See'e.g. the numerical examples
in S1Mo & TARNOW [1992] and the results presented herein, where such instabilities are
observed even in the physically dissipative context of frictional contact problems. Given
these considerations, the goal of the research presented in this paper can be stated as
the development of implicit time-stepping algorithms for contact problems that possess
unconditional (energy) stability in time and lead to a stable enforcement of the contact
constraints. Dynamic contact/impact problems are of particular interest. More specifi-
cally, we require that the numerical algorithm inherits a-priori stability estimates of the
continuum problem. In this context, we develop in this paper a time-stepping algorithm
for frictional contact problems that is rigorously shown to be energy dissipative, as the
physical system.

The analysis and numerical simulation of contact problems has been the subject of
intensive research in the past. Early efforts in the area of dynamic contact problems can be
found in HUGHES et al [1976], HALLQUIST et al [1985], and BATHE & CHAUDHARY [1985],
among others; see also the comprehensive account in KikucHI & ODEN [1988]. The formu-
lations presented in BELYTSCHKO & NEAL [1991], CARPENTER et al [1991], and MUNJI1ZA
et al [1995] are some examples of more recent works focusing on the enforcement of the
contact constraints in the context of explicit integrators for dynamic contact problems.
But more recently, we can find a special interest in the formulation of improved implicit
schemes for dynamic contact problems. The recent works of TAYLOR & PAPADOPOULOS
[1993], LEE [1994], and LAURSEN & CHAWLA [1996] are representative examples, with an
emphasis on frictionless contact. See also the results presented in ARMERO & PETOCZ
[1996], and described below. These efforts can be considered as part of the current interest
in the development of more robust time-stepping algorithms for nonlinear elastodynamics.
In this context, the formulation of energy-momentum conserving schemes for nonlinear
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elastic systems (as presented in SIMO & TARNOw [1992], CRISFIELD & SHI [1994], and
GONZALEZ & SiMo [1995], among others) is of special significance for the work presented
herein.

We have presented recently in ARMERO & PETOCZ [1996] a new class of conserving
time-stepping algorithms for frictionless contact. The proposed schemes are based on a
penalty regularization of the normal contact constraint, and inherit the conservation prop-
erties of the continuum problem. More specifically, the energy of the system of solids does
not increase due to the imposition of the contact corstraint (part is stored in the penalty
regularization potential), and it is fully restored upon release. Extensions imposing the
associated constraints in the velocity have been presented also. Altogether, the newly
proposed schemes have not only shown a superior stability properties in time but also
an improved enforcement of the contact constraint when compared with more traditional
implicit schemes. In fact, we have observed that traditional mid-point and trapezoidal
rules, and even the dissipative HHT method, are prone to numerical instabilities in the
context of frictionless contact, often leading to the actual blow-up of the numerical com-
putation, in contrast with the proposed conserving schemes. The reader is referred to the
aforementioned reference for further details.

In the present paper, we consider the general case of frictional contact, in the con-
tinuum framework described in LAURSEN & SiMo [1993]. More specifically, we present a
new time-stepping algorithm for frictional contact that leads to positive energy dissipa-
tion. A crucial ingredient of the new scheme is the integration of the friction law based
on a properly defined (numerical) slip function. This definition arises from a second order
approximation of the evolution equations defining the contact kinematics. This new slip
function is employed in the integration of the constrained equations modeling the stick/slip
conditions. Furthermore, a new penalty regularizatior of the stick condition is considered,
having a similar structure to classical elastoplasticity _oulomb friction is assumed for the
evolution of the frictional slip. The resulting discrete evolution equations are shown rigor-
ously to lead to a decrease of the energy of the solids (i.e., positive energy dissipation), in
compliance with the dissipative nature of the frictional problem. The fully nonlinear range
involving finite kinematics is assumed in these developments. In fact, invariance issues are
carefully considered. As a consequence, the newly proposed schemes are not only frame
indifferent, but the resulting discrete contact contributions exhibit the conservation prop-
erties of linear and angular momentum characteristic of their continuum counterparts. The
newly proposed scheme applies to both dynamic and quasi-static problems. We develop in
detail the finite element implementation of these methods.

An outline of the rest of the paper is as follows. Section I1.2 summarizes the continuum
formulation of the frictional contact between solids. In particular, Section I1.2.3 describes
in detail the conservation laws of linear and angular momenta characteristic of a free system
of solids in contact, frictionless or frictional, as well as the energy conservation/dissipation
in the continuum problem. A-priori stability estimates to be inherited by the numerical
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R™™ be the deformations of each solid to a current placement <p( )(Q(’)) (with (p(’) (X) =

¥ (X ,t)) at a certain instant ¢ € [0,T] for a time interval T. Let 7(7) c @ (00
denote two parts of the boundaries of the respective solids in contact, as defined below.
The subscript ¢t emphasizes the dependence of these boundary segments on the time t. We

denote the corresponding material boundaries by I'( D= =" ('yézt))

In this context, we define the closest-point projection mapping ¥ () : I‘C(’lt) — I‘c(i)
at the time ¢ as
Y(X,t)=arg_min [lo{’(X) - o (V)] (I2.1)
Yer®

for X e I, c(’i) and Euclidean norm || - || in R™¥™. Given the definition (II.2.1), a standard
argument shows the orthogonality property

[e] == (X)) - P (X, 1)) =g v, (IL.2.2)

defining the unit normal v to 7(2) at cp(2)(Y(X ,t)). Note that the unit vector v is also

defined for the case of non-smooth boundaries as the direction joining ¥'(X,t) and X.
To simplify the notation we do not write a subscript ¢ indicating the dependence on time
of the geometric quantities g, v, and others introduced below. Figure I1.2.1 sketches the
construction behind the closes-point projection (I1.2.1) in the two dimensional case.

Expression (11.2.2) defines also the gap function g, as
=3(X,t) =[] -v, (I1.2.3)
which is imposed to satisfy the unilateral contact constraint
g>0, (11.2.4)

at all times ¢. In this context, the contact boundary I"c(,lt) is defined by
Il ={xer® : g(x,t >0}, (IL.2.5)

and the boundary Fc(ﬁ) as the image of I’c(;) under the closest-point projection ¥ =
Y (X,t). Since in this continuum setting we impose the constraint (I1.2.4), we conclude
that

7 =98 = nl,0 (o (20)) | (I1.2.6)

with no special role played by the ordering of the solids. The numerical schemes described
in Section I1.3 consider a penalty regularization of the unilateral constraint (II.2.4), leading
to an approximate satisfaction of the constraint (II.2.4). In this context, one refers to the
surface '™ as the slave surface which is required not to penetrate the master surface
I'®) | as it was introduced in HALLQUIST et al [1985]. Double passes schemes avoiding the
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special role assigned to each surface by a particular ordering of the solids are also discussed
in this reference.

Following LAURSEN & SiMO [1993], we introduce the following notation. Let the
vectors {Ty} (@ = 1,n4im — 1) define a basis of the tangent space to Fc(i), not orthonormal
in general. See Figure I1.2.1 for an illustration of the reference basis T' = T in the two
dimensional case. We denote by

Mupg =Ty - Tp, (IL.2.7)
the associated metric, a positive definite matrix. We consider the spatial vectors
T = FOT, = @ (11.2.8)
defining a convected basis {74} of the tangent space to ﬁ?}. The standard notation
F® .= Gradp® i=1,2, (I1.2.9)
is used for the deformation gradients. We denote the associat‘ed metric by
MaB = Ta " T8 , (I1.2.10)
and the corresponding dual basis by
T = m“'ﬁ'rﬁ a=1,n4m—1, (I1.2.11)

with [m*#] = [map) ™. Summation over repeated Greek indices is assumed hereafter, e.g.,
addition on # = 1,7n4im — 1 is implied in (I1.2.11). The orthogonality relations

To ' V= % . p=0 , (11212)

follow from the previous definitions.

Crucial to the development of the numerical schemes proposed in Section II.3 is the
evaluation of the change of the closest-point projection constraint (II.2.2) in time. To
calculate this time derivative, we consider the rate of the closest-point Y = ¥ (X, t) given
by

Y =62 T,, (11.2.13)

defining the values % in terms of the tangent basis {Ts} in the reference configuration.
The vector field Y defines a relative slip velocity.

The material time derivative of (I1.2.2) reads

[VI-FOY = v - g [V 4+ 58| . 72, (IL.2.14)
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in terms of the jump of the material velocities
[V]=VvI(X,t) - VY (X,1),t), (I1.2.15)

at a particular time ¢, with

. . dep®
VO .= p® =2 =12, (I1.2.16)
dt
We note that the second fundamental form of the surface 7&? is given by bog = ~Ta g v,
and it is symmetric. Combining (I1.2.8) and (II.2.13) with the orthogonality relations

(I1.2.12), the normal component of equation (I1.2.14) can be written as

g=[V] v, (I1.2.17)

and the tangential components as
AeplP =[V] Ta+g VD v, (I1.2.18)

in terms of the symmetric matrix
Anp = Map + gbag , (I1.2.19)

assumed invertible at all times. Hence, equation (I1.2.18) defines the slip rates éﬂ uniquely
in terms of the material velocities of each solid. For the limit contact problem (g = 0),
the invertibility of A, g follows readily from the positive definiteness of the spatial metric
mqg. Since the case of interest involves the enforcement of the contact constraint (II.2.4),
and therefore it is close to this limit case, this assumption is not excessively restrictive.

11.2.2. The weak form of the governing equations

The evolution of the system of solids described in the previous section is governed
by the balance of linear momentum, given in weak form by the variational relation (see
WRIGGERS et al [1990] and LAURSEN & Simo [1993])

22: {./ (i) [pgi)v(i) 8l + 86 F(i)TGrad(&P(i))] dn®
o

i=1

_ / pIB) . 5ot g0 _ / £ . 5o dp(i)}
fo10) Ja0)

T,t

+ / o, [7P0g +1ra0€°] drt =0, (I1.2.20)
T,

c,t
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for all admissible variations de® € V@ (i = 1,2), with
VO = {n: 20 5 R . n=0 on IV}, (11.2.21)

that is, variations satisfying the homogeneous essential boundary conditions as usual. In
this way, the deformations ¢(¥) are assumed to satisfy the essential boundary conditions

e =g on I (i=1,2), (11.2.22)

for given boundary functions ¢£i). In (11.2.20), we have used the notation p((,i) for the
reference density of solid (¢), V') for the material acceleration, S for the second Piola-
Kirchhoff stress tensor, and body forces b() and nominal applied tractions £*) on Fr}’l C

I'® (4 =1,2). The conditions

rOnr¥nr¥ =0 ad rHurflurl=r® i=12, (1.228)

are assumed for each time t for a well-posed problem. The symmetry of the second Piola-

Kirchhoff r
s® = g0 Vi=1,2, (11.2.24)

follows from material frame indifference. The general dynamic case has been assumed in
(I1.2.20), hence requiring the specification of initial conditions

() _

$Pi—0 =

for given initial deformations and velocities, respectively. The quasi-static problem is
recovered by assuming a vanishing density in the transient term as it is common practice.

The variations of the gap and slip in the contact contribution, last term of (I1.2.20),
are given in terms of the variations 6® by

59 =[6¢] v, | (I1.2.26)
and
Aapbt? =[6] - Ta + 9 6@ v, (11.2.27)

respectively, by taking the variation of (I1.2.2), which proceeds exactly as the derivation
of (I1.2.17) and (IL.2.18). As noted below, the expressions (I1.2.26) and (I1.2.27) lead to
an invariant form of the contact forces with respect to translations and rotation, leading
to the conservation of linear and angular momenta as described in the following section.

In (I1.2.20), the nominal contact traction (1) on I}fk) has been decomposed in a normal
and tangential component as

tV=pyv—tyr, where tri=tr, 7°. (11.2.28)
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The nominal pressure p is the Lagrange multiplier enforcing the unilateral constraint
(I1.2.4), and satisfies the Kuhn-Tucker complimentary conditions

p>0, ¢g>0, and pg=0. (I1.2.29)

The consistency condition
pg=0, (I1.2.30)

follows, and defines the case of persistent contact.

The evolution of the tangential traction ¢ is governed by the friction law. Frictional
slip occurs when a certain level of the tangential tractions is reached. We consider herein
the classical Coulomb law given by the slip relation

t
v =y (I1.2.31)

Itz
As proposed in LAURSEN & SI1MO [1993], an invariant expression of the slip velocity v in

(I1.2.31) is obtained as \ ;
v:i=M,p E° 7. (IL.2.32)

Alternative definitions are discussed in Remark 2.1 of Section 2.3 below. The consistency
parameter « in (I1.2.31) is determined by the stick/slip conditions

¢:=|ltr|| —pp <0, (I1.2.33)
¥>0, vp=0, and ~vp=0, (11.2.34)

where the Euclidean norm || - || in R™™ is given by
trl? = m*Ptratrg (I1.2.35)

in the convected surface basis. A constant friction coefficient 4 > 0 is assumed in (I1.2.33)
for simplicity. This concludes the definition of the problem of interest. We describe next
the conservation/dissipation properties of the final governing equations.

I1.2.3. The conservation laws and energy dissipation

The system of equations (I1.2.20) possesses a number of conservation laws in the
presence of symmetries of the problem. For instance, under the assumption of a free
system of solids, that is,

b =0, =0, and =0 i=1,2, (11.2.36)

the total linear and angular momenta are conserved. We summarize in this section these
conservation laws together with the evolution of the total energy of the system of solids.
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i. Linear momentum. Define the total linear momentum by

2
L:=) /Q POV E 4ot (I1.2.37)
i=1

()
Under the assumption (I1.2.36)3, an admissible set of variations is obtained by
e =acV® =12, (I1.2.38)

for a constant vector a € R™™. By noting that the gap variation dg and slip variations
6¢P, defined respectively by (I1.2.26) and (I1.2.27), vanish

a a= / POVE . adR® =0  VaeRMW=, (I1.2.39)
dt 06

after inserting the variations (I1.2.38) in the weak equation (I1.2.20). The conservation of

linear momentum ‘
L = constant , (I1.2.40)

follows then as a consequence of the invariance of the governing equations under the vari-
ations (11.2.38) (translations).

ii. Angular momentum. Define the total angular momentum by

2
J = Z /ﬂ . o x pAVE g (I1.2.41)
i=1 !

where x denotes the cross product of two vectors in R® (and the corresponding embedding
in R™™ if ngiy, < 3). Under the assumption (I1.2.36)3, an admissible set of variations is

obtained as . .
bW =wx o eV vi=12, (11.2.42)

for a constant vector w € R™=_ In this case, we have
Grad (6p®) = FO™'y (609) = FOTW (IL2.43)

for the spatial gradient V(-), and the skew-symmetric matrix W with axial vector w, that

is,
Wa=wxa VaeR"m", (I1.2.44)

The gap variation (II.2.26) vanishes for the variations (I1.2.42), since

5g=(wx[[cpt]])-u=(wxgu)-u:O, (I1.2.45)
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after using (I1.2.2). Similarly, the slip variations (II.2.27) vanish for the variations (II.2.42),
since

hott? = (w5 b0 0 2)
=(wxgv)-Ta+g(wxra)-V:O, (I1.2.46)

after employing the expression (I.2.8). Therefore, we obtain the relation

dJ 2
bl — E (O v4O) (4) (@)
cw = V.o (w x ds?
dit : /Q(i) p ( ©)

=— Z SO W dRW =0  Vwe R, (11.2.47)
2
using the weak equation (IL.2.20) for the free system of solids (II.2.36). The last equality
in (I1.2.47) follows from the symmetry and skew-symmetry of S and W, respectively.
The conservation of angular momentum

J = constant , (I1.2.48)

follows then as a consequence of the invariance of the governing equations under the vari-
ations (I1.2.38) (infinitesimal rotations).

iii. Energy evolution. Since the focus in this work is on the contact contributions, we
consider without loss of generality the case defined by two hyperelastic solids characterized
by the stored energy functions W ®) (C)) in terms of the right Cauchy-Green tensor C(*) =
FOTEG) (i = 1,2) by frame indifference. The second Piola-Kirchhoff stress tensor is then
given by the usual relation ’

oW ()

() — o2 7
S =2 5C@ (11.2.49)
for i = 1, 2. In this case, the total energy of the system of solids is given by
2
E=) { / pDv®)2 dfz@) +{ w®a® } , (11.2.50)
= ‘Jaw Jow B _
kmetzcvenergy strazn:nergy

for a given time {.

The evolution of the total energy of the system of solids is easily obtained by inserting
V® in the test function slot 6o of (I1.2.20). Carrying on this operation, the rate of
change of the total energy is given by

& = / ppdl'™  — / tra§dl'™ (I1.2.51)
Jrw o Jra .,
= E-CN = écT
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where we have extended the integrals over I'(!) since the integrands vanish outside I’c(i).
The case of a free system of solids as defined by (I1.2.36) is considered again. The normal
contact component vanishes by (11.2.30), that is,

Eeny =0, (I1.2.52)

showing the conservative character of the normal contact interaction. On the other hand,
denoting by [It:]|2,; = troM *Btrp (i.e., the norm in the convected reference frame), the
., tangential contact component leads to

2

. trll,

Eop = — / ppy (Ui_f-) ar' <o, (I1.2.53)
ra [t J

= Dfrict >0

~

given (I1.2.29), and (II.2.34);. The inequality (II.2.53) shows the dissipative character of
the frictional problem. Therefore, we conclude that

fy= Dt <0 => £ <E Vi, (I1.2.54)

for an initial energy £,. The energy inequality (11.2.54) defines an a-priort stability estimate
to be preserved by the numerical scheme. The goal is then the formulation of time-stepping
algorithms exhibiting positive energy dissipation (or, simply, dissipative schemes), and
momentum-conserving as shown by (11.2.40) and (I1.2.48) for the continuum system.

Remark II.2.1 A fully spatial formulation of Coulomb friction is obtained by replacing
the reference metric Myp in the definition (II.2.32) of the slip velocity v with the spatial
metric mqg. In this case, a straightforward calculation shows that the frictional dissipation
(I1.2.53) reads

Dprict = / ppy AW >0 . ' (11.2.55)
)

Similarly, the convected form of Coulomb law (see LAURSEN [1994]) is obtained by eval-
uating the norms of the tangential traction in (I1.2.31) and (II.2.33) with the reference
metric (i.e., ||t;]|res as defined above), while maintaining the definition (II.2.32). In this
case also, the frictional dissipation is given by (I1.2.55). O

11.3. A Dissipative Time-Stepping Algorithm for Frictional Con-
tact

We describe in this section the formulation of a new time-stepping algorithm for gen-
eral frictional contact problems that exhibits the a-priori stability estimate (I1.2.54) derived
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in the previous section for the continuum problem. As a consequence, the final scheme is
unconditionally dissipative in the sense that the energy of the system of solids never ex-
ceeds its initial value. The approximation of the normal part has been presented recently
in ARMERO & PETOCZ [1996] by the authors and it is summarized in Section I1.3.2. A
treatment of the frictional contributions leading to positive dissipation is introduced in

Section I1.3.3.

I1.3.1. Temporzl discretization. Momentum conservation and energy evolution

We consider a temporal discretization of the equations described in the previous sec-
tion for the interval [0, T] = Up{tn,tn+1}- Let {tn,tn+1} denote a typical time increment,
with time step At = t, 1 —t,. Denote by ¢, = ¢, and by V,, = V;_, that is, time discrete
approximations of the deformation and velocity fields, respectively. With this notation,
we consider the following mid-point temporal discretization of the governing equations
(I1.2.20)

<P7(3r1-‘90$:) =V(i)1 i=1,2, : \

At n+3

v _ Vn(i) _ - . : )
/ pt()-,) n+1 . 6Sa(z) + S(z) . F(’)Tl Grad(&‘p(t))jl dQ(")
I710) At ntz b (11.3.1)

_ / PP 5o g _ / CED s gr®
() n+'2" 1-'.1(..‘) n+-2-

+ / " [—p 69 + tr, 66°] dI'M =0,
S
in the mid-poin* cunfiguration
= 2 (¢n + Pn+1) , (11.3.2)

and the mid-point velocities

V. 1=} (Va+Vapr). (IL.3.3)
2

The time discrete variations of the gap and the slip in (I1.3.1) are defined accordingly by
b6g := [&p(l) (X)—-0@(¥Y (X))] ‘vl (I1.3.4)
+3 n+35

and

(IL.3.5)
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for a material point X € I'Y), in terms of the closest-point projection Yn+ 1= f’n+ 1(X)
2 2

evaluated at the mid-point configuration (II.3.2). This closest-point projection defines

also the geometric quantities v 1, 7, 1, and the gap g 1 as given by (I1.2.3). The
n+-2' n+'2- n+§

discrete approximations S, $, and fr, for the stresses, normal pressure and tangential
frictional tractions, respectively, are to be defined. The interest herein is the develop-
ment of approximations such that the conservation and dissipation properties identified in
Section I1.2.3 are inherited by the nuricrical scheme. We have written again the contact
contributions in (I1.3.1) with the wholz boundary I'*) as domain of integration, since the
integrands (p and #r,) are imposed to vanish outside the contact boundary. We refer
to the Appendix for complete details on the finite element implementation of the above
considerations. ’

i. Conservation of linear momentum. The conservation of linear momentum for the
case of a free system of solids (i.e., satisfying (I1.2.36) at the mid-point configuration (I1.3.2)
as needed in (I1.3.1)) follows as for the continuum system by considering the translations
(I1.2.38) in the variations of (I1.3.1). We conclude that

Ly,=1Lnu1, (IL.3.6)
for a typical time step {tn,tn+1}-

ii. Conservation of angular momentum. Following the arguments presented in Sec-
tion II.2.3 for the continuum problem, consider variations consisting of the infinitesimal

rotations .
S =wx e i=1,2, (IL.3.7)
n+§
for w € R™im, We first note that tke gap and slip variations, given respectively by
(IL.3.4) and (11.3.5), vanish for the varizcons (I1.3.7). The arguments presented in (I1.2.45)
and (I1.2.46) for the continuum system apply here for the time discrete case. We note
that the consideration of the geometric quantities of the contact terms in the mid-point
configuration, and in particular the closest-point projection, shows to be crucial for these
arguments to apply. The introduction of (II.3.7) into (I1.3.1)5, in combination of the vector
identity
0 1 x (Vidh = Vi) = oy x Vi — o) x VI
2
—(oma =) x VO i=12, (IL.3.8)
2

the last term vanishing by (I1.3.1)1, and the relation (I1.2.43) with F(’Zl by (IL3.7), leads

2
to

: 2
(Tnp1 = Jn) w==3_ » SO . W de® =0, (11.3.9)
i=1 '
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if we impose the symmetry condition for the stresses SO (i = 1,2), as for the continuum
case. The conservation of angular momentum for a free system of solids

Jn=Jni1, (IL.3.10)

for the discrete equations (II.3.1) follows. For our purposes, the momentum-conserving
character of the discrete contact contributions, regardless of the actual approximations p
and 7, is to be noted.

iii. Energy evolution. The evolution of the energy for the discrete equations (II.3.1)
follows by considering the variations

Sp® =B —p® =12, (IL.3.11)

The energy-conserving approximation 5() of the stresses presented in SIMO & TARNOW
[1992] is considered, leading to the expression

80 = 1IcH(EW, + EY)  i=1,2, (I1.3.12)

for a Saint-Venant Kirchhoff model characterized by the constant material tangent C and
the Green-Lagrange strain tensor E = (C — 1)/2. The symmetry of S® is to be noted.
Expressions for general elastic models can be found in GONZALEZ & SiMO [1995). The
introduction of (I1.3.11) in (II.3.1) leads to the evolution of energy equation for the discrete

problem
n+1

n+1
: (I1.3.13)

n+

1
AE| T =AE,|  +AE.,

n n n

identifying the change of energy in a typical time step {t,,%n+:} in a free system of solids as
arising from the contact terms, the normal and tangential part.;, respectively. We consider
each contribution separately in the next sections.

I1.3.2. A conserving approximation of the normal contact pressure

The introduction of the variations (I1.3.11) in the normal contact term in (I1.3.1) leads

to the expression
n+1

= /P B G —an) ar®, (I1.3.14)

where, after using (II.3.4),

921(X) = g2(X) + v, 1 - [(#01(X) - (X))
2 (IL.3.15)

- (1 (30) - eD(F, 10| |
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for a material point X € I'™). The evolution equation (I1.3.15) is initialized with the last
(real) gap gn previous to the first time-step in contact, detected by an initial negative (real)
gap gny1. We refer to g¢ as the dynamic gap. The difference of g¢ 41 and the gap gnq1
defined by the closest-point projection (II.2.2) at the configuration 1, as employed in
standard numerical treatments of the problem, is to be noted. In this respect, we observe
that (I1.3.15) defines a second-order approximation of the evolution equation (IIA.2.17). The

evaluation of the deformations ¢, 11 and ¢, with the closest-point projection Yn+ 1 at the
2

mid-point configuration (II.3.2), defining also the unit normal Y, L is again considered
2

in (II.3.15) as a consequence of its use in (II.3.4).

In view of (I1.3.14), we define the contact pressure § by the difference quotient

Ugt,,) —U(gd)
Qg+1 - gﬁ

—~U'(3(g93., +92)) ifgd,, =48,

- if gd # gd,
b (I1.3.16)

3
I

for a non-negative penalty regularization potential U(g). The numerical simulations in
Section I1.4 consider

2
2 ) ifg?<0
Ugh=42"™" (¢°) a0 (IL3.17)
0 if g¢ > 0, :

for a large penalty parameter ky > 0. Note that the definition (II.3.16) is such that > 0.
We point out that the contact-release check in (I1.3.16) is performed with the dynamic
gap g&.,. Furthermore, since the term U(g2) vanishes in the first increment in contact,
the normal gap constraint (I1.2.4) is imposed effectively at t,+1 (not at the mid-point) as
KN — 00, leading to an improved numerical performance of the scheme. We no*: that
such enforcement of the gap constraint (II.2.4) is not present in other conserving -.nemes
for the problem at hand (see LAURSEN & CHAWLA [1996]), but only of the gap rate §, so
gn+1 = gn is effectively imposed instead. Similarly, we note that ' > 0 for the time step
of release detected by g¢., > 0.

The change of energy (11.3.14) in a typical time increment reads then

n+1
AE,,|  =- / (Upg1 — Up) dI'D (I1.3.18)
n ra
which implies
n+1 ,
Ay +P)| =0 for Pi= U(gd) d2® >0. (I1.3.19)
n 0)

For the frictionless case, A€, = 0 in (I1.3.13), so we conclude &, < &,, for a contact
state at t,, and £, = &,, for a released state at ¢, (since P, = 0). The restoration
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of the energy of the system of solids upon release follows in this frictionless case, while
the energy is under control during the enforcement of the normal contact constraint, in
compliance with the a-priori stability estimate (I1.2.54). Physically, energy is stored in
the regularization potential while enforcing the normal contact constraint (I1I.2.4), and it
is completely restored upon release.

The schemes summarized in this section have been presented recently by the authors
for the numerical simulation of frictionless contact in ARMERO & PETOCZ [1996]. In ad-
dition, extensions imposing the derived constraint on the velocity (§ = [V] v = 0) during
persistent contact and modifications exhibiting high-frequency dissipation have been also
presented. The reader is referred to this reference for further details. We introduce next
an approximation of the frictional tangential components that inherits the dissipativity of
the frictional problem.

I1.3.3. A dissipative approximation of the frictional tangential traction

Following a similar strategy as in the previous section, the introduction of the varia-
tions (I1.3.11) in the tangential contact term of (II.3.1) leads to the expression

cT

n+41
e[ e (€ - gy ar®, (11.3.20)

where, after using (I1.3.5),

Ao, ,1 (635 - €2”) mran;%-[(saﬁll(X)— SP(X))

o (11.3.21)
Y %'(‘Pn-;-l, (7,,1(0)

o) (7 ;(X))) -
2

As a consequence of the expression (II.3.5), the unit normal v nd the tangent basis

Ta, b the (real) gap g, ! and the matrix Aaﬁ ( btained by (II 2.19)) are evaluated

using the closest-point prOJecmon Yn+ 1(X) given by (II.2.1) at the mid-point configuration
2

(I1.3.2). The evaluation of the deformations gas,) and gan -1 at this mid-point closest-point,

as in the expression (II.3.15) of the dynamic gap, is to be noted again. The recursive
definition (I1.3.21) is initialized by fdf = Eff that is, with the position of the closest-point
projection in the first iteration detecting contact. We refer to the quantity £¢ as the
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dynamic slip. We observe that the time discrete equation (II.3.21) corresponds to a second
order approximation of the continuum rate equation (II.2.18).

Coulomb friction, as described by equations (I1.2.31) to (I1.2.35), defines a perfect
stick/slip response of the interactions between two solids. The constraint of perfect (rigid)
stick leads to a difficult enforcement numerically. To integrate these equations, we consider
the following new regularization of the slip equation (II.2.31)

tr, = Kr Maﬁ [gﬂ - E’B] ’
(I1.3.22)

-8 ir
M =y
aﬁé ’)’“tT” )

for a large penalty parameter kr > 0. In the limit k7 — oo, (I1.3.22); enforces & = €,
which follows the slip relation (I1.3.22),, that is, (I1.2.31). We refer to the point £ as the
stick point, and its value is initialized with the initial contact point. In the time discrete

setting, we have
£:=6, | (11.3.23)

with &€, = &9 at t, (referring again to the first iteration where contact is detected). The
regularized equations (I1.3.22) have a structure similar to the equations of elastoplasticity.
We note the use of convected components in (I1.3.22), leading to the invariance of the pro-
posed regularization. In (I1.3.22);, we have considered M,g, the metric at &, for simplicity
in the numerical equations that follow; see comments below. The regularized equations
(I1.3.22) are then integrated numerically using an operator split strategy as developed next.

We discretize the slip relation (I1.3.22) in time through a generalized mid-point ap-
proximation of the form

_ d, -
tr, =K1 Mag, [fnfl— ;’fﬂ] ,

; . tr (11.3.24)
_ _ _ o
o, (8, 8) - 0 sy
n
with
Ty =0 tTap,, + (1= 0) tra, , (11.3.25)

for a numerical parameter 9 € (0, 1]. Note the use of the dynamic slips in (11.3.24). We have
considered an explicit approximation at €2 of the reference metric Mag. The need of this
approximation in the proof of the dissipativity of the scheme, as developed below, arises
from the hypo-elastic character of the regularization (I1.3.22);, unless M «p is constant. In

fact, for a constant metric Mg = Myg, the hyper-elastic relation

ta

= 3§a (3 kT EMspel) ,  for &8 :=¢F - 8P, (I1.3.26)
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is recovered for the regularized stick phase, identifying a quadratic energy potential for the
regularization (I1.3.22). Given the small slips during the stick phase (enforced to vanish
in the limit k7 — 00), and the simplicity of the resulting discrete equations, we view.this
approximation as a simplification of the final equations rather than a limitation.

The unknown tangential traction ¢7,,, is constrained by the slip surface (II.2.33),
defining the discrete stick/slip and consistency conditions

¢=ltr, ol —p<0, (11.3.27)

Ay>0, and Avy¢$=0. (I1.3.28)

The pressure p defined by (I1.3.16) has been used in (II.3.27). The Euclidean norms in
(I1.3.24) and (11.3.28) are computed following the continuum relation (II.2.35). The value
9 = 1/2 is preferred, since it leads to a second-order accurate scheme (for constant Myg),
and the availability of the metric Map,, 1 from the closest-point projection Yn 1.

2 2
The discrete slip equations (I1.3.24), (I1.3.27), and (11.3.28) are solved for the tangen-
tial traction tr, s using an operator split with an structure similar to return mapping
algorithms in elastoplasticity (see SIMO & HUGHES [1997)). In this setting, define the trial
state

G o= wr Mag, (€40, - 509) (13.29)

and compute the trial slip function

grriot = ([t | - b (I1.3.30)
for the contact pressure p > 0 given Ly (I1.3.16). The case ¢'** < 0 corresponds to a
stick step, with the update equations

trial

tr,,., =t , and &1, =£2, (11.3.31)

for the tangential traction and stick point, respectively.

A frictional slip step is detected with ¢!™**! > 0. In this case, we must have frictional
slip Ay > 0 which is found by rewriting (II.3.24), as

trial

i
traet = kp 9 Ay —* ttp, o, (I1.3.32)

1z |

after a simple calculation involving the definition of the trial traction (II.3.29). The equa-
tion (I1.3.32) implies
Itrii% | = lltrnioll + 57 9 Ay, (I1.3.33)
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and
t trial t
Tntd  _ _Tnid (11.3.34)
ltrii%) Ernsll

The imposition of the consistency condition (IL.3.28),
¢ = lltrarsll — P =0, (11.3.35)

leads in combination with (I1.3.30) and (I1.3.33) to

¢trial
= >0, (I1.3.36)

Ay =
7 19K,T

in a frictional slip step. Furthermore, (I1.3.32), (I1.3.34) and (II.3.35) result in

trial

- Tn
1T, = 4D ” ttr,-“;;’” : (11.3.37)

Tn+t9

After a frictional slip step, equation (I1.3.24), defines a new stick point £2_ ;. However, we
consider the stick point defined by the update €2, = &2, (that is, the exact limit solu-
tion) in the step following the frictional slip, similar to the original initialization (II.3.23)
of the stick point and instead of the value given by (I1.3.24);. This modification is crucial
for the final dissipativity of the scheme, as shown in the following section. Furthermore, it
avoids possible drifts of the stick point with respect to the path of the contact point &2 11
that may occur for finite values of k. The predictor/corrector scheme is simply repeated
from the new stick point. We view this modification as part of *he definition of the penalty
regularization proposed herein by (II.3.22).

The tangential traction fr = tr, , (given by (11.3.29) or (I1.3.37) for a stick or
frictional step, respectively) is entered in the discrete weak form (I1.2.20). The above
developments are summarized in Table II.3.1. The subindices n + 9 for the traction tp
and n for the stick point have been omitted for clarity, since they are not required in the
actual implementation. According to the developments in Section I1.3.1, the final algorithm
conserves linear and angular momentum. We show next that the proposed scheme leads to
a positive energy dissipation, thus conforming with the a-priori stability estimate (I1.2.54).

I1.3.3.1. The dissipative properties of the proposed scheme

To prove the dissipativity of the frictional algorithm described in the previous section,
we consider the general case given by a sequence of N > 0 stick steps followed by either
release or frictional slip. Let

nd .= ¢d _ €2, (11.3.38)
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TABLE 11.3.1 Summary of the discrete equations for the frictional
contributions. (The subindices n + 9 for the traction and n for the
stick point have been omitted, since their consideration is not required
in the actual numerical implementation)

For a contact step (i.e., p > 0 as defined by (I1.3.16)), and a given £¢,
define €2, by (I1.3.21).

For a given stick point €9, define the trial tangential traction

t*trwl = Kkp Maﬁ (g gdﬂ)

for €2 5 =1 £3,, + (1 — ¥) &2, with the metric M,p evaluated at
the stick point £€24. Compute the trial slip surface

¢trial - “i‘tzrial“ _ #ﬁ

IF ( ¢tral <0 ) THEN

i = el | (stick step)
ELSE
. ttrzal
T = pp T trm.l” (frictional slip step)

and update the stick point by € + &4 +1-
ENDIF

for stick point £ := £2 during the considered N + 1 steps, and
a3 == Mg n3™ n>? . (I1.3.39)

for the constant metric M5 at £2.

The discrete change of energy (11.3.20) due to the tangential frictional contributions
for a stick step {tn,tn+1} is given by

A&,

n+1 _
no —L(l) T (€n+19 W) Mop,, (§n+1 £aP) df(l)

d, '’ d,
T /1‘(1) KT Tnto Mag, (nnfl — n@P) dr®
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K
= [ |l = Sl + w0 = )l = il | X340

after using (11.3.29) and the vector identity

Moo =10, 1+ (0= 3) (i —70) - (I1.3.41)
2

Note again that €% = €% during the N stick steps. Therefore, after adding recursively
(I1.3.40) for the assumed N stick steps, we have

Tlo _;:-:O S P Nl

| N-1
~0-3) Y [ wrlnd - ndalfy ar®
n=0 rm

<0  for9>1/2, (I1.3.42)

after noting that ||nd|| jz = 0 since €2 = ¢4, The estimate (I1.3.42) shows that during the
stick phase the total energy of the system of solids does not increase due to the frictional
algorithm, i.e., it exhibits positive dissipation. If the next step {tn,tn+1} is a released state
(ie., p = 0 and fp = 0), the above estimate gives the energy dissipated during the contact
interval due to the numerical regularization of the tangential traction. This dissipation
vanishes as kp — 00, i.e., in the limit enforcing the stick constraint ||5?||;7 — O.

Similarly, we obtain for the frictional step {tn, tn+1}

N+1 5
pp KT
= [ e [ F sl — S Ikl

AE
“Tln ) tTysll

1
+rr (9~ )l — niallfy| a® . (13.43)

after algebraic manipulations as in (I.3.40), and using (I1.3.37). Adding the equations
(I1.3.42) and (I1.3.43), we conclude that for a sequence of IV stick time steps and one
frictional step the total change of energy due to the frictional contact contributions is
given by

N .
At =Y ac s—/ T gyl A8
Tl T ray [[epial] 2 Nl

up 1
— 1= s dr
Jro ( utmu) o Il ¢

<0 for9>1/2., (11.3.44)
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since p > 0 and the bracket in the second integral is positive

,uﬁ ¢trial
1- [l | - [l | >0. (I1.3.45)
N+9 N+9

by (I1.3.30). The above arguments apply completely to a new series of time steps with the
new stick point £¢ < &2 +1- The dissipativity of the proposed frictional algorithm follows.

The derivations of (I1.3.40) and (II.3.43) involve in a crucial manner the definition
(I1.3.21) of the dynamic slip £%. The combination of the dissipative estimate (I1.3.44) with
the conservation property of the normal contact component shows rigorously the uncon-
ditional (energy) stability of the proposed contact scheme. The energy in the numerical
simulation will never increase over its initial value.

Remarks I1.3.1.

1. The fully convected form, as discussed in Remark 2.2, satisfies the above estimates
with the norm in ||¢7]| replaced by the reference norm ||tr||res. Similarly, the fully
spatial form of friction leads to the same estimates with spatial norms everywhere.
Details are omitted.

2. The proposed scheme applies to both quasi-static and dynamic problems. Note in
this respect that the definitions (I1.3.15) and (I1.3.21) of the kinematic quantities g¢
and &9, respectively, involve the deformations ), and not the velocities V(®. The
energy conservation/dissipation properties of the scheme apply in particular to this
case (set pgi) — 0 in the above developments), not affecting the contact contributions.

O

I1.4. Representative Numerical Simulations.

We present in this section several numerical simulations that assess the performance
of the proposed time stepping-algorithms. The examples involve quasi-static and dynamic
simulations. Specifically, we present the results obtained for the forging of an elastic block
against arigid foundation in Section II.4.1, the impact of two elastic blocks in Section I1.4.2,
the impact of cylinder against a rigid wall in Section I1.4.3 and, finally, the impact of two
elastic cylinders in Section I1.4.4. We refer to ARMERO & PETOCZ [1996] for additional
examples assessing the performance of the conserving normal contact approximation in
frictionless problems.

I1.4.1. Forging of an elastic block against a rigid foundation
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FIGURE I1.4.1 Forging of an elastic block against a rigid foundation.
Problem definition. :

FIGURE I1.4.2 Forging of an elastic block against a rigid foundation.
Deformed mesh.

We consider the benchmark problem presented in ODEN & PIRES [1984] of the forging
of an elastic block against a rigid foundation. The purpose of this example is to assess the
the accuracy of the new frictional integration scheme in a quasi-static setting. As noted
in Remark II.3.1.2, the numerical integration schemes in time developed in this paper
have been presented in terms of the deformations ¢® of the solids and not the velocities,
applying then to the quasi-static case.

The problem definition is depicted in Figure II.4.1. An elastic block is pressed against
a rigid foundation and pulled by a tangential force uniformly distributed along one of the
sides of the block. We have considered the spatial discretization shown in Figure I1.4.1,
with 20 x 10 4-node bilinear quadrilateral finite elements. The material of the block is




F. Armero 86

250} 0

150} '.6"'-._0 ...... o @ J

100 C — tangential: present work i

~~~~ normal: present work
sof X tangential: Ouei & Pires .
© normal: Oden *. Pires

Nodal Reactions
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FIGURE 11.4.3 Forging of an elastic block against a ngld foundation.
Nodal reactions along the base of the block.

assumed linear elastic in accordance to the results reported in ODEN & PIRES [1984], with
Lamé constants A = 576.92 and G = 384.62. The linear elastic continuum is recovered
in the considerations presented in the previous sections by considering the infinitesimal
strain tensor £(u) := Grad®u in terms of the displacement field u(X) = ¢(X) — X, and
the corresponding linear variations, instead of the Green-Lagrange tensor E in the elastic
term of the governing equations. All the considerations with respect to the evolution of
the energy (not the angular momentum due to the lack of invariance of linear elasticity)
apply to the infinitesimal continuum, and the corresponding. i 1ternal force term in the final
finite element equations. The finite kinematics of the contact contributions are retained.
Plane strain conditions are assumed.

The frictional scheme developed in Section I1.3 was employed with penalty param-
eters of Ky = 108, kp = 10%, and the numerical parameter ¥ = 0.5 for the frictional
contributions. A friction coefficient of g = 0.5 is considered. Figure I1.4.2 shows the de-
formed configuration for this case. Figure I1.4.3 depicts the nodal reactions along the base
of the block, for both the proposed scheme and the results presented in ODEN & PIRES
[1984]. A good agreement between the two curves can be observed, showing an accurate
resolution of the frictional interaction of solids in this quasi-static case by the proposed
algorithm. We note that, even in this quasi-static case, we consider the mid-point type
approximations as developed in Section II.3 for the general dynamic problem. Therefore,
the solutions obtained with the proposed schemes lead to a positive energy dissipation of
the approximation of the frictional forces.
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11.4.2. Oblique impact of two infinite blocks

We present in this section the results obtained in the modeling of the oblique impact
between two elastic blocks presented in CHEN & YEH [1988]. The problem definition
is depicted in Figure I1.4.4. A rectangular block is given an uniform initial velocity of
vo = [=10,-10] (in a cartesian system as depicted in Figure II.4.4), impacting the top
surface of a second block whose bottom boundary is fixed. The blocks are modeled with
the Saint-Venant Kirchhoff continuum model (I1.3.12). Both blocks are characterized by
Lamé constants A = 0.0 and G = 500, and density p = 0.1. Fully dynamic, plane strain
conditions are assumed. ’

The penalty parameters employed in the simulations are sy = k7 = 104, with 9 = 0.5.
Both frictionless (1 = 0) and frictional (u = 0.4) cases are considered. A constant time step
of At = 0.01 is employed. Figure I1.4.5 compares the displacements of point A (see Figure
I1.4.4) obtained in this work with the results reported in CHEN & YEH [1988] for both cases.
The horizontal and vertical displacements are plotted versus time. Both displacements and
time are measured from the instant of contact between the two blocks. As expected the
horizontal displacements are significantly reduced by the presence of friction, while the
vertical displacements on the rebound increase when friction is present.

We can observe that the results obtained with the scheme proposed herein compare
well with the results presented in CHEN & YEH [1988] for this dynamic contact/impact
problem. We have also included in Figure I1.4.6 the distribution of the stresses o, ayg
and o4, (the z direction being the horizontal direction in Figure I1.4.4) for the frictional
case. All the stresses are shown on top of the deformed configuration of the solids at time

= 0.12.

I1.4.3. Impact of a cylinder on a rigid wall

We present in this section the results obtained in the problem of an elastic cylinder
impacting a rigid wall. Fully dynamic simulations are performed, under plane strain con-
ditions. The cylinder of radius R = 1.0 has an uniform initial velocity vo = [0.4, —0.4] (z
and y directions corresponding to the horizontal and vertical directions, respectively, in
Figures I1.4.7.a and I1.4.8.a), impacting the rigid wall at 45°.

A fully nonlinear elastic model is considered for the cylinder. More specifically, we
use the Saint-Venant Kirchhoff model in (I1.3.12) with Lamé constants A = 130.0 and
G = 43.33, and density p = 8.93. Both frictionless and frictional impacts are considered,
with a friction coefficient of 4 = 0.2 for the frictional case. The penalty parameters
kny = sp = 10%, and numerical parameter 9 = 0.5 for the frictional contributions are
employed.

The performance of the time-stepping algorithms presented herein is compared with
a traditional mid-point approximation of the contact contributions. In both cases, the
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FIGURE II1.4.4 Oblique impact of two elastic blocks. Problem defi-
nition.
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FIGURE II.4.5 Oblique impact of fwo elastic blocks. Displacement
of point A (see Figure 11.4.4) for the frictionless (u = 0) and frictional
(1 = 0.4) cases.
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FIGURE 11.4.6 Oblique impact of two elastic blocks. Distribution
of the (Cauchy) stresses a) ozz, b) oyy, and c) ogy, at time t =
0.12 (after impact) on the deformed configurations for the frictional
case. (The z—direction is the horizontal direction to the right, with
the y—direction upwards, and origin at the bottom left corner of the

block at the bottom)
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energy-conserving scheme (I11.3.12) of SiIMO & TARNOW [1992] is considered for the con-
tinuum contributions in both cases. The cylinders are discretized with 4-node bilinear
finite elements leading to 2-node linear segments to characterize the contact; see Figure
I1.4.7.a. Figures 11.4.7.a and I1.4.8.a show the configurations of the cylinder obtained with
the proposed scheme before, during, and after contact, for the frictionless and frictional
cases, respectively. Finite strains are considered. Notice the additional rotation of the
block in the frictional case due to the tangential frictional forces during contact.

Figures 11.4.7.b and I.4.8.b show the total energy evolution during the simulation,
for the frictionless and frictional problem, respectively. Observe that even in the presence
of frictional dissipation, there is an initial increase of the total energy after the impact
when using the mid-point rule scheme. This unphysical increase of energy should be con-
trasted with the dissipation properties shown for the proposed scheme. As expected, the
increase of energy for the traditional mid-point scheme is more pronounced in the absence
of frictional phenomena, leaving the cylinder with a higher energy content after bouncing.
This situation is to be contrasted with the schemes proposed herein. While in contact, the
energy of the cylinder is reduced, with the difference in the energy going to the penalty
regularization potentials enforcing the impenetrability constraints. As shown in Section
I1.3.2, the total energy of the extended system (the solids and the regularization potentials)
is always conserved in the frictionless case, leading to the (energy) stability of the scheme.
This situation is to be contrasted again with the instability evidenced by standard implicit
schemes, like the mid-point rule, in the presence of nonlinearities (unilateral contact con-
straints, in particular). In addition, we can observe the full restoration of the energy to its
initial value upon release in the frictionless case. The lower value in the frictional problems
accounts for the physical positive dissipation present in the problem, and modeled by the
numerical schemes.

I1.4.4. Skew impact of two elastic cylinders.

This final example considers the free-body system of two nonlinear elastic cylinders
impacting at each other. The cylinders have a radius of 1, and are discretized with isopara-
metric 4-node bilinear finite elements, as shown in Figure 11.4.9. The center of the left
cylinder is located at [—1.8,0.0], while the center of the right cylinder is at [1.8,0.0], in
a reference cartesian system (the z-direction is the horizontal direction to the right, and
the y—direction is upwards in Figure I1.4.9). The left cylinder is given an initial velocity
vo = [1.0,0.1], while the right cylinder is at rest. We consider 1 time step of At = 1,
and 250 time steps of At = 0.01, for a final time of T = 3.5. The Saint-Venant Kirchhoff
material model (I1.3.12) is assumed for both cylinders with Lamé constants, A = 130,
p = 43.33, and density p = 8.93. We assume Coulomb friction with p = 0.2 with the
numerical parameter 9 = 0.5. The penalty parameters for this problem are sy = 10 and
kp = 103.
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FIGURE I1.4.7 Impact of a circular cylinder on a rigid wall. Solu-
tions obtained with the proposed scheme for frictionless contact. De-
formations shown at t = 0,6.3,12 (before, during, and after contact,
respectively).
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FIGURE I1.4.8 Impact of a circular cylinder on a rigid wall. Solu-
tions obtained with the proposed scheme for frictional contact. De-
formations shown at t = 0,6.3,12 (before, during, and after contact,
respectively).
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FIGURE 11.4.9 Skew impact of two elastic cylinders. Solutions ob-
tained with the proposed scheme at different times (u = 0.2).
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FIGURE 1I1.4.10 Skew impact of two elastic cylinders. Evolution
of the energy, and linear and angular momenta versus time. We can
observe the unphysical growth of the energy for the mid-point rule.
The computation in this case cannot continued after t = 2.30 for the
given time step At = 0.01 (no convergence obtained). This situation is
to be contrasted with the proposed scheme. Positive energy dissipation
is observed at all times. All the momenta, linear and angular, are
conserved for both schemes (until blow-up for the mid-point rule). We
note that the continuum contributions in both cases are discretized in
time using the energy-momentum conserving scheme.




04/30/01

13:59 FAX 703 696 7364 AF OSR

Final Report. F49¢20-97-..-0193

"Z1006/012

93

The continuum contributions Lo the governing equaticns are sc
conserving scheme developed in SiMO & TarrOW [1992], and desc
The contact contributions are approximated with the proposed
point rule, after noting the mid-point character of thz continuum
I1.4.9 show the deformed configurations at difierent times for the
finite strains that appear in the problem are clear. The evolutio
cylinders (kinetic plus strain energy) and tae different ccmponen
plotied versus time in Figure 11.4.10.

The improved stability properties of the r.ewly proposed meth
proposed scheme does not show an increase of the crergy over the
final energy after release being smaller than the origin valuc due to t!
In contrast, the artificial and unphysical increa:e in enzrgy for a stax
schiewne, like the midpoint rule, can be observed. In fact, the simu

point contact cannot be continued after ¢t = 2.30. No converger :

given time step. The high value of the energy at this stage is to b
conserve the momenta (the ruid-point contact up to the blow-up «
the underlying physical system; see Figure 11.4.10.

The final cnergy dissipation for the propoased scheme is appe
We note that thc tangential frictional forces are always dissipat
proved in Section I1.3.3. Hencc, they always mply ¢n energy dec
in the energy are due to the normal contacs compornent. To enfor
constraint, energy is transfer back and forth t the regularization
Section I1.3.2. The energy is not lost neither created due to thi:
no-increase over the initial value and with al. the eaergy stored
potentials fully recovered upon release. The 11stabilities presented
in this physically dissipative setting are a conszquenc: of the lack «
in the numerical simulation. This situation is to be contrasted wi
schemes.

IL.5. Summary and Concluding R 2marks

We have developed in this paper a new i nplicit time-steppin
problems that inherits the a-priori stability cs:imatcs of tae contir
ticular, the ncwly proposcd scheme shows unc:nditional positive e
frictional problem. The total energy in & numerical simulation is &
trol, and no instabilities due to an unbounde! grow:sh of the ene:
that the scheme exhibits unconditional cnergy stability in time. F
conserving propertics of the contact pressuzc approrimaticn, ene
in the frictionless range. Crucial to these res:lts is the considera
inition of the gap and slip cntering the constitutive laws of conte

Reproduced From
Best Available Copy

eid using the energy-
ied in Section I1.3 L.
‘harae and the mid-
:erpolations. Figurcs
‘apcsed scheme. The
ol the energy of the
¢’ the momenta are

Is are apparent. The
1sial value. with the
Ticsional dissipation.
ia-d frictional contact
ion involving a mid-
‘s obtained for the
wted. Both schemes
the computation) as

n: in Figure 11.4.10.
2 in this scheme, as
ase. The oscillations
i+ 1he impenetrability
‘t-ntials, as shown in
nrocess, assuring the
« these regularization
y the mid-point rule
cenirol of the energy
Tz newly proposed

for frictional contact
1:a problem. In par-
gy dissipation in the
svin to be under con-
v zen occur. We say
‘tl:czmore, due to the
7 stability also holds
oo of the proper def-
{, and a new penalty



F. Armero 96

regularization of the stick/slip conditions. Furthermore, the approximation of the contact
forces does not introduce any linear and angular momentum in the system, as required
from physical considerations.

We have presented several representative numerical simulations showing also a good
numerical accuracy of the proposed methods in the solution of both quasi-static and dy-
namic problems. Our experience with these methods has shown not only improved stability
properties in time, as identified in the nrevious analyses, but also a more stable enforcement
of the contact constraints when compared with standard implicit schemes. We believe that
the results presented herein furnish a typical example where the a-priori knowledge of the
physical properties of the mechanical system leads to the design of improved numerical
methods.

Appendix II.1. The Finite Element Implementation.

We summarize in this appendix the finite element implementation of the time-stepping
algorithms presented in this paper. The discrete in time weak form (II.3.1) of the governing
equations in a typical time step {t,,t,4+1} leads after a finite element discretization to the
following algebraic equations in terms of the nodal displacements d,,; 1 and nodal velocities
Up+1 at i1 (including all the bodies in contact)

+ + + 1
Rom g0 4 5D 0D L LA (s =) =0,
: (L1)
At (dnt1—dn) = v, :_%,,

defining the (nodal) finite element residual R. In (I.1), M denotes the finite element

i 1
. +5 _ . 5
mass matrix, fé:t 2) the contributions from external loading fc(n+2) the contact force,

+35 A . -
and fz-(:t 2) the contributions from internal stresses. For example, this internal force for a
isoparametric element in the mid-point discretization (I1.3.1) reads

07T
+3) (P’(l) Ni
z(:t 2 Z /9 ()Bf:j_ SO dR®  where B(:)_ SD(;)T N4 ,
) 2 n ) ’ ’
‘p(") Né+‘19(z) N? n+%
1.2)

for each node A = 1,n,,4e With the corresponding shape function N A (N ’*‘,3 = k cartesian
derivative), in a plane problem and expressed in the reference configuration. The stresses
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. T
S®) are given by (I1.3.12) for the energy-conserving scheme. The rows cpf,? correspond

to the columns of the deformation gradient F ().

The contact force in (I.1) is obtained in this work through the widely used master/slave
logic developed in HALLQUIST et al [1985]. In this context, let S denote a typical slave
node of the discretized I'(1) surface that comes into contact with a master segment of the
discretized boundary I"® defined by nodes {M1, M2,...}. Double pass techniques avoid
the prevalent role of the surface of each of the two bodies in contact; see HALLQUIST et
al [1985]) for details. Hence, each slave node in contact is assigned two or more master
nodes defining a contact pair (or element). The simulation in Section II.4 consider bilinear
elements defining two-node linear master segment. This situation is illustrated in Figure
I1.2.1. We present below the expressions for the contact forces and their linearization for
this common case only. Plane problems are considered. The general case can be obtained
accordingly.

1
The contact force fc(n+2) is then expressed as
Nslave
+ + +3
= Afs":- , with 7P =G atiH 1)
2
where Ansme denotes the assembly over the mgq. slave node/master segment pairs.

The values of the normal forces fy and fr are obtained by integration along the slave
surface I'(M). As it is customary, we consider nodal quadrature rules, defining the slave
node/master segments described above, leading to the so-called node-on-segment contact.
In this way, we have

st Zﬁ Wg and fTs = I?T Wg , (14)
with the nodal pressure § and tangential traction given by (11.3.16) and Table II.3.1,
respectively. In (I.4), we have denoted the correspondiug weight of each slave node S by
wg, including the corresponding jacobian (reference length of slave segment). To simplify
the implementation, one can define variable penalty parameters for each slave node, such
that R, := ky w, and R := KT w, are constant among all the slave nodes. All the
arguments presented in this paper apply to this case.

In (I.3), we have used the following notation

Vn+%
~ o 1~ g L~
M1 8,n+
Gn+% = |-N (és)us n+i | > and Hs,n+% l_Ts,n-{-%_ 12 : Ds n+3 o (15)
s s
—NMz(ES)Vs n+l
where
0 ?n+%
o~ M o~ —~
Ds,n+—§- = —N1§ 1(£s)ys»"+% ’ and Ts,n-i—% = _NMl(gs)Ts,n+% . (16)
_N’Jélz(é's)us’n+% —NMz(gs)?s,n—l-%
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Slave node

S o)

FIGURE I1.1.1 Slave-node/master-segment pair for the case of linear
segments in two dimensions, depicting the closest-point projection and
related geometric quantities at the mid-point configuration.

We denote by 7 ;11 = T, ny1/ls, the normalized tangent vector, with l; = 7, L |I, the

3
length of the contact segment at the mid-point configuration in this linear two dimensional
setting. The one-dimensional shape functions N™! and N2 are considered in the above
expressions, with

NME)=1-¢ and NM(&)=¢,, (L.7)
and consequently N,Ié’“ = -—N’g’m = —1. See Figure I1.2.1.
With this notation, we can write the equation (II.3.15) defining the dynamic gap as

gg,n-}—l = gg,n + é’f,n+% [gs,n+1 - ds,n] ) (18)
and (I1.3.21) defining the dynamic slip as

&g,n+1 = g,n + ﬁ\T [gs,n+1 - Eis,n] . (19)

s,n+i

Note that Anp = 5 in this two dimensional case with linear master segments. Here, we

have denoted
i,
2
M1
ds,n+% = dn+% ) (1.10)
M2
dn T1
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referring to the nodal displacements of a typical contact element (pair).

A Newton-Raphson scheme is implemented to solve the nonlinear system of equa-
tions (I.1). Hence, given the nodal values {d,,v,} at time t,, we consider the consistent
linearization of (I.1), leading to the algebraic system of equations

int

2
{ (K(k)+K§’“))+ﬁM] AdERD = R®) (I11)

in the nodal displacement and velocity increments, with the update formulas

d® D = d® 4 AdlD (1.12)
and
oD = B L APl | (1.13)

for the values of the displacements and velocities at time ¢,41 and iteration (k + 1). In
(I.11), we have introduced the notation

AFHD g ®) Ay (L14)

int
2

n+1
material and geometric parts, as usual. Details are omitted. We also introduced the
contact stiffness matrix

with Ad(k+11 ) = 1Ad(k+1) for the continuum contributions to the tangent stiffness, with
n+5 :

AFTHD  g®) At (1.15)
n+§
where ot
K®= A K., with AFHD LR, AdY, (L.16)
s=1 "2

(note the change of sign) for the contribution of the contact arrays.

The linearization of the nodal contact forces (1.3); leads to

Ant3) _ 5 5
Afs,c = Afn, Ga,n+% + In, AG’-‘:r,n+%
| SO — N—_—— ——
material normal part  geometric normal part (I 17)
+ AmH, 1+ IrAH, 1
ﬁr_/ D

material tangential part geometric tangential part

These different contributions lead to the decomposition

——

K, =K+ Kg‘j;’. + Kmet 4 ng" (1.18)
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TABLE II1.1.1 Consistent contact stiffness matrices for a linear con-
tact pair with slave node S.

i. Material normal stiffness:

TNslave U/ - ~ ~ ~
Kpat = A ws Gens) =2 G l®[2G 1 —eD1-6T 1
gs n+1 gs,n s+ nt3 $:nt+3 sn+3

d

with the Gifference quotient in the first term replaced by U” (92, ,1) if 92,1 = g%,

ii. Geometric tangential stiffness:

nslave .
+3 sinty
g 1
—~ ~ s’n-{»—— —~ —~
+D 10T 1+ z 1 ®D
s,n+2 s,n+2 ls 8 n+2 s n+2

iii. Material tangential stiffness: For a stick step

K;-vlgfzck = Wg KT 9 Maﬁ ﬁs & [f{\ + __ngo (dn+1 _ dn):l ,

1 1
Mg +3  fr,

and for a slip step,

U, d - D ——— ~
K’?Lgfz = —Ws j Sign (th) d(gs,‘n-f-l) P H 1® 2G 1
P Isn+1 — ggn

Slgn(tT)H L ®8

—w
s Hp ls sn+3 3n+2

with the difference quotient in the first term replaced by U” (gg’n 41) if gg,n 1= g‘:’n.

iv. Geometric tangential stiffness:

KZ%° = S H H
T, 12 s,n+_;_ ® s’n_'_% + s’n_*_% ® Ss’n_}_%
-8, .eD .- e
s,n+% ® .s,'n+2 s,n+%— ® Gs,n+%
£ 195 1-8 ,ef
s,n-}-% ® s,n+% s,n+% ® s,n-{-%

)
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The expressions for each of these parts of the contact stiffness matrix are summarized in
Table I1.1.1, with the following additional notation

0
- M1 ~
s n+l“- = Nrg (EC)Tn+% ’ (I.].g)
mty —N,%“(éc)?n+%
and the scalar factors
1 =T -~ ) -~ gs,'n-l-— T o~ ~
=7 T, nss (ds,n+1 - ds,n) + 1, : Vil (Tnt1— Tn) (1.20)
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II1.1. Introduction

Traditional time-stepping algorithms for the temporal integration of the equations of
elastodynamics and structural dynamics were developed in the context of linear problems
for the most part. Hence, it is not surprising to observe that algorithms that present
excellent stability properties in the linear range lead to numerical instabilities in the general
nonlinear range. These instabilities are usually manifested by an uncontrolled growth of the
energy of the discrete system. This observation has motivated the development of the so-
called conserving schemes, that is, time-stepping algorithms that conserve the energy and
momentum for this general class of Hamiltonian systems with symmetry. Early examples
of these methods can be found in LABUDDE & GREENSPAN [1976] and HUGHES et al
[1978], consisting basically of projection strategies imposing these conservation laws. We
can find in the more recent literature a strong interest in the development of time-stepping
algorithms with these conservation laws built in. Representative examples in the context
of nonlinear elastodynamics are the works of SiMO & TARNOW [1992], CRISFIELD & SHI
[1994] and GONzZALEZ & SIMO [1995], among others. We also refer to KUHL & RAMM
[1996] for a recent consideration of projection strategies. Applications to multi-body elastic
systems, that is, with a focus on the conservative approximation of the contact interactions,
have been developed in ARMERO & PETOCZ [1998,99], and references therein.

Although the conservation of the physical energy is an interesting property for the
numerical scheme to possess, the need for the introduction of numerical dissipation in the
resolution of the high-frequency range is commonly recognized. This need arises, on one
hand, as a direct consequence of the error accumulated in this range of frequencies, be-
cause of the spatial discretization in infinite-dimensional continuum systems or even by
the physical model itself (e.g., constrained systems modeled through a penalty formula-
tion). Furthermore, the appearance of repeated unit roots in the amplification factors
of typical conserving-type schemes at infinite sampling frequency leads to algebraic in-
stabilities, resulting in a highly oscillatory response near it (that is, for numerically stiff
problems), and thus adding to the aforementioned error in this range of frequencies. In
this way, the formulation of numerical algorithms that exhibit numerical dissipation in
the high-frequency range has received a tremendous amount of attention for linear prob-
lems. Characteristic examples of these methods are the so-called HHT a-method or the
f-Wilson method, among other methods widely used in the engineering literature; we refer
to HUGHES [1987] for a complete account of these ideas in the context of linear elasto-
dynamics. A complete account for more general problems can be found in HAIRER &
WANNER (1991}, including a discussion of the related notion of L-stability. L-stable meth-
ods are characterized roughly by the total numerical dissipation of the infinite frequency,
being particularly well-suited for the solution of numerically stiff problems in which this
component of the solution is not of interest, given especially the aforementioned accumula-
tion of numerical error. In the context of Runge-Kutta methods, these ideas lead directly
to the notion of “stiffly accurate” methods (PROTHERO & ROBINSON [1974]).
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The lack of the dissipative character of classical “dissipative” schemes in nonlinear
problems can be found documented in the literature; see e.g. ARMERO & PETOCZ
[1998] and KUHL & CRISFIELD [1997], among others. The need for new time-stepping
algorithms that exhibit these dissipative properties in the fully nonlinear range is therefore
clear. Recent examples of algorithms developed to this purpose can be found in BAUCHAU
& THERON [1996] and BOTASsO & BORRI [1998], where methods based on discontinuous
Galerkin and Runge-Kutta approaches can be found applied to the integration of beam
models. Evcu though high-order schemes have been proposed in these references, these ap-
proaches secin to apply to particular cases only, usually involving quadratic potentials and
quadratic strain measures. Furthermore, schemes proposed in this framework do not allow
a direct control of the amount of the numerical dissipation introduced in the simulations.

Motivated by the need of this fully controllable character of the numerical dissipation,
we presented in ARMERO & PETOCZ [1998] a simple modification of conserving schemes
for contact problems that leads to the introduction of numerical dissipation in the sim-
ulation of dynamic contact/impact of solids. These and additional ideas have been later
explored in KUHL & CRISFIELD [1997] and CRISFIELD et al [1997] for general nonlinear
elastodynamics and nonlinear beams. These schemes, however, do not show the added
numerical dissipation in the high-frequency range when applied to the linearized problem.
We present in this paper the formulation of time-stepping schemes that introduce rigor-
ously the numerical dissipation in the high-frequency range for general nonlinear problems,
while preserving the conservation of momentum and relative equilibria associated to the
symmetries of the dynamical system.

A symmetry of a Hamiltonian system, defined by the action of a group that leaves
invariant the Hamiltonian, is known to result in a conservation law (Noether’s theorem) and
the so-called -elative equilibria. These equilibria consist of trajectories of the dynamical
system gererated by a fixed infinitesimal element of the group’s algebra (its linearization).
The resuiting solutions of the system of equations are referred to as group motions. In
this context, a general solution can then be roughly thought as possessing a component
in a group motion and a component in the so-called reduced space of internal modes (the
phase space modulo the momentum preserving group motions). Loosely speaking, for
the problems of interest in this work where the main group of symmetries corresponds to
rotations, the group motions are rigid rotations “locked” at an equilibrium deformation
of the elastic solid, with the internal motions corresponding to internal variations of these
equilibrium configurations. We refer to ABRAHAM & MARSDEN [1978] and MARSDEN
[1992], among others, for complete details of these ideas. The need to conserve these
relative equilibria and, in particular, the need for not introducing any numerical dissipation
in the group motions is apparent. In fact, with the simple model problem of a rigid bar
modeled with a stiff spring in a finite rotation around one of its ends, it can be clearly
observed that the internal motions may even be an artifact of the modelization.

The analysis presented in this paper shows that traditional “dissipative” schemes
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loose these conservation properties. The analysis considers the simple model problem of a
point mass connected to a central point with a nonlinear elastic spring and in free motion
around it. This simple example has been also considered in numerous occasions in the
past; see BATHE [1986], CRISFIELD & SHI [1994], GONZALEZ & S1MO [1996] and KUHL
& CRISFIELD [1997], among others. Our goal in the present work is to consider the axial
response of the spring as the “high frequency” component of the solution introduced in
modeling the limit case of a rigid bar (note that the axial vibration is the only natural
frequency introduced in the physical system). In this context, we analyze completely the
properties of the traditional “dissipative” schemes (HHT, Newmark and particular cases
of them). A characterization of the relative equilibria obtained with the midpoint rule
and energy-momentum conserving schemes (two momentum conserving schemes) for this
model problem has been presented in GONZALEZ & SIMO [1996] through a complete
parametrization of the reduced space. Extensions to more general Hamiltonian systems
integrated with energy-momentum conserving schemes can be found in GONZALEZ [1996].
In contrast, the approach taken here explores the properties of the numerical approximation
of the relative equilibria through the global characterization of these solutions as group
motions (rigid rotations). This alternative approach does not need the conservation of
the angular momentum by the numerical scheme, nor a complex parametrization of the
reduced space. In addition, this approach allows also to characterize completely the relative
equilibria, including the numerical approximation of the associated group motion, in the
general context of nonlinear continuum elastodynamics as it is pursued herein.

The lack of a dissipative scheme in the high-frequency range that conserves at the
same time the momentum and the relative equilibria of the exact dynamical system is con-
cluded after these analyses. We then propose a simple modification of conserving schemes
that accomplishes these properties in a fully controllable manner. This control is illus-
trated with a closed-form relatio. between the dissipation numerical parameters and the
spectral radius at infinite freque.cy for an one-dimensional linear oscillator. We refer to
the new method as the EDMC-1 scheme, which stands for “energy dissipative, momentum
conserving” first order scheme. The proposed time-stepping algorithm is shown to intro-
duce the numerical dissipation only in the internal motions, leading to the exact relative
equilibria in the long-term. We focus in this first part of the series on the development
and complete illustration of these ideas in several characteristic problems of nonlinear dy-
namics, including their treatment by traditional numerical schemes as indicated above. In
this way, the methods considered herein are only first order accurate in time, degenerating
to second order accurate conserving schemes along the trajectories of relative equilibria.
First order methods are of practical interest, especially in problems where one is interested
in the simulation of the relative equilibria. The forthcoming second part of this series
addresses the extension of these ideas to the development of high-order methods exhibit-
ing the same conservation/dissipation properties. The added complexity of the resulting
schemes, as well as the need for complete analyses of their accuracy properties (including
spectral analyses in the linear range), deserves this separate treatment.
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The new dissipative schemes consist of a modified stress formula together with a mod-
ified dynamic equation relating displacements and velocities. To illustrate the flexibility
of these ideas, and before considering the general system of continuum nonlinear elastody-
namics, we develop dissipative schemes for a simplified model of thin beams, the second
model problem. For the sake of simplicity, we consider a system of masses subjected
to a system of internal forces arising from axial and bending contributions of nonlinear
hyperelastic springs connecting them. In this very simple setting, we can illustrate the
introduction of the numerical dissipation through th: axial part of the problem, while
maintaining conservative the approximation of the bencing contributions. This strategy is
shown to be very effective in arriving to robust numerical schemes, avoiding the high fre-
quency response associated to the sudden changes of the axial response in typical systems
of nonlinear structural dynamics, as it has been observed to lead to difficulties for non-
dissipative schemes (see, e.g., CARDONA & GERARDIN [1988]). These ideas extrapolate
to the more general case of geometrically exact theories of rods and shells with the added
rotational updates. We plan to address these cases in forthcoming publications.

An outline of the rest of the paper is as follows. Section III.2 describes in detail the
first model problem considered in this work, consisting of the aforementioned nonlinear
elastic spring/mass system. In particular, we include details of the variational character-
ization of the relative equilibria in this simple mechanical Hamiltonian system, as it is
of the interest in the following numerical analysis. Section II1.2.2 considers some exist-
ing time-stepping algorithms commonly used in elastodynamic applications, and studies
their conservation/dissipation properties in the general setting presented in Section III.2.
Details of these analyses can be found in Appendix II1.2. The formulation and analysis
of the new dissipative EDMC-1 scheme is presented in Section II1.2.3. Representative
numerical simulations illustrating these different results are presented in Section II1.2.4 for
this first model problem. Next, Section III.3 develops “hese ideas for the aforementioned
simplified model of thin beams, including complete detzis of the formulation of the newly
proposed schemes and representative numerical simulations in Section II1.3.3. Finally, Sec-
tion III.4 illustrates the formulation and analyses of these methods in the general setting
of nonlinear continuum elastodynamics. Concluding remarks can be found in Section III.5.

ITI.2. Model Problem I: a Nonlinear Elastic Spring/Mass System

We consider in this section the model problem of a nonlinear elastic spring fixed at
one end with a mass at the opposite end in a force free motion. The case of a rigid bar is
recovered in the limit of infinitely stiff spring. This simple setting allows to characterize
many of the numerical properties of time-stepping algorithms for the system of nonlinear
continuum and structural elastodynamics, the main goal in this work. We are interested,
in particular, in high-frequency “dissipative” schemes, designed to handle the highly os-
cillatory response of these frequencies in the numerically stiff problems of interest. In the
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K <o K =00

FIGURE III.2.1 Model problem: nonlinear elastic spring/mass sys-
tem. Planar definition of the problem under investigation. The case of
a rigid bar ||g(t)|| = lo Vt is recovered for the limit value of & = oc.

simple setting of the problem considered in this section, several alternative approaches can
be found in the literature to accomplish a similar purpose, usually involving a modification
of the original problem (see e.g. REICH [1995,98]) or special regularizations of the limit
rigid problem (see e.g. ASCHER & LIN [1997]), but with no direct extensions to the infinite
dimensional system of continuum elastodynamics of interest herein. In contrast, the goal
in this work can be stated again as the formulation of “stiffly accurate” algorithms for the
stiff nonlinear problems of interest, as discussed in detail in the previous section.

To this purpose, and after describing the problem under consideration in Section
I11.2.1, we present in Section II.2.2 the analysis of some classical schemes for problems in
elastodynamics. The poor performance observed by these standard schemes in the simple
nonlinear problem under consideration motivates the development the newly proposed
dissipative methods presented in Section III.2.3.

I11.2.1. Problem definition

Figure II1.2.1 depicts the problem defined by a nonlinear spring fixed at the end O
with a mass m > 0 concentrated at the opposite end. For the force-free motion considered
herein, the nonlinear oscillation and finite rotation (around O) of the mass takes place
in a plane IT~R?. The state of the system can then be defined by the phase space P =
R?/0 x R?, consisting of the pairs (g, p) € P with the position vector g € @ := R?/0 of
the mass m with respect to O and its linear momentum p € T&Q = R2

With this notation at hand, the motion of the mass m (that is, the functions (q(t), p(t)) €




Final Report, F49620-97-1-0196 109

P of the time t € R™) is defined by the simple mechanical Hamiltonian system

 6H .

q= '5; =m p,

sopH_ Lo (111.2.1)
0q lall’

with the time derivatives (-) and the length of the spring [ := ||g|| = /@~ g for the standard
Euclidean inner product and corresponding norm in R%. Equation (II1.2.1) considers the

Hamiltonian

H(gq,p)=K(m)+V(), for the kinetic energy K(m) = im™! x?, (I11.2.2)

depending on 7 := ||p||, and the potential V'(I) (with derivative denoted by V') modeling
the hyperelastic response of the spring (resulting in the internal force fi := V'(l) q//q|| in
the spring, as it appears in (II1.2.1);). The physically motivated case of a convex potential
V(-) is considered in the developments that follow, that is, we have the relation

IV +(1=9) V(i) - V@ L+ (1-9) 1) >0 for 90,1,  (IL2.3)

or, equivalently V" > 0 for the case of a smooth function V'(.), as considered herein. The
numerical simulations presented in Section I11.2.4 consider the particular case given by

V) =13k (1-1)%, (111.2.4j

for a spring stiffness parameter k. Note that [ does not define a quadratic function of the
unknown vector g. No additional external forces are assumed in (II1.2.1). The nonlinear
first order system of ordinary differential equations (I11.2.1) is supplemented by the initial
conditions (g(0),p(0)) = (g, Po) at t = 0. The velocity v of the mass m is recovered as
v=m"1p.

This model problem exhibits the basic nonlinearities characteristic of the problem of
nonlinear elastodynamics of interest in this work and considered in Section III.4, namely,
the geometric nonlinearity consequence of the finite rotation of the mass around the center
and the material nonlinearity for a general potential of the spring. In fact, the characteristic
error introduced in the high-frequency range by typical spatial discretizations of this infinite
dimensional system can be modeled by considering the simple model problem (III.2.1) as
an approximation of the DAE system of a rigid bar. This limit problem and its exact
closed-form solution are given by

g= m™? P, Q(t) = exp(t 2, j) do

. q — T - T

B =~foor T — | P(t)=exp(t £, J) Po=mm ”; Ta®),  (m12s)
Eo  Hp

fbar =mlo 'ng

g9(q):=llgll -l =0, miE I l,’
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for the length of the bar [, := |lqo|f the internal force magnitude fpor in the bar, the
constant angular velocity .Q = I, o, the inertia Z, := m 12 > | 0 and the constant
angular momentum p, = P * 7 go, in terms of the structure matrix Jin R? given by

= 0 -1

J:= [1 0 ] ) (I11.2.6)

in a Cartesian basis {ej, ez} of IT ~R%. We note the skew-symmetry of T for later use.
The system of equations (I11.2.1) with a finite stiffness parameter « can be understood as
a penalty reqularization of the constrained system in (III.2.5) (see e.g. RUBIN & URGAN
[1957] and ARNOLD et al [1988], among others). The solution of the penalized system
(II1.2.1) involves the rigid rotation similar to (II1.2.5) together with the “high-frequency”
oscillation of the spring, the group and internal motions, respectively; see Figure I11.2.1 for
an illustration.

I11.2.1.1. Symmetries: energy and momentum conservation, relative equilibria

The system of equations (II1.2.1) is a characteristic example of a Hamiltonian system
with symmetry, leading to several conservation laws. We refer to ABRAHAM & MARSDEN
[1978], MARSDEN [1992] and MARSDEN & RATIU [1994] for complete details and further
developments. In particular, and motivated by the numerical analysis presented in the
forthcoming sections, we have the following properties:

i. Conservation of energy. Given the autonomous character of the Hamiltonian
(II1.2.2), we have the classical law of conservation of energy, namely,

dH 8H . BH

dt  dq 1% 55 op
_0H OH OH OH _
8q Bp Bp dq

= H(q,p) = constant | (I11.2.7)

along the solutions (g(t),p(t)) € P of (II1.2.1).

ii. Rotational symmetry and conservation of angular momentum. The action of the
group of rotations G := SO(2) on @ = R?/0 (with the the corresponding cotangent lifted
action on the phase space P) determines the invariance of the Hamiltonian (III.2.2)

H(Aq, Ap) = H(q,p) VA € SO(2), (I11.2.8)

a direct consequence of the invariance of the Euclidean norm under the action of the group
of rotations. The corresponding momentum map J : P — G* = s0(2)~R reads in this case

(p)eP — J(g,p)=p JgeR, (I1L.2.9)
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being conserved along the solutions of (I1I1.2.1) since

N - “ A
J(g,p)=p-Jg+p-Jg=m~"'p-Ip-— H_qﬂ qg-Jg=0 = |J(q,p)=constant,
(I11.2.10)

given the skew-symmetry of I. Equation (I11.2.10) corresponds to the conservation of the
angular momentum for the mechanical system under consideration.

iii. Relative equilibria. Trzjectories of the dynamical system (III.2.1) consisting of
group motions correspond to the so-called relative equilibria, that is, solutions of the form

q(t) = exp(t2:d) ge,  P(t) = exp(t2]) pe (1I1.2.11)

for fixed z. := (ge,Pe) € P and a fixed £2, € G~R (the Lie algebra of G) generating the
group motion. The introduction of the expressions (III.2.11) in the governing equations
(II1.2.1) leads to the relations

‘ 2
pe=Te e, Pe=m2Tae, and Vi ()i=V'(l)- 25 =0, (1212
where we have introduced the notation I, := ||ge||, the locked inertia Z, := m 12 > 0 at

the equilibrium, and the so-called Smale’s amended potential V,,. Condition (II1.2.12)3
corresponds to the equilibrium of the internal force in the spring and the centrifugal force
(u2/mi3). The analogy of the relations (II1.2.12) with the limit rigid solution (III.2.5) is
to be noted: the dynamical system is said to be “locked” at the relative equilibrium, since
it corresponds to a rigid rotation at the fixed stretching l. given by the roots of (II1.2.12).

We introduce the notation
G,={A€G | J(Aq,Ap)=J(g,p) for (g,p)€J ' (W)}, (I11.2.13)

that is, the subgroup of rotations preserving the angular momentum g. For the mechani-
cal system under study in this section, we trivially have G, = G due to the commutative
character of G; this situation does not hold in the more general setting of nonlinear elas-
todynamics considered in Section II1.4. The identification of two elements of the manifold
J () C P of constant angular momentum if they differ by a momentum preserving rota-
tion leads to the so-called reduced space, denoted formally by P, := J~1(.)/G,,. With
this notation at hand, relative equilibria (II1.2.11) for a given angular momentum p. are
characterized by the angular velocity 2. € R and a single point 2, € P,,. Furthermore,
the equations (II1.2.12) can be obtained as the stationary conditions of the augmented
Hamiltonian

H, (q,p,2)=H(q,p)+ 2 (p -Jq- ye) : (I11.2.14)
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The second term in this expression identifies the angular velocity {2 as the Lagrange mul-
tiplier imposing the constraint of constant angular momentum. In fact, relative equilibria
can be characterized as stationary points of the so-called reduced Hamiltonian

h,. = H(q,p) p in P, . (II1.2.15)

Be

that is, the original Hamiltonian H (-) particularized to the reduced space P,,.

These ideas are illustrated in Figure IT1.2.2 in conjunction with the numerical approx-
imations considered below. The dynamics in the phase space P reduces to the dynamics in
P,., which can be shown to be canonically Hamiltonian by the classical reduction theorem
(see ABRAHAM & MARSDEN [1978] or MARSDEN [1992]). The conservation of the Hamil-
tonian in the reduced dynamics (that is, following the level sets of H depicted in Figure
I11.2.2) can be shown to lead to the formal stability of the relative equilibria z. (in the
Liapunov sense) if the Hamiltonian has a definite second variation at z.. For the simple
mechanical Hamiltonian system of interest, the minima of h,_ correspond to stable rela-
tive equilibria. We note, for completeness, that this condition translates into the convexity
of the amended potential at the equilibrium (i.e. V' (lc) > 0) in the simple mechanical
system considered herein. However, the numerical analyses considered in this work make
use only of the aforementioned character of the Hamiltonian of as Liapunov function of the
dynamics. We refer to MARSDEN [1992] (page (106)) and SIMO et al [1991] for complete
details of these considerations, where the so-called reduced energy-momentum method is de-
veloped for the characterization of the stability of simple Hamiltonian systems of the form
(I11.2.1). We also refer to ARNOLD et al [1988] (page 102) for an alternative derivation.

IIT.2.2. Some existing time-stepping integraticu schemes in elastodynamics

Consider a partition Uf;ol [tn,tn+1]) of a time interval to = 0 and ty = T, with a typical

time increment At = ¢, — t, (not necessarily constant). We denote by g, =~ q(t,) and
Pn = P(t,) the discrete approximations of its continuum counterparts at ¢,. With this
notation at hand, we consider the following time-stepping algorithms.

i. The generalized a-method. This three-parameter family of methods generalizes the
HHT a—method of HILBER et al [1977] in a way that includes the general Newmark’s
methods as particular cases. For the evolution equations (I11.2.1) under investigation, we
write

0 = Mans1 + V(|| gnral) te
lgnteall
o1, A (II1.2.16)
Gnt+1 = Gn + Alm™ "p, + T [(1 - zﬁ)an + 2,3an+1] o
Pn+1 = Pn + mAt [(1 - 'Y)an + 'Yan+1]
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where a, ~ §(t,) is the algorithmic approximation to the acceleration of the mass m at

time t,,, and
Gnio = (1 —)gn + 0Gn1 - (II1.2.17)

The following methods are recovered as particular cases:

Algo.1. The a-method. The widely used HHT a-methods of HILBER et al [1977] are
obtained from (II1.2.17) with the parameters

(a, B,77) = (a, (1 - 9—)2, (§ - a)) , 0.L7<a<1 (II1.2.18)

2 2
The resulting schemes define a second order accurate approximation exhibiting
high-frequency dissipation proven rigorously for the case linear elastodynamics
only.

Algo.2. A “dissipative” Newmark scheme. Newmark’s method is recovered by setting
a =1 for 0 < 8,7 < 1. The particular one-parameter family of methods given
by «

L<y<y, B=(v+3)%/4 (I11.2.19)

defines first order accurate methods, exhibiting optimal unconditionally stability
and numerical dissipation in the high frequencies; see HUGHES [1987].

Algo.3. The trapezoidal rule. The member of Newmark’s methods defined by (¢, 8,7v) =
(1, —%—, %) corresponds to the so-called trapezoidal rule, defining a second order
method that conserves energy in the context of linear elastodynamics.

Algo.4. The midpoint rule. The combination (o, 3,7) = (3, 3,1) defines a second order

method that conserves angular momentum in the general nonlinear problem, and
energy for the case of linear elastodynamics.

ii. A discrete energy-momentum scheme (Algo.5.) A conserving approximation of
the internal force term can be accomplished with the scheme

n+l1 —G9n 3
I (I11.2.20)
.2.20
Prn+1 — Pn — _V(ln+1) - V(ln) qdn+1 + qn
At ln+1 - ln ln.-l-l + ln '

where ln41 := ||gn+1|| and I, := ||g,||. The scheme (II1.2.20) goes back to LABUDDE &
GREENSPAN [1976] for the canonical Hamiltonian system of interest herein. The limit case
of l,+1 — l,, in equation (II1.2.20) is well-defined, and leads to the relation

V(ln+1) - V(ln)
ln+1 - ln

ln+1 + ln )
2

— V( as  lpy1 — by . (I11.2.21)
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The resulting method defines a second order approximation of the dynamics inheriting the
laws of conservation of energy (I111.2.7) and angular momentum (IT11.2.10).

I11.2.2.1. Numerical analysis: summary of the results

Complete analyses of the discrete energy-momentum scheme (Algo.5.) and the mid-
point rule (Algo.4.) can be found in GONZALEZ & SIMO [1996]. These authors con-
structed explicitly the (highly complex) discrete dynamical equations in the reduced space
P,., through the definition of an appropriate coordinate system in this manifold. They
showed in this way that Algo.5. inherits the same relative equilibria of the continuum
problem (defined by equations (III.2.12)), whereas Algo.4. was shown to possess At-
dependent relative equilibria and, thus, different from its continuum counterpart. We note
that both schemes conserve the angular momentum (I11.2.10). The unconditional spectral
stability of the relative equilibria for the discrete energy-momentum scheme Algo.5. was
also concluded in this reference, upon linearization of the discrete reduced equations.

Extending these results, we have included in Appendix III.2 the analyses of all the
numerical schemes (Algo.1.—5.) without the need of the construction of the reduced dy-
namics nor the conservation of the angular momentum by the algorithm. The conclusions
of this analyses can be summarized as follows:

1. The only relative equilibria that the c-method Algo.l. exhibits is given by the
trivial static equilibrium pe = 0. For sufficiently small time steps At, the discrete
solution dissipates totally to the static equilibrium: the mass stops asymptotically.
The numerical simulations presented in Section III.2.4 show that the unconditional
dissipative character of the method is lost, and energy growth may appear for large
time steps At in the general nonlinear range.

2. The Newmark schemes Algo.2. show the same numerical properties as discussed in
the previous item for the a-method. The lost of the unconditional dissipative character
in linear problems and the absence of non-static trivial relative equilibria is, therefore,
concluded

3. The trapezoidal rule Algo.3. does possess the same relative equilibria as the con-
tinuum problem. Along these relative equilibria (that is, when the initial conditions
correspond to a relative equilibria), the scheme does conserve energy and angular
momentum. These conservation properties do not hold, however, when starting in
a general state of the system. In this case, uncontrollable growth of energy may be
observed for large time-steps At.

4. The midpoint rule Algo.4. exhibits relative equilibria different that their continuum
counterparts (that is, At-dependent), thus confirming the analysis of GONZALEZ &
SiMO [1996] discussed above. Angular momentum is conserved but not the energy in




Final Report, }'49620-97-1-0196 115

the general nonlinear setting, which may lead to uncontrollable growth of energy for
large time-steps At.

5. The discrete energy-momentum Algo.5. conserves energy and angular momentum
for the general nonlinear dynamic system, preserving the relative equilibria of the
continuum problem.

I11.2.3. A nonlinear energy decaying scheme

The results summarized in the previous section identified the absence of a scheme
exhibiting energy dissipation in the fully nonlinear range for a general potential and, more
specifically, showing the dissipation in the high frequency range. To this purpose, we
develop a modification of the discrete energy-conserving scheme Algo.5. exhibiting this
high-frequency energy dissipation by construction. We emphasize again that the current
problem is to be motivated only by analog situations in the more interesting infinite di-
mensional case of nonlinear elastodynamics studied in Section II1.4 below.

I11.2.3.1. Formulation of the method

A class of time-stepping algorithms that show rigorously energy decay in the full
nonlinear range can be obtained by the following modification of the original conservative
scheme (II1.2.20). First, we consider the generalized approximation of the derivative of the
potential

V'(l) —~ (1 +2 X1)V(ln+1) - (1 -2 XI)V(ln) —4x, V(ln+12+ln)
| e e (I11.2.22)
_ Vllay1) = V(i) + Dy

— ]

ln+1 - ln

for a scalar parameter x,, while maintaining the direction of the force to (gn+1+@n)/(lny1+
ln) as in (III.2.20). The scaling factors in front of the algorithmic paramter x, have been
introduced for convenience in writing future expressions (e.g., equation (II1.2.48) below).
The last equality in (I11.2.22) follows from straightforward algebraic manipulations for

Dy =4 x, (% [V(ln+1) + V(l,,)] - V(f%il—")) , (I11.2.23)

leading to a dissipative approximation for Dy > 0; see Section I11.2.3.2 below. This
property applies to the case of interest for x, > 0 given the assumed convexity (II1.2.3) of
V(-); see Remark II1.2.1.2 otherwise. The residual character of the expression (I11.2.23) is
to be noted.
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For the particular potential (II1.2.4), expression (III.2.22) reduces to
V() ~ K [19 Ini1 + (1= 9) I — lo] for 9:=1(1+x.), (II1.2.24)

reminiscent of the so-called ¥-method for linear problems; see e.g. WooD [1990]. Ex-
pression (II1.2.24) can be found proposed originally in ARMERO & PETOCZ [1998] in the
context of frictionless dynamic contact problems, with the quadratic potential V(-) cor-
responding to a penalty regularization of the contact constraint in terms of the normal
gap. This expression was then employed by KUHL & CRISFIELD {1997] and CRISFIELD
et al {1997] in general continuum and beam problems. As shown in the next section, the
expression proposed in (I11.2.28) preserves the dissipative properties of the scheme when
applied to general potentials.

A spectral analysis of the resulting time-stepping scheme applied to a 1D linear os-
cillator (i.e., the linearized counterpart of (IIL.2.1) at ¢ = 0 and p = 0) shows that the
above dissipative approximation is not enough to introduce energy dissipation in the high-
frequency range; see Remark II1.2.2 below. To accomplish this goal (and guided by the
aforementioned spectral analysis) we consider the similar modification of the dynamical
update equation (I11.2.20),

(142 6)K (Tay1) — (1 -2 x,) K (1) — 4 x, K(Z5tTe)

K'(7) =~
Tnt1 = Mo (II1.2.25)
_ K(mpt1) — K(7p) + Di '
Tp4l — T ’
for a scalar parameter x,. Equation (II1.2.25) makes use of the notation mp41 := ||Pnt1l],
Tn = ||Pnl|, and
Dx =4x, (% [K;mm) + K(rn)] - K(Z’il;—@)) , (I11.2.26)

which is non-negative (i.e. Dk > 0) for x, > 0 and convex kinetic energy K(-). For the
typical quadratic kinetic energy (I111.2.2), the dynamic equation resulting of the dissipative
approximation (II1.2.25) reads

dn+1 — Q4n

—_ =1 Tn+l — Tn
At (1+Xz ——) P..1, (I11.2.27)

Tn41 + Tn 2
as a straightforward algebraic calculation shows.

The final time-stepping scheme can then be written in general form as

Gn+1 —Gn _ m-1 p 1+ D Pn+1+ Pn ’
At "ty Tntl — Tn Tptl + Tp

(IT1.2.28)

Pry1=Pn _ V(nt1) = V(ln) +Dv gni1+¢n

At B ln+1 - ln ln+1 + ln

9
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for two dissipation functions Dg = 5}\{(71'”77rn+1) and Dy = T);(ln,ln_,.l), satisfying the

relations

DK(Wna 7rn+1)

—0 as mwpp1 — Ty (I11.2.29)
Tn4l — Tn
and
Dvlmlnts) o o 1, 1, (IT1.2.30)

ln+1 - ln

to assure the numerical consistency of the approximation (I11.2.28). We show in Section
I11.2.3.2 below that the general relation (II1.2.28) exhibits energy dissipation and con-
servation of momentum, under certain conditions of the different parameters. For this
reason, we refer to this algorithm as the first order energy dissipative-momentum conserv-
ing scheme or EDMC-1 for short. The energy-momentum conserving scheme (II1.2.20) is
recovered by simply setting x, = x, = 0.

Remarks I11.2.1.

1. We note that alternative expressions for the dissipation functions Dg and Dy can be
used. For example, an alternative definition of Dy in (II1.2.23) for a smooth potential
V(-) is given by ‘

Dy =3% (V1) =V'(a)) (lng1— 1) >0, (1I1.2.31)

or by
Dy =1 V') (s —1n)* 20, (II1.2.32)

for the stretch I; at some time t. Both expressions (I111.2.31) and (II1.2.32) are non-
negative for x, > 0 and a convex potential V'(-) (i.e., satisfying (I1I1.2.3)). The factors
used in (IT1.2.31) and (II1.2.32) are such that for a quadratic potential these ex-
pressions coincide with (II1.2.23). The consistency condition (II1.2.29) can be easily
verified for (111.2.31) and (II1.2.32).

2. As a matter of fact, the dissipation functions Dy and Dg may not be necessarily
based on the real energy functions K(-) and V(-), respectively; see, in this respect,
the discussion in Section III.3 for the model problem of thin beams incorporating the
numerical dissipation only through a part of the potential contributions to the final
response of the dynamical system. In particular for the case of a non-convex potential
V(-) on the strain measure I, the use of the (lower) convex envelope of V(-) (see e.g.
DACOROGNA [1989], page 35) defined by

CV =sup{g<V | g convex}, (II1.2.33)
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in the expression of the dissipation (I111.2.23) assures the dissipative property (I11.4.27).

3. For x, and x, constant, the above approximation is only first order accurate in time.
Second order approximations (in the sense that the truncation error is quadratic in At
as At — 0) can be easily obtained by considering x, = x, = O(wAt) for w = \/k/m.
In this case, however, the numerical properties of the scheme for a fixed and finite
At are the same of the first order method with corresponding parameters y, and
X,- More complex alternative definitions of these numerical parameters are therefore
required. This issue is the focus of the second part of this series of papers. 0

I11.2.3.2. Discrete conservation/dissipation properties

The numerical properties of the time-stepping algorithm (II1.2.28) are summarized in
the following Proposition.

Proposition II1.2.1 The numerical scheme (II1.2.28) possesses the following conserva-
tion/ dissipation properties:

1. The angular momentum is conserved, that 1s,

Jni1=Jn . (II1.2.84)

2. The total energy H satisfies the relation
H,i1 - H,=—[Dg +Dv], (111.2.35)

for any At. Hence the scheme is unconditionally dissipative (i.e., th~ energy decays
or is conserved for any time step At) if Dx + Dy > 0. In particulo~, this condition
is satisfied by the definitions (I11.2.26) and (II1.2.23) for convez functions K(-) and
V(:), and x, > 0 and x, > 0.

3. The discrete dynamical exhibits the solutions

ge, = Ange,  Pe, = Anpe, (I11.2.36)

for {ge,pe} satisfying the ezact equilibrium relations (II1.2.12) and

: -1
Apsr = A, [1 + 50, .11] {1 _ ﬂn .U} € S0(2), (I11.2.97)
cay (At!)ej)

for the arbitrary initial rotation A,.
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Proof: The proof of these discrete properties follows closely the counterpart proofs of the
continuum system. Briefly:

i. Conservation of angular momentum. Multiplying equation (II1.2.28); by jpn+ 1,
2

we obtain

(@n+1— qn) 'jpn+% =0, (I11.2.38)

after noting that the right-hand-side vanishes due to skew-symmetry property P, 1"
' 2

Ip 1= 0. Similarly, multiplying (I111.2.28), by :]an L1 we have
nty b

=0. (I11.2.39)

(pn+1 - pn) . an+%

Finally, combining (II1.2.38) and (III1.2.39), we obtain

Jn+1 —Jp = Pn+1 'an-H — Pn 'an
= (Prtr=pn)-Jg 14p 1 T(Gnt1—¢) =0,  (I1240)

after some straightforward algebraic manipulations and the use once more of the skew-
symmetry of J. The conservation of the angular momentum (II1.2.34) follows.

ii. Energy dissipation. Multiplying equation (I11.2.28); by (Pn4+1 — pn), (I11.2.28),
by (gn+1 — @n) and subtracting the resulting expressions, we obtain after some simple
algebraic manipulations the relation

Kpv1+Vay1 — Kn+V, = —[Dg + Dy (II1.2.41)
e s Ve
Hn+1 Hﬂ
The decay of the energy
H.,..<H,, (IT1.2.42)

follows, in particular, for Dx > 0 and Dy > 0. As noted in the previous section, these
last two relations follow from the convexity of the (quadratic) kinetic energy and from the
assumption of a convex potential function V'(-), respectively, with x, > 0 and x, > 0.
The case of a non-convex potential is discussed in Remark II1.2.1.2. The unconditional
dissipative character of the proposed scheme follows.

iii. Conservation of the relative equilibria. We first note that D = Dy = 0 for
an incremental rotation between {gn+t1,Pn+1} and {gn,pn} like (I11.2.36). Note that
Tp = Tpt1 = e and I, = lpy1 = ., with the limit expression (II1.2.21) applying in this
case. A direct calculation shows that the sequence (I11.2.2) satisfies the discrete governing
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equations (II1.2.28), after noting the algebraic relation for the Cayley transform (III.2.37)

with 2. € R
Q. At =~

App1 — Ay = [Ans1+ 4,] T, (I11.2.43)
if the conditions
2
pe=2Jq., and V()= for  pe=mi? 2, (I11.2.44)
m 3 —~—
I.
are satisfied. We conclude again that l, = ||ge| and {2, satisfying exactly the relations

(I11.2.12) as in the continuum problem. The only approximation involved in the numerical
solution reduces then to the consideration of the Cayley transform (III.2.37) instead of
the exponential mapping (II1.2.11) in the symmetry group G = SO(2). As noted in
Remark II1.2.2 of Appendix III.2, the resulting equations in this case coincide with the
corresponding equations of the trapezoidal rule and energy-momentum conserving scheme.
The relative equilibria characterized by (I111.2.36), (I1I1.2.37) and (I11.2.44) correspond also
then to these cases. ‘ O

Proposition II1.2.1 identifies the unconditional stability (in the sense described below)
of the proposed scheme under the assumptions stated in it. Namely, consider the discrete
dynamical system defined by the algorithm

(20,P0) +— (@n,Pn) n=0,1,2,..., (I11.2.45)

assumed to exist (maybe imposing a restriction on At for the equations (I11.2.28) to define
(@n+1, P +1) continuously in terms of (g, pn)). Since by Proposition ITII.2.1 the algorithm
also pres-. ves the angular momentum J(g, p) = u, the discrete dynamical system (II1.2.45)
does take place in J~1(p.), that is,

(gn,Pn) €J M (pe) n=0,1,2,... (IT1.2.46)

with simply pe = J(gs,D,) for the initial conditions. Therefore, the discrete system
can also be reduced from J~!(u.) to the reduced space P, := J " (pe)/G,., following
the same arguments as for the continuum problem. In particular, the relative equilibria
of discrete dynamical system (II1.2.45) correspond to the exact relative equilibria z, =
(ge; Pe) € P, of the exact system, as shown in Proposition II1.2.1. Furthermore, this
proposition shows that the Hamiltonian H(-) of the exact problem defines a Liapunov
function of the discrete dynamical system, that is, the exact Hamiltonian H(:) defines
a decreasing function along the discrete flow (II1.2.45). The formal stability of these
relative equilibria for the resulting discrete dynamical system in the reduced space P,,
follows then by Liapunov theorem (see e.g. HIRSCH & SMALE [1974], page 193) when
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J 7 (ne) <P

Gp2e

I discrete
trajectory

level sets of h,,,
(H = constant) v

P T T (1) / Gy,

FIGURE III1.2.2 Sketch of the discrete dynamics induced by the nu-
merical scheme. High-frequency energy dissipation is introduced in the
internal motions, while maintaining a second order approximation of
the group motions of the relative equilibria.

the reduced Hamiltonian (171.2.15) (for the exact system, independently of the actual
algorithm considered) exhibits a minimum at z.. This is the same condition as for the
exact continuum system, as discussed in Section ITI[.2.1.1.

We note that for the particular case (II1.2.4), we have
Dy =Dy (ln,lns1) <0 for Ity #ln, (I11.2.47)

and similarly for Dk in terms of the quadratic kinetic energy. We also note that if ||g, || =
llgns1ll, then g, and g,4; define the same element of P,, = J~*(u.)/G,. (that is, there
is a rotation relating both). Therefore, the qualitative picture in P,, with a stable relative
equilibria z. attracting asymptotically the trajectories of the discrete dynamical system
(II1.2.45) becomes clear; see Figure II1.2.2 for an illustration. Following a similar argument,
we also observe that for the case that the exact continuum system exhibits an unstable
relative equilibria at z., with H|p,, not exhibiting a minimum at z., the discrete dynamical
system will exhibit the same properties for the relative equilibria.
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Midpoint rule
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FIGURE I11.2.3 Nonlinear mass-spring system. Solution obtained
with the midpoint rule.

Proposition II1.2.1 characterizes completely tue stability properties of the resulting
discrete dynamical system in the fully nonlinear range. In fact, the final response is fully
depicted in Figure II1.2.2, where the dissipation of the internal modes in the reduced space
P, is shown. The group motions are not dissipated and only approximated by the Cay-
ley transform (II1.2.37) instead of the exact exponential map of (III.2.11). The long-term
solution of the discrete dynamical system corresponds then to a second order approxi-
mation, energy and momentum conserving approximation of the relative equilibria of the
exact problem. This situation is to be contrasted with the existing “dissipative” schemes
considered in Section III.2.2, leading only at best to the static equilibrium position asymp-
totically in the long-term. As noted in the introductory Section III.1, the introduction
of numerical dissipation only in the internal motions of the problem is fundamental for a
good integrator in the fully nonlinear range. ‘

Remark III.2.2 As also noted in the introduction, it is crucial to assure the presence
of the energy dissipation in the high-frequency range. We evaluate this (linear) property
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Energy-momentum conserving
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FIGURE II11.2.4 Nonlinear mass-spring system. Solution obtained
with the energy-momentum conserving scheme.

by performing a spectral analysis of the discrete equations for a 1D linear nscillator with
a natural frequency y/k/m. We refer to Part II of this series for additional details in
conjunction with high order methods. These calculations reveal that the spectral radius
at infinity poo, is given for the new scheme proposed in this section by the expression

1—x.| [1-
foo = MAX <|1+§1', |1 +>>§2I> , (I11.2.48)
1 2

showing a full symmetry in the algorithmic parameters x, and x,,and making optimal the
consideration of equal parameters x, = x,. In particular, the consideration of x, = 0 or
X, = 0 leads to po, = 1, thus precluding the presence in the high-frequency range. The
need of introducing the dissipative terms in the velocity and force equations as in (III.2.28)
is then concluded. O

I11.2.4. Representative numerical simulations
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“Pissipative” Newmark
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FIGURE II1.2.5 Nonlinear mass-spring system. Solution obtained
with the“dissipative” Newmark scheme.

To illustrate the analytical results presented in the previous sections we present next

the numerical results obtained with the different time-stepping under investigation for a

particular case. We consider a spring characterized by the potential (II1.2.4) with param-

eters [, = 10 and k = 15. The value of the mass mass is m = 2. The assumed initial
conditions are

@%=1[0 10" and p,=[-20 0]", (I11.2.49)

leading to an initial angular momentum of y, = p, -:]qu = 200 and initial energy of
H, = 100. The relative equilibrium length corresponding to the angular momentum g,
given by (I11.2.12), is [, = 11.001377.

We run the simulations using the previously considered time-stepping algorithms with
a constant time step of At = 1 for 2,000 time steps total. Figures I11.2.3 to II1.2.7 show
the results for the midpoint rule, energy-momentum conserving scheme, “dissipative” New-
mark (y = 0.611), HHT (a = 0.889) and dissipative EDMC-1 (x, = x, = 0.11) schemes.
The spectral radius at infinity of po, = 0.8 has been set for the last three schemes. In all
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FIGURE I11.2.6 Nonlinear mass-spring system. Solution obtained
with the HHT scheme.

cases, we plot the trajectory of the mass, the length of the spring, the angular momentum
and the total energy.

Figure II1.2.3 shows the results for the midpoint rule. We observe the well-known non-
conservation of energy and conservation of angular momentum in this nonlinear range. The
oscillation of the spring’s length is also apparent. An increase of the time step leads even-
tually to an unstable response characterized by an uncontrollable growth in the energy
(see GONZALEZ & SIMO [1996]). The results obtained with the energy-momentum con-
serving scheme are shown in Figure I11.2.4. We observe the improved energy response
given by the conservation of the total energy. However, we can still observe the presence
of “high-frequency” response in the solution as illustrated by the oscillation of the length
of spring.

We consider two standard “dissipative” schemes to eliminate this oscillation in the
spring. Figures II1.2.5 and II1.2.6 show the results for the “dissipative” Newmark and
HHT schemes, respectively, both with p,, = 0.8. In both cases, we observe the elimination
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Energy-dissipative momentum-conserving (EDMC-1)
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FIGURE II1.2.7 Nonlinear mass-spring system. Solution obtained
with the (energy-dissipative, momentum-conserving) scheme.

of the oscillation in the spring’s length after an initial period. As shown in the analyses
presented in Section III.2.2.1, this dissipation comes also with a complete dissipation of
both the angular and total energy in the system. The system tends asymptotically to the
static relative equilibrium of a mass at rest. We observe a much more rapid dissipation in
the Newmark scheme, a feature that can be traced back to the first order accuracy of this
scheme in contrast of the second order HHT scheme. In any case, the long-term solutions
are unacceptable.

Figure II1.2.7 shows the results obtained with the new energy-dissipating, momentum-
conserving (EDMC-1) scheme. The conservation of the angular momentum p = p, at all
times is verified. We can also observe the elimination of the high-frequency dissipation in
the spring’s length after an initial period of time, maintaining the spring at an essentially
constant length. The long-term solution corresponds to the relative equilibrium for the
assumed angular momentum, confirming the analyses presented in Section II1.2.3.2. A
monotonic dissipation of the total energy to the equilibrium value is also observed. The
spring continues in the equilibrium rigid rotation for ever, approximating closely the exact
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FIGURE III.2.8 Nonlinear mass-spring system. Solution obtained
with the HHT scheme with a larger time step (At = 1.6775).

rigid limit solution (II1.2.5). In fact, the approxim-tion of this limit solution is second
order in time, as discussed in Section III.2.3.2. The improved long-term response of the
newly proposed scheme in front of existing schemes is concluded. .

To illustrate the lack of unconditional dissipativity in traditional “dissipative” time-
stepping schemes, we include in Figure III.2.8 the results obtained with the same HHT
scheme considered before (i.e. with po, = 0.8), but with a larger time step of At = 1.6775.
We observe that, after an initial period of energy decay, the total energy starts increasing
eventually, leading to non convergence of the numerical simulation at a time of £ ~ 58.
The lack of dissipativity for this scheme and time step becomes evident.

I11.3. Model Problem II: a Simplified Model of Thin Beams

We consider in this section a simple model of the bending of thin beams to illustrate
an additional property of the previous ideas in the development of dissipative numerical
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FIGURE 111.3.1 Model problem II: thin beams. Geometric definition
of a simple model for the simulation of the axial and bending contri-
butions of a thin beam.

scheme: namely, the flexibility of introducing a priori the numerical dissipation in the
desired components of the problem. The numerical model of beam bending developed in
this section considers the axial and bending contributions of the beam deformation through
the simple consideration of axial and bending springs. We plan to present the formulation
of similar schemes in the context of general geometrically exact theories of Cosserat rods
in a forthcoming publication.

I11.3.1. A simple model of beam bending

Consider a system of npeint point masses connected by axial and bending springs,
modeling the corresponding components of the deformation of a thin beam. The usual
assumption of neglecting the shear deformation is implied in the word “thin” (that is, of
the Euler-Bernoulli type). We consider, for simplicity, the plane case, although the devel-
opments presented herein apply to general three-dimensional problems with the addition,
if desired, of similar contributions modeling the torsion component of the beam or rod.

Figure II1.3.1 illustrates a typical configuration of the system of point masses m; with
corresponding position vector denoted by g;. Denoting the linear momentum of each mass




Final Report, F49620-97-1-0196 129

by p;, the governing equations read

tji = mi—lpi )
¢ (I1L.3.1)
pi=— N 1)+ £,
e=1
(no sum in i implied) with q := {q1, @2, - .., @npoin }» T a set of external forces f£** and

a system of internal forces f,-(e) acting on mass m; (¢ = 1,7point), the latter composed
by the assembly of different neem “elements” as described below. In particular, we con-
sider the contribution of 2-node axial elements modeling the stiffness of the system to
stretch axially, and of 3-node bending elements modeling the stiffness of the system to
bend. To this purpose we present next the axial and bending elements depicted in Figure

I11.3.1 separately.

i. A 2-node axial element. Every two consecutive masses m; are assumed connected
by a nonlinear spring characterized by a potential

Vi = Vig(l)  for li=+r-T (I11.3.2)

for the vector » = ge, — g., connecting nodes 1 and 2 of the axial element; see Figure
I11.3.1. With this notation, the axial forces acting on each node are obtained through the
corresponding derivative of the potential V(I), thus leading to

7 8, VY 1 —r
5= v = { o } = -a,v{ } (IIL.3.3)
@, V] ot U

as a simple calculation shows. The analogy with the developments of Section III.2.1 is
apparent.

ii. A 3-node bending element. In the spirit of the simplicity of the current model prob-
lem, we introduce torsional springs between any three consecutive masses {ge,, @e,, Ges }
to model the bending stiffness. Denoting by 9 the angle between the relative vectors in
such an element, we can write ‘

A
cos¥ = - for A=7r;-ry and v:=1Ul,, (I11.3.4)
with
Tii=qe, —qe, and L=+ /ri-r; (1=1,2), (I11.3.5)

following the notation of Figure II1.3.1. A bending potential

Vbend = %end('g) = I‘;;Jend()\a V) (111-3-6)
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is introduced. The simulations presented in Section I11.3.3 consider the particular potential

9 v+ A
2V 2
Vibend = -;— Cp tan -é- =3 Chp ;—:—X , (11137)
for a material constant Cy. The potential (II1.3.7) penalizes the full overlapping of the
element for 9 — £m. The associated nodal forces are then obtained as

f(e)
bend,, qul Vibend Ty
zf:id =4 F zfé?zdez = { O, Voena p = 02 Vhend ™1
() aqes Viend —T1— T2
bendea
+ ay%end l_ 0 + l_‘ T2 , (III.3.8)
1 -7 2 —T9

as a simple calculation shows.

Remark III.3.1

1. Equation (ITI.3.1); assumes no additional contributions to the kinetic energy of the
system but of the linear momenta p;; that is, the kinetic energy is given by

Npoint

K(p)= Y tmpl?®. (I11.3.9)

i=1

This assumption accounts for neglecting any contribution arising from a rotatory
inertia. It is well-known that this lack of rotatory inertia introduces infinite phase
veladities in the high-frequency range of the bending modes of an Euler-Bernoulli
be=.n (see e.g. GRAFF [1975], page 181). For the problems considered in Section
I11.3.3, typical in structural dynamics applications, this high-frequency content of the
beam’s response in bending is not manifested, allowing to simplify the forthcoming
developments.

2. The system of equations (III.3.1) defines a Hamiltonian system with the conservation
property

H(g,p)=K(p)+> [Va(fj)(q) + V,,S,Zd(q)] = constant (I11.3.10)
e

for the case with no external loading f£** =0 (i = 1, Npoint), as a simple calculation
shows. Similarly, for the case of no external loading and no imposed displacements
(i-e., no imposed gq) straightforward manipulations show the conservation laws
Npoint ) Npoint
l:= Z p; = constant and U= Z i -jqi = constant , (II1.3.11)
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for the linear and angular momentum, respectively. O

II1.3.2. An unconditionally dissipative time-stepping scheme

Conservative and dissipative approximations of the axial contributions (II1.3.3) are
obtained exactly in the same way as in (I1I1.2.28) for the spring model problem considered
in Section II1.2.3. In this way, the velocity equation is approximated in time by

iy ~ Tin - Ting1 — Mg :

———il—A—t——— =m, 1 (1 + X, 7"—;:_1‘*‘—7"1—,.) pin+% for i=1,np0int , (I11.3.12)
with m; := ||p;, || and 7, := ||pi,,, [|- The discrete counterpart of the axial nodal forces
contributions are obtained through the expression

(e)

@ fE | _ 2 Ves(lt)) = Vas(l) + Dves [ —r (I1.3.13)

az f(e) ln+1 + ln ln+1 - ln r 1 ! o

ate, n+3

for a dissipation function Dy,, defined as in (III.2.23). The conservation/dissipation
relation ‘

Npoint

> £ (Ginr — Gin) = Vazllng1) = Vaz(ln) + Dvas (I11.3.14)

i=1

follows easily, as it is for the relations

>, =0 ad > £ Ja,, =0, (II1.3.15)
i=1 i=1

showing the momentum conservation properties of the scheme for the Neumann problem,
after following arguments s.milar to the ones presented in Proposition II1.2.1; additional
details are omitted.

The bending counterpart is constructed in terms of the two variables A and v intro-
duced in (I11.3.4) as

i) lfsr)zde 1,1 1,0 0,1 0,0
3 (Veond +Vind) =3 (Wiad +Vieud ) 4Dva [ 2
(e) _ (e) — r
bend lzer)ldez /\n+1 - )‘n —T1 — T2 1
e 1
.fbend83 "t
1,1 0,1 1,0 0,0
N 2 (Vb(end) + %(end)) -3 (V;J(end) + W;(end)) tDv,
Untl — VUn
2‘2 ™ Z'l 0
Ll{-nm 2| -7 1

n+§
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where [; = (L., +1i,)/2, and, for example,

1 /.01 1,0 0,1 0,0 1 /o (3.1) (3.0)
Dvy=4xx I:Z (VE)(end) + V;J(end) + V;J(en.d) + V;z(end)) - -2— (V;Jeznd + Vbeizd ) (111317)
for a parameter x) > 0 and similarly for Dy, for a parameter x, > 0. The convexification
presented in Remark I11.2.1.2 is used, if required. We have made use of the notation

V;,(el.,;]é) = I/;)en.d(/\rh{—l, Vn—i-l) 3 V;;(elf;?j) = %end()‘n+1a Vn) yree
(II1.3.18)
1 Ang1+ An
V;)(ei;dl) = V;)end( ________n+12 7Vn+1) goon
in these last expressions. A simple calculation leads to the relation

Npoint
Z fézzld,. Nipyy — @) = V},(el,;,li) - V,,‘f,;?,,’ + Dy + Dy, , (I11.3.19)
i=1

showing the conservative/dissipative character of the proposed scheme. Similarly, the
momentum conserving relations

follows, as it is the conservation of the corresponding relative equilibria for the Neumann
problem. The proof follows the arguments of Proposition I11.2.1; details are omitted.

The purpose for the consideration of this siriple model problem is to illustrate the
flexibility in the introduction of the numerical dissipation in the proposed time-stepping
algorithms. As illustrated by the numerical examples presented in Section II1.3.3, the axial
part of the deformation leads to a high-frequency response when compared to the bending
contributions. Therefore, the introduction of the dissipation in the axial contributions
(that is, Dy, = Dy, = 0) leads to an efficient way to eliminate the problems associated
to the high-frequency range, as illustrated next.

111.3.3. Representative numerical simulations

We present in this section a numerical example to illustrate the performance of the
different time-stepping algorithms considered in this work when applied to the simple
model problem of thin beams developed in the previous section. The problem is depicted
in Figure II1.3.2. It consists of two rigid links connected to a thin beam modeled by three
internal equal masses my, with two additional masses m, = 10 - my located at the ends
of the rigid links. The potential (II1.2.4) is considered for the axial contributions whereas
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mp = 0.2
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FIGURE 1I1.3.2 Thin beams: problem definition. A thin beam is
attached to two rigid links in the configuration shown in the top posi-
tion. A point force is applied downwards to the right end of the beam
for an initial interval of ¢ = 0.50. Different positions of the deformed

configurations afterwards are shown in the figure as obtained by the
EDMC-1 scheme.

the bending potential (II1.3.7) is considered for the bending contributions; the assumed
stiffness parameters k and C} are included in Figure II1.3.2. The two connections between
the beam and the two rigid links are pinned (i.e. no bending stiffness). A1 initial triangular
force pulse

100 ¢, 0<t<0.25,
F(t)=4{50-100¢, 0.25<t<0.50, - (I11.3.21)
0, t>0.50,

is applied as shown in this figure. The rigid character of the two links is imposed by a
standard augmented Lagrangian scheme based again on the penalty potential (I11.2.4).

After the application of the load (ITI.3.21) the system evolves such that, as shown in
the numerical simulations presented below, the beam oscillates in the low bending modes
with high axial forces appearing due to the sudden change of axial stiffness when the
beam elements become aligned. Note also the large masses at the ends of the beam. The
high-frequency content of this sudden forces introduces significant difficulties for the time-
stepping algorithms not exhibiting a high-frequency energy dissipation, an observation
that can be traced back to CARDONA & GERARDIN [1988]. We also refer to BAUCHAU &
THERON [1996] for a similar problem. The example presented herein has the advantage of
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FIGURE II1.3.3 Thin beams. Solution obtained with the midpoint
rule. Left column: Total energy (—-} = kinetic (—) + potential (—)
energies. Right column: axial (—) + bending (—) energies = poten-
tial energy.

exhibiting repeated aligned states thus building the high-frequency content in the solution.

Figures II1.3.3 and II1.3.4 depict the results for different time-stepping algorithms.
Specifically, the energy evolution obtained by the midpoint rule, energy conserving and
HHT schemes are presented. The left column in these figures shows the evolution of the
kinetic and potential energies, and their sum, the total energy. The right column shows
the evolution of the axial and bending potential energies, which add to the total potential
energy shown in the left column. All the simulations are run with a constant time step
At = 0.05.

Figure III1.3.3 includes the solution obtained with the midpoint rule. As depicted in
this figure, the numerical simulation explodes after a relative short time interval. It is
clear from this figure that the failure in this case is associated to an unbounded growth of
the energy, and more specifically due to an unbounded growth of the axial energy. Figure
IT1.3.5 shows the evolution of the norm of the acceleration of the middle node of the beam.
The uncontrolled growth of this quantity is evident.

The results for the energy-momentum conserving scheme are presented in Figure
IT1.3.4. The conservation of the total energy after the initial interval of application of
the load is apparent in this case. The plot of the axial and bending energies illustrates
clearly the oscillation of the beam between states of high energy content in its axial com-
ponent. The simulation, however, stops for the given time step at one of these spikes
in the axial at (¢t ~ 4.2). The Newton-Raphson scheme used to solve the incremental
problem ceases to converge. Even though a reduction of the time step may possibly lead
to converge, this response illustrates the difficulty in handling the incremental process by
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FIGURE III.7.5 Thin beams. Evolution of the norm of the accel-
eration in tne middle node of the beam obtained with different time-
stepping schemes.

time-stepping algorithms not exhibiting high frequency dissipation (in the current case,
exhibiting a double unit root at infinite frequency), besides the possible consequences in
the dynamic response of the algorithm in time. The solution obtained in the time step
previous to this lack of convergence is shown in Figure III.3.6.a. It shows clearly the
aligned configuration of the beam, leading to the sudden increase in the axial stiffness as
described above. Further proof of the dynamic character of the observed instability is given
by the uncontrolled growth of the acceleration in the later stages of the simulation shown
in Figure II1.3.5. The norm of the acceleration of the middle node in the beam is depicted
versus time. This lack of control of the acceleration is characteristic in the performance of
time-stepping algorithms not exhibiting dissipative properties in the high-frequency; see
e.g. SIMO et al [1995]. ‘
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FIGURE 111.3.6 Thin beams. Last converged solutions obtained with
the HHT and energy-momentum conserving schemes.

Figure II1.3.4 also shows the results for the HHT scheme. A large value of po, =
0.9 for the spectral radius at infinity is considered. The resulting evolution of the total
energy depicts clearly an overall energy decay (not monotonic) in the early stages of the
simulation. However, this situation changes at a certain instant during the computation
with an increase of the energy (even over the initial energy level), leading eventually to
the stopping of the simulation for the considered time step. The lack of the unconditional
dissipative properties of the scheme in the nonlinear range are evident, in contrast with
its well-known stability in the linear range. The growth in the acceleration can also be
observed in Figure III.3.5, starting during the stages where an increas: of the energy
is observed. Figure II1.3.6.b shows the final converged solution before the stop of the
calculation. The large content of axial energy is evident.

Figure I11.3.4 depicts also the solution obtained with the dissipative EDMC-1 scheme.
A value of x, = x, = 2.5-1072 is assumed for the axial terms, leading to the same spectral
radius at infinity of po, = 0.9 for these contributions as assumed previously for the HHT
scheme. The monotonic decay of the total energy can be observed in this figure, passing the
time steps where both the energy-momentum conserving and HHT schemes led to a lack of
convergence. We have not observe any problem with the convergence in this simulation. We
can also observe in Figure I11.3.4 the elimination of high-frequency in the evolution of the
axial energy for this case when compared with the original energy-momentum conserving
scheme at the stages right before the latter scheme failed to converge. The control of
the evolution of the acceleration during these stages is also apparent in Figure III1.3.5.
We conclude that the numerical scheme is able to handle better the sudden changes of
axial stiffness, and its associated high-frequency content, thanks to this added numerical

high-frequency dissipation.
|
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FIGURE III.3.7 Thin beams. Configuration of the structure at dif-
ferent time. Solution obtained with the new EDMC-1 scheme.
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I11.4. Extensions to Nonlinear Elastodynamics

We present in this section the extension of the previous developments to the general
case of nonlinear elastodynamics. To this purpose, we present in Section II1.4.1 a brief
description of the governing equations and the dynamical properties of interest. After
describing in Section III.4.2 the ideas and analyses presented in the previous sections for
the two considered model problems to the problem of interest in this section, we describe
in Section I11.4.3 two representative numerical simulations illustrating the properties of
the newly developed time-stepping schemes.

I11.4.1. The governing equations

We denote by ¢ = ¢(X,t) the deformation of a solid body B C R"™ (ngy =
1,2 or 3) with material particles X € B, and by p = p(X,t) the corresponding linear
momentum density. The material velocity is denoted by v. The infinite-dimensional
system of nonlinear elastodynamics can then be written as

(v=)p=p'p,

_ (I11.4.1
/ﬁ-&de—%—/S:FTGrad((Scp) dB:/poB-&de-i—/T-&de, )
B B B B

for all admissible variations d¢ € V, that is, the space of variations satisfying homogeneoué
essential boundary conditions d = 0 on 9,B (the part of the boundary with imposed
deformations), as usual. The standard notation for the reference density of the solid
po > 0, the deformation gradient F := Grade, the second Piola-Kirchhoff stress tensor
S, the external body force B, and imposed tractions T on 8rB has been employed in
(IIL.4.1). The case of interest corresponds to an hyperelastic solid characterized by a
stoicd energy function W = W(C), with C := FTF (by frame indifference), and the
stress-strain relation oW

S = 2%— . (I11.4.2)
Equation (II1.4.1); has been written in weak form given our interest to develop a finite
element implementation of the resulting methods.

The equations (II1.4.1) define an infinite dimensional Hamiltonian system, exhibiting
in particular the classical law of conservation of energy

H(p,p) ==/ 3 ot linl|? dB+/ W(C(p)) dB = constant , (II1.4.3)
B 7 N——— B

Po I’UIP

in the special case of a Neumann problem (that is, B = T = 0 and 8,8 = @). Similarly in
this case, the symmetry of the Hamiltonian (II1.4.3) under rigid body motions, consisting
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of rigid translations and rigid rotations (G = R™¥™ x SO(nqim) in the notation of Section
I11.2.1.1 above), leads to the conservation laws of the linear and angular momenta

l:= / pov dB = constant  and  J:= / po ¢ X v dB = constant , (II1.4.4)
B B

for the cross product X of two vectors in R? (or its corresponding embedding in lower
dimensions).

The presence of these symmetries lead to the existence of the associated relative
equilibria characterized by the equilibrium deformation ¢, (up to a rigid body motion),
for the equilibrium angular velocity §2. and translational velocity ve. The equilibrium
trajectories et (X, t) are generated by the infinitesimal rigid motion corresponding to 2,
and v,, that is, they are the solutions of the first order ordinary differential equation

Pet = §2¢ X Pet + Ve ( =  DPet = po ['Qe X Pet + 'Ue]) ; (11145)

with, say, @et(X,0) = ¢e(X) VX € B. The integration of (I1I1.4.5) leads to the solutions
¢

pet(X,t) =exp [t.f?e] Ye(X)+u(t) for wu(t):= (/ exp [nf)e] dn) ve , (II1.4.6)
o

consisting of a rigid translation and a rigid rotation with constant axial vector §2. (with
2. denoting the corresponding skew tensor). Carrying on the time integration in (III.4.6)
leads to the alternative closed-form expression

u(t) = ]|,Q B ( — exp [tf)e]) 2, X Ve + —— ”-QeHz (2. - ve) 2.,

with the well-defined liruic ue(t) = wvet for ||£2¢]] — 0. Again, the above solutions fix
the arbitrary superposed rigid body motion by assuming, w1thout loss of generality, that

Qoet(X 0) Pe (X )
Inserting the expression (I11.4.6) in (I11.4.1), we obtain the weak equation

/ S(pe) : FTGrad(d¢) dB = / Pof2e X [2¢ X e + V] - dp dB, (ITL.4.7)
B B

characterizing the relative equilibria. The weak equation (III.4.7), is to be understood
for all variations d¢ € V/Gi, .., that is, and following the notation introduced in Section
II1.2.1.1, up to rigid body motions preserving the linear and angular momenta, . and g,
respectively. Using the relations (I11.4.4) with (II1.4.5), we obtain the following equilibrium
relations for these momenta

lo=M [ve + 02, % cp(c)] and  pe =IO 02, + o x I, (IIL.4.8)
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with 2, x 1, = 0 and 2, X Iéc) 2, = 0 (i.e. §2, is an eigenvector of the locked inertia Iéc)),
for the total mass M = [, s Po @B, the position of the center of mass <p,(3°) = ({, 5 PotpedB) /M,
and the locked inertia tensor at equilibrium

I = /Bpo [lell®1 — e ® @] dB—M [Hsoéc)llzl -l ® cpﬁc)] : (I11.4.9)

We refer to SIMO et al [1991] for complete details. In particular, all the arguments char-
acterizing these solutions as the stationary points of the corresponding augmented Hamil-
tonian, exactly as for the simple model considered in Section III.2, can be found in this
reference. From a physical point of view, we observe that (II1.4.7)2 can be understood as
the equilibrium of the solid under the action of the centrifugal force associated to the rigid
motion.

111.4.2. An energy decaying scheme

The developments presented for the two model problems considered in the previous
sections translate directly to the system (III.4.1) of nonlinear elastodynamics. In the
context of the finite element method, the resulting scheme reads

A A A A
Tpy1 — I ”vn+1” - ”vn ” A
Tntl Tmo_ {1 =1,...,Mmoge) , (IIL4.
i = (1 ) (A7 L) (AL410
Un+t1 — Un T
M, —”T— +/B Bl,,S dB — fle =0, (I11.4.11)

f(in.t)

for a typical spatial finite element discretization involving the nodal positions (and corre-
sponding nodal displacements) 2 = (X4,1,) = X4 +d2 (A = 1,n,04¢), and nodal
velocities v := {v!,...,v"™nede}. The linearized strain operator B, . 1 is defined by the

relation
B,,10d:= F3+%Grad(5<,o) : (I11.4.12)

for an admissible variation d¢ and its corresponding nodal values dd. The stress S in
(II1.4.11) is given by the relation

DW Cn.+1 - Cn
S = Supms+2 , I11.4.13
cons 2 Gl ICsr = Cal (IL.4.13)
-
= N

for the Euclidean norm of a rank-two tensor ||C||?> := C;;C;; and for a conserving approx-
imation S.ons of the stress, that is, satisfying the relation

Seons : 3 (Cny1 — Cn) = W(Cry1) — W(Ch) . (IT1.4.14)




F. Armero 142

The simulations presented in Section III.4.3 consider the particular expression

W(Cni1) — W(Cy) Cpi1+C,
= N+2|I-N®N | 0AW(———), 111.4.15
with the well-defined limit
Seoms =2 9oW (L Cn)  tor G =Con, (I11.4.16)

2

first proposed in SIMO & GONZALEZ [1996], where IV has been defined in (II1.4.13). The
dissipation function Dy = Dw(Chr,Cn+1) is constructed using the ideas presented in
Section II1.2 for model problem I. In particular, the consistency condition

51’\" (Cna C’n+1)

—+0 as ||Cpy1—Ch] —0, (II1.4.17)
”Cn+1 - Cn“ *

is imposed. The simulations presented in Section II1.4.3 are based on the residual expres-

sion ‘

Dy =4, [(W(Cusr) 4 W(Gn)) - w(EHEE)
for a scalar parameter x,, as in model problem I. Alternative expressions following the
arguments in Remark II1.2.1.1 can also be considered. Finally, equation (III.4.11) makes
use of a lumped mass matrix M, (obtained, for example, by the traditional row sum).
This consideration allows to arrive to a nodal form of the update equation (II1.4.11);, thus
simplifying considerably the final numerical implementation.

(I11.4.18)

The proposed numerical scheme exhibits the same properties as presented in Section
111.2.2 for the simple model problem of the nonlinear spring-mass system. We summarize
these properties in the following proposition.

Proposition I11.4.1 The numerical scheme (III.4.10)-(II1.4.11) possesses the following
conservation/dissipation properties for the Neumann problem of nonlinear elastodynamics
(i.e. £(¢=t) =0 and 0,B = 0):

1. The discrete linear and angular momenta are conserved. That is, given My, = diag(m4)
(A = 1,Npode, with my > 0) with

Nnode Nnode
" .= Mpv= Z mav?t and Jh = Z ma 2 x vd (I1I1.4.19)

for the spatial nodal coordinates x4 := p(X4), we have

="  and Jr,=Jf (I11.4.20)
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unconditionally in the time step At.
2. The total energy
H= %v -Mjpv +/ w(C) dB, (II1.4.21)
B

satisfies the relation

Hpyr— Ho=—[Dx+Dy]  for Dy := / Dw dB, (I11.4.22)
B

with Dw given by (111.4.18) and

Npoint

1 2
Dic=3 % 3 ma(lofnl-lwdl)’ >0, (I11.4.29)
A=1

for x, > 0. Hence the scheme is unconditionally dissipative (i.e., the energy decays
or is conserved for any time step At) iff Dy > 0. This last inequality follows from
the convexity of W(C), or its convezification otherwise (see Remark II1.2.1.2).

3. The discrete dynamical system preserves the relative equilibria of the continuum sys-
tem. That is, the discrete relative equilibria . satisfy the finite element equation

Nnode
Z ma 2 x (82, x 0 +ve) +/ BTS(p.) dB=0, (111.4.24)
A=1 B

the counterpart of (III1.4.7), with the corresponding group motions (II1.4.6) approzi-
mated by the discrete relations

mr‘?:An‘Pé+una }

(II1.4.25)
v = Ap [£2e X @2 + v

n

where 2 = p.(X4) and the sequences {A,}2 o and {u,}S, are defined for some
initial value A, and u, (an arbitrary rigid body motion) by the relations

Apyr = Ancay(Atf)e) and Unt+1 = Up + AL A v, (I11.4.26)
for A, = (A,, + An+1)/2 and

. At 4 .17
cay (Atﬁe) = [1 + {9} [1 _ ézfrze] € 50(3), (II1.4.27)

in the general three-dimensional case.
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Proof: The proof follows arguments similar to the ones presented in Section II1.2.3.2 for
the proof of Proposition III.2.1. Briefly, we have:

i. Conservation of linear momentum. The evolution of the linear momentum for the
Neumann problem of interest is given by

Nnode Nnode

(ln+1 12) a= Z ma (v,‘fﬂ—v,‘f)-a: Z f(ént)°a
= A=1

= / S:FI, Grad(a)dB=0 VaeR™=  (II1428)
B

after noting that ¢ = a is an admissible variation (8,8 = @). The relation (III.4.20),
follows.

ii. Conservation of angular momentum. The evolution of the angular momentum for
the Neumann problem of interest is given by

Nlnode
A A A A A A
(J,H_l——Jh) = Z ma (:z:n+% X (v —vy) + (X — ) X”n+%) cw =
A=1

Ttnode

= (wﬁ+% X f(‘?m)) -w

A=1
ESY lomeall = llo2l A
+ mA (1+ Tntl ) vAd  xv?  w
2 * okl odl] ) Std 7 Pt
=0
Tlnode
=Zf(§nt)-(wxm ; /s FTlGrad(chn+)dB
Wm:-}-% . WFn“‘l'i‘
= / F,,2SFT,: W dB=0 VweR"n (I11.4.29)
B\—-z\r'——zd S~~~
symmetric skew

for the skew-symmetric tensor W with axial vector w. Note that d0p = W:cr“l1 L1 isan
2
admissible variation for the Neumann problem (8,8 = @). The relation (II1.4.20), follows.

iili. Energy evolution. The evolution of the kinetic energy is given by

Nnode Nnode

Kpgn—-Kn= Z ma ("’f+1 - ”f) '”f+% = Z mA (”;?+1 —vh) - (“’fﬂ - mﬁ)
A=1 A=1




Final Report, F49620-97-1-0196 145

Nnode

vl = llvall /4 Ay A
- X, MA v 1 - )"U 1
; i v I+ o] (o2 = o) - 2y
Dx
Mnode
= Z flo - (zhy —zf) - Dk (T11.4.30)

after using once again (IIT.4.10) and (II1.4.11). The energy evolution equation (III.4.22)
follows after noting the relstion

Nnode

Z f(mt) n+1 A) = -/B (Wn+1 - Wn - DW) dB (111431)

after using (II1.4.15).

iv. Relative equilibria. We first observe that the velocities (II1.4.25), are such that
oA 1l = lvA] (A = 1,nnode), s0 Dk = 0 Similarly, we have Cp11 = Cy = Ce for the
deformations defined by the nodal displacements (1I1.4.24), thus leading to Dy = 0 and the
limit formula (II1.4.16). The existence of the solutions (II1.4.25) and (III1.4.26) satisfying
(II1.4.24) can be verified by direct calculation after noting the relation

At

Ant1 = An = (An+ Ania) e (I11.4.32)

for the rotations (111.4.26);. O

Remarks IT1.4.1.

1. Formulations involving a consistent mass approximation in (I11.4.11) are constructed
as follows. Denote by N4 the finite element shape function of node A =1,..., %04,
so the consistent mass block corresponding to two typical nodes is given by

Mg = / poNa Ng dB 1€ RMm*maim (A B=1,... npoge).  (IIL4.33)
B

Equation (II1.4.11); is then replaced by the relation

A A
Tny1 — T

At - 'Uf.}.% + gc‘;liss (A =1,..., nnode) ) (HI.4.34)

where the nodal vectors g4,, € R™™ are the solution of the system of equations

Mapg,, = / Ny Bl =l II1.4.35
ABGiss = [ PN o ST ol (4
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Calculations similar to the ones presented in Proposition II1.4.1 show the very same
conservation/dissipation properties for this consistent mass formulation, with Dg
given in this case by

1
Dic=3 % [ po(lonsall = lonl)? dB 20, (IT1.4.36)
B

and the linear and angular momenta given by the continuum relations (II1.4.4). The
resulting global character of the nodal displacement updates (II1.4.34) by (IIL.4.35)
leads to a much more involved implementation. Efficient iterative schemes can be
devised; details are omitted. Nevertheless, the original lumped formulation (III.4.11)
is preferred due to this added computational cost.

2. The expression resulting of (II[.4.13) and (II1.4.34) for the stress temsor S can be
written as

a W (Cn+1) - W (Cn) +DW
S=5+ |2
”Cn-l-l - Cn”

-S:N|N, (I11.4.37)

for S = 20W((Cn41 + Cr)/2). We note, however, that any other expression of
S consistent with the continuum stress formula (IT1.4.2) can be used. The numeri-
cal properties described in Proposition II1.4.1 still hold for the resulting first order
formula. O

II1.4.3. Representative numerical simulations

We illustrate in this section the previous theoretical developments with two repre-
sentative examples, in plane strain and three-‘iumensional settings, respectively. Figure
II1.4.1 depicts the geometric definition of the problems under consideration, consisting of
a circular cylinder and two panel arms, a configuration in satellite type structures. In both
cases, we consider a Neo-Hookean stored energy function '

W(C) = %10g2 J+ 1 u(l—3)~ plogJ (I11.4.38)

for J = v/det C and I, = tr C. The parameters A = 3,000, u4 = 750 and density p, = 8.93
are assumed for the cylinder, and A = 100, 4 = 25 and p, = 0.5 for the arms.

In both the plane and three-dimensional cases, the solids have free boundaries and no
external body or surface loads are applied. The motion is started by imposing an initial
velocity at each node corresponding to a rotation around an axis passing through the
center of symmetry. That is, the initial nodal velocities are perpendicular to the vector
joining the nodal point to the center, with a magnitude proportional to the radius and the
initial angular velocity §2,. For the plane strain case, this rotation is plane. The initial
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40.00 20.00 40.00

Plane strain problem Three-dimensional problem

FIGURE III1.4.1 Nonlinear elastodynamics. Geometric definition of
the solids considered in the plane strain and three-dimensional prob-
lems, respectively.

nodal displacements vanish. These initial conditions lead to a deformation and rotation
(tumbling in the general three-dimensional case), with the center of the solid being at rest
at all instances by symmetry.

Figures I11.4.2 and III1.4.3 depict the solution obtained by the new EDMC-1 scheme for
the plane strain case with {2, = 0.28112. The dissipation parameters of x, = x, = 0.025
have been chosen, wit a constant time step of At = 0.3. The initial stages of the simulation
are shown in Figure I11.4.2, where we can observe clearly the bending and axial modes of
the more flexible arms in the initial motion. Figure I11.4.3 shows later stages of the same
simulation. We can observe the effective elimination of these high-frequency modes, with
the solution consisting essentially of a rigid rotation locked at an equilibrium position. This
response confirms fully the analyses presented in the previous sections for the proposed
algorithms. Indeed, Figure III.4.4 includes the evolution of the angular momentum (one
component in this plane problem) and the total energy. The conservation of the former
at the initial value of p = 1.2974 - 10° is verified, with the total energy depicting also a
monotonic dissipation to the asymptotic value of Hy, = 1.5272 - 10%.

For comparison, we also run this same plane strain problem with the HHT scheme
(o = 0.9), with the same constant time step of At = 0.3. Figure II11.4.5 shows the
evolution of the angular momentum and total energy for this case. We observe that the
energy dissipation is not monotonic, and that the angular momentum is not conserved.
In fact, the angular momentum decreases (observe the decreasing trend in the end of the
assumed simulation time, as well), leading to a slow down of the overall rotation of the
solid corresponding to the group motions of these problems. The deficient dissipative
properties of the HHT scheme obtained in the analyses and numerical simulation of the
model problems considered previously are then also observed in this more general setting
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FIGURE III.4.2 Plane strain simulation. Short-term solution ob-
tained with the new energy-dissipative momentum-conserving (EDMC-
1) time-stepping scheme.
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FIGURE 111.4.3 Plane strain simulation. Long-term solution
obtained with the new energy-dissipative, momentum-conserving
(EDMC-1) time-stepping scheme.

of nonlinear elastodynamics.

To illustrate more clearly the conservation of the relative equilibria by the new EDMC-
1 scheme, we obtain the deformation ¢, corresponding to the relative equilibrium by solv-
ing the weak equation (II1.4.7) with a prescribed angular velocity {2, at equilibrium (and
v, = 0). The corresponding angular momentum p. at equilibrium is given by (III.4.4) and
has the value p, = 1.2974-10° for the previous simulations starting away from equilibrium.
Due to the symmetry in this problem, the imposed essential boundary conditions when
solving (II1.4.7) consist of fixing the central node of the cylinder, and constraining the
rotation around it. Figure ITI.4.6 shows the resulting deformed configuration of the solid.

Once the exact solution ¢, at equilibrium is obtained, we repeat the dynamic simula-
tions with the initial nodal displacements corresponding to ¢, = @, and the initial nodal
velocities corresponding to v, = f2.e3 X ., with e3 being the unit vector perpendicular
to the plane of the problem (¢, is measured from the center of the solid). As before, no
degrees of freedom are restrained in the dynamic simulations. Therefore, the exact solution
for these initial conditions should be a uniform rotation about the center of symmetry of
the solid.
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FIGURE II1.4.4 Plane strain simulation. Evolution of the angular
momentum and total energy in time along the numerical solution pre-
sented in Figures 111.4.2 and II1.4.3 obtained with the EDMC-1 scheme
(x; = Xp = 0.025). Constant time step of At =0.3.
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FIGURE III.4.5 Plane strain simulation. Evolution of the angular
momentum and total energy in time for the HHT method (o = 0.9).
Constant time step of At = 0.3.
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FIGURE 1I1.4.6 Deformed configuration corresponding to the rel-
ative equilibrium. Points A, B, and C are marked on the horizontal
symmetry axis. These are the points whose trajectories are depicted in
the following plots.

Figures II1.4.7 and II1.4.8 depict the evolution of the angular momentum and total
energy obtained with the the EDMC-1 (x, = x, = 0.025) and HHT (a = 0.9) schemes.
Figure II1.4.9 depicts the relative errors of the radial distance to the center, that is,

;@ =r'()
r1(0) ’

(I11.4.39)

for the nodes A, B, and C (see Figure I11.4.6). The conservation of the energy and the
angular momentum, and the error measures e’ give a complete idea of how close a motion
is to a relative equilibrium.

From the plots in Figures I11.4.7 and 111.4.9, we can clearly observe that the motion
obtained with the EDMC-1 scheme is a rigid rotation about the center of symmetry
of the solid, with constant energy and angular momentum. Notice also that the values
of the angular momentum and the energy during the motion are p, = 1.2974 - 10° and
H, = 1.5272-10* respectively. These values correspond to the constant angular momentum
p and the asymptotic value of the total energy H,, in the original numerical simulations
starting from general initial conditions. The deformed configurations at the later stages
of the simulation depicted in Figure II1.4.3 are also to be compared with the equilibrium
configuration of Figure II1.4.6. These results confirm the conservation by the EDMC-
1 scheme of the relative equilibria, and the dissipation to these (non-static) equilibria in
the general case, shown in the analyses and numerical simulations for the model problems
considered previously.

This situation is to be contrasted with the solutions obtained with the HHT scheme.
As shown in Figure II1.4.8 the angular momentum and total energy of the solid are both
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FIGURE II1.4.7 Plane strain problem. Energy and angular momen-
tum with initial conditions corresponding to a relative equilibrium.
EDMC-1 method with x; = x, = 0.025. 300 time steps of size
At =0.3
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FIGURE II1.4.8 Plane strain problem. Energy and angular momen-
tum with initial conditions corresponding to a relative equilibrium.
HHT method, a = 0.9. Time steps of size At = 0.3, final time
Ty = 500. Both the energy and the angular momentum decrease in
the simulation, so the relative equilibrium can not be conserved.
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FIGURE I11.4.9 Relative error in distance to center of the solid of
nodes A, B and C. Left: EDMC-1 scheme (x, = x, = 0.025). Right:
HHT scheme (e = 0.9). Constant time step At = 0.3.

dissipated even though the initial conditions correspond to the exact relative equilibrium.
The appearance of internal modes of vibration for this case is clear in the evolution of the
radial relative errors presented in Figure I11.4.9.

To conclude we present in Figures II1.4.10 and II1.4.11 the results obtained with
the EDMC-1 scheme for a similar problem but in general three dimensions. As in the
previous plane case, the initial conditions are given by zero nodal displacements and the
nodal velocities of a rigid rotation. The initial axis of rotation is (1,1,1) in a Cartesian
coordinate system with origin at the center of cylinder, and two orthogonal directions
along the axis of the cylinder and the middle line of one of the panels, respectively. Tue
initial angular velocity is {2, = 0.2. These initial conditions do not correspond to a
relative equilibrium and lead to a general motion consisting of a tumbling rotation and
internal vibration modes of the solid. In particular, the deformed configurations of Figure
I11.4.10 clearly show the bending, torsional and axial oscillations of the solid arms. Figure
I11.4.11 shows the solution at a much later time for the same numerical simulation. The
progressive elimination of these modes can be observed, without requiring the elimination
of the overall rotation of the solid. Figure I11.4.12 depicts the evolution of the three
Cartesian components of the angular momentum and the total energy of the solid in time.
The conservation of the angular momentum and the monotonic decay of the energy to
the relative equilibria is verified. The additional fact that these dissipative properties
are totally controllable, as shown by the analyses presented above, make the proposed
time-stepping schemes very interesting for problems involving this type of free motions.




F. Armero

154

O 2 05 €20 2 S TR 3 20 12 I T O 454 1%

28 258 WEY Tk ko 3

25

FIGURE I11.4.10 Three-dimensional problem. Solution obtained

time-stepping scheme.

with the new energy-dissipative, momentum-conserving (EDMC-1)
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FIGURE 1IIl.4.11 Three-dimensional problem.

Long-term solu-

tion obtained with the new energy-dissipative, momentum-conserving
(EDMC-1) time-stepping scheme.
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II1.5. Concluding Remarks

We have presented in this paper the formulation of time-stepping algorithms that ex-
hibit numerical dissipation in the high-frequency range in the general context of nonlinear
dynamics. In particular, we have presented analyses of existing and new methods for two
simple model problems and the fully nonlinear problem of nonlinear elastodynamics. Sev-
eral representative numerical simulations have been presented illustrating the performance
of the new schemes as related to the analyses presented.

As a final conclusion, we emphasize onc: more the importance not only of having
proven rigorously the dissipative properties in the high-frequency range for general non-
linear problems, but also the need for the numerical schemes to preserve the conservation
laws of the linear and angular momenta. The need for the conservation of the relative
equilibria of the underlying physical system has also been illustrated. The lack of numer-
ical dissipation in the group motions of systems with symmetry is of the key importance
for the simulation of elastic systems in free motions. The results presented in this first
part of this work show a simple way of introducing this dissipation, in a fully controlled
manner. Even though, the resulting algorithms are only first order accurate in time (but
leading to a second order approximation of the group motions), we believe that obtaining
a correct qualitative picture of the exact dynamics for a fixed time step, as obtained with
the proposed schemes, is even a more important property. This is especially the case after
noting the qualitatively distorted picture of the phase space obtained with more tradi-
tional “dissipative” numerical schemes, including high order schemes. Extensions leading
to higher order methods that exhibit the aforementioned conservation properties for gen-
eral problems of nonlinear elastodynamics (general potentials) together with a controllable
numerical dissipation can be obtained by preserving the structure of the numerical algo-
rithms presented herein, but with high-order exnressions of the dissipative contributions.
These ideas are the focus of the forthcoming second part of this work.

Appendix III.1. The Characterization of Discrete Relative Equi-
libria

Relative equilibria of Hamiltonian systems with symmetries correspond to the trajec-
tories generated by the action of an one-parameter subgroup of the symmetry group, the
so-called group motions. For the spring-mass model problem of interest herein, these equi-
libria have been characterized in Section I11.2.1.1 as the rigid rotation of the spring, with
a constant angular velocity {2, and constant stretch of the spring [, related by equation

(I11.2.12). The goal of this appendix is to characterize the corresponding solutions of the
discrete dynamical systems generated by typical time-stepping algorithms. We summarize
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only the main ideas involved in the analysis and refer to ROMERO & ARMERO [1999] for
complete details of the derivations involved.

More specifically, we investigate the existence of discrete solutions of the form

qen-l-l = Aqen a’nd p€n+1 = Apen ) (III.l.l)

for a rotation A € G = SO(2), constant for all time increments [tn,tn4+1] n=0,1,2,.... A
constant time step At = t,41 — &, for all n is assumed. Denoting g = q., and pe = pe,
(note that relative equilibria are defined up to a rotation), we conciude that for the assumed
solution

. (IIL1.2)

= lgell =t e,
qe,, = A"q. and De,, = A"p, {”qe “ “ e” e

”Pe,,” = [Ipell ,

for all n =0,1,... If J denotes the angle between the g, and g,4; vectors, we can write

A (cos'& —sinﬂ) ’ (IIL1.3)

sind cos ¥

in a Cartesian basis {e;, ep}. Without loss of generality, we consider

g.=lc.e;. (11114)

The solution (III.1.1) defines the relative equilibria of the discrete dynamical system defined
by numerical scheme, generated by the constant rotation A € SO(2) (or alternatively by
Y € R as defined in (I11.1.3)). :

ITI.1.1. The generalized a-method

We consider first the generalized a-method defined by equations (IT1.2.17). In this
case, the generalized midpoint vector g, o = (1 — @)@, + a@n41 can be written as

Gnio = G@ni1 = GAg,  with G:=(1-a)AT +ol, (II1.1.5)

and similarly for the generalized midpoint momenta p, . We note that the matrix G is
not a rotation, except for @ = 0 or 1, and that it commutes with A that is, GA = AG, as
it can be easily verified from the definition (III.1.5)2 Introducing the definition

_ AP V(| gensall) _ AL V(| Gae|])

m o |enall  m lGeell (I11.1.6)
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the evaluation of equations (IIL2.17) leads. ¢fter some algebraic
relation

Pe=m/AL[A-1+v(}-B)G+ vBAG] qe

for the linear momenta p, at equilibrium and, after using (111.1.4),

[k2A? 4+ kiA+ 67 A" +Rol] €y =0,

where we have introduced the notation

kg=1+ u(:lz- —284+ 328+ v~ 2av),
. [0
Ky = ~2+4 V(—:‘()fﬁ -4 57 o),

Ky =1+ afv,
s =v[(B-Dl-ai+ (- -a)] .

Relative equilibria will then exist if equation '[I1.1.8) has a soluti
|lge|l through (IIL.1.6).

Remarks I11.1.1.

1. The combination A = 1, v = 0 is a soluiion fer every comkb
situation corresponds to the trivial soluti n with lhe mass at

anipulations, to the

(I11.1.7)

1¢ cquation

(1I1.1.8)

(11L.1.9)

- clefining ¥ and [, =

ation (a, 3,7). This
s J=0and lo =1,.

(the stress-free length of the spring). Any : onsistent time-stepp (2 algorithim possesses

this solution trivially.

2. Equation (III.1.8) can be interpreted as ti.e sum of fcur vecto
each one scaled by a factor g, r1, k2, KT " espect vely.

We analyze next the solutions of equeti:n (III 1.8) for the
algorithms identified in Section II1.2.2.

Algo.1. The HHT-a method. The Hi b r-Hughes-Taylor o-1
al [1977]] corresponds to equations (II1.2.17" v.ith pa-amerers

V(. (2—a)? (3-2a) N
(o, 8,7) = (a’—é—l—_’ o, 07<a:
The values of the parameters «; are given in t s case
ko= 1+ %0(302 - 6a +4),
Ky = -2+ g(~3u3 +9¢% - 8a +4),

Ko= 1+ %a(‘z -~ r:)z )

I

KT Za"’(l - 1)’) .

4

Reproduced From
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ey Aej, Ale), ATe)

O

T rent time-stepping

thed (see HILBER el

L (111.1.10)

(IIL.1.11)
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FIGURE III.1.1 HHT method. max, |cosd| for 0.2 < a
| cos ¥ < 1, we must restrict & t0 0.3 <o < .

The introduction of these parameters in (II1...8) with A given by
system of equations

Ko cos(29) + (k1 + AT)cos? + Ko, =0
K7

Ko sin(29) + (k1 — £7)sind =0 cos ¥ = —

Figurc II1.1.1 depicts this last relation, showing the maximum co
For a given a this maximuin is atlained as v — oo. Furthermaore

for any value of v, we must restrict & > 0.35. Jote that the HHT -
Introducing (I11.1.11) in (I11.1.12); we obtain

1 .
Kr(Kr — K1) + Ko(Ro — Ka) = C < Z(a - Nahi?=0.

This equation is satisfied in three cases: v = ( (the t:ivial static e

= 0. The case a = 1 corresponds to the trapezoical rule and i
case @ = 0 is beyond the restriction (III.1.1C: We conclude that
HHT scheme possessing a discrete relative equ’libriura.

Algo.2. A “dissipative” Newmark schene. Newmark's metho
gencral cxpression (I11.2.17) with a =1 and 0 < 8,~ < 1. The par

S<y<1, g {y+ 524,

Reproduced From
Best Available Copy

L

111.1.8) leads to the

(for 4 #0),
(I11.1.12)

' we a function of o.
KI-'\‘.' I < 1
2K -

0 have

ily considers a > 0.7.

(I11.1.13)

iilibrium), a = 1 and
:nalyzed below. The
'e e is no dissipative

s recovered from the
u ar combination

(IIL.1.14)
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defines a one-parameter family of first-order ilgorittms that are conditionally statle
and exhibit numerical dissipation in the high ‘requercies, for linec prcblems. With the
consideration of @ = 1 in (111.1.9), equation (I12,1.8) 1educss to

[mA? +mA ~1]e; ==0, (II1.1.15)

with
-24+v(3+~-28)

_ . Gpy) I11.1.16)
gy e s R (116

2T T AT+ )

m=
We note that 1+ v(3 — v+ 3) is always positive if 8 = (y+3) 4. 5 < < 1. The
close examination of the vector relation (II1.1.15) reveals that a 1 :essary condition for
this equation to have solution is that 79 — 1. llefining e = v — % > e have

14 L .
- e oy I11.1.17
1+ 06v -wve ( )

72

s0 12 > 1 strictly for every v > 0. This implies that (II1.1.15) d¢ - uct have a solution
and hence, this dissipative family of Newmark's metlod do not ex 2.* relative equilibria
in the problem under consideration.

Algn.3. 'L'he trapezoidal rule. The consideration of the parar 'er values (a, 8,7v) =
(1.4 5) reduces equation (II1.1.15) to the svstam of vquations

204 mcostd = --1,
cosvmecs (IIL.1.18)
sin2d + nsind = (1,
in terms of the incremental angle ¥ and n = (v '2-2)/(1+»/4). Ec 1ations (I11.1.18) have
the nontrivial solution 7 = —2cos. This irrp. es thas the trapezoi. .1 .-ule admits discrete
relative equilibria in the problem under consiceratior. The corres; 1cing p. is recovered
from (III.1.7) by the relation
m —-
Pe = =V Jqe, (I11.1.19)
where J has been defined in (II1.2.9).

It is interesting to observe that the trapezidal echibils the sai = "eiative equilibria as
the ezact continuum problem. This statement is shovn by observii . first that the energy
13 conserved along the solution (I[1.1.1) by (11 .1.2). Similarly, the 1. ular momentum at
the relative equilibrium is given by

e = P - 10, = %\/; 2 (111.1.20)

Reproduced From
Best Available Copy
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after using (II1.1.7), and is conserved. Noting that G = 1 in this case, the definition

(IIL.1.6) leads to
A2 V(L)

v vap 1o (I11.1.21)
so (IT1.1.20) leads to the equation in I,
2
V! (le) == V'(le) - 7573 =0, (I11.1.22)

e

that is, exactly the same equation (I11.2.12)3 as for the continuum system. We conclude
that the discrete relative equilibria of the trapezoidal rule are the exact ones, with the
energy and angular momentum conserved along then. It is important to point out that
this scheme does not conserve energy nor the momentum from general initial conditions.
Interesting enough the algorithm still inherits the exact relative equilibria.

Algo.4. The midpoint rule. A similar calculation for the midpoint rule parame-
ters (e, B,7) = (3,3, 1) shows that exactly the same system of equation (III.1.18) as in
the trapezoidal rule is obtained. We conclude then that the midpoint rule also exhibits
discrete relative equilibria, characterized also by the expressions (III.1.19) and (II1.1.20).
The nature of these relative equilibria is completely different when compared with their
counterpart of the trapezoidal rule (that is, the exact ones). The difference stems from the
expression

_ A V'(IIGgel)

2
- —  V/(|Gq.l) = Fe ||Gq.| , I11.1.23
ity GGl (IGgel) |Gael ( )

m g

characterizing the relative equilibria of the midpoint rule. The relations (II1.1.23) are co
be contrasted with (II1.1.21) and the exact equation (II1.1.22). Noting that

IGgell = % 1+cos?, (IIL.1.24)

and that 9 depends of the time step At, we conclude that the relative equilibria of the mid-
point rule depend on the time step. The same conclusion, together with relation (II1.1.23),
was obtained for this case in GONZALEZ & SIiMO [1996] after a complex reduction of the
discrete dynamical system defined by the numerical algorithm to the reduced space of axial
oscillations of the spring/mass system.

Remark II1.1.2 For the newly proposed EDMC-1 scheme (III.2.28), we note that for the
solution (III.1.1) under investigation Dy = Dg = 0, given (II1.1.2). The scheme reduces
then to the energy-momentum scheme (II1.2.20) along this solution, leading to a second
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order, energy-momentum conserving approxim.ation. In addition, : obtain exactly the
same equations {II1.1.18)-(II1.1.21) of the trape:oidal rule, as a strai tiorward calculation
shows following the same arguments of the previous section. Not  thet the expression
(II1.2.21) applies in this case, given (II11.2). We conclude that ¢ proposed EDMC-
1 scheme inherits the same relative equilib-iz of the continuum stsm. As shown in
Proposition III.2.1, the corresponding group n.otions are given by 1e Cayley transform
(I11.2.37) approximating the exponeutial map (11T 7.11). (1
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IV.1. Introduction

Typical problems in continuum and structural elastodynamics are characterized by a
strong numerical stiffness, which motivates the use of implicit integrators for their temporal
discretization. Many such time-stepping algorithms can be found in the literature; we refer
to HUGHES [1987], among others, for a comprehensive account of many classical works in
the linear range up to the mid 1980’s. When developing these temporal schemes, the
need of numerical dissipation in the high-frequency range, even though the underlying
physical system may show full energy conservation, was soon realized if one is to arrive
to robust implicit integrators. This feature is motivated, on one hand, by the need to
eliminate the large modeling error accumulated in this range of frequencies, namely, the
error introduced by spatial discretization of the infinite dimensional systems of interest.
This situation has a direct relation to the need to handle the aforementioned high numerical
stiffness. This stiffness refers to the wide spread of the characteristic frequencies of the
linear system, leading to a highly oscillatory response due to the poor approximation of the
high-frequency range. The numerical instabilities associated with the existence of a double
unit root at infinite frequency in the amplification matrices of common conserving, mid-
point type temporal approximations, can be quoted also as one of the driving motivations
in this area. In this way, the formulation of second-order schemes that exhibit these
stability and dissipativity properties was an area of intensive research in the 1960’s to the
late 1970’s. Time-stepping algorithms like the §—Wilson method of WILSON [1968] or
the HHT a—method of HILBER et al [1977] have become standard in everyday practice.
More recent proposals include the works of HUGHES & HULBERT [1988] and CHUNG &
HULBERT [1993], among others. We also note that this situation applies to general stiff
problems, not necessarily elastodynamics; we refer to HAIRER & WANNER [1991] for a
general account. In the general of Runge-Kutta methods, we can quote the related notion
of “stiffly accurate” m-~thods of PROTHERO & ROBINSON [1974].

Despite the large amount of literature in the linear range, the development of similar
schemes for the nonlinear finite deformation range is relatively recent. The need for ad-
ditional developments along these lines is motivated by the fact that the aforementioned
schemes, standard for applications involving linear elastodynamics, do lose their conserva-
tion/dissipation properties when applied to the nonlinear range, as illustrated in ARMERO
& PETOCZ [1996], KUHL & CRISFIELD [1997] and ARMERO & ROMERO [1999] among
others. The presence of numerical instabilities in nonlinear problems when employing
schemes that are unconditionally stable in the linear range, including the aforementioned
linearly dissipative schemes, has motivated the search for improved algorithms. Motivated
by these remarks, the formulation of energy-momentum conserving schemes for nonlinear
problems in continuum and structural elastodynamics has received a significant amount of
attention recently. Representative references are SIMO & TARNOW [1992], CRISFIELD &
SHI [1994] and GONZALEZ & SIMO [1995], among others. The proposed schemes consist
basically of the mid-point rule algorithm, with a modified stress formula to assure energy
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conservation.

After these early experiences with energy conserving algorithms, the need of a con-
trolled numerical dissipation in the high-frequency range to gain the robustness needed
to solve the stiff problems of interest, as indicated above for the linear range, was also
realized. Along these lines, we presented in ARMERO & PETOCZ [1996] some initial ideas
on how to extend conserving schemes to incorporate energy dissipation in the context of
dynamic contact problems. The proper modification of the stress formula (contact forces
in contact problems) does lead to the incorporation of this numerical energy dissipation.
This and other approaches have been investigated further in KUHL & CRISFIELD [1997],
CRISFIELD et al [1997] and KUHL & Ramwm [1996,99] for nonlinear elastodynamics.

In ARMERO & ROMERO [1999], which we refer simply as Part I of this work hereafter,
we have explored further the development of dissipative schemes in nonlinear dynamics. We
formulated in this work a new time-stepping algorithm that is shown rigorously to exhibit
unconditional energy dissipation while preserving the conservation laws of the linear and
angular momentum in the mechanical problems of interest, the so-called energy-dissipative,
momentum-conserving scheme (EDMC-1). Furthermore, it was shown in detail that the
new algorithm does also preserve the relative equilibria of the underlying mechanical sys-
tem, along the lines of the analysis presented in GONZALEZ & SIMO [1996] for the model
problem of a nonlinear spring/mass system. More specifically, it was shown in Part I of
this work that the newly proposed EDMC-1 dissipative scheme no only preserves these
relative equilibria, characterized in the elastic systems under investigation by rigid mo-
tions superposed to a fixed deformation, but also lead to the introduction of the numerical
dissipation in the high frequency range of the internal modes of the motion, with the so-
lution tending asymptotically to the exact relative equilibria. This result was shown for
two model problems (a simple nonlinear spring/mass system and a simplified model of
thin beams), as well as for the general problem of nonlinear elastodynamics. In addition, a
complete analysis was presented of the Newmark method (NEWMARK [1959]) and the HHT
a-method (HILBER et al [1977]), as representative examples of the aforementioned linearly
dissipative schemes, showing that these schemes not only lose their dissipative character,
leading eventually to numerical instabilities, but also to the complete elimination of these
relative equilibria of the system. The failure to preserve the conservation of angular mo-
mentum was shown to be the main drawback of these standard methods, in this respect.
As a consequence, for the simple problem of a point mass rotating around a fixed point
through a nonlinear elastic spring, the computed solution with these standard schemes
either exploded for large time steps, or tended asymptotically to the static solution.

Despite the good stability and dissipation/conservation properties of the EDMC-1,
this scheme is only first-order accurate in time. We present in this paper the formulation
of a new time-stepping algorithm for nonlinear elastodynamics that exhibits the desired
second-order accuracy in time while showing the same dissipation/conservation properties.
The analysis of the energy evolution in the discrete dynamics defined by the numerical
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scheme identifies clearly the structure of the algorithmic approximation so an unconditional
non-negative numerical dissipation appears. Remarkably then, the new scheme is based
on the same structure as the EDMC-1 scheme, but with a more involved definition of the
dissipation functions. For this reason, we simply refer to this new second-order scheme as
the EDMC-2 scheme (energy-dissipative, momentum-conserving second-order scheme).

The development of high order dissipative schemes exhibiting numerical dissipation
in the high-frequency range has been considered by several authors recently. For exam-
ple, the formulation of such schemes for a model of elastic beams has been presented ii -
BAUCHAU et al [1995], BAUCHAU & THERON [1996] and B0OTA350 & BORRI [1998] and,
more recently, in BAUCHAU & Joo [1999] for the continuum system of nonlinear elasto-
dynamics. However, these schemes do not show any control over the introduced numerical
dissipation, in the form of an algorithmic parameter. In fact, these formulations are based
on existing fixed multi-stage formulas, some of them arising from the application of the
so-called discontinuous Galerkin in time (see e.g. JOHNSON et al [1984] and HUGHES &
HULBERT [1988] for some of the original references), thus leading to a considerable added
computational cost due to the doubling (extra displacement and velocity fields) for each
additional stage considered in the numerical scheme. In some cases, the decay properties of
the physical energy only applies to quadratic elastic potentials, especially if a second-order
scheme is desired. In other cases, like in BAUCHAU & Joo [1999], no attention is given to
the preservation of the conservation law of angular momentum which, as noted above, is a
crucial property of the numerical scheme to capture fundamental qualitative properties of
the underlying phase dynamics, even if numerical dissipation is introduced in the system.

In contrast, the EDMC schemes proposed in this work do show the numerical dissi-
pation, as well as momenta conservation, with these properties holding independently of
the elastic potential as well as the time step. In both the first and second order schemes
an algorithmic parameter is introduced to control the numerica. dissipation, recovering
as a particular case a fully energy-conserving algorithm, if desired. Special care has been
taken in the development of the second-order EDMC-2 presented in this work for nonlinear
elastodynamics to avoid the cost associated to extra stages. Furthermore, the numerical
dissipation is shown to be in the high-frequency range (an intrinsically linear concept) by
deriving similar algorithms for linear elastodynamics following the same arguments, but
without the constraint given by the conservation of the angular momentum (an intrinsically
nonlinear concept).

In this context, before considering the problem of nonlinear elastodynamics in the sec-
ond part of this paper, we consider first the development of time-stepping algorithms for
linear elastodynamics that exhibit rigorously a decay of the physical energy of the system.
We note that usually it is not the physical energy that decays along the solutions computed
with classical dissipative schemes, but only a numerical norm of the discrete solution. Even
though this is enough for the scheme to show numerical stability in the linear range, the
dissipation of the actual energy of the physical system allows the extension of the linear
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scheme to the general nonlinear range, as the results in this work illustrate. In this way,
we present first two new families of time-stepping algorithms for linear elastodynamics
that show energy dissipation in the high-frequency range. We call the new schemes the
energy-dissipative ED-1 and ED-2, for the first and second-order methods, respectively. A
complete spectral analysis of these methods characterize their stability, dissipation and ac-
curacy properties. In particular, the ED-2 scheme is shown to be L-stable (see e.g. HAIRER
& WANNER [1991]), being formulated as a two-stage algorithm to maintain the linearity
of the final formulas. Nonetheless, the freedom gained when extending the scheme to the
nonlinear range (to the EDMC-2 scheme) allows to formulate the scheme with dissipaticn:
functions defined locally, without the need of introducing additional nodal values of the
displacements and velocities in a time step for a typical finite element solution of the prob-
lem of nonlinear elastodynamics. Furthermore, this extension is done in such a way that
the conservation laws of linear and angular momenta, as well as the associated relative
equilibria, are fully preserved. Still, the developments in the linear range dictate the form
of the dissipative function in the nonlinear range so the desired numerical dissipation in
the high-frequency range and the second order accuracy are attained.

An outline of the rest of the paper is as follows. Section IV.2 considers the problem
of linear elastodynamics. After developing the new ED-1 and ED-2 schemes in Section
IV.2.1.1 and IV.2.1.2, respectively, we present the spectral analysis of these methods in
Section IV.2.2. The extension of these ideas to the nonlinear range is undertaken in
Section IV.3, leading to the new EDMC-2 scheme, including rigorous proofs of the dis-
sipation/conservation properties of the final time-stepping algorithm. The numerical im-
plementation of the EDMC-2 scheme is described in detail in Appendix IV.2. Section
IV.4 includes several representative numerical simulations to evaluate the accuracy and
dissipation/conservation properties of this scheme. Finally, some concluding remarks are
drawn in Section IV.5.

IV.2. The System of Linear Elastodynamics

We consider in this section the case of linear elastodynamics defined by the system of
equations

d=v,
} (v21)
Mo =—-Kd+ fer(t),

for unknown functions in time d,v : [0,7] — R™¥/, corresponding typically to a set of
Ndos (nodal) displacements and velocities, respectively, with 7' denoting the time interval
of interest. The symbol () denotes the time derivative of the corresponding variable.
We have made use in (IV.2.1) of the classical notation of M € R™#°/*™4f for the mass

matrix, K € R™f*"4f for the stiffness matrix, and foz:(t) € R™¥’ for a general set of
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external forces. The classical properties of positive definiteness for the mass matrix M and
positive semi-definiteness for the stiffness matrix K are assumed in this section, implying
the relations

a-Ma>0 and a-Ka>0 VaecR"'™ , a#0, (IV.2.2)

where - denotes the standard Euclidean inner product in R™#7 (i.e. a-b = a;b; summation
implied among the ngos components a; and b; of a and b, respectively). The first-order
system of ordinary differential equations (IV.2.1) is accompanied with initial conditions

d(0)=d, and v(0)=7,, (IV.2.3)

for given initial values d, and 7, of the displacements and velocities, respectively.

The system of equations (IV.2.1) defines a linear Hamiltonian system. In this context,
a standard calculation shows that

H = fe:z:t v, (IV24)

for the Hamiltonian function (the total energy)

H(d,p(v)):= v -Mv + id-Kd , (IV.2.5)
N —— N—_——
kinetic energy K potential energy V

vith the (linear) momenta p(v) := Mw (so the kinetic energy reads K = p- M~'p/2) to
follow the classical notation in the field. For the force-free case ferz: = 0, we recover the
classical conservation of energy relation

H(d,p(v)) = constant , (IV.2.6)

in time.

We are interested in time-stepping algorithms approximating the unknown functions
d(t) and v(t) solutions of (IV.2.1) through the sequence d, =~ d(t,) and v, = v(t,)
(n=10,1,2,...) for a partition [0, T] = U, [tn, tn+1) of the time interval of interest and for
given initial conditions d, = d, and v, = T, after (IV.2.3). More specifically, it is the goal
of this section to identify time-stepping algorithms that for a typical time step [t,,tn41]
(with At = t,4+1 — t,, not necessarily constant in n) show the stability estimate

Hpp1—H,=-D<0, (IV.2.7)
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for the homogeneous problem f.;; = 0 and unconditionally in At, with D > 0 defining the
numerical dissipation. Here, H,, := H(d,, p(v,)) for the the Hamiltonian H(-) in (IV.2.5)
of the continuum problem. We note that the estimate (IV.2.7) is not a necessary condition
for the numerical stability of a linear system like (IV.2.1). The so-called energy method
allows the identification of a general norm of the discrete solution satisfying a decaying
estimate like (IV.2.7), and not necessarily the physical (semi-)norm defined by the actual
Hamiltonian; see e.g. HUGHES [1987], Chapter 9, for complete details. In fact, standard
unconditionally stable time-stepping algorithms exhibiting a high-frequency dissipation,
as it is the interest in this work (namely, the dissipative Newmark and the HHT schemes
referred to in Section IV.1) do not satisfy the estimate (IV.2.7). Instead an algorithmic
norm (involving also contributions of the discrete acceleration approximating ©) is shown
to be decaying. In general, one can prove that for a spectrally stable scheme (that is,
possessing a spectral radius less than one, as defined in Section IV.2.2 below) one can
always construct, under some minor technical conditions, a numerical norm that decays
in time; see HUGHES [1987], page 564. However, and as illustrated with the numerical
examples presented in Part I of this work, these stability estimates in the linear problem
do not extend to the nonlinear problem. The estimate (IV.2.7), on the other hand, leads
to a natural extension in the context of nonlinear dynamics as shown in the developments
presented in this paper.

IV.2.1. Some one-step dissipative schemes

With the stability estimate (IV.2.7) in mind, we consider the general one-step method

dn+1 - dn

At = Gcons + Gdiss »

(IV.2.8)

. v —v ~
M"PLAt_‘n‘ = ’_(fcons +fdiss)+fezt s

for an approximation fext of the external force vector (e.g. fezt = fext(tnt1/2)). Here we
have introduced conserving and dissipative approximations of the right-hand-side terms of
the original equations (IV.2.1), in the sense that the following equalities hold

fcons . (dn+1 - dn) = Vn+1 - Vn )
(IV.2.9)
Geons - M ('Un+1 - 'vn) = Kn+1 - K, y
and
fdiss * (dn+1 - dn) = DV )
(IV.2.10)
Gdiss ° M ('Un.+1 - 'Un.) =Dk,

as their counterparts in (IV.2.1). The notation V; := V(d,) and K, := K(v,) for the
exact potential V (-) and kinetic K (-) energies defined in (IV.2.5) has been used in (IV.2.9).
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The motivation behind the additive decomposition considered in equation (IV.2.8) in con-
serving and dissipative parts is clear: to follow the energy contribution of the different
approximations introduced in the discrete equations by the numerical scheme in a typical
time step.

To this purpose, we multiply equation (IV.2.8); by M (vp41 —v,,), equation (IV.2.8),
by —(dn+1 — d.) and add the resulting expressions, to obtain

(Knt1+ Vo) = (Knt Vo) =-Dx + Dy, (IV.2.11)
Hpga H, D

identifying the numerical dissipation D in (IV.2.7) with D = Dy + Dk in this case. We
emphasize again the need of a non-negative dissipation D > 0 for numerical stability, not
necessarily each of its components Dg and Dy . Similarly, we reiterate our interest that the
final numerical dissipation D is controllable and in the high-frequency range, as motivated
in the introduction presented in Section IV.1.

In this linear setting, linear conservative terms are easily obtained through the second-
order mid-point approximations

feons = %K (dngy1 + d,) =: Kdn+1/2 ) and Gcons = % (vn+1 +vg) = Un+t1/2 -
(IV.2.12)
The estimates (IV.2.9) can be easily verified. Therefore, the discrete system (IV.2.8) defines
in this case a consistent approximation of (IV.2.1) if

fdiss ~ O(Atp) and Qdiss ™ O(Atp) for P >1 y (IV.2.13)

where we have used the standard notation of O(-) for the “big-oh” (that is, lim O(z?) /z(P—1)
— 0 as £ — 0). Since in the resulting consistent approximations the differences

dnt1 —dn ~ O(AL) and  Vpyq1 — v, ~ O(AL), (Iv.2.14)

we conclude from (IV.2.10) that (IV.2.13) implies that Dy, Dg ~ O(AtP*!). The final
numerical scheme will exhibit an order of accuracy of at least min{2, p}, that is, first or
second order methods. We consider in the next two sections these two cases separately.

Remark IV.2.1 We have considered, for simplicity in the exposition, the Hamiltonian
case given by the system of equations (IV.2.1). The consideration of linear damping in
(IV.2.1)2, that is,

M =~Cv — Kd+ fog , (IV.2.15)
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for a positive semi-definite damping matrix C can be easily incorporated in the develop-
ments of this section. In particular, the general approximation of the damping term

Cv — C(dns1 — dy)/At (IV.2.16)

leads to a dissipative approximation, with the added physical dissipation D¢ = (dn41 —
d,)-C(dn41—d,)/At > 0 to the numerical dissipation D in (IV.2.11). We note, however,
that the consideration of an artificial damping C alone, not necess~rily modeling a physical
damping, does not lead to the introduction of dissipation in the bhigh-frequency range (see
e.g. HUGHES [1983], page 97). O

IV.2.1.1. First—order dissipative schemes (ED-1)

Given the definiteness properties (IV.2.2) of the mass and stiffness matrices, the sim-
plest choice of dissipative terms f;5s and gaiss satisfying the dissipation estimate (IV.2.7)
is given by

fd’iSS = X]_ %K (dn+1 - dn) ) and gdiss = Xz% ('vn-.]—l - vn) . (IV.2.17)

in terms of two numerical parameters x, and x,. With these definitions, the relations
(Iv.2.8) lead to the quadratic dissipation functions

DV le%(dn+l—dn)'K(dn+l—dn) 207 }

(IV.2.18)
DK - Xz'% ('Un+1 - vn) : M('vn-i-l - vn) Z 0 ’

for x,,x, > 0by (IV.2.2). Given (IV.2.14), we conclude that the choices determined by the
relations (IV.2.17) define a first-order scheme (note that Dy, Dk v O(At?)). The resulting
scheme is denoted ED-1 (energy dissipative, first order), and reauces to the scheme referred
to as 6—method in WooD [1990] for the particular case given by x, = x,-

IV.2.1.2. Second—order dissipative schemes (ED-2)

We observe that the limited first-order character of the approximations (IV.2.17) arises
from the first-order differences (IV.2.14). Therefore, to arrive to second-order dissipative
linear schemes, we consider the alternative expressions for the dissipative terms

fdiss = % K(Jn - dn) ) a‘nd Qdiss = % ('571, ! 'Un) ) (IV.2.19)

for intermediate stage values d,, and ©,. We are interested in these intermediate values
defining a second-order approximation of the corresponding values at t,, that is,

d,—d, ~O(AtY)  and B, — v, ~ O(AL?), (IV.2.20)
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S0 faiss and gg;ss are second-order O(At?) in At. This order can be achieved with the
relations

d, =d, + Ata (v,—v, ,
" (Bn = Vni) ) (IV.2.21)
M’En = M'Un— At o K(dn - dn+1) [+At fea:t] y

for an algorithmic parameter . The term [+A¢ fext] in (IV.2.21)2 has been added to
recover some existing methods as particular cases. For the methods proposed in this
paper, we simply take foot = 0. We note that the second-order relations (IV.2.20) are
automatically satisfied for the definitions (IV.2.21), even for fozt = 0. More generally, we
would need fezs ~ O(At).

The particular cross definitions (IV.2.21) for the intermediate values d,, and &, have
been introduced to arrive at dissipative approximations for any value of the parameter a.
Indeed, combining equations (IV.2.19) and (IV.2.21), the numerical dissipation D is given
by (IV.2.10) for @ # 0 as

D= DK + DV = Qdiss * M (vn-i-l - vn) + fdiss * (dn+1 - dn)
= % (’5"1 —p) - M(vn+1 - ’Un) + % (Jn —d,)- K(dn+1 ~d,)

(Bn — V) M(Bp — vn) + 3 (dn — dn) - K(d,, — dy,)
+ 1 (B —vn) - M(Vny1— Bn) + 3 (dn — dn) - K(dny1 — dy)

=1 (&, ~v,) - M(B, —v,) + 3 (dn — dy) - K(dn — dy,)

1 - 1 -
1 " (5 . - 1 _- — B —
5 Ata(v" Un) - M(d, —dy) + 5 AtaM(d" dy) (0, — vy) .

=1 (Bp—v,) M@, —v,)+ 1 (dn—ds) K(dn—ds) >0, (IV.2.22)

given the assumed positive definiteness properties (IV.2.2). For the case a = 0, the estimate
(IV.2.22) still holds since in this case we have from (IV.2.21) d,, = d, and 9, = vy, so
faiss =0, gdgiss = 0, and D = Dy = Dg = 0, recovering the conserving scheme. For future

reference, we introduce the expressions

DV = -21- (Jn - dn> . K(dn+1 - dn) ’
(IV.2.23)

Dg = % ('En—{—l - 'Un) M (Un+1 - vn) .

We observe that, in contrast with the first-order methods introduced in Section IV.2.1.1, it
is the total dissipation D of the second-order schemes (IV.2.19) (and not necessarily each
component Dy and Dk in (IV.2.23)) that is non-negative, as needed. The cross definitions
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(IV.2.21) of d,, and ¥, allow the cancellation of terms in the proof of the estimate (IV.2.22)
resulting in the dissipative character of the final scheme.

We can recognize several existing algorithms as particular cases of the time-stepping
algorithms given by (IV.2.19) and (IV.2.21). Namely, we have:

i. o = 0 leads to the trapezoidal rule (with f.z; = 0), the conserving formula (IV.2.12).

ii. @ =1/6 leads to (linear in time) discontinuous Galerkin for

1 tn+1

fe:z:t At fe:z:t(t) dt ) (IV.2.24)

in the original discrete approximation (IV.2.8), and

. tnt1 ¢ +1/2
ot = - IV.2.25
Foot /t i 2 ! fomn(t) dt (IV.2.25)

n

in (IV.2.21). These very particular choices lead to a third-order scheme; see JOHNSON
et al [1984].

iii. @ =1/2 leads to the Lobatto IIIC Runge-Kutta method for

fe:z:t = %(fe:ct(tn) + fe:z:t(tn+1)) 3 (IV226)

in the original discrete approximation (IV.2.8), and

~ fezt = %(fezt(tn) - fe:z:t (tn+1)) 3 (IV227)

in (IV.2.21).

Hence, the new methods (IV.2.19)-(IV.2.21) can be seen to be extensions of the particular
cases indicated above, with the algorithmic parameter « controlling the introduced nu-
merical dissipation. The dissipative estimate (IV.2.22) shows the unconditional stability
of all the resulting schemes, that is, for any a. The spectral analysis presented in the
following section shows that numerical energy dissipation in the high-frequency range is
accomplished for a > 0.

‘ Remarks IV.2.2.

| 1. We note the computational expense added by the introduction of the intermediate
stage (IV.2.21), leading to an algebraic system of equations in 4 - ngos unknowns
(dn+1, Vns1, dn and B,,), typical of multi-stage implementations. The cross character
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of the relations (IV.2.21) leads to a fully coupled system of equations in this 4 - ngos
unknowns, and its solution does not reduce to the simple evaluation of two dynamic
stages. For this reason, the use of the proposed numerical schemes in the linear setting
considered in this section may appear rather limited in front of existing single stage
formulas. However, and as shown in Section IV.3, the algorithms described in this
section provide the basis for the formulation of dissipative time-stepping algorithms in
the fully nonlinear range. The developments and analyses presented in this section will
become crucial in this endeavor, since they will permit to identify the form of similar
conserving and Jissipative terms in the nonlinear range. In addition, the generality
added by the consideration of nonlinear formulae allows to these costly multi-stage
implementations and preserve other fundamental properties of the nonlinear dynamics.

2. We observe that the use of other mass and stiffness matrices in equations (IV.2.19)
and (IV.2.21),, say M and K, would have led to the same energy decay estimate
(IV.2.22), as long as these matrices satisfy the conditions (IV.2.2). This observation
also applies to the relations (IV.2.17) and (IV.2.18) for the ED-1 scheme. This arbi-
trariness corresponds, in essence, to a scaling of the algorithmic parameters, a or x,
and x,, respectively. ‘ O

IV.2.2. Spectral analysis

The complete characterization of the stability and accuracy properties of time-stepping
algorithms in the linear range can be obtained through a spectral analysis of the discrete
equations. In particular, and following standard arguments (see e.g. HUGHES [1987],
Chapter 9, for complete details), we consider the homogeneous system of equations

d=v,
V=

\ } — d+w?d=0, (IV.2.28)
-w* d,

corresponding to a free one-degree of freedom linear oscillator of natural frequency w. The
system of equations (IV.2.28) can be understood as governing one of the modal equations of
the multi-dimensional system (IV.2.1), for the corresponding frequency w of the response.
Indeed, and as a classical argument shows, if we denote by v; and w; the eigenvectors and
eigenvalues of the generalized eigenproblem

Kv; =w? Mv;, for i= 1, ndof (IV.2.29)
(no sum in ¢ implied), the contraction of the equations (IV.2.1) with each eigenvector v;

leads to the scalar equations (IV.2.28) for each modal component d; := v;-d and v; := v;-v
(sub-indices ¢ having been omitted in (IV.2.28)).
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Following the same modal projection argument, the general class of linear time-
stepping algorithms (IV.2.8), with (IV.2.17) or (IV.2.19), leads to the same discrete rela-
tions when applied directly to the scalar system (IV.2.28). For a typical time increment
[tnytny1] (with At = t,41 —t,), the resulting equations can be written as

dn+1 _ dﬂ
{ At } = A(Q){ v Un} , (IV.2.30)

for the algorithmic amplification matrix A(£2) € R**?, function of the (non-dimensional)
sampling frequency {2 := w At € [0, 00).

The interest is focused on the properties of the eigenvalues ; € C (i = 1, 2) of the
amplification matrix A(2), with the spectral radius p({2) for the frequency {2 defined as

p(£2) := max lv:(2)] with  poo 1= Qlim p(02) . (Iv.2.31)

=1,

The spectral stability of the numerical scheme is then defined by p(£2) < 1, with linearly
independent eigenvectors for repeated eigenvalues 7; (otherwise, p(§2) < 1 strictly if the
eigenvectors of repeated eigenvalues are linearly dependent). In particular, the numerical
dissipation in the high-frequency range is reflected by the property po, < 1, strictly. A
complete characterization of the spectral properties of the numerical scheme is obtained
by considering the standard spectral error measures: the relative frequency error

24— 0
en = dQ where 24 = [Im(ln~;)|,
(note that v; and v, are real or complex.conjugate, so |Im(v1)| = |Im(v2)|), and the
algorithmic damping ratio
1
€q = miré&di where &gy, := ——Q—Re(ln'yi) for i=1,2. (IV.2.32)
i=1, d

We refer again to HUGHES [1987], Chapter 9, for complete details on these classical con-
cepts.

i. First-order ED-1 schemes. The amplification matrix (IV.2.30) for the ED-1 scheme
(IV.2.17) is given by
-1 _ _
P2 a1 -2?pr 11 A -2* 1-PFpF
(IV.2.33)
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FIGURE IV.2.1 Spectral analysis, ED-1 schemes. Distribution of the
spectral radius p(£2) in terms of the sampling frequency 2 = wAt of
a linear oscillator for different numerical parameters x, and x,. Note
that poo = max;=1,2 (|1 — x:|/1 + xs)-

where

1_X1)

B =2(1+x,), BT :=3(
%(1_X2)

} and A =1+ 22855, (IV.2.34)
B =3(1+x,) B =

in terms of the algorithmic parameters x, and x,. The eiger alues of the amplification
matrix (IV.2.33) are given in closed-form by

22 22
Py = o (1 L (stor +or8t) = o (stot-pier) - 1) . (IV-2.35)

Some analysis shows that p(£2) <1 for x,,x, > 0, and leads to the closed-form expression

1-x,] |1—X|}
ED1 = max | 1 2 IV.2.36
Poo {1+X1 ) 1+, ] ( )

for the spectral radius at infinity. We observe that p,, < 1 if x, > 0 and x, > 0, thus
requiring the presence of dissipative terms in both equations (IV.2.8) for this class of
first-order schemes to exhibit high-frequency numerical dissipation. Hence, we conclude
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FIGURE 1IV.2.2 Spectral analysis, ED-1 schemes. Distribution of
the algorithmic damping ratio £4(f2), relative frequency error en(f2)
and spectral radius p(§2) in terms of the sampling frequency 2 = wA¢
of a linear oscillator and the numerical parameter x (= x1 = x2).




F. Armero 180

that the schemes proposed in CRISFIELD et al [1997] and KUHL & CRISFIELD [1997],
extending similar schemes presented in ARMERO & PETOCZ [1996] for contact problems
and involving only displacement based dissipative terms (i.e., x, = 0), do not lead to the
desired dissipation in the high-frequency range.

The expression (IV.2.35) shows that a bifurcation from two complex conjugate to two
real eigenvalues occurs for the sample frequency

2

(IV.2.37)

at which a repeated real eigenvalue exists. The closed-form expression (IV.2.35) reveals
that in this case p(f25) < 1, strictly. We also observe that 2,;; = oo if and only if
X, = X,- This bifurcation can be seen in Figure IV.2.1 to reduce the spectral radius at {2
whenever x, # x,. From these considerations (or directly from the expression (IV.2.36)
of the spectral radius at infinity), we conclude the optimality of the choice x, = x,-

Figure IV.2.2 depicts the distribution of the algorithmic damping ratio £4(£2), relative
frequency error e (2) and spectral radius p(£2) for this case. The three-dimensional plots
in the left column show these values versus the sampling frequency {2 and the algorithmic
parameter x, = x,. The 2-D plots in the right column correspond to sections of these
3D plots for a different fixed algorithmic parameter. The absence of numerical dissipation
(reflected by the values £4(£2) = 0 or p(§2) = 1) in the conservative case x, = x, = 0
is apparent, with increasing values of this numerical dissipation for increasing values of
the algorithmic parameter x, = x,. The relative frequency error eg is observed to be
non-positive, thus concluding that the computed frequencies £2; are smaller than the exact
frequency {2 for this scheme. Alternatively, we may say that the computed periods (T :=
At 27 /§24) are always elongated when compared with the exact periods (T := At 2x/2).

A calculation based on (IV.2.35) results in the asymptotic values

&a(0) = T2+ 0(2%), 4 (Iv.2.38)
en(2) = —% (x2 + %) 22+ 023, (IV.2.39)

as f2 = 0, and where the optimal case x, = x, = X has been assumed. The first-order
accuracy of the method (unless y = 0, that is, the conservative case) is a consequence
of the first-order nature of the algorithmic damping ratio £4(£2) in (IV.2.38). Note that
the dissipation function D := Dy + Dk in (IV.2.18) is of second order in At, but the
final scheme is first-order only, as discussed during the design of the algorithm in Section
IV.2.1.1. This first-order accuracy of the scheme is reflected in Figure IV.2.2 by the non-
zero slope at {2 = 0 of the distribution of the algorithmic damping ratio £4({2) for a fixed
algorithmic parameter x, = x,, in accordance with (IV.2.38).
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FIGURE IV.2.3 Spectral analysis, ED-2 schemes. Distribution of
the algorithmic damping ratio £4(£2), relative frequency error eg(£2)
and spectral radius p(£2) in terms of the sampling frequency 2 = wAt
of a linear oscillator and the numerical parameter a. Note that poo = 0

and the second-order accuracy in time (as reflected by the zero slope
at 2 =0).
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il. Second-order ED-2 schemes. The amplification matrix (IV.2.30) for the ED-2
scheme (IV.2.19) is given by

B2 A(0) = (A1 — A A7 AL) 7T (1 - A,45Y) (IV.2.40)
where
1 -1 0o -1 [1 —a] [ 0 a]
A = 20, Ay=|_, 2| As= , Ag= ,
1 {%3 1] i [% 0] Tl 1 T -2 o
(IV.2.41)

in terms of the algorithmic parameter a. After a long but straightforward calculation, the
eigenvalues of the amplification matrix (IV.2.41) are given in closed-form as

Dy L (IV.2.42)

1+ 2 —a 02 +a2 22 +a2 24

1-2 a2 P+i }1—a-92—2-+a2 02)

where 1 = 4/—1. The spectral radius is then given by the closed-form expression (for a > 0)

a? 24
ED2 ()} (2)] = _ , 1vV.2.43
p(£2) m«%xh'( )| \/ 1+Q43——a92+0292+6¥294 ( )

)

which reduces to p(f2) = 1 for the conservative case a = 0 (no dissipation in this case for
any sampling frequency §2) and for a < 0.

From (IV.2.42) and (IV.2.43), we cex. also observe the limit

lim ®P2y;2=0, so |[FP’p =0, (IV.2.44)

2—o0

for @ > 0, thus showing a full numerical dissipation in the infinite frequency. The ED-2
schemes are then L-stable for a > 0 (see e.g. HAIRER & WANNER [1991]). We note that,
even though a control over the spectral radius at infinity p., may certainly be a desired
feature (for example, for the calibration of the algorithmic parameter @), the infinite sam-
pling frequency may be considered as “far away as needed” in many practical applications.
With this we mean that we still have full control over the range of finite frequencies for a
particular problem and its discretization (in the sense that the desired amount of damp-
ing can be introduced through the variation of the algorithmic parameter «), while still
exhibiting energy dissipation in the infinite (say larger or unresolved) frequencies. The
calibration in this case can be accomplished through the value of the spectral radius at a
given sampling frequency, say #P?p(7) in (IV.2.43).
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The spectral response for small sampling frequencies {2 is characterized by the asymp-
totic limits

) = S0+ 02", (Iv.2.45
en(2)=1 (a - %) 2% 4+ 023, (IV.2.46)

as 2 — 0, after some algebraic manipulations involving (IV.?.42). The third-order ac-
curacy of the combination & = 1/6 becomes apparent from these two last expressions.
This property, however, does not extend to the extensions to nonlinear elastodynamics
presented in the next section. Furthermore, we observe that the numerical dissipation
introduced in the system, measured in terms of the damping ratio &, is of the order 22 for
small values of {2 (note that the dissipation function D in (IV.2.22) is of order At?).

Figure IV.2.3 depicts the results of this spectral analysis of the ED-2 scheme. As in
Figure IV.2.2 for the ED-1 scheme, the distributions of the damping ratio £4(2), relative
frequency error e (£2) and spectral radius p(§2) are shown continuously in the algorithmic
parameter o (the 3D plots in the left column) and for fixed values of o (the 2D plots
in the right column, sections of the previous 3D plots for fixed a). As expected and
shown above, we observe the absence of numerical dissipation (£;4(£2) = 0 or, equivalently,
p(§2) = 1) for the conservative case @ = 0. Increasing the algorithmic parameter o
increases the numerical dissipation, characterized by increasing values of £4(£2) for a given
sampling sampling frequency 2. Similarly, we observe that for large sampling frequencies
the relative frequency error is negative (e, < 0), indicating that the computed frequencies
are diminished compared with the exact value 2 for this range of frequencies (i.e., the
computed periods are elongated, as defined above). For small frequencies {2, the relative
frequency error is positive for large values of the algorithmic parameter o.. The second-
order accuracy of the method for any value of a (third-order for o = 1/6) is also apparent
by the zero slope of the curves in the right column, reflecting the limit values obtained
analytically in (IV.2.45) and (IV.2.46) for small £2.

IV.3. Extensions to Nonlinear Elastodynamics

We address in this section the extension of the developments presented in the previous
section to the general system of nonlinear finite elastodynamics. The challenges in this
task can be stated as:

i. To maintain the energy dissipative character of the schemes for any elastic poten-
tial, including the control on the numerical dissipation (through the appropriate
algorithmic parameters) and their second-order accuracy in time.




F. Armero 184

ii. To preserve exactly the conservation laws of the momentum maps and corre-
sponding relative equilibria of the underlying continuum system, thus preserving
fundamental qualitative features of the phase dynamics.

iii. To avoid costly multi-stage implementations, as indicated above.

The time-stepping algorithms developed in the previous section where focused in the con-
struction of linear schemes given the linearity of the underlying problem, resulting in the
two-stage formulae of the second-order ED-2 scheme. Therefore, a direct application of the
previous algorithms to the nonlinear problem does not address the three aforementioned
challenges, including especially the conservation of angular momentum. Nevertheless, we
show in this section that these objectives can be accomplished following similar arguments
in the construction of the numerical schemes. In this way, after defining briefly the problem
under consideration in Section IV.3.1, we formulate in Section IV.3.2 a new second-order
energy-dissipative/momentum-conserving time-stepping algorithm for nonlinear elastody-
namics.

IV.3.1. Problem definition

We are interested in the integration in time of the deformation ¢ : B x [0, T] — R™dim
and material velocity v : B x [0,T] = R™™ (ngim = 1,2 or 3) of a solid B € R™™ with
material particles denoted by X € B and a time interval [0,T]. The weak form of the
governing equations (balance of linear momentum) reads '

=7,

/pa'z}-&p dB+/S:FTGrad((5(,a) dB:/poB-(Scp dB + T -6pdll,
B B B arB

(IV.3.1)
for all admissible variations ¢ satisfying homogeneous essential boundary conditious d¢ =
0 on 8,8 (the part of the boundary with imposed deformations), as usual. We have
denoted in (IV.3.1) the reference density of the solid by g, > 0, the deformation gradient
by F := Grady (with material gradient Grad[-]), the second Piola-Kirchhoff stress tensor
by S, the external body force B, and imposed tractions T on 678 has been employed in
(IV.3.1). The hyperelastic relation

ow

in terms of a general stored energy function W = W(C), with C := FTF (by frame
indifference).

As described in Part I of this work, the system of equations (IV.3.1) defines an infinite
dimensional Hamiltonian system, exhibiting the following conservation laws:
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i. Conservation of energy. For the Neumann problem with no applied forces (i.e., B =
T = 0 and 8,8 = @), the total energy is conserved, that is,

H(p, p(v)) =/B 2 po ||vl? dB+/B W(C(y)) dB = constant , (IV.3.3)

for the Hamiltonian H(-) in terms of the linear momentum density p := p,v.

ii. Conservation of linear momentum. The invariance of the Hamiltonian (IV.3.3) under
rigid translations leads to the conservation law

l:= / po v dB = constant , (Iv.3.4)
B

when the boundary conditions and loading exhibit this invariance (e.g., B = T = 0
and 0,8 = Q).

iii. Conservation of angular momentum. The invariance of the Hamiltonian (IV.3.3) under
rigid rotations leads to the conservation law

J = / Po X v dB = constant , (IV.3.5)
B

when the boundary conditions and loading share this invariance (e.g., B = T = 0 and
0,B = @). In (IV.3.5) we have made use of the cross product x of two vectors in R?,
or its corresponding embedding in lower dimensions.

As considered in detail in Part I, these symmetries lead also to the existence of relative
equilibria (see e.g. MARSDEN [1992]), that is, solutions of the general systems of equations
(IV.3.1) consisting of a rigid-body motion (rigid rotation and translation) superposed to
a fixed equilibrium deformation. We refer to Part I of this work and references therein for
details.

We consider a general isoparametric finite element approximation of the continuum
equations (IV.3.1) through the interpolations '

Nnode Nnode
=X+ Y NAX)d*t) and v= Y NAX)v4(@), (IV.3.6)
A=1 A=1

in terms of the shape function N4(.) for n,,04c nodes, nodal displacements d = { dr" 42" .. }

T
€ R™°f_ and nodal velocities v = {v!” v?" .. } € R™f, Standard procedures lead to
the nonlinear system of spatially discrete equations

d=v
. - (Iv.3.7)
Mv = —/ BTS dB + fext(t)
B




F. Armero 186

in terms of the (consistent) mass matrix

M =[M*% 1] for Msp= / po NANBdB  for A,B=1,n504e, (IV.3.8)
B

the identity matrix 1 € R™imX%dim  and the linearized strain operator (Bdd = sym[FT Gradd)
for a deformation variation d¢ and corresponding nodal variations éd), and external forces
fezt (including pussibly imposed boundary displacements). This system of ODE’s is sup-
plemented by the mitial conditions (IV.2.3) as in the linear case. The same conservation
laws (IV.3.3)-(IV.3.5) are inherited by the spatially discrete system (IV.3.7).

I1V.3.2. Energy dissipative, momentum conserving schemes

Following the developments in Section IV.2 for the linear case, we consider the fol-
lowing temporal discretization of the nonlinear system of equations (IV.3.7)

d;‘}+1 - d;‘} A A )
At = Gcons T Gaiss (A=1,nn04) ,
) (IV.3.9)
Un — Un -~
M—_I-ZT—' = '"/ B711’+1/2 (Scons + Sdiss) av + fe:z:t )
y,

for a typical time increment [t,, t,41], with the linearized strain operator B,, 1/, evaluated
at the mid-point deformation ¢,4+1/2 = (@n+1 + ©n)/2. As in the linear case (IV.2.8),
the external force vector is approximated through a general expression foat (e.g. the
second-order exprassion femt = Fext(tnt1/2))- |

The structure of the equations (IV.3.9) is the same as the equations (IV.2.8) for the
linear case after identifying the conserving and dissipative part of the approximation of the
internal force. In contrast, however, and as discussed extensively below, this decomposition
is considered at the stress level through the expression

S = Scons + Sdiss » (Iv.3.10)

for a conserving and dissipative approximation satisfying the pointwise relations

Scons : % (Cn+1 - Cn) = W(Cn+1) - W(Cn) N (IV311)
and .
Sdiss . % (Cn+1 - Cn) = DW y (IV.3.12)




Final Report, F49620-97-1-0196 187

respectively, for a dissipation density function Dw (i.e., per unit volume). The simulations
presented in Section IV.4 consider the expression

W(Cn+1) —_ W(Cn) Cn+1 + Cn

Scons = 2 N+2|I-NQN|0QpW(———), Iv.3.13
[Cor = Gl | Joom ==, s

for the conserving part, with
N = G = Crn (IV.3.14)

||Cn+1 - Cn” ,
and the well-defined limit

Secons = 2 BCW(E’—'ii;———gﬁ) for C, =Cp+ . (IV.3.15)

Here, we have used in the Euclidean norm of a rank-two tensor ||C||? := C;;C;;. The
expression (IV.3.13) was first proposed in SIMO & GONZALEZ [1994]. We observe that
Scons defines a second order approximation of the stress.

A consistent dissipative part Sgss satisfying the relation (IV.3.12) can then be con-

structed in the form
Dw

2e————— N,
“Cn+1 - Cn”
with IN given again by (IV.3.14) and the scalar Dy to be defined (with the proper limit

values for Cp,4; = C,,). As noted in Remark 5.1.2 of Part I of this work, the discrete stress
formula (IV.3.10) can be written in more general form as

Sdiss = (IV.3.16)

-S:N|N, 1V.3.17
[Crrs = Gl (1V-3.17)

S=§+P

for a general second-order approximation S of (IV.3.15), while maintaining the dissipa-
tion/conservation properties described in this section.

Following the ideas developed in the previous section for the linear problem, the
velocity contributions in (IV.3.9) are also decomposed in conserving and dissipative parts.
As occurred in the linear case, the conserving part can be easily obtained through the
mid-point evaluation

A A A A
Geons = vn+1/2 = % (vn+1 + vn) ’ (IV318)

for each node A = 1,n,,4e- The dissipative contributions gg4;ss to the velocity equation
(IV.3.9); are defined nodally by g4,, € R™™ through the solution of the system of
equations

Nnode

B _ A
§ : MAB gdiss_/N
B=1 B

D
v Untl ¥V g (IV.3.19)
vns1ll = lvall {lvnsrll + [[vnll
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for a dissipation density function D,. This expression is motivated by the equality

Nnode

Z ( ;;44-1 -V ) MAB gdzss = / D’u dB . (IV320)
A,B=1 B

similar to (IV.2.10); for the linear case, and its momentum conservation properties iden-
tified in the analysis below. :

In this way, multiplying equation (IV.3.9); by M (vn4+1—75) and (IV.3.9)2 by (dpy1—
d,), we arrive at the discrete energy evolution equation

o’

HEy  — HE = fezt - (dn1 — dn) — /B [D, + Dw] dB, (IV.3.21)

—

=D

after some algebraic manipulations. Here H? and H",, correspond to the exact Hamil-
tonian function (IV.3.3) evaluated with the finite element solution at times t,, and ¢,41,
respectively. As employed in the linear case of Section IV.2, we can identify the total
dissipation contributions

Y% :=/D,, dB and Dy :=/’DW B, (Iv.3.22)
B B

with D = Dk + Dy. The dissipative character of the resulting numerical scheme for the
force-free case f ozt = 0 is then concluded if we have D, + Dw > 0. We note that the two
dissipation density functions Dy and D, need to be defined orly locally at the quadrature
points since they appear under an integral sign. This important observation is employed
below to arrive to efficient second-order schemes.

In addition, the specific form of the dissipative terms in (IV.3.9); and (IV.3.19) leads
to approximations conserving the momenta. Indeed, denoting by I? 41 and I* the linear
momentum of the finite element solution at ¢, and £, 41 respectively (i.e., formula (IV.3.4)
with the finite element fields) and using (IV.3.9),, we arrive at the relation

@ =1)-a= [ apolvnss = v,) dB

Nlnode
/s FZ,,,Grad[a] dB+ At (Z m>.

0

Nnode
t (Z fg;t) -a  Va € R™m (IV.3.23)
A=1 ’
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thus leading to the conservation of the linear momentum when fext = 0 (note that this
implies no imposed boundary displacements as well). Similarly, denoting by J? wyy and
J! the linear momentum of the finite element solution at ¢, and %, respectively (i.e.,
formula (IV.3.5) with the finite element fields) and using (IV.3.9), we arrive after some
algebraic manipulations at the relation

( n41 J::) a = / a- po(‘Pn+1 X Upy1 — Pn X 'Un) dB

/F+1/2 +1/2 a dB + At memt a

symmetrtc skew

= At Mgt - Q VYa € R"dim | (Iv.3.24)

where @ denotes the skew-symmetric tensor with axial vector a, and Mgz is the moment
of the external loading, given by

o= [ nsryexpo BaB+ [ guiapx T ar, (IV.3.25)
a

where B and T denotes the temporal discretization assumed for the external loads, the
later consisting of all the surface loads on the boundary 8B, including the reactions at the
boundary 8,B with imposed displacements at the mid-configuration ¢, ;/2. Therefore,
the conservation of the angular momentum for Mm.,: = 0 (including no imposed boundary
displacements as well) is concluded.

The above developments follow the same arguments as the ones presented in Part I
of this work (hence the conciseness in the presentation) for the analysis of simila: time-
stepping schemes but in combination with a lumped form of the mass matrix M and
dissipation function in the velocities. In the same way, we can prove that the relative
equilibria of the discrete system (IV.3.7) (now involving a consistent form of the centrifugal
body forces in the equilibrium configurations) are also conserved by the time-stepping
scheme. We refer the reader to this reference for a proof and further details. We summarize
these properties in the following proposition.

Proposition IV.3.1 The numerical scheme (IV.3.9), with (IV.3.16) and (IV.3.19), pos-
sesses the following conservation/dissipation properties for the Neumann problem of non-
linear elastodynamics (i.e. fezt =0 with 0,B=0):

1. The discrete I* linear and angular momenta J* are conserved. That is, we have

hoo=1"  and Jh, =J (IV.8.26)
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unconditionally in the time step At.
2. The total energy evolves as

Hb , — HP =— / [D, + Dw] dB. (IV.3.27)
B

Hence the scheme is dissipative unconditionally in At and the elastic potential W(-)

3. The discrete dynamical system preserves the relative equilibria.

The numerical scheme is then totally determined once the dissipation density functions
Dw and D, are defined at the quadrature points. In this context, a first-order energy-
dissipative momentum-conserving scheme was presented in Part I of this work, with the
dissipation functions

(Cn+1 - Cn) : %én (Cn+1 - Cn) >0

[ 1

Dw = x,
(IV.3.28)

Dy =X, 5 Po (vl = llval)® > 0

for two algorithmic parameters x, > 0 and x, > 0, and a positive (semi-)definite tensor Ch,
e.g. C, = 40% oW |, (or its convexification; see e.g. DACOROGNA [1989)], page 35), leading
a first-order scheme, referred to as EDMC-1. More precisely, we presented in this reference
a variant involving a lumped mass matrix with an equivalent nodally-based definition of the
dissipation function D,, that leads to a very efficient numerical implementation of the final
discrete equations, involving the solution of a system of ngos equations with independent
nodal updates for the nodal velocities corresponding to equation (IV.3.9);. The expressions
(IV.3.28) are analogous to (IV.2.18) for the linear case. In this way, the resulting scheme
can be considered the extension to the nonlinear case of the energy-dissipative ED-1 scheme
described in Section IV.2.1.1 for linear elastodynamics. We develop in the next section
a second-order energy-dissipative momentum-conserving scheme, denoted by EDMC-2,
extending the energy dissipative ED-2 schemes formulated in Section IV.2.1.2 for the linear
problem. :

IV.3.2.1. A second-order energy decaying scheme (EDMC-2)

As noted in the beginning of this section, one of the challenges in the formulation of
efficient time-stepping algorithms is to avoid multi-stage formulas like the ED-2 scheme
developed in Section IV.2.1.2 for linear elastodynamics, thus avoiding the doubling of
the number of unknowns (i.e., nodal displacements and velocities) for each additional
stage. The key observation is again that the dissipation density functions D, and Dy, (see
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e.g. (IV.3.27)) need to be defined locally at the quadrature points of the finite element
implementation only. Therefore, and motivated by the form of the expressions (IV.2.23)
in the linear case, we introduce the definitions

Dw =1 (Cn—Cn): §Cn (Crs1 = Cn), (IV.3.29)

for an intermediate “strain measure” C,,, second-order approximation in time of C,,, and,

introducing the rciation vy, := ||v,|| and vp41 := [|Vn4all,
Dy =3 (¥n — Vn) Po (Vn+1 = Vn) , (IV.3.30)
for an intermediate scalar value ¥,, second-order approximation in time of v, := |jv,||.

That is, we require

Cn=C,+0O(At?) and ¥, = v, + O(AL?). (IV.3.31)

We note that the use of the intermediate values C,, and ¥,, does not require the introduction
of new nodal displacements and velocities (say d,, and ¥y,) as in the linear case. These
quantities are to be understood as numerical terms that through the definitions introduced
next lead to a dissipative numerical approximation being second-order in time.

Similarly, the only property required to the fourth-order tensor @n introduced in
(IV.3.29) is its positive definiteness. The derivation followed here emphasizes the de-
velopment of a general procedure for the construction of energy-dissipative momentum-
conserving schemes, leading to this freedom in the choice of the general terms. This
freedom was also noted in Remark IV.2.2.2 for the linear case. The consideration of a
constant @n in the time step simplifies considerably the final numerical implementation,
especially the csusistent linearization of the resulting equations. In this way, we consider
@n = 46%CW|n, (or its convexification) or simply @n = K, for a scalar parameter x,, > 0
and the fourth-order identity matrix I. A value of kK, = 2 (the initial shear modulus)
has been assumed in the simulations presented in Section IV.4 involving a compress-
ible Neo-Hookean finite elastic model. We note the residual character of the definitions
(IV.3.29) and (IV.3.30) (through the proper definition of the intermediate values C,, and
¥n, as developed below), and conclude the consistency of these different alternatives in the
definition of @n.

A simple definition of the intermediate tensor Cy, is given in the form

C,=Cp+pn (Cpy1—Cr), (IV.3.32)

for an unknown scalar parameter ﬁn. We note that both C, and C,4; are known in a
typical iterative procedure (e.g. Newton-Raphson) when solving the nonlinear system of
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equations (IV.3.9). The requirement (IV.3.31); for a second-order scheme translates then
to

Bn = O(At), (IV.3.33)

since Cp11 — C,, = O(At). The numerical scheme reduces then to the definition of the
two scalars G, and v, at each quadrature point.

Motivated by the developments in Section IV.2.1.2 for the linear case, equations
(IV.2.21) in particular, we introduce the definitions

~ At -

,Bn = T (Vn+1 - Vn) s

- At ~

Vn = Vp — @ 7;“ Cz “Cn+1 - Cn”z(]- - ,Bn) ’

(IV.3.34)

for an algorithmic parameter c, a length scale h (e.g. based on the quadrature point
structure of the preceding developments h =*%/quadrature point reference volume =*7%/7,
for j = determinant of isoparametric map x quadrature weight, the isoparametric map

corresponding to the reference volume) and

. (Cny1=Cn): 1Cp (Cny1 — Ch)

2
where & :=
’ [Crt1 — Crl|?

c =

(IV.3.35)

R
Po .
The dimensional consistency of the final equations (IV.3.34) can be verified. We emphasize
that the length scale parameter h is based on the reference spatial discretization and it is,
therefore, not affected by the distortions of the spatial mesh that may lead to small values
of the volumes associated to the quadrature points in the deformed mesh; see also Remark
IV.3.1.3 below. We also observe that tke required order conditions (IV.3.31) and (IV.3.33)
are satisfied, as discussed in Remark IV.3.1.2. The expressions (IV.3.35) are simple linear
equations in the two unknown scalars ﬁn and v,, with the closed-form solution

~ 1 At At
Bn = Z a—Tl— [Vn+1 —Vpn+a —h— c? ||Cn+1 - Cn”2:| , (IV336)
and
- 1 At At
Vp = 3 [Vn -« (1 -« - Vn+1) - & ||Cpq1 — Cn”z] , (IV.3.37)
for

< At\?
A=1+ az (C—k—> ”Cn-i-l - CnHZ

with 8, = 0 and ¥, = v, for ||Cpy1 — Cpll = 0 and ||vns1]| = [|[va])-




Final Report, F49620-97-1-0196 193

The motivation behind the definitions (IV.3.35) is the non-negative character of the
combination Dw + D, appearing in the final expression (IV.3.27) of the total dissipation,
as in the linear case considered in Section IV.2.1.2 for the ED-2 scheme. This property is
achieved through the cross-type definitions of Bn and ¥,, appearing in expressions (IV.3.35).
In fact, we have

D, +Dw = % ({’n - Vn) Po (Vn+1 - Vn.) + % (én - Cn) : %@n (Cn+1 - Cn)

I
N[
)
)
~~
5
s
N’
Y
+
-
~
o]
3
|
2
p
S
)
3
—~~
O]
3
|
\
3
N

z%po (in_Vn) l(c C) C (é"_c"')

- % (Va — Vn) Po (Vn — Vnt1) — 3 (C -Cy) : 7}: (én — Chy1)
= ﬁn(Cn-f-l_Cn) = —(l_ﬁﬂ)(cn+1 ‘Cn)

L po (Fn = va)2 4+ 1 (Cn— C,) : 3Ca (G — Cn)

- % ({’n - Vn) Po (“-’n - Vn+1) - % Bn (1 - ﬁn) C2po ”Cn—H - Cn”2
= aft(vay1—9,) by IV.3.34)

o (Tn—=va)2+ 1 (Cn— Cp) : 3Cp (Cn — Cy)

Il
W=
©

N

(G =)+ (1=5) & 5 1€ = Gal?] o (7 = V)

N

~0 by (IV.3.34),

=1 po (Tn—va)2+ 12 (Cn—Cn): 1Co (G - Cr) >0, (IV.3.38)

since p, > 0 and C,, is positive semi-definite. Furthermore, the relation (IV.3.38) holds un-
conditionally in A¢ and, perhaps more importantly, unconditionally on the elastic potential

We emphasize once more that the final numerical scheme reduces to the evaluation of
proper dissipation functions at the quadrature points. This is simply accomplished through
the (linear) evaluation (IV.3.36)-(IV.3.37) of two scalar parameters. The implementation
involves then the solution of a 2 - ng,¢ algebraic system of equations in d,4+; and vp4q
only, and not 4 - ngo¢ equations as it would be the case in a two-stage scheme. However,
we readily observe that in contrast with traditional algorithms where the 2-n4,5 equations
can be decoupled in a nonlinear algebraic system of ng,¢ equations with nodal updates
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for the velocities, the resulting system for EDMC-2 scheme is coupled in the velocity and
displacement contributions. This situation is due to the crossed used of the velocity and
displacement in the dissipative terms (IV.3.34). Furthermore, the conserving/dissipative
contributions lead to a unsymmetric material stiffness matrix, as it is common in existing
conserving schemes. Appendix IV.2 describes the details of a numerical implementation
of the proposed scheme that avoids these drawbacks by introducing a nested iterative pro-
cess based on a symmetric algebraic system of equations. A complete comparative study
of the computational cost involved is also included, showing that the improved conser-
vation/dissipative properties of the proposed schemes can be obtained at a competitive
computational cost. The dissipation/conservation properties summarized in Proposition
IV.3.1, as well as the second-order accuracy in time of the resulting scheme, have been
confirmed in the numerical simulations presented in the following section.

Remarks IV.3.1.

1. We note that the need to introduce the length scale parameter h in (IV.3.34) is a
consequence of the definition of the dissipation functions at the level of the quadra-
ture points, with temporal relations involving strains and velocities (thus the need of
the length parameter for dimensional consistency). This situation does not apply to
other nonlinear Hamiltonian systems, where the developments presented above for the
system of nonlinear elastodynamics generalize. For example, for the simpler model
problem of a nonlinear spring with elastic potential V'(I) (I = spring length), fixed at
one end and with a point mass m at the other end free of other external forces, as
considered in Part I of this work, the EDMC-2 scheme reads

1 Dk Un4l + Un

At (@nt1 — Gn) = Vny1/2 + m!

Vn+l — Vn Vn41 + Vp ’ .
(T \7.3.39)
V(lnt1) = V(n) +Dv Gny1 +an ~

ln+1 - ln ln+1 + ln

m
ZE ('U'n.+1 - ”n) = -

)

that is, as the EDMC-1 scheme presented in this reference, but with the dissipation
functions

Dy =1 Ku(ln —1s)(lng1—1n), and Dg =3 m (¥n— n)(Vns1— va) , (IV.3.40)

-~

Iy =ln+a At (7 = Vag1) , (IV.3.41)
mvp=m vy, —a At Ky (I = lat1) , (IV.3.42)

with no need to introduce additional length parameters. Here, we have used the no-
tation of g, € R? for the position vector at time ¢ of the mass m from the fixed
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end and vy € R? for the velocity vector of the mass at time ¢, with l; = ||q:|| and
v = ||vg]|. The scheme (IV.3.39)-(IV.3.42) exhibits the same dissipation/conservation
properties as summarized in Proposition IV.3.1 for nonlinear elastodynamics. In par-
ticular, similar arguments show unconditional energy dissipation (the energy being
H = m v?/2+ V(1)) and conservation of the angular momentum around the center
(the angular momentum being J = m v [ sin¢ for the angle ¢ between the vectors
q and v), while being second-order accurate in time. We refer again to Part I of
this work for details on this model problem as well as for a related simplified model
of thin beams. Similar arguments apply in the construction of second-order energy-
dissipative, momentum-conserving schemes for this and similar nonlinear Hamiltonian
systems; details are omitted.

. The order conditions (IV.3.31) and (IV.3.33) are satisfied, in fact, in the form

~ At
,B = O(AC’FL At) and ‘771 = Vn + O(ACFL Atz) fOI‘ AC’F‘L =C—, (IV343)

that is, a “Courant parameter” in terms of the speed value ¢ defined in (IV.3.35). Note
that the introduction of Agp; should not be related to any condition on the stability
of the algorithm; we have shown the unconditionally (energy) stable character of the
proposed scheme. This stability is accomplished for any value of the time step At and
spatial discretization (i.e. h). Nonetheless, it is normal to consider simulations for a
fixed (non-dimensional) ratio of these parameters, that is, a fixed Agr,. The relations
(IV.3.43) show the consistency (the second-order accuracy of the scheme, as a matter
of fact) under these conditions. No conditional consistency is observed.

. We also note the lack of singularity of the above expressions for small values of the
length parameter h (that is, fine meshes) for a fixed time step. We emphasize again
that this parameter is defined in terms of the reference mesh, so this case may arise for
a limit choice of the initial mesh and not due to excessive distortions of its deformed
configuration. A straightforward calculation shows that for &~ — 0 we obtain the limit
values ¥, — v,41 and C,— Chti (ie., Bn — 1), leading to a finite value of the total
dissipation density D, + Dw in (IV.3.38);. Observe that the total dissipation is given
by the sum over all the n quadrature points

gauss

ngauus

D= / [Dy+Dw] dB= S [Dy+Dwl, ko, (IV.3.44)
B

=1

so still the contribution to the total dissipation of the quadrature point with h; — 0
vanishes, as expected.

. We note again the emphasis in the presentation herein on the construction of a gen-
eral procedure, leading to a possible multiple choice in some of the parameters. Still,
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from a practical point of view the meaningful parameter controlling the numerical
dissipation is only one, namely, the (non-dimensional) algorithmic parameter a. Par-
ticular choices on the values of the dissipative terms &, defining a computationally
convenient C, (see discussion after (IV.3.31) would only correspond basically to a
re-scaling of the parameter o. This corresponds to the same situation discussed in
Remark IV.2.2.2 for the linear case. The calibration of the algorithmic parameter
« can be obtained, for example, through the dissipation curves in the representative
linear problems considered in Section IV.2. O

IV.4. Representative Numerical Simulations

The spectral analyses presented in Section IV.2.2 characterize completely the nu-
merical properties of the new ED-1 and ED-2 schemes presented in this paper for linear
elastodynamics. To evaluate the performance of the newly proposed EDMC-2 scheme for
nonlinear elastodynamics, we consider in this section several representative numerical sim-
ulations that verify numerically the accuracy and dissipation/conservation properties of
the new scheme shown in Section IV.3.2.

To this purpose, we consider the finite elastic solid depicted in Figure IV.4.1 in its
initial configuration (t = 0). As seen in this figure, the solid consists of a central ring with
three equally spaced blades resembling a propeller. The ring has an inner radius of 0.4,
outer radius of 0.5 and depth of 0.2, and it is discretized in 15 equally spaced groups of 6
8-node bricks each. The distance from the the center of the ring to the tip of the blades is
2.5, having a twisted reference shape in between, with linearly varying thickness along its
height. We have included in Figure IV.4.2 the coordinates of the nodes at the tip and at
the base of one of the blades. A total of 12 8-node bricks are used for each blade.

The compressible Neo-Hookean model given by the stored energy function

A
W(C) = —2—log2 J+ % p(ly —3)—plogJ, (Iv.4.1)

for J = v/det C and I = tr C, and material parameters A and p (the Lamé constants), is
considered. As indicated in the previous section, the numerical properties of the proposed
schemes generalize to any elastic potential. The parameters A\p = 57.70 and up = 38.46 are
assumed for the blades. The inner ring is assumed stiffer, with A, = 8- Ay and p, = 8- .
The reference density is taken to be p, = 8.93 throughout.

A volumetric body force is applied initially to the inner ring only, with the form

B(X,t) =7(t) [es x ¢(X,1)] (IV.4.2)
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(25, -0.05, -0.40)
(25, -0.0056, -0.1333)

(25, -01389, 0.1333)
(2.5, -0.45, 0.40)

(25, 005, -0.40)
(25, 01, -0.1333) P
(25, -005, 0.1333)
(25, -040, 040)

linearly varying thickness
with 4 equally spaced divisions

equally spaced
blades

a torque is initially N
applied to the
inner ring

hidden three nodes with
the same coordinates as
below, except y = -0.104

(04891, 0104, -0.0) Pt »
(04891, 0104, -0.0333) AR :
(04891, 0.104, 0.0333) L \,\

(04891, 0104, 0.10)

FIGURE 1V.4.1 Three-dimensional, Neo-Hookean solid: problem
definition. The solid consists of a ring of inner radius 0.4, outer radius
0.5, and depth 0.2, discretized with 90 8-node bricks. Three equally
spaced blades, with a linearly varying thickness, are discretized with 12
finite elements each. The coordinates shown are given in the depicted
z — y — z Cartesian system, with the axis of the ring corresponding to
the z—axis.

where ez is the unit vector in the direction of the undeformed ring axis (the z-axis in Figure
IV.4.1), and o(X,t) is the current position of the material particle X. No boundary
loading nor displacements are imposed. Different loading functions 7(t) are considered in
the sections that follow. The mid-point approximation of the forcing term in (IV.3.9) is
considered.

With this problem at hand, we verify first in Section IV.4.1 the second-order accu-
racy of the proposed scheme. Section IV.4.2 focuses on the evaluation of the dissipa-
tion/conservation properties of the proposed scheme summarized in Proposition IV.3.1.
Section IV.4.3 assesses in more detail the performance of the numerical schemes under
study for a complex forced motion.

IV.4.1. Evaluation of the numerical accuracy in time
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We verify in this section that the theoretical second-order accuracy in time of the new
EDMC-2 is actually observed in numerical simulations. We consider the triangular loading
function

( _t <t<T/2
TmamT/Za O_t_. / )
7(t) = S 2 L T/2<t<T (IV.4.3)
Tmaz( T/2>’ /_. = 3
L 0, t>T.

for the volumetric loading history in (IV.4.2). Therefore, tue solid is in free motion after
t > T (7(t) = 0 thereafter). We consider the values of T = 15 and Tyqz = 5.6. We run the
simulations for a fixed period of time [0, 30], different steps sizes At and different values
of the algorithmic parameter a.

We report in Figure IV.4.2 the Euclidean norm of the errors in the nodal displacements
and nodal velocities, that is,

Nnode 1/2 Nnode 1/2
eq = l > ndA—d;‘}m”?] and ey = { > Jlv# —v;;?mu?} , (IV.4.4)
A=1 A=1

where the “limit” solution, approximating the exact solution, is taken to be the solution
computed with a very small time step (At = 1-1073) and the conserving scheme (a = 0).
The results for @ = 0 (energy-momentum conserving scheme), @ = 1/8 and o = 1/6 are
depicted in this figure. The spatial discretization is kept fixed. The results presented in
Figure IV.4.2 verify the second-order accuracy of the EDMC-2 scheme for all cases. In
fact, we observe that the introduction of the numerical dissipation through the algorithmic
parameter a # 0 leads to numerical errors of the same ord<r as in the conserving scheme
a = 0. Figure IV.4.3 depicts the final deformed configurtion of the solid, computed with
the EDMC-2 for @ = 1/8 and At = 1-1072. The significant amount of straining of the
solid is apparent. '

We note that, in contrast with its linear counterpart (the ED-2 scheme of Section
IV.2.1.2), the case & = 1/6 does not lead to a third-order scheme in time, but second-order
only. This result can be traced back to the forms of the dissipative stress and velocity
terms in (IV.3.16) and (IV.3.19), respectively, irrespective of the order of the dissipation
functions Dw and D,. Remember that the particular form employed in these expres-
sions was motivated by the need to conserve angular momenta and corresponding relative
equilibria (a feature much more important that the added extra degree of accuracy, we
would say), thus leading to a numerical scheme that shows the right qualitative dynam-
ics while still showing the desired controlled numerical dissipation in the internal modes
of the motion. Additional examples evaluating the numerical accuracy of the proposed
schemes in comparison with other existing methods, including an evaluation of accuracy
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FIGURE IV.4.2 Three-dimensional, Neo-Hookean solid. Conver-
gence plots for the Euclidean norm of the nodal errors of the dis-
placements and velocities. The second-order accuracy of the EDMC-2
scheme is verified.
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FIGURE 1V.4.3 Three-dimensional, Neo-Hookean solid. Deformed
configuration at ¢ = 30, computed with the EDMC-2 scheme, with
a=1/8 and At =1-10"2. '

versus computational cost, can be found in Section IV.2.3.1 of Appendix IV.2. These
dissipation/conservation properties are evaluated in the following section.

IV.4.2. Evaluation of the dissipation/conservation properties

To verify the dissipation/conservation properties summarized in Proportion IV.3.1,
we compute the long-term solution of the same problem considered in the previous section
under the loading function (IV.4.3), with the values T = 10 and Ty,0 = 6.1. We carry
out the numerical simulation with the EDMC-2 scheme with an algorithmic parameter of
a = 2, and the HHT scheme with an algorithmic parameter of a = 0.85.

We consider first simulations with a time step of At = 1.2. Figure IV.4.4 depicts
the evolution of the energy (including kinetic, strain and total energies) and of the three
components of the angular momentum obtained with the HHT and the EDMC-2 schemes,
respectively. The conservation of the angular momentum by the EDMC-2 scheme is con-
firmed, as it can be observed by the constant value of its different components after the
initial period of application of the load (¢ < 10). Furthermore, the EDMC-2 scheme ex-
hibits the monotonic non-negative dissipation shown in Proportion IV.3.1. This situation
is to be contrasted with the solution obtained with the HHT scheme. Clearly the angular
momentum is not conserved. Furthermore, the dissipative character of the scheme is lost
in this nonlinear range. Observe how the energy oscillates, and may eventually grow. In
fact, we have not obtained convergence with this time step at a time of ¢ = 23.
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FIGURE 1V.4.4 Three-dimensional, Neo-Hookean solid. Short-term
solutions (¢t € [0,30]) obtained with time step size At = 1.2 for the
HHT (left) , « = 0.85, and the EDMC-2 (right) a = 2. The angular
momentum of the solid remains constant upon release (t = 10) for the
EDMC-2 in contrast to the solution obtained with the HHT scheme.
The dissipation in the latter is not monotonic (i.e. the total energy
may increase) and, in fact, a lack of convergence is observed for this
time step at ¢t = 23. In contrast, the monotonic non-negative character
of the dissipation of the EDMC-2 is confirmed.
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FIGURE IV.4.5 Three-dimensional, Neo-Hookean solid. Long-term
solutions (¢t € [0,1000]) obtained with time step size At = 1.0 for the
HHT (left) , @ = 0.85, and the EDMC-2 (right) o = 2. The angular
momentum of the solid remains constant upon release (t = 10) for the
EDMC-2 in contrast to the solution obtained with the HHT scheme
with decreasing angular momentum. In this case with a small time
step, the total energy of the solid decreases tending to zero for the
HHT while the EDMC-2 decreases to the level marked by the relative
equilibria associated to the constant angular momentum. The solution
for the HHT tends asymptotically to the solid at rest.
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t = 18

t =20

FIGURE 1V.4.6 Three-dimensional, Neo-Hookean solid. Solu-
tion obtained with the new energy-dissipative, momentum-conserving
(EDMC-2) time-stepping scheme with At = 1.0. Initial stages (short-
term solution). Snapshots shown every 2 time steps starting at ¢ = 0.
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t = 1020 t = 1022 t = 1024

FIGURE 1IV.4.7 Three-dimensional, Neo-Hookean solid. Solu-
tion obtained with the new energy-dissipative, momentum-corserving
(EDMC-2) time-stepping scheme At = 1.0. Final stages (long-term
solution). Snapshots shown every 2 time steps starting at ¢t = 1000.
The solid is essentially at the relative equilibrium, consisting of a rigid
rotation.
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Reducing the time step to At = 1.0 allows to compute the solution with the HHT.
Figure IV.4.5 (left column) depicts the evolution of the energy and angular momentum
in this case. The long-term solution (¢ € [0,1000]) is shown. The lack of conservation
of the angular momentum for the HHT scheme is again clear. We observe indeed that
the angular momentum of the solid decreases. Observe also that the energy tends also
to decrease to zero. This response confirms the results obtained in Part I of this work.
Traditional “linearly dissipative” schemes do not preserve the relative equilibria of the
system, introducing the numerical dissipation (if they do, that is, for small time steps)
in all the modes of deformation of the solid. The solid tends then to the rest position
asymptotically.

This situation is to be contrasted with the performance of the newly proposed EDMC-
2. Figure IV.4.5 (right column) includes also the evolution of the three components of
the angular momenta and the energy (total, kinetic and strain energies) for this case,
and a time step of again At = 1.0. After the initial loading stages, we can observe the
conservation of the angular momentum and the monotonic decay of the total energy, as
shown in Proposition IV.3.1 above. In particular, we observe that the evolution of the
energy converges asymptotically to a non-zero value. It converges, in fact, to the energy
of the relative equilibrium associated to the constant angular momentum.

Figure IV.4.6 shows the configuration of the deforming solid during the initial stages
of the simulation with the EDMC-2 scheme. The varying deformation of the blades and
the inner ring is apparent. In particular, we can observe the twisting and bending of
the blades, characteristic of the existing high-frequency modes in the short-term solution.
Figure IV.4.7 depicts the configuration of the solid in the final stages of the very same
simulation. In particular, the absence of these high-frequency modes is apparent. In
contrast with the HHT solution, the solution is (asymptotically) closed to the relative
equilibrium of the system, consisting of rigid rotation around the axis of symmetry of the
solid with a fixed deformation of the blades and inner ring. No translation is involved due
to the symmetry in the problem.

Figure IV.4.8 depicts this relative equilibrium conﬁguration,. but computed directly
from the equilibrium equation for the imposed angular momentum (the angular momentum
after the initial loading phase). That is, we solve the system of finite element equations

/ N po [2e % (26 x @2)] dB + / BT S(p.) dB=0, A=1,nnote, (IV.45)
B B

for the equilibrium configuration .. Here, the equilibrium angular velocity 2. has the
same axis as the imposed angular momentum Je, and it is incremented until the known
value of the angular momentum ||J|| is obtained. We note that the equilibrium velocity
field at the relative equilibrium is given by

Ve = 2 X e (IV.4.6)
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FIGURE 1V.4.8 Three-dimensional, Neo-Hookean solid. Relative
equilibrium configuration computed by solving directly the equilibrium
equation (IV.4.5). .

with the corresponding angular momentum given by the expression (IV.3.5). The imposed
boundary conditions when solving the equations (IV.4.5) for ¢, restrict the translations
along the axis defined by 2. as well as the rotations around this same axis. Physically,
equation (IV.4.5) corresponds to the balance between the internal stresses at the equi-
librium configuration S(p.) and the centrifugal forces associated to the rigid rotation
— 82, x (£2. X @.). Note that a consistent approximation has been assumed for this forc-
ing term, as reflected by the integral involving the shape function N4 in the first term
of (IV.4.5), . accordance with the consistent approximation of the transient term as-
sumed in tht KDMC-2 scheme. The computed relative equilibrium solution has an energy
of H, = 0.4033, corresponding to an angular velocity of 2, = 0.272462 for the angular
momentum J, = 2.9138. We observe that the long-term solution computed in the dy-
namic simulation with the newly proposed EDMC-2 agrees with this equilibrium position,
including the asymptotic value of the energy in the long term.

Moreover, further analyses show that the consideration of this equilibrium configura-
tion with the initial velocity given by (IV.4.6) as initial conditions leads to a numerical
solution corresponding to this relative equilibrium (i.e., a rigid rotation), when computed
with the proposed second-order EDMC-2 scheme. At the relative equilibrium, the EDMC-2
scheme reduces to the energy-momentum conserving scheme which leads to a second-order
approximation of the equilibrium rotation, as shown in Part I of this work for general nu-
merical schemes of the form (IV.3.9). We refer to this reference and references therein for
further details on the relative equilibria in nonlinear elastodynamics and their numerical
approximation.
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We conclude that the EDMC-2 proposed in this work accomplishes then the desired
high-frequency energy dissipation of the internal modes of the motion while preserving
the momenta and relative equilibria of the system, and exhibiting at the same time a
second-order accuracy in time. This situation is to be contrasted with the performance of
traditional “dissipative” numerical schemes like the HHT a-method.

IV.4.3. Evaluation of the numerical performance in forced motions

To conclude with the assessmert of the numerical schemes under investigation, we
consider in this section a problem involving a more complex forced motion. The goal is to
evaluate the numerical performance of the schemes when different frequencies are excited
in an extended period of time. To this purpose, we consider the same solid as employed in
the previous sections, subjected to same torque distribution (IV.4.2), but with the loading
function

5.6 sin(6t) + 1.7 sin(27t) for t < 87,
T(t):{ sin(6t) + 1.7 sin(27¢) fort < 8« (IV.47)

0 for t > 87,

consisting of two sine functions with angular frequencies of 6 and 27, respectively. The
solid is then released at the time ¢ ~ 25. A constant time step of At = 0.02 is considered,
resolving correctly the function 7(t) in (IV.4.7). This function has been depicted in Figure
IV.4.9. This specific loading has been chosen after carrying out a modal analysis of the
solid in the initial undeformed configuration, consisting of a total of 828 modes. The lowest
natural frequency in this configuration is w; = 0.3 with the 26" natural frequency being
wse = 6.0 and the 98" frequency being weg = 27.0. A cluster of modes can also be ob-
served around the latter value, with a total of 12 modes in the frequency range [26.0, 28.0].
Obviously the natural frequencies associated with the linearized problem change in time
given the general large deformation framework considered herein.

Figure IV.4.10 (top row) deriiis the solution obtained with the conserving scheme
a = 0. We have included the evolution of the total energy of the solid and the quantity

ot = [

approximating the Lo-norm of the acceleration field. The high-frequency content of the
solution is apparent in the acceleration plot, which is observed to increase in time. This
increase is observed not only during the period of time [0, 8] of application of the exter-
nal force, but also after the solid is released. Even though the energy is conserved after
this instant, no convergence is obtained for this step size at time ¢t =~ 39. This example
illustrates the lack of control on the acceleration by conserving schemes, leading to the ob-
served difficulties in resolving motions with a high-frequency content. Additional examples
involving simpler Hamiltonian systems can be found in Part I of this work.

9 1/2
dB ] , (IV.4.8)

VUn+1 — Up
At
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FIGURE IV.4.9 Three-dimensional, Neo-Hookean solid. Loading
function 7(t) = 50 sin(6t) + 15 sin(27t) with At = 0.02.

Figure IV.4.10 depicts also the solutions obtained by different EDMC-2 dissipative
schemes. The two values of @ = 1/8 and 1/4 are considered. In contrast with the previous
conserving scheme, the numerical acceleration can be observed to be under control, at the
price of a dissipated energy upon release. No lack of convergence has been observed in these
cases for this time step. The total energy and the acceleration norm (IV.4.8) is depicted
versus time for the different values of the algorithmic parameter a. The comparison of these
solutions illustrates the role of this algorithmic parameter .a the control of the performance
(the numerical dissipation, in particular) of the numer:izal scheme. The presence of this
parameter allows then to obtain the numerical solution in the complex motions where
conserving schemes show clear difficulties in the resolution of all the components of the
motion. We note that the one-step nature of the proposed scheme allows for the perfect
control of the numerical dissipation introduced in the simulations by adapting the value
of this algorithmic parameter, if desired, while maintaining a reasonable time step based
only on accuracy considerations.

IV.5. Concluding Remarks

We have presented in this paper a new second-order time-stepping algorithm for non-
linear elastodynamics (the EDMC-2 scheme) that exhibits rigorously the energy dissipation
properties needed for the solution of stiff probiems of interest, while preserving the conser-
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FIGURE IV.4.10 Three-dimensional, Neo-Hookean solid. Evolution
of the total energy H kb and the Lo-norm of the numerical accelera-
tion during forced motion, obtained with the new energy-dissipative,
momentum-conserving (EDMC-2) time-stepping scheme for a = 0
(conserving), 1/8 and 1/4.
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vation laws of linear and angular momenta and as well as the associated relative equilibria.
The spectral properties of the new schemes have also been studied in detail for the system
of linear elastodynamics. The ideas presented here lead to new numerical schemes even in
this linear range, being second-order in time and exhibiting controlled energy dissipation
in the high-frequency range. In fact, the new second-order scheme ED-2 has been shown to
be L-stable, extending in this way some existing multi-stage (Runge-Kutta type) schemes.

As discussed and shown rigorously in Part I of this work, traditional “dissipative”
numerical schemes, like the HHT a—method, not only loose this dissipativity property
in the nonlinear range (exhibiting numerical instabilities in the form of an uncontrollable
energy growth in time), but they do not preserve either other features of the phase dynamics
like relative equilibria. In contrast, the newly proposed EDMC schemes (the first-order
EDMC-1 or the second-order EDMC-2) show these dissipation properties at the internal
modes of the motion, as illustrated in the example of Section IV.4.2. We emphasize the
controlled character of the numerical dissipation introduced in the numerical simulation.
In particular, this numerical dissipation may be turned off at any time, if desired, while
keeping it when difficulties appear with conserving approximations of the problem, as
illustrated in the example presented in Section IV.4.3, following the standard philosophy
for the use of dissipative schemes in the linear range. The limit situation presented in
Section IV.4.2 of obtaining asymptotically the relative equilibrium illustrates the long-term
properties of the proposed numerical scheme and the nature of the introduced numerical
dissipation, even though we may not be interested in damping all the internal modes of
the motion in particular applications. On the other hand, the proposed schemes appear
as an efficient tool for obtaining these equilibrium solutions.

In this respect, and based on our experience, we find fundamental that the numerical
scheme preserves the conservation law of angular momentum at all times, an intrinsically
nonlinear property as indicated in the introduction, and hence absent in standard high-
frequency “dissipative” schemes. The need to assure this property leads necessarily to
complex nonlinear formulae when compared, for example, to the ideas presented herein
for the linear range. Nonetheless, the construction of the energy dissipative properties
in nonlinear elastodynamics has been shown in this paper to follow the same arguments
presented for the linear problem, but at the level of the quadrature points of a typical
finite element implementation of these methods. This strategy avoids the additional large
computational cost associated with the doubling of the number of unknowns in each time
step for each stage of a globally defined multi-stage formula (typical, for example, of dis-
continuous Galerkin-type approaches), with a fully coupled algebraic system of equations
between all these stages. Still, the new scheme requires the coupled solution for the nodal
displacements and velocities of the single stage. We presented in Part I of this work how
a lumped implementation of these ideas led to a more standard implementation for the
first-order EDMC-1 scheme, involving the solution of an algebraic system of equations for
the nodal displacements combined with independent (nonlinear) nodal updates. To avoid
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the added computational cost for the EDMC-2 scheme proposed herein, a nested iterative
procedure has been developed, applying also to the energy conserving limit as a particular
case. In contrast with existing implementations of conserving algorithms, the proposed
technique involves a symmetric algebraic system of equations to solve and leads altogether
to a computationally efficient, competitive algorithm. Complete details are presented in
Appendix IV.2. Finally, the ideas presented in this paper can be applied to time-stepping
algorithms in the rotation group, with applications in the stable integration of geometri-
cally exact rod and shell theories, as we plan to present in a forthcoming publication.
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Appendix IV.1. Implementation of the EDMC-2 scheme

We summarize in this appendix the numerical implementation of the newly proposed
second-order energy-dissipative, momentum-conserving EDMC-2 scheme. The implemen-
tation of the first-order EDMC-1 scheme can be found discussed in Part I of this work.
Of interest in the case of the EDMC-2 is to avoid the coupling between the nodal veloc-
ities and displacements as well as the non-symmetry of the material tangent mentioned
in Section IV.3.2.1. After summarizing the algebraic finite element equations and their
consistent linearization in Sections IV.2.1 and IV.2.2 showing these conditions, we develop
in Section IV.2.3 of this appendix a symmetric nested iteration procedure that regains the
computational efficiency of the final numerical implementation. A complete comparative
study is included in Section IV.2.3.1.

IV.1.1. Tue finite element residual

We begin by writing the discrete finite element equations (IV.3.9) in the following
residual form

Rl
R? A

R(dpir,vnp) =1 wih RA={ R4}, A=tmm (1)
Rnnode

where the nodal residuals are given

R4 = fgt_/po N4 -”"Jf—lA;”—-"- dB—/B;;‘:l/Zs dB
B B
(1.2)

. dypri —dy
R{,‘ = / po N4 (—il&-t——— — (1 + gaiss) Un+1/2> dB
B
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for each node A = 1, npode, With the linearized strain operator in total Lagrangian form

[ <Pn+1 /2,1 N 1 |
‘Pn+1/2 PRAK 5
BA B ‘Pn.,.l /2,3 N3 4 for the material derivatives (1.3)
neE 9"£+1/2,1 N,a + ‘Pn+1/2,3 Nﬁl ()= %‘% : -

T A 1 A
Prtryze N3+ Cri1/2,3 V2

A T A
_¢Z+1/2,1 N5+ $nia/22 N,lj

Here, the rows are defined in terms of ¢,1/2,; the column ¢ of the deformation gradient
Foi1/2 = (Fpy1+ F)/2. The stress tensor S in (1.2) is given by (IV.3.16), which can be
written for the EDMC-2 scheme of interest as

S = Scons + faiss N, for faiss = & Bu|Cry1 — Cull, (1.4)

with S,ons given by (IV.3.13) and (IV.3.15), N by (IV.3.14), B, by (IV.3.34), and & by
(IV.3.35);. The scalar ggiss in (I.2); denotes the combination

vn — Vn

= n 1.5
Gdiss Vn1 + Vi 3 ( )

for v, given by (IV.3.34)3, v, = ||vn|| and vpy1 = ||vn+1]]. The integrals in (1.2), and
similar ones appearing below, are ccmputed through the standard assembly of element
contributions computed through a ntiadrature rule.

IV.1.2. The consistent linearization

The nonlinear system of equations R = 0 is solved iteratively through a Newton
scheme, leading to the algebraic system of equations

(k)
k od
K, {6 ?1351} = R(d7 11, Vn41) » (L6)
’ n+1

with d(*+1) = dfﬂl + 5d(k) and v*tD) = v(k)l + 5v,(:1)1. The tangent matrix K,(fgl

is computed as a function of the nodal vectors dflk_al and v,(:le through the standard

finite element assembly of element contributions, each contribution consisting of block
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components K45 for nodes A and B (the indices (k) and n+ 1 have been dropped to ease
the notation). We can write

KAB KAB
} , (L.7)

AB __
K [ K KAB

with each sub-block being the square ngy, X ndim matrices

KAE = / BA, /2 Ceons Bryy dB + / BA, /2 Caiss By dB+ /3 1G5 1 dB,(L8)
B

1
K}B = —MAB 14 / B,{}Il ;2 D NP dB, (1.9)
At 5
K = AtMAB 1 +/ po Y6 N* vnp1s NT B2, dB, (1.10)
B
KAP =1M4B 1 +/ vs N4 NB v,,1/2® :n:; B, (L11)
n

where the scalar M48 is given by (IV.3.8); and we have introduced the notation

Ceons = —1-N ® Spi1 + 2 [N . acW(C"+1 + Cn) _W(Cni1) - W(Cn)] NN
v v 2 v
2 v v 2
+2 aCCW(__"ilT“LE_) N® (2 0ZcW ( Cns ;C )N) , (I.12)
Caiss =2 kv NON+1745,10, | (1.13)
T ON4 ONB
AB __ 1
G = BX SIJ 8XJ D= 3 Y2 N®'Un+1 y (114)
I.J=1
N = (N11, Naz, Nag, N12, Nog, Nig)™ (1.15)
2022 At v (1-5 aAthvi
N = A Cts) M= (L16)
A A vpyq

h2 '
13=1- 3z V4 = _T(h+ a At(Vn — Vng1)) (1.17)

)
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_ Y3 — Ydiss _ Y4 (I.18)
’75 'Un + vn+1 ’ ’)/6 'Un-*-l + 'Un ’
v=2|Crs1—Crll, A=h"+acAt??, (1.19)

which simplify for the limit case [|Cpy1—Crl| = 0 to the values Ceons = 2 83cW ((Cry1+
C.)/2), Caiss = 0 and D = 0. The values h and c in these expressions are defined in
(IV.3.35).

IV.1.3. A symmetric nested iterative procedure

The tangent matrix (I.7) leads to a coupled system of equation on the nodal displace-
ments increment 5dg:)_1 and the nodal velocities increment 6'0,(1’21. A close examination of
the matrix blocks in (I.7) reveals that if the dissipative contributions vanish (that is, if
a = 0, so all the «’s in the previous section vanish), we have the relation

At KAP =2 KAB = MAP1, (IV.1.20)

v

for nodes A and B, which allows to write the nodal relation

K _ 2
6”n+1 - E

. _
5d®), (Iv.1.21)
after noting that R, = 0 due to its linearity in this case. As it is the case in common,im-
plementation of many standard time-stepping algorithms in elastodynamics, this structure
allows the elimination of the nodal velocities increment, leading to the reduced system of
equations

K*Szk-})—l 5d,(f21 = Rd(dﬁ+1av£+1) , - (1.22)

for the condensed tangent matrix K* 51’21 obtained by assembling the nodal contributions

2
K*4B = = MAB1 4+ K4F (IV.1.23)

The implementation then reduces to the solution of the algebraic system of ng,; equations
(1.22) with the nodal velocity updates (IV.1.21). We can also observe that, even in this
conserving case, the final system of equations is unsymmetric due to the first term in (I.11),
the material stiffness matrix.

To avoid the cost added by the coupled and unsymmetric structure of the equations
in the general case, we propose to stagger the system through a nested iteration that
maintains constant the terms leading to these drawbacks, namely, the dissipative and
conserving contributions. The additive structure of these terms in the proposed methods,
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a structure that has been fundamental in the previous theoretical analyses, becomes now
the key for this efficient numerical implementation. To this end, we rewrite the stress

formula (IV.3.10) as

S = 250W(C((pn+1/2)) + S’cons + Sdiss » (IV.1.24)

an expression that accounts explicitly in the first term of the right-hand-side for the stress
approximation in the mid-point rule, given directly in terms of the mid-point deformation
Prt1/2 = (Pn+1+ ©n)/2. The term Scons in (IV.1.24) is then given simply by

S'cons := Scons — 2BCW(C(‘Pn+1/2)) ) (IV'1'25)

where S¢on, is the conserving approximation to the stress given, e.g., expression (IV.3.13).
The dissipative contribution Sy;ss in (IV.1.24) is still given by the equation (IV.3.16). The
velocity follows a similar approximation, which we rewrite for completeness as

V= VUnt1/2 + Gdiss (W.1.26)

with gg;ss defined nodally by the relation (IV.3.19), since Geons = Geons — Un41/2 = 0.
This relation can be written in the notation introduced in this appendix as

Mgdiss = Ru with R,UA ::/ Po NA Gdiss Un+1/2 dB y (IV127)
B

for each node A = 1, n,,4e and the scalar gg;ss given by (1.5).

After noting that the first terms in the right-hand-side of the stress and velocity
approximations (IV.1.24) and (IV.1.26), respectively, lead to a symmetric tangent, we
consider the rest of the terms (that is, Scons, Saiss and gaiss) at a fixed deformation and
velocity fields. With these terms fixed, new deformation and velocity fields are sought
by the iteration defined by the nodal iterative update (IV.1.21) and the ngos system of
equations (I.22), after performing the condensation (IV.1.23) with the stiffness matrix
given in this case by

T
K — K;}ii = /B B2, /2 Ceons BEyy/p dB+ /B 1648148,  (128)
point

instead of (I.11). The symmetry of this expression is to be contrasted with the original
expression (I.11). In fact, this symmetry allows to rewrite efficiently this expression in its
updated Lagrangian form

KlﬁlB . =/ b:}:l/2 Ccons bf_*_]_/z dB+/ %GAB 1 dB, (1.29)
mid— B B
point
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for the spatial linearized strain operator

‘NE 0 0]
0 N3 0
0 o0 N4 f ial derivati ;=90
b4 B 3 or the spatial derivatives (-); := oy (1.30)
+1/2 = ) .
Y N;é 0 N;fll with  Zny1/2 = %(‘Pnﬂ(X) + en(X))
0 Nj Nj
-N;é N,J% 0 dnt+1/2
and the (symmetric) spatial tangent defined in components
Ndim
Cijkl = Z Fi1 Fjj Fyx Fip Cuke (1.31)
1,0,K,L=1

(1,7, k,! = 1,n4im) with the components of the deformation gradient F, ,/, evaluated at
the mid-point configuration. The geometric contributions GAZ in (1.29), defined in (1.19)
can be expressed in terms of the spatial derivatives (I.31); as

CAB _ Wim gNA ONB

_ 3 32
Ozx; Tig oz; ’ (1.32)

ij=1

for the Kirchhoff stress tensor 7 := FSFT, with the deformation gradient F and the
spatial derivatives in (I.32) evaluated at the mid-point configuration ¢y, /2.

The sparsity of the linearized strain operator (1.30) is employed in the actual compu-
tation of the material tangent (I.29), leading to substantial computational savings when
compared with the full linearized strain operator (I1.3), as shown by the examples presented
in the nexi saction. Observe that a similar transformation involving the unsymmetric ma-
terial tangent (I.11) would lead to an unsymmetric tangent (I1.31), leading then to a more
costly calculation of the different arrays.

Once this symmetric iterative process converges, the terms Soons, Sdgiss and ggiss are
updated with the newly computed deformation and velocity fields, and the iteration (I.22)
repeated. These nested iterations are taken to convergence. We observe that the update
of the dissipative velocity gg;ss involves solving the system of equations (IV.1.27). This
system of equations involves the mass matrix M, a symmetric positive definite banded
matrix and fixed during the entire computation. This matrix is evaluated at the begin-
ning of the solution process for a given problem, and stored after computing its Cholesky
decomposition M = LLT. The calculation of gg;ss involves then simply one forward and
one backward substitution, after the evaluation of the right-hand-side in (IV.1.27);. The
updates of the stress terms S,ons and Sy, are performed readily at the quadrature point
level.
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v = (2,-2,0)

v =(2,-2,0)

Material Properties

A =577
H = 384
p=28.9

v=(2,272)

FIGURE 1IV.1.1 Problem definition: geometry definition, material
parameters and initial conditions. The material parameters correspond
to the Lamé constants of the compressible Neo-Hookean hyperelastic
model, and the reference density. The three shaded areas have the
initial velocities shown next to them. )

IV.1.3.1. Numerical assessment

We present in this section a numerical evaluation of the nested iteration process pro-
posed in the previous section. To this purpose, we consider the example depicted in Figure
IV.1.1 consisting of a three dimensional hyperelastic solid. A compressible Neo-Hookean
model is assumed again; the material parameters are included in this figure, and so is the
assumed initial velocity. We consider the two finite element discretizations depicted in
Figure IV.2.2: a coarse mesh of 56 brick elements with 135 nodes (405 degrees of freedom),
and a fine mesh of 448 elements w.th 725 nodes (2,175 degrees of freedom).

We compare the computational cost of the HHT scheme (@ = 0.7), the energy-
momentum conserving scheme (i.e., EDMC-2 with o = 0 with its original unsymmetric
implementation) and the EDMC-2 (e = 1/8) with the proposed symmetric nested itera-
tion. We note that we have chosen this example as being the best possible case for the
HHT scheme, that is, we allow comparisons for large time steps despite the fact that this
scheme has shown dynamic instabilities in this nonlinear range; see Part I of this work.
Figure I'V.2.3 depicts the CPU time required in a typical time increment with a relatively
large time step of At = 1.0 for the coarse and fine meshes. The calculations have been
performed in a Pentium IIT 700MHz desktop personal computer. We have included the
time spent in the assembly process and the solving phase. A direct solver (based on a
Gauss elimination with an skyline storage of the banded matrices involved) is employed,
with the system fitting in the core memory. The total number of iterations (that is, solver
calls) is also included.
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Coarse mesh " Fine mesh

FIGURE 1IV.1.2 Finite element discretizations: coarse mesh (left)
with 56 brick elements and 135 nodes, and fine mesh (right) with 448
elements and 725 nodes.

As expected, the computational cost is dominated by the assembly phase for the
coarse mesh. We can observe the higher cost of the original energy-momentum conserving
scheme when compared with the HHT and the nested EDMC-2 scheme. This difference is
to be traced back to the symmetric nature of the tangent in these two last schemes. This
symmetry allows not only to construct only the lower (or upper) part of the tangent matrix,
but also to calculate this tangent matrix in the updated Lagrangian form (I1.29) taking full
advantage of the sparsity of the linearized strain operator (I1.30). As noted in the previous
section, a similar transformation for the original energy-momentum scheme would lead
to an unsymmetric tangent, given the evaluation of the linearized strain operator at two
different configurations (Byn41 and B, 41/2); see equation (I.11). These crucial differences
allow to reduce dramatically the cost for the nested EDMC-2 scheme, despite the higher
number of iterations required by the nested iterations.

Figure IV.1.3 includes also the cost in a typical tiine increment for the fine mesh with
the same time step At = 1. The solver dominates the total computational cost in this case.
Under these conditions, we observe how the symmetric nested EDMC-2 scheme leads to
a cost of the same order of the unsymmetric energy-momentum conserving scheme. This
is a big improvement over the consistent linearization of the EDMC-2 scheme (case not
shown) which we recall involves the solution of an unsymmetric system of 2n4,5 equations.
The original HHT scheme shows the better performance in cost for this time step. We
emphasize again though that we have chosen the best case scenario for the HHT (i.e., with
no dynamic instabilities). Figure IV.1.4 shows the costs measured for the two meshes and
a much smaller time step (At = 0.01). The dominance of the assembly phase in the coarse
mesh remains, but now with a comparable cost for the HHT and EDMC-2 schemes. The
unsymmetric energy-momentum scheme is still the most expensive scheme. For the fine
mesh, perhaps a more realistic situation in typical applications, we observe that the HHT
and the nested EDMC-2 lead to the same computational cost in this case. The energy-
momentum scheme leads again to double the cost given its non-symmetry. We note that
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Coarse mesh Fine mesh

FIGURE 1IV.1.3 CPU time for the coarse mesh (left) and the fine
mesh (right) for a time step of At = 1.0.
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FIGURE IV.1.4 CPU time for the coarse mesh (left) and the fine
mesh (right) for a time step of At = 0.01.

the total number of iterations is the same for all the schemes with this time step.

We conclude this study comparing the accuracy of the different schemes. Figure IV.1.5
depicts the Euclidean norm of the displacement error (IV.4.4) at a final time of T' = 160
versus the time step A¢. The error is measured with respect to the reference solution




F. Armero 220

-
.
T

2—norm of displacement error (%)
3
T

1 -5~ EDMC—2 =178 (coupled)

~#~ EDMC-2 a=1/8 (nested)

-©- Energy-Momentum {unsymmetric)
~7- Energy-Momentum {nested)

<o HHWT 0=0.7

10°

107 .
10

-1 1

10
At

FIGURE 1IV.1.5 Convergence plot: displacement error versus time
step At. A slightly better accuracy of the dissipative/conserving meth-
ods when compared with the the HHT scheme can be observed.
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FIGURE 1IV.1.6 Convergence plot: displacement error versus CPU
cost. A better performance can be observed by the HHT at larger
time steps (in this case where no instabilities appear), with the dissi-
pative/conserving schemes improving in performance for smaller time
steps when the proposed symmetric, nested iterative procedure is con-
sidered.




Final Report. F49620-97-1-0196 221

obtained with the energy-momentum conserving scheme and a time step of At = 0.001.
The coarse mesh is considered. Figure IV.1.5 shows the evolution of this error versus the
time step At itself. Note that the reference solution corresponds to a time step size of
one order of magnitude below the smallest time step shown. The slope of the curves in
the considered double log scale confirm the second order accuracy of all the schemes. The
EDMC-2 and conserving schemes show a slightly better accuracy for a fixed time step At
when compared with the HHT method, but the performance is very similar overall in this
example.

Figure IV.1.6 depicts the evolution of the same displacement error norm but versus
the total CPU time (in s). Confirming the results obtained before for a single time step,
we observe a better performance of the HHT scheme for large time steps At. We note
again that this scheme may lead to dynamic instabilities (i.e., unbounded energy growth)
in general. These instabilities have been observed for large time steps. We refer to the
complete analysis presented in Part I for this scheme, where the lack of momentum con-
servation (for any step size) was found to be even more conserving that the numerical
instabilities themselves. The newly proposed symmetric nested EDMC-2, including the
nested form of the energy-momentum scheme, leads to a better performance for smaller
time steps, improving even on the original HHT scheme.

We have also included in these plots the results obtained with the original unsymmetric
implementation of the energy-momentum scheme and a fully coupled implementation of the
EDMC-2 based on its consistent linearization. The significant improvement in performance
gained by the proposed symmetric nested iterative procedure is apparent, which makes
us conclude its appropriateness. We claim then that the significantly improved energy
stability and momentum conservation properties of the newly proposed methods, including
the controlled high-frequency dissipation, all rigorously proven in the nonlinear range, come
with a comzutational cost of the same order of existing methods.
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Finite Strain Plasticity and
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(ALE) Finite Element Method for Finite Strain Elastoplasticity and
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ical Methods in Engineering.
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V.1. Introduction

The Arbitrary Lagrangian-Eulerian(ALE) formulation of continuum mechanics was
intially developed to circumvent the limitations of pure Eulerian and pure Lagrangian
formulations. In particular, the fundamental idea is to allow the computational mesh to
move in an arbitrary manner independent of the physical material motion. By using this
approach, the severe mesh distortion of a pure Lagrangian formulation or the complicated
boundary tracking of a pure Eulerian formulation can be avoided. Two review papers
which discuss the general notion of ALE formulations are BENSON [1989] and BENSON

[1992].

Within the context of fluid mechanics, the ALE approach has been used recently
by VENKATASUBBAN [1995]. HUERTA & Liu [1988] and CHIPPADA, RAMASWAMY &
WHEELER [1994] have considered fluid mechanics problems with free surfaces. Another
important area of research is fluid-structure interaction. The reader may consult No-
MURA [1994] and NoMURA & HUGHES [1992] for more information. The ALE formulation
has obvious appeal in these classes of problems. However, in this work we are primarily
interested in non-linear solid mechanics.

A considerable amount of work has been done within the field of non-linear solid me-
chanics. Authors have considered rolling problems (Hu & Liu [1993], Hu & Liu [1992]),
metal forming and plasticity problems (GHOsH & KIKUCHI [1988], GHOSH & KIKUCHI
[1991]) and contact problems (GHOSH [1992]). An important area of research is the numer-
ical simulation of localized failure in solids (GHOSH & RAJU [1996], PIJAUDIERCABOT &
HUERTA [1995]). The paper of HUERTA & CASADEI [1994] provides a good general review
of ALE formulations in solid mechanics.

Other researchers have considered what is known as adaptive remeshing. In this
strategy, an entirelv new mesh is generated for the problem once the existing mesh is
judged unsuitable [he new mesh is entirely unrelated to the previous mesh, except
of course for preservation of the boundary. In a general sense, the adaptive remeshing
approach and the ALE approach may be considered related. Much of the work in adaptive
remeshing can be found in the papers of CAMACHO & ORTIZ [1997], LEE & BATHE [1994]
and ORTIZ & QUIGLEY [1991].

We propose in this work an ALE formulation relevant to solid mechanics. In particular,
we consider the numerical simulation of finite strain elasticity and plasticity. Unlike much
of the previous ALE performed, the approach here is fully implicit. RODRIGUEZ-FERRAN,
CAsSADE! & HUERTA [1998] have recently discussed both explicit and implicit solution
strategies for the ALE problem, but for the so-called hypoelastic models of elastoplasticity
in rate form. The interest in this work, however, lies in the consideration of multiplicative
models of plasticity, rather than rate models, involving a hyperelastic relation in particular.

The present formulation is based critically on the work of YAMADA & KikucHI [1993].
In that paper, the authors consider an implicit ALE finite element method for elasticity
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problems. The general basis of the formulation is that the physical particle motion is a
composition of two mappings, a mesh motion and a material remap. The authors present
only a fully coupled solution strategy; namely, The equilibrium equations couple the mesh
motion and material remap. The consideration of purely elastic models in the quasi-static
limit, however, simplifies considerably the problem, since the material remap do not imply
the advection of any internal variables as it is the case in elastoplasticity, the focus herein.

We develop in this work the complete treatment of multiplicative finite strain elasto-
plasticity in this context involving a direct solution of the material map. In particular, the
direct use and interpolation of this marping, in contrast with alternative ALE approaches
for finite strain elastoplasticity, leads to a considerable simplification of the advection of
internal variables. In fact, this advection can be accomplished by an exact simple particle
tracking, without the need of complex approximations of the pure advection equation. This
particle tracking is efficiently accomplished by the use of the appropriate description of
the reference mesh through its connectivity graph. We develop these ideas in the context
of a staggered strategy for the solution of the equations. A Lagrangian step is followed
by a material remap calculation followed by the aforementioned advection based on this
computed material remap. The proposed procedure shows to be, in particular, a very
efficient strategy in its computational cost. Remarkably all these developments apply to
the solution of contained fluids flows as a particular case through the consideration of a
rigid-viscoplastic model. In fact, this approach leads to novel integration algorithms in
Lagrangian treatments of fluid problems in this context.

An outline of the rest of the paper is as follows. Section V.2 summarizes the continuum
equations of the ALE approach, including a brief description of multiplicative plasticity
in Section V.1.2 as considered in this work. Section V.3 describes the general approach
proposed herein for the solution of the ALE equations. In particular, we describe the
algorithms considered for the material romap based on a measure of the mesh distortion.
The proposed treatment for the advzcuon of the plastic internal variable is discussed
in Section V.4. Section V.5 develops the application of the previous developments to
the case of viscous fluids. We present in Section V.6 several representative simulations
depicting the performance of the proposed approach. Concluding remarks are included in
Section V.7. Finally, we present in a series of appendices several details of the considered
implementation. More specifically, Appendix V.2 summarizes the specific constitutive
models considered in the numerical simulations of Section V.6, Appendix V.3 presents a
summary of the finite element equations.

V.2. Continuum Equations of the ALE Formulation

There are many references on the kinematics and dynamics of ALE continuum me-
chanics. The equations we will discuss can be found in papers such as HUERTA & CASADEI




Final Report., F49620-97-1-0196 227

_—— S
K,
X
maieria{ spatial
configuration configuration
E K

X L4

reference
. configuration

FIGURE V.2.1 ALE Kinematics

[1994], BENSON [1989], YAMADA & KikucHi [1993] and GHOSH & KIKUCHI [1988]. Some
other possible references are listed alphabetically in the bibliography of this report.

V.2.1. ALE kinematics

Firstly, assume there exists a fixed reference (computational) domain M independent
of any physical motion of the body. There also exist two additional domains denoted
by {2 and §2, which are the material and spatial configurs‘ions of the physical body,
respectively. The physical particle motion is given by the vue parameter family of dif-
feomorphisms ¢; : 29 — 2. The subscript ¢ represents time. Assume there exist two
additional diffeomorphisms x; : M — 2y and ¥; : M — {2 which relate the material
and spatial configurations to the reference domain. By this construction, ¢; = t; o x;~*.
Setting x: = td, so that ¢y = 9, is known as the Lagrangian formulation and is com-
monly used in solid mechanics. Setting ); = id, so that ¢; = X, is known as the Eulerian
formulation and is commonly used in fluid mechanics. We, of course, are interested in the
case when neither mapping in necessarily the identity. Figure (V.2.1) is a helpful visual

representation of the present discussion.

Define the tangent maps F¢ := D1y and Fy := Dx;. The physical deformation
gradient is defined by F := D;. By application of the chain rule, we have the important
relationship F = F. Fx_l. If one assumes fixed cartesian coordinate systems for each of
the three domains, further developments can be simplified. Let points in M be denoted
by their position vector m. Let points in {2y be denoted by position vector X. Let points
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in £2 be denoted by position vector x. Given this, it is possible to then write

ox
0X
—_ ax AT

Define the Jacobians J := det(F'), J¢ = det(FI/)) and Jy := det(Fy). Next, noting that
ine may view x as a function of X and ¢, define the physical particle velocity as

_ ox(X,t) _Ox

5 = Bty (V.2.4)

v

where the introduced notation means the derivative of the position x with respect to time
t while holding the position X fixed. This notation is often used in the literature and we
shall adopt it henceforth here. Of course, x may also be viewed as a function of mm and
time t. Define the mesh velocity as

vy = XY _ X (V.2.5)
ot Ot |ym

where again use is made of the newly introduced notation for the derivative of the position
x with respect to time ¢ while holding the position m fixed.

V.2.2. Material derivative

It is now possible to develop useful expressions for what is commonly referred to as
the material derivative. For notational convenience, define

GRADmm[ ] := g—il (V.2.6)
GRAD x[]:= %{l (vV.2.7)

and 3
grad, [] := % (V.2.8)

Let f be a smooth scalar valued function defined on £2,. We may write

F(X,t) = F(m(X,t),t) = f(m,t). (V.2.9)
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The material derivative of f, f , is defined as the derivative

0f(X,t) _ of

== | . V.2.10
/ ot ot X ( )
Using the chain rule, write
. Of - Om(X,t
f= 5{ + GRADm[f] - —mé;—). (V.2.11)

For convenience, the tilde notation is dropped and the above simply written, consistent
with the new notation,

. Of om
f= B _ + GRADm[f]- s % (V.2.12)

Using the above results alternative expressions can be developed for the material velocity
v. We may write

om
v = v, + F ——l . (V.2.13)
Y ot X
which results in 5 :
m| o,
3 | x = Fy, (v — V). (V.2.14)
Making a substitution into (V.2.12) yields
: 0f -1
f=—=| +GRADm[f]- Foyy™ (v = vm). (V.2.15)
Ot |im
Noting that, by simple use of the chain rule,
(GRADm[f])Fy,™ = grad, [f] (V.2.16)
equation (V.2.15) becomes
. of
f= B + grad, [f] - (v — vp). (V.2.17)
m

This is the classical relationship between the material time derivative, the referential time
derivative and the spatial derivative. It will prove useful in the development of the ALE
balance laws.
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Finally, consider the material derivative of the material position vector X. This
produces the equation

. 0X om
=0= 2= Dm[X] —| . V.2.18
X=0=—2% m+GRA m| ]8t % ( )

Noting Equation (V.2.2) the above may be rearranged. This produces the desired results

om 10X

om\ __ = . V.2.19
ot | x x5 m ( )

and
10X

: of 0xX
ot

f= | - GRADmIS): Fx

(V.2.20)

m
This equation will prove useful in subsequent developments involving implementation of
plasticity within an ALE context.

V.2.3. The balance laws

i. Conservation of mass. The Eulerian form of conservation of mass may be written

p+ pdivk[v] =0 (V.2.21)

where p is the mass density and divy[] is the spatial divergence operator. Using the result
in (V.2.17), this ecuation can be rewritten as

0
2+ grad, [p] - (v — vm) = —pdivk[v], (V.2.22)
ot | .

showing explicitly the advection of the spatial density.

ii. Balance of linear momentum. The Eulerian form of balance of linear momentum

may be written
pv = divy[o] + pb (V.2.23)

where o is the Cauchy stress tensor and b is the body force density. Again, using the

relationship for material derivatives, we can rewrite the equation (V.2.23) as

pg—: - + p(grad, [v])(v — vy ) = divk[o] + pb . (V.2.24)
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Some of the simulations presented in this paper consider the quasi-static approximation
defined by the simpler equation

divx|o]+ pb=10, (V.2.25)

avoiding the need of considering the advection of the velocity v (or, equivalently, the linear
momentum pv) in (V.2.24).

Remark V.2.1 There exist equivalert alternative equations for the above balance laws.
The laws can be written with respect to the reference domain and can also be expressed in
what is known as conservation form. It will not be necessary to discuss these alternative
representations for the quasi-static problems considered herein. The reader may consult,
for example, BENSON [1989] for the conservation forms of the equations. A more detailed
derivation of the ALE balance laws can be found in GHOSH & KIKUCHI [1988] O

V.2.4. Boundary conditions

Along the boundary of the domain, kinematical and dynamical boundary conditions
must be defined. Assume the boundary 02 admits the decomposition 82 = I, |} I'; where
r,NI; = @. Additionally,

v=vonl, (V.2.26)
on=ton I} (V.2.27)

where T are prescribed velocities, t are prescribed tractions and n is the outward unit
normal to the spatial domain. There is an additional boundary condition if some part of
the boundary is a material surface. The appropriate boundary condition is

(v—vp) n=0. (V.2.28)

It will of some benefit to derive an alternative equivalent form for this boundary
condition. Let Nx denote the outward unit normal to the boundary of the material
domain {2y. Let I" C 92 be an open subset of the boundary of the spatial domain and let
Iy = @~ }I') C 842. First, we note from equation (V.2.13) that

om
v —vm = Fy 50 ’X (V.2.29)
Using equation (V.2.19), this may be rewritten as
0X 0X
Vv =-FyFy ' —~| =-F— (V.2.30)
' Ot |m ot |m
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Now, we may write

0=/(v—vm)-ndF

r

=—/F?——)g -ndl’
r Ot

—_——/Q{ .FTndl
r 0t |m

=_/ Q)ﬁl FTJF-TNy dI,
rn 0t |m

—_ / %Z‘_l . JNx dl (V.2.31)
Io ¢ m

where the well known transformation (Nansen’s Formula) for deforming area elements has
been used. Since the above must hold for all open I' and thus for all open I}, it must be
that

X\ Ny =0 | (V.2.32)
Ot |m
pointwise. Since J > 0 this reduces to
OX| Nx=0 (V.2.33)
ot |om

This form will prove more useful for future numerical implementation.

V.2.5. Weak formulation

Let 1 be a kinematically admissible virtual displacement field defined on 2. In the
present context, every choice of 1 can be characterized by

n =61 oy ! (V.2.34)

where 7 is a kinematically admissible virtual displacement field defined on M. Let 6
and p represent kinematic volume and stress resultant pressure variables, respectively.
Additionally, let 46 and dp be admissible variations of § and p, respectively. Solving the
equilibrium equation, along with compatibility equations for § and constitutive equations
for p, is weakly equivalent to the following set of equations:

/;2 grad, (1] : [Lgeo ™ + 27 1) d2y = Peye(n) (V.2.35)
0
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/ 50 ["—1 - p] df2 = 0 (V.2.36)
2 30

op(J —0)df2p =0. (v.2.37)

20
I4e, is the rank four deviatoric projection tensor defined by Ige,t := t — %trace(t)l for
any rank two tensor t, not necessarily symmetric. ¥ is the Kirchhoff stress, computed as

a function of

_ 6 ° .
F(u¢,ux,9) = (W) F(u¢,ux). (V.2.38)

P..; represents external loading.

Remark V.2.2 Within the context of finite strain elasticity, the above equations can
be viewed as the variation of an energy functional. Assume that the external loading on
the body may be characterized by a potential function IT;:. Let W(F') be the isothermal
free energy function defining the elastic response of the material. Proceeding, define the
potential energy for the problem as

[W(F) +p(J - 0)] A2 + Moo (V.2.39)

H(u¢,ux,9,p) = /

20

This three field expression can be found in S1M0O, TAYLOR & PISTER [1985], and has been
discussed more recently in StMO & TAYLOR [1991]. A computation of the first variation
of the above generates the system of three equations stated above. O

V.2.6. Multiplicative plasticity

The goal here is to introduce a formulation for isotropic plasticity at finite strains
within a three-dimensional context. The discussion follows very closely the presentations
in SIMO & MIEHE [1992] and Simo [1992]. Also, many of the standard and well known
results concerning isotropic tensors and isotropic tensor functions can be found in the
appendix of GURTIN [1981].

Let £ be the isothermal elastic domain, defined in the spatial configuration of the
body as
E:={(r,q) €R": ¢(r,q) < 0} (V.2.40)

where 7 is the Kirchhoff stress and ¢ is a scalar stress-like isotropic hardening variable. The
scalar valued function ¢, assumed convex, is commonly referred to as the yield function.
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The principle of invariance under superposed rigid body motion restricts ¢ to be a isotropic
function of 7. Invariance requires that

(QTQT,q) = ¢(7,q) VQ € SO(3). (V.2.41)

We decompose the deformation gradient into elastic and plastic parts via the multi-
plicative split F = F¢FP. For subsequent developments, define two strain measures

-1
G? = [FPTFP] (V.2.42)
and .
b®:= F¢F° . (V.2.43)
The relationship
b® = FGPFT (V.2.44)

will prove useful for later developments. Set

JP := det[F?] = (det[GP])"/* (V.2.45)

and

J¢ := det[F®] = (det[b%])*/2 (V.2.46)
so that J = J¢JP. Finally, time differentiation of (V.2.44) gives

b = 1b° + b°1T + £4,b° (V.2.47)

where 1 := FF~! is the spatial velocity gradient and £¢b® := FGPFT is called the Lie
Derivative of the elastic left Cauchy-Green tensor b®.

Additionally, and consistent with the assumption of isotropy, we assume the existence
of an isothermal free energy function W (b, €£), where £ is a scalar strain-like isotropic
hardening variable. The function W is often referred to as the strain energy density
function. This function must also satisfy the invariance requirement

W(QbeQT, &) = W(b%,¢) VQ € SO(3). (V.2.48)

The equations for this general plasticity model take the form :

1. Hyperelastic response defined by free energy function

ow

el (V.2.49)

T:=12
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2. Associative Evolution Equations :

1 e ._ _‘?j_)_ e Yp _ -1 _3_?_ ) P
—S bt =g bt = GP=-2) (F [BT]F G, (V.2.50)
E:A@. (V.2.51)
dg

3. Kuhn-Tucker Conditions

A20 ¢(r,q) <0 Ag(r,q) =0, (V.2.52)

where X is the consistency parameter.

The previous flow equations have an alternative form within the ALE context. Using
equation (V.2.20),the flow rule for GP may be rewritten as

0GP 10X _1[0¢
P]. 172 == o P V.2.

The hardening law for £ has a similar form.

Remark V.2.3 An important property to note concerning the flow rule is that for
pressure insensitive yield criterion, the plastic volume JP is conserved. This is shown
simply as follows.

JeJP = Jj - Jrje
1 - .
= Jiraceld] ~ - J?J°b" Libe

= Jtrace[d] — %Jb's_1 : (16° + b°1 + £L4yb°)
= Jtrace[d] — Jtrace[d] — J%.{lvbe b

= JA [-8-9] be: b

or
= JAtrace [g—ﬂ

=0 (V.2.54)

assuming that the normal to the yield surface is traceless. This will be the case for the
classical von Mises yield criterion based on the deviatoric part of the Kirchhoff stress

tenscr. This also implies that det[GP] = 0 and thus det[G?] = 1.
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V.3. A Staggered Approach to the ALE Problem

We develop in this section a staggered method for the solution of the ALE equations,
involving a separate solution of the material and spatial deformation mapping. This strat-
egy is especially convenient for the treatment of the advection of internal variables in the
context of elastoplasticity, leading to computationally atractive methods. Section V.6 in-
cludes also purely elastic numerical examples treated with a fully coupled solution of the
material x¥ and spatial 1 deformation mappings. The absence of any advection of internal
variables simplifies considerably the problem.

V.3.1. The discrete equations

The continuum equations summarized in the previous section are discretized in space
and time using standard techniques in the context of the finite element method. Appendix
V.3 summarizes the mixed finite element implementation considered in this work.

The temporal discretization considered corresponds to the standard Newmark formu-
las, in terms of the algorithmic parameters vy and £,

Ma'(X1 tn+1) + fint(m(-X,tn+l) = fe:z:tn+1
(X, tn11) = (X, tn) + At0(X, tny1) + 1A (28a(X, tnt1) + (1 — 26)a(X, tn))

U(Xa tn+1) = 'v(X’tn) + At (’70'(X7tn+1) + (1 - 7)0'(X7tn))

(V.3.1)
for the material acceleration a(X,t) and velocity v(X,t) fields, and the spatial position
x(X,t) = ¢¥(X,t). The nodal internal and external forces, corresponding to the two terms
in the right-hand side of (V.2.23) have been denoted fin: and fest, respectively, with M
referring to the mass matrix of the ar,uined finite element interpolation. A typical time
step [tn,tn+1] has been considered. Tue dependence on the material particle X has been
indicated in these expressions to emphasize its constancy, reflecting their nature as material
time derivatives. Therefore, the different fields at ¢,, and ¢,,+1 correspond to different mesh
points in the ALE context, requiring then their advection as the following sections.

V.3.2. The global approach

The global approach can be easily outlined as follows. Assume that all variables are
known at time step n. This includes the positions X, and x,, the mixed fields p, and
0, and the internal variables G and &,. The solution strategy proceeds in the following
steps :

1. Perform a chosen number of pure Lagrangian steps. Hold uy fixed and solve for Uy
p and 6. For an associative flow rule model of plasticity, such as the one considered
herein, the tangent matrix for this step is symmetric.
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2. Perform mesh smoothing and advection :
2a. Hold u,, fixed. Choose uy to minimize mesh distortion. This will define X, 4,.
This step is discussed in Section (V.3.4).

2b. Having defined X,,,,, advect plastic variables to define the new trial state, and
the spatial positions, velocities and accelerations appearing in (V.3.1) for the
dynamic case. This step is discussed in Section (V.4).

2c. Hold uy fixed. Having determined the new trial state, solve for Uqpyy P and 6.
This is an equilibrium correction which is necessary since we have changed uy.

3. Return to Step 1.

A discussion of the strategies for mesh smoothing and plastic variable advection is presented
next.

Remarks V.3.1.
1. The above approach is also applicable to finite strain elasticity. In such a case, simply
omit step 2(b) above for the plastic variables. ‘

2. It may not be necessary to perform step 2c. One may simply skip to step 3 and carry
any unbalanced forces on to the next load step. O

V.3.3. Mesh distortion measures

The first objective is to measure the distortion of the spatial mesh. To this puprpose,
define

Fy = Ty VPFy,. (V.3.2)
Let
Bd’ = Ftbﬁti and él/) = Fif‘w. | (V.3.3)
Both ODpDY, GOLDAK & BIBBY [1988] and SARRATE [1996] have suggested using
Wa(Fyp) := ||dev by ||” = [|dev CypI” = dev By, : dev by, (V.3.4)
as a measure of mesh distortion, where dev[] := [] — 1/3(trace[-])1. Note that Wy as

defined is simply an example of a properly invariant stored energy function. In fact, one
could use this function to determine the stress response for a finitely elastic material.

With this fact in mind, any properly invariant scalar energy function can be used to
measure mesh distortion. The only requirement would be that the function be indepen-
dent of volumetric distortion. Purely volumetric deformation is not a factor in element
distortion. Thus the requirement on the function Wy is that

Wy(A) = Wy(AA) VA >0 VA such that det(A) > 0. (v.3.5)
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Any invariant function Wy which depends only on I7‘¢ is an admissible choice.

Remark V.3.2 It is possible to choose, for example, a Neo-Hookean or Mooney-Rivlin
response function. Another possible choice is a logarithmic stretch model of elasticity such
as the one used in our J, model of plasticity. In these cases, we would simply set the
volumetric energy parameter to zero. |

V.3.4. Mesh smoothing (determination of x)

We discuss in this section the implementation of step 2a above. This involves choosing
uy 50 as to minimize spatial mesh distortion as defined by a scalar energy function Wj.
Assume step 1 above has been performed. We now have a spatial mesh distortion F,(/), a

material remap Fy and most importantly the physical deformation F := F¢ Fx‘l. Note

that
Fi/) = FFy. (V.3.6)

Now, holding F fixed, minimize

Iy(Fy) = /M Wa(FFy) dM. (V.3.7)

The minimization of this functional requires the determination of uy.

We define

ow,
T = e Fip. (V.3.8)
OFy " ¥ip _pr
P oX
The first variation ( weak form ) of equation (V.3.7) is
(5Hd = / FTT,w : gradxn dM =0 (V.3.9)
M

where 77 is a kinematically admissible virtual material remap displacement field defined on

M.

V.4. An Advection Method Based on Particle Tracking

We discuss in this section a procedure for the advection of the internal variables due
to the material motion. To this purpose, we first rewrite in Section V.4.1 the problem in
the classical form of the pure advection equation. Section V.4.2 summarizes some general
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properties of this equation as well as its numerical treatment through the classical method
of characteristics; see PIRONNEAU [1989], page 75, for details. The availability of the actual
material mapping in our case of interest identifies a related but much simpler approach to
the integration of the advection step. These ideas are developed in Section V.4.3.

V.4.1. Plastic variable advection

Consider the plastic internal varible GP. Noting equation (V.2.53), the evolution
equation for G? is

oGP 10X _1[09
il _ 2 17 — 1127 P
5t GRADm [G?] Fy Y 22 (F [Br] F) G (V.4.1)

During the advection step, one must transport GP by solving the above with zero right
hand side (A = 0). More precisely, the advection equation to be solved is

oxX| -
-1 =
=0 (V.4.2)

0GP
——l — GRADm [GP] - Fy
Ot |m
The same equation is used to determine advected values of £ and any other internal vari-

ables. Define
10X

With this notation, equation (V.4.2) reads
P
9GPl | 4.GRADm [GF]=0, (V.4.4)
ot |m

corresponding to the pure advection equation. We discuss next a general treatment of this
equation.

V.4.2. The pure advection equation

The considerations in the previous secion led to the consideration of the equation

%qﬁ(m,t) + a(m,t)- GRADm¢(m,t) =0 (V.4.5)

on the fixed domain M during the plastic variable advection step. The variable ¢ may
represent the components of the plastic strain G?, for example. In the above, ¢ is time, a
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is the advection velocity and GRADym, is the standard gradient operator. Let X (7), with
T a scalar time-like variable, be the solution of

Ed;X('r) = a(X(r),7) (V.4.6)

subject to the condition X (t) = m. Given that a is the velocity of the material particles,
X is the trajectcty of the material particle that passes m at time ¢. Since X depends
on the parameters m and t, we denote the solution by X (m,t; 7). This solution is often
referred to as the “characteristic” of the hyperbolic equation (V.4.5).

The important result of the above can be obtained by application of the chain rule :

-4

= Z¢(m,1) + a- GRADmg(m, 1) (V.4.7)

d
Ed)(x(m:t;T)’T)

t=T7
Then equation (V.4.5) can be written

d

when defined on the domain {2y of material particles X as defined by the mapping of
equation (V.4.6). The physical interpretation of this is simple : ¢ is temporally constant
along the path of a given material particle X. In other words, ¢ is transported along
the “characteristics” X of the advection equation. If it is possible to track the material
particles X, this will lead easily to determining advected values of ¢.

Remarks V.4.1.

1. As indicated in Section V.3.1, the velocity and acceleration fields require also to be
advected in the dynamic case. The above development apply to these cases with
#(+) denoting each component of these fields. To this purpose, the nodal values are
considered, that is, m refers to a node in this case, with the corresponding nodal
values of these fields defining their conforming interpolations.

2. Recall that X is actually given by the material remap x, and that the velocity a is
actually computed from X, rather than converse which equation (V.4.6) implies. In
our case, a is defined by (V.4.3). Nevertheless, the previous arguments are still valid.

0

V.4.3. Numerical particle tracking
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One approach to solving equation (V.4.5) numerically is the Euler scheme

d(m,t + At) = ¢(1, ) (V.4.9)

where
m:=m — a(m,t + At)At. (V.4.10)

In the above, t denotes time as before and At is the numerical time step. This is a backward
particle tracking technique. Higher order accurate approaches are also available. The
above technique is reviewed on pp.&4-90 of PIRONNEAU [1989]. This method is obviously
not exact. The backward tracked particle locations /m are only approximate unless a is
spatially and temporarily constant. In our case, this approach can be written as

m =m + Fy'(m,t) Auy (V.4.11)

where Au-y is the displacement increment to the material position X (see Appendix V.3.1).

We shall not use the Euler scheme just presented. We are already tracking particles
ezactly. The finite element displacement field uy is exactly the motion of the material
particles X relative to the fixed mesh coordinates /. Thus the chosen advection technique
is to solve for m by solving the material particle tracking equation

X (1, 1) = X (m,t + At) (V.4.12)

where X is the material particle locations in §2;. This equation can be rewritten (see
Appendix V.3.1)

m + uy (M, t + At) = m + uy(m, ). (V.4.13)

Having determined mn, the advected srolar field may be computed by

¢advected(7h) = ¢unaduected(m)- , (V414)

This must be done at each quadrature point m of the mesh after the smoothing step has
determined new values of Auy .

Equation (V.4.13) is non-linear. There exist at least two possible ways to solve it. The
first is a simple fixed point iteration. To this purpose, equation (V.4.13) can be rearranged

as
m = m+ uy(m,t) — uy(m,t + At). (V.4.15)

The above equation is now in the form of a fixed point iteration for 7. Alternatively, one
can use Newton’s method to solve the residual equation

r(h) := [+ uy (M, + At)] — [m + ux(m,t)] =0, (V.4.16)
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FIGURE V.4.1 Particle tracking. Computation of 1M

a rearrangement again of (V.4.13). In this case, the tangent at each Newton step is given

by
_8_’5_ 1+ Ouy (m,t + At)
om om m=m

= Fy/(,t + At). (V.4.17)

In principle, the convergence of the fixed point iteration is only linear. The convergence
of Newton’s method is quadratic. In all of the numerical simulations, Newton’s method is
used. No problems have been noticed in the convergence of Lhis approach.

V.4.4. Additional practical considerations

One issue is how to determine which element contains the new point m. This determi-
nation must be performed at every Newton step until convergence is achieved. Given that
each element is a convex set (otherwise negative Jacobians are detected), the inside/outside
check is not difficult. Simply check the components of the new point with respect to a
tangent/normal coordinate system originating at the midpoint of each element side. The
normal component must be negative for the point to be inside the element. See Figure
V.4.2.

The issue of the order in which to check the elements is more important. One could
simply loop over all the elements starting from element one, performing the inside/outside
check for each element. This “bucket search” is clearly inefficient. The most probable
situation is one in which the new point 7 is inside an element which in geometrically close
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\

® Out

FIGURE V.4.2 Quadrilateral finite element as a convex set

to the original element containing the quadrature point at position m. With this in mind,
we have chosen to determine the order for checking by using a breadth first search of the
element connectivity graph.

A third issue is that of local interpolation for the plastic internal variables. In all
probability, the new point m will not be a quadrature point. Thus it is necessary to
interpolate for the the internal variables locally at the element level. We could of course
project the quadrature point values onto a continuous interpolation defined by the natural
coordinate basis functions {1, Ly, L2, L1 L2} defined on the parent domain [—1,1] x [ -1,1].
A discontinuous interpolation is also possible. Note that in each of the subdomains |- 1, 0] x
[-1,0], [0,1] x [-1,0], [0,1] x [0,1] and [—1,0] x [0, 1] there is one quadrature point. See
figure (V.4.3). Define the interpolation as constant over each of these subdomains, equal
to the value at the quadrature point which the domain contains. Since the interpolation
is locally constant the constraint det GP = 1 will be preserved.

Having defined an interpolation in terms on the natural coordinates of the element, we
need to determine the natural coordinates of the point whose mesh coordinates are m. Let
71(L1, L) represent the mapping from the domain [—1,1] x [—1, 1] to the physical domain
of the element in question. The following problem needs to be solved : find (L, L2) such
that m (L1, Ls) = . If the element is a parallelogram, this problem will be linear. In
general it is non-linear. It can be solved using Newton’s Method, a standard approach
for non-linear problems. A reasonable initial guess for (L;,L2) is (0,0). LEE & BATHE
[1994] have used Newton’s method to solve this same problem, referring to it as the inverse
isoparametric mapping technique.
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FIGURE V.4.3 Local Interpolation on Quadrilateral Element

Remark V.4.2 In the absence of advection, i.e. Auy = 0, this approach is ezact at the
quadrature points. ' 0

V.5. Applications to Viscous Fluids

The previous developments extend easily to the ALE treatment of viscous fluids.
Classical Newtonian and non-Newtonian fluid models can be obtained as a particular form
of a viscoplastic regularization of the elastoplastic models discussed in Section V.2.6. This
is summarized in Section V.5.1 below. The ALE treatment of the resulting equations lead
to the new integration algorithms presented in Section V.5.2

V.5.1. Rigid-viscoplastic laws

The yield condition (V.2.52), defines a constraint on the stresses 7 and hardening
variables g, leading to a constrained set of equations. This constrained character can be
eliminated through a penalty regularization by which the Kuhn-Tucker loading unloading
conditions (V.2.52) are replaced by the equation

_ 9@
A= o (V.5.1)
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for the viscosity parameter 7 > 0 and the viscosity function g(z) (monotonically increasing,
with g(z) = 0 for z < 0). The equation (V.5.1), usually known as the Perzyna viscoplastic
regularization (see SIMO & HUGHES [1998]), defines a direct relation between the rate of
plastic strain (measured by the consistency parameter A) and the stress state (measured
by the stress function ¢(7,q)). The constrained case defined by the relations (V.2.52) is
recovered in the inviscid limit  — 0.

A common example of yield function ¢(7, q) is provided by the von Mises yield function

2

¢(7,q) = || dev Tl - 3 q(€) , (V.5.2)

for the deviatoric part dev(7) of the Kirchhoff stresses and the hardening law g(£), ¢(0) =
0, the initial yield limit. See (IL.7) in Appendix V.2 for a particular example. Hence,
the value of o, = 0 corresponds to a material that yields initially for any level of stress.
For the case of no hardening g = 0, the material always yields upon following the viscous
relation (V.5.1) as in the case of a fluid. In this situation, and assuming an incompressible
response (i.e., J = J¢ = 1), no elastic strains appear, so ‘

Fe=1, b*=1 — FP=F, CP=C, (V.5.3)

characterizing a rigid-viscoplastic material or, in other words, a viscous fluids.

General non-Newtonian laws are ecompassed in the general relation (V.5.1). A clas-
sical Newotian fluid is recovered, in particular, by the linear viscoplastic relation

=2 %Hdevr” , (V.5.4)

n

in combination with the Mises yield function (V.5.2). Noting the relation

0¢ dev T
dr  |ldevr|’ (V5.5

for this case, the flow rule (V.2.50) reads

||devr[|F dev T F-lo-1

GP = — -1 -1 _ _
c—cc 2 Tdevr]

or, equivalently,
1
d= m devr, (V.5.6)
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after using the relation C = 2FTdF for the strain rate tensor d = sym(grad v). We
recover then the constitutive relation

o =7 =—pl+n sym(grad,v), (V.5.7)

of an incompressible Newtonian fluid for the Caucly stresses o = 7/J and the pressure
field p imposing the incompressibility constraint J = 1.

V.5.2. Integration algorithm

The developments in the previous section corresponds to a Lagrangian formulation of
an incompressible Newtonian fluid, identifying it as a particular case of a rigid-viscoplastic
model. The general return mapping algorithms considered in the Lagrangian step applies
to this case. In particular, the consideration of the exponential mapping to equation
(V.2.50) reads

Gh 1 =exp —2A/\F“IQ(£F GP, for AX= )AL, (V.5.8)
ot |1

in a typical plastic step [tn+1,tn] With At = t,41 — t,. As it is common practice, a
plastic step is detected by the trial condition ¢(7?8, g,) > 0 for the trial stresses el =
T(Fpn+1,GP) (that is, by the current strain at fixed plastic internal variables).

For the particular case of the viscous incompressible fluid considered in the previous
section, the discrete equation (V.5.8) simplifies after some algebraic manipulations (using

A= ¢n+1/77) to

dev 7n+1>= é—g_t log [ffT] , (V.5.9)

for the incremental deformation gradient

f=F,.F!, (V.5.10)

between the total deformation gradients at ¢,, and ¢,,+1. Note that in this case no trial state
is required since a viscoplastic always occurs. The integration formula (V.5.9) defines a new
objective integration of Newtonian fluids in the Lagragian setting. It has the important
property that the right-hand-side is strictly deviatoric (note that det f = 1).

We consider in our numerical implementation a penalty regularization of the incom-
pressibility constraint (e.g. p = ju/(J) for a general volumetric function U(J)) with an
Augmented Lagrangian treatment to impose exactly this constraint, if desired. All the
developments presented in the previous sections in the formulation of the proposed ALE
technique apply to this case. Section V.5.4 illustrates the improvement obtained with its




Final Report. F'49620-97-1-0196 247

. 1

( © ]
FIGURE V.6.1 Impact of a circular bar. Reference mesh. Only half
of the specimen is discretized with 7 x 32 Q1/P0 mixed finite elements,
with axisymmetric conditions.

consideration in contrast of a pure Lagrangian formulation given the large finite strains
observed in this type of fluid problems.

V.6. Representative Numerical Simulations

We present in this section two representative numerical simulations in finite strain
elastoplasticity and the sloshing of a viscous fluids. The staggered ALE technique just
discussed is employed. All the simulations use the well known Q1 /PO four node quadrilat-
eral element (bilinear displacements and constant mixed variables; see BREZzI & FORTIN
[1990)).

V.6.1. Impact of a circular bar

We consider in this section the dynamic impact of a circular bar on a rigid frictionless
wall. This is a commonly simulated test problem in the finite element literature and a
standard benchmark problem for transient dynamic computer codes. The problem was
originally studied both theoretically and experimentally by TAYLOR [1948], where a cor-
relation was obtained between the initial velocity of the bar and its final length. This
relationship depends critically upon the yield stress of the bar, leading to a useful method
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TABLE V.6.1 Impact of a circular bar. Assumed material properties
for Copper OFHC.

Bulk Modulus K 130.000 GPa
Shear Modulus u 43.333 GPa
Flow Stress Yo 0.12 GPa
Saturation Hardening ¥y 062 GPa
Hardening Exponent ¢ 3.01

Density Po 8930. kg/m3

TABLE V.6.2 Impact of a circular bar. Assumed material properties
for Aluminum 6061-T6.

Bulk Modulus K 58.33333 GPa
Shear Modulus 7 26.92308 GPa
Flow Stress Yo 0.30 GPa
Saturation Hardening ¥ 042 GPa
Hardening Exponent ¢ 28.60 .
Density Po 2700. kg/m3

to determine experimentally the yield limit of the material under high strain-rate condi-
tions. WILKINS & GUINAN [1973] extended this original work with further experiments
and numerical simulations. In particular, they developed the improved relation

2
PoVqp l() —h
— = log —— V.6.1

where vg is the initial velocity, lp is the initial length and l; is the final lengwn. The
parameter h is the mean position of the plastic front, which is assumed to be approximately
h =~ 0.12lp, independent of the material properties. Finally, o, is the yield limit of the
material under high strain-rate conditions. This stress parameter is correlated to fit the
experimental and numerical work in WILKINS & GUINAN [1973].

Based on the experimental results reported in WILKINS & GUINAN {1973], we consider
a bar of length Iy = 32.4 mm and a circular cross section of radius r¢ = 3.2 mm. Two
materials are considered: pure copper (Copper OFHC) and a structural aluminum alloy
(Aluminum 6061-T6). The assumed material parameters are summarized in Tables V.6.1
and V.6.2, respectively. The contact with the rigid wall is assumed frictionless and non-
sticky, that is, with the bar free to rebound from the wall. The reference mesh for all the
simulations is shown in Figure V.6.1.

The time step used in the numerical calculations is At = 1.0 us. The Newmark
parameters are chosen as f = 0.5 and v = 1.0. For the ALE calculation, the material
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remap x is determined using the Mooney-Rivlin energy function

Wu(F) = %01(11 -3)+ %Cz(lz -3), (V.6.2)

in (V.3.7) for the two principal invariants I; and I of C = FTF. The value c;/c; = 3
is assumed. The determination of x is based only on F3;. In other words, the smoother
performs calculations based on the assumption that F is of the form F := I+ Fyoe; Q Es.
Other components are not considered. This is the same methodology used for the necking
problem of the previous section.

The initial velocities considered in the numerical simulations are vg = 0.210 mm/us
for the Copper OFHC, and vy = 0.373 mm/us for the Aluminum 6061-T6. The final
deformed meshes obtained in fully Lagrangian simulations are shown in Figure V.6.2 for
both the Copper OFHC and Aluminum 6061-T6 specimens. Figure V.6.3 depicts the
spatial meshes obtained in the ALE simulations. We note that these deformed meshes do
not reflect directly the deformation of the material. They correspond to the deformations
from the material mesh, which is depicted in Figure V.6.4 for both cases. The distortion of
the mesh in the original Lagrangian simulation is avoided by rezoning the material domain.
The smaller distortion of the meshes in Figure V.6.3 is to be noted when compared with
the Lagrangian solutions in Figure V.6.2.

Figure V.6.5 includes a picture of some of the deformed specimens reported by WILKINS
& GUINAN [1973], together with the solutions computed in this work depicting the dis-
tribution of the equivalent plastic strain confirming the preceding observations. A good
agreement is observed on the final deformation of the specimens. It is interesting to note
the differences in the results between the aluminum and the copper. Note that the con-
tours of equivalent plastic strain for the copper bar are less concentrated in the impact
region than in the aluminum bar. The copper strain hardens much more than the alu-
minum, and thus the deformation in the copper bar is less concentrated and more diffuse.
The characteristic bulging of the specimen is to be noted. The aluminum hardens less
and over a smaller range of strain than the copper. Under these impact conditions, the
aluminum behaves essentially as a elastic-perfectly plastic with no hardening at an initial
yield stress of 0. Upon impact, the aluminum hardens and reaches this limiting value
quickly. On the other hand, the copper does not reach the limiting value of o, so quickly,
and thus assuming the copper to be elastic-perfectly plastic is not reasonable. The value
of 044 is chosen less than oo, to account for the extensive ductility and wide range of
strain-hardening the copper undergoes.

Finally, Figure V.6.6 depicts a plot of the scaling law, equation (V.6.1), the computed
ALE solutions for the copper and the aluminum bars, and the reported experimental
results. A good correlation is found, validating the proposed ALE finite element methods.
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FIGURE V.6.2 Impact of a circular bar. Lagrangian solutions for
the Copper OFHC and Aluminum 6061-T6 bars.
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FIGURE V.6.3 Impact of a circular bar. ALE solutions for the Cop-
per OFHC and Aluminum 6061-T6 bars. The spatial mesh is shown.
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Copper OFHC
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STRAIN
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FIGURE V.6.5 Impac. of a circular bar. ALE numerical solutions for
the Copper OFHC and Aluminum 6061-T6 bars showing the equivalent

plastic strain, and the experimental results reported by WILKINS &
GUINAN [1973]. '
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FIGURE V.6.6 Impact of a circular bar. Comparison between com-
puted results, experiments and scaling law.
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FIGURE V.6.7 Fluid sloshing problem I. Normalized sloshing dis-
placement of viscous fluid.

V.6.2. Sloshing of a viscous fluid

We evaluate in this section the application of the ALE finite element method developed
in this work in the solution of contained flows of a viscous fluid as considered in Section
V.5. To this purpose, we consider a viscous fluid in a rectangular container. Frictionless
conditions with perfect stick are are assumed along the fluid-structure interfaces (i.e., the
fluid nodes are constrained to move along the solid walls). The length L of the container
is L = 0.8, and the initial depth D of the fluid is D = 0.3

The solid container is assumed rigid and subjected io a ground acceleration in the
horizontal direction. Equivalently, looking at the system from a reference system fixed
at the solid container, we apply the ground acceleration to the fluid through the external
force term in (V.3.1). We consider the harmonic ground acceleration

Agy(t) = agsin(wt) , (v.6.3)

for a = 0.120, g = 9.81, w = 2« f anf f = 0.89. The viscous fluid is characterized by a
reference density p, = 1000, viscosity 7 = 100 and bulk modulus s = 1.08 - 107 (for the
volumetric response function U(J) = 3£[(J2 — 1)/2 — log J]).

We consider a finite element discretization of the fluid domain in 16 x 8 Q1/P0 quadri-
lateral elements. Plane strain conditions are assumed. The Newmark parameters 8 = 0.5
and v = 1, including then a high-frequency dissipation, are considered with a fixed time
step of At = 0.01. We consider both fully Lagrangian and ALE numerical simulations.
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Lagrangian simulation: deformed mesh

i

ALE simulation: spatial mesh

ALE simulation: material remap

/
[ L[]

FIGURE V.6.8 Fluid sloshing problem I. Deformed meshes for the
Lagrangian and AlE simulations at time ¢ = 5, showing the spatial
mesh and the material remap for the latter.
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Lagrangian simulation:

Min = 0.00E+00
Max = 1.80E+02

2.58E+01
5.15E+01
y 7.73E+01
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Current View
Min = 8.02E+00
X = 1.55E-01
Y = 3.63E-01

Max = 1.80E+02
X = 0.00E+00
Y = 0.00E+00

ALE simulation:

Min = 0.00E+00
Max = 2.10E+02

3.00E+01
6.00E+01
9.00E+01
1.20E+02
1.50E+02
1.80E+02

Current View
Min = 1.23E+01
X=3.17E-01
Y = 7.67E-02

Max = 2.10E+02
X = 8.00E-01
Y =2.21E-01

FIGURE V.6.9 Fluid sloshing problem I. Mises stress contours over
the deformed (spatial) meshes for the Lagrangian and ALE simulations
at time ¢ = 5.

FIGURE V.6.10 Fluid sloshing problem II. Problem definition of a
top covered fluid container.
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FIGURE V.6.11 Fluid sloshing problem II. Lagrangian simulation:
deformed mesh at different times
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FIGURE V.6.12 Fluid sloshing problem II. ALE simulation: de-
formed spatial mesh at different times




Final Report, F49620-97-1-0196 257

Time t = 0.0 Time t = 0.5
T 77 77T LY Y O O T O VO
{

] T

™ J J T 17

L1 T T 117

[HNEEERENN

I O O O I |

| [

Time t = 1.0 Timet = 1.5
N emSEEEsEsE Eees SRR
| T |
S| T 1 1
[ T T 1

T . 1 ]
O ,
| | }
Time t = 2.0 Time t = 2.5
i
] ]
| I
Time t = 3.0 Time t = 3.5
I
y
Time t = 4.0 Time t = 4.5
o, n
| 1]
| | |
Time t = 5.0 Time t = 5.5

FIGURE V.6.13 Fluid sloshing problem II. ALE simulation: material
remap at different times
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The latter are run with the staggered scheme presented in Section V.3. In particular,
the material remap 7 is determined using the Mooney-Rivlin energy function (V.6.2) in
(V.3.7) for the full deformation gradient. The values ¢;/c2 = 3 are assumed again. The
smoothing is performed at every time step. The top surface is treated fully Lagragian
(i.e., no lateral material motion is allowed), whereas the lateral surface only the normal
component of the material remap is constrained to vanish.

Figure V.6.7 depicts the sloshing displacement of the upper right corner of the fluid
(coordinates {L,D}), normalized by the depth D, versus time t. We can observe that
the Lagrangian simulation is slightly more dissipative than the ALE simulation. The
deformed mesh in the Lagrangian simulation at time ¢ = 5 is shown in Figure V.6.8. If
the computation continues the finite elements at the lower right and left corners start
accumulating too much distortion. This situation is avoided by the ALE method, as
shown in the plot of the spatial mesh for this case in Figure V.6.8 as well. This distortion
is avoided by the smoothing in the material configuration, as shown in this same figure by
the material remap x. The contour plots of the Mises stress (i.e. ||dev7||) are shown in
Figure V.6.9 for both the Lagrangian and the ALE simulations.

To illustrate the use of the proposed ALE technique in the analysis of fluid-structure
interactions, we consider the same problem but with the reservoir covered by a flexible
solid top; see Figure V.6.10. The top cover has a thickness of 0.01 and is assumed elastic
following the logarithmic Hencky’s law with a bulk modulus of 5.0 x 104, shear modulus of
2.5 x 10% and a density of 2.7 x 103. The contact interface between the fluid and the solid
top is assumed frictionless. It is resolved numerical through a Lagrangian contact scheme
(see AA).

Figure V.6.11 depicts the solution obtained in a pure Lagrangian simulation. The
cyclic interaction of the fluid with the top generates flexural waves in this top cover. We
can observe that the distortion of the finite elements accumulate, specially at tlie bottom
corners again. In fact, the deformed mesh at time ¢ = 5.5 shows elements folding at these
corners. Figure V.6.12 depicts the spatial mesh obtained with the ALE simulation. A much
smoother can be observed, avoiding the extreme distortions in the Lagrangian simulation.
This is again accomplished by the consideration of the material remap as depicted in Figure
V.6.13.

V.7. Concluding Remarks

We have presented an Arbitrary Lagrangian-Eulerian (ALE) formulation for solid
mechanics which may be used for the finite element simulation of elasticity and plasticity
problems. The proposed method involves a fully implicit formulation, with a staggered
treatment of the advection of the internal variables. In particular, the direct use and
interpolation of the material map x has been shown to lead to a simplified treatment
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of the advection part, in contrast with existing procedures. Numerical simulations have
verified the validity of the approach. Current work includes the consideration of the fully

dynamic problem

Appendix V.1. Constitutive Models

We summarize in this appendix the specific constitutive models used in the numerical
simulations presented in Section V.6. For all the elasticity numerical simulations, we
consider the classical Mooney-Rivlin model for rubber elasticity, modified to, allow for non-
isochoric response. Given a deformation gradient F, define F := det(F)-gF Let C :=
FTF. In the actual numerical implementations, we evaluate the constitutive response
using F' defined in equation (V.2.38). Then, the free energy function W is given by

W(F):=c, [I.(C) — 3] + c2 [Io(C) - 3] + kU (J), (V.1.1)

where I; and I, are the first and second invariants of a symmetric rank two tensor, respec-
tively, and J = det(F'). Also, U(-) is the volumetric response function and ¢; > 0, ¢2 > 0
and k > 0 are fixed material parameters. We use U(J) := 3(J? — 1) — log(J). This is a
convex function of the argument J.

For all the plasticity numerical simulations, we use a finite strain Jy flow theory
designed to mimic the classical model of infinitesimal elasto-plasticity. It is the same
model as discussed in section 5 of SIMO [1992]. Define {€§, €5, €5} as the principal values
of %logbe. These are the principal logarithmic elastic stretches. Next, define

€1
€ =1 €5 ;. (V.1.2)
€3
Let
IO (S
a:= K gu K+g,u K - i (V.1.3)
K- su K+3
where K > 0 and p > 0 are two material constants. Let
B = ae’ (V.1.4)

be the principal Kirchhoff stresses ( the principal values of 7 ).

The model of plasticity is given by
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1. Hyperelastic resonse defined by free energy function :

W(e) = -;-ee ' T (L.5)
2. von Mises yield criterion :
2 .
b(rsa) = IdevBl - 20 <0, (L6)
3. Saturation Isotropic Hardening :
q(€) := 000 + (00 — 0o )exp(—0€) + HE (L.7)

where g, 0, 0 and H are prescribed material parameters.

4. Associative Evolution Equations :

1 e._ Qq_ﬁ e = GP=-— -1 Q_ P
—S b =g obt = GP=-2) (F [61‘ F|GF, (1.8)

£:= ,\\/g : (1.9)

with 8¢/0T = dev 3/||B|] in the principal directions.

The model is implemented numerically using an exi)onential return mapping approach.
The readc. may consult CUITINO & ORTIZ [1992] and SiMO [1992] for more detailed
information.

Appendix V.2. Numerical Implementation of Three Dimensional
Elasticity

The discussion in this section focuses on the finite element implementation of finite
strain elasticity within an ALE context. The discussion is very similar to that of YAMADA
& KixkucHI [1993]. In this paper, the authors discuss the equations within a two field
variational context. Here, we shall discuss a three field approach to the problem. The
discussion here assumes a fully coupled solution strategy to the elasticity problem.

V.2.1. Preliminaries
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Assume there exists a fixed Cartesian coordinate system for our problem which all
three domains ( reference, material, spatial ) share. In such a case, introduce displacement

fields uy and ) such that
X =m+uy (v.2.1)

and
X =m+ Uy, (V.2.2)

where m is the reference coordizate, X is the material coordinate and x is the spatial
coordinate. This then gives

and

The fields uy and Uy shalll be discretized using standard finite element interpolations.
Let Auy be an arbitrary increment to uy and let Au¢ be an arbitrary increment to
Uah- For future use, define

d
AF := BEF(U¢ + aAU¢, Uy + aAuX) s (V.2.5)

and
lay = (AF) L (V.2.6)

After some manipulations, one may produce the result

lay = Q‘radx[Auw] — Fgrad, [Auy] (V.2.7)

Assume there exists an isothermal free energy function W(F) describing the consti-
tutive response of the elastic material. Defining 7 as the Kirchhoff stress tensor, one has
the well known result SW

T
T= -6—FF (v.2.8)
This constitutive response will produce, upon time differentiation, a rank four tensor D(F')
such that + = DI where 1:= FF~! is the spatial velocity gradient.

V.2.2. Linearizations

In this section we give the consistent linearizations of the three weak equations (V.2.35)
- (V.2.37). We have previously defined Au¢ and Auy. Let Af and Ap be arbitrary
increments to € and p, respectively. Note that the volume element df2 is not constant in
this case, but can be related to the constant reference volume element by df2y = Jy dM.
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V.2.2.1. Linear Momentum
The linearization of the linear momentum equation yields the terms

TANGENT = — / grad, [n)] gradx[Au¢] ¢ [LgenT + pJ 1] df2o
20

+ [ grady[n] : [lzesDluey +pJ 1 ® 1]1au di2
20

+ grad, [n] : (3 glIdev]Du) A dS2,
2

+ grad,[n] : J1Apdy
20

+ [ erady[n] : [(TueoT + pJ 1) ® FT] grad, [Auy] df2.

2

V.2.2.2. Constitutive Equation for Pressure
The linearization of the constitutive equation for p yields the terms

362 T 962

+ / [ Ty D } lae df2
20

+/ 66 [I—l— ——p] FT : grad,[Auy]df2
0|30

TANGENT =/ 40 [ ! 1) + '——(Dl 1)] A dSy
20

+ 59Ap dno
2

V.2.2.3. Compatibility Equation for Theta
The linearization of the compatibility equation for # generates the terms

TANGENT = 0pJ1 : grad, [AU¢] di2o
20

- / spOFT : grad,[Auy]d2
20

— op A6 dS2g.
20

Remarks V.2.1.

(V.2.9)

(V.2.10)

(V.2.11)
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1. In general, the system tangent matrix is unsymmetric.

2. The pure Lagrangian formulation is easily recovered by setting uy := 0, so that x :=
id. In this case, F = Fy,. Additionally, all terms involving grad, [Au+y] in the tangent
terms are to be neglected. In particular, we get the simplification Ia, = grad, [Aud,].

O

V.2.3. Augmented Lagrangian modifications

The augmented Lagrangian technique to be presented here is reviewed within the
purely Lagrangian finite element setting in SiMO & TAYLOR [1991]. We wish to enforce
the constraint of incompressibility upon this formulation of finite strain elasticity. To that
end, assume that the free energy function may be additively decomposed such that

W(F)=W (det[F]‘%F) + kU (det[F)) (V.2.12)

where x > 0 is a penalty parameter, W is a free energy function based on the isochoric

component of F' and U is a scalar convex function of the determinant of F. If W(F) is
evaluated, the result is

W(F)=W (J74F) + U (9). (V.2.13)

The constraint chosen is h(#) := 6 — 1 = 0. Other equivalent forms for the function A may
be chosen. For example, h(6) = log(f) is also a suitable choice. The requirements for h
are simply that h(1) = 0 and that h'(1) # 0.

Towards enforcement of said constraint, add the following term to the potential energy
expression [T :

/ Aah(6) d%, (V.2.14)
20

where A4 is the augmented Lagrangian parameter. Thus, the constitutive equation for
pressure becomes

T :1

/ 60 [T—— —-p+ /\Ah'(ﬂ)] df2s =0 (V.2.15)
2 30
This produces two extra tangent terms, which are
TANGENT = | 60 AaFT : grad, [Auy]df2

P73
+ 50 h" (0)AGdS2. (V.2.16)

20

The actual implementation of the augmented Lagrangian technique involves a nested
iteration process. First, for a given time step, an initial value of A4 is chosen. One usually
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chooses the converged value from the previous global time step. Next, the above equations
are solved with this fixed value of A\4. After convergence is achieved, the parameter is
updated using the equation

AatD = 2O 4 o R(e0) (V.2.17)

where the equations have been solved at augmented Lagrangian iteration (¢) and the
analysis is to advance to iteration (i + 1). This process continues until the constraint is
satisfied to some chosen numerical tolerance. The convergence rate towards the constraint
is expected to be linear. Then, we may advance to the next global time step.
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