Award Number: DAMD17-99-1-9417

TITLE: Randomized Trial of Interleukin-2 (IL-2) as Early Consolidation Following Marrow Ablative Therapy with Stem Cell Rescue for Metastatic Breast Cancer

PRINCIPAL INVESTIGATOR: Wolfram E Samlowski, M.D.

CONTRACTING ORGANIZATION: University of Utah
Salt Lake City, Utah 84102

REPORT DATE: October 2000

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Randomized Trial of Interleukin-2 (IL-2) as Early Consolidation Following Marrow Ablative Therapy with Stem Cell Rescue for Metastatic Breast Cancer

Wolfram E. Samlowski, M.D.

University of Utah
Salt Lake City, Utah 84102
E-Mail:
ospawards@osp.utah.edu

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for Public Release; Distribution Unlimited

Marrow ablative doses of chemotherapy followed by stem cell rescue (MAT/SR) produce a high frequency of objective responses in patients with metastatic breast cancer, with up to 40-50% complete responses. Unfortunately, responses tend to be short-lived. Interleukin-2 (IL-2) can activate lymphocytes to kill multidrug resistant cancer cells. Our phase I data established that a single course of low-dose IL-2 (1.6 million IU/m2/day as a continuous i.v. infusion for 18 days) as consolidation treatment to patients with metastatic breast cancer early after MAT/SR. Seven patients (60%) remained in complete remission at a median of 435 days (range: 224 - 720 days) post stem cell transplantation. We are therefore performing a larger scale phase II trial of MAT/SR, followed by a single 18-day continuous infusion of low-dose IL-2 to activate lymphocytes to kill residual chemotherapy-resistant cancer cells. Disease free survival and toxicity assessment represent major clinical aims (Specific aim 1). Immunologic effector mechanisms induced following MAT/SR by IL-2 infusion will be evaluated using phenotypic and functional assays for LAK cell induction (Specific Aim 2). Accrual to this study has been delayed due to a change from a randomized trial to a single arm phase II study and due to negotiations between the University of Utah and the Army MRMC concerning liability clauses in the consent document. A finalized protocol has now been agreed upon.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>1</td>
</tr>
<tr>
<td>SF 298</td>
<td>2</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>5</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>7</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>8</td>
</tr>
<tr>
<td>Conclusions</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>8</td>
</tr>
<tr>
<td>Appendices</td>
<td>–</td>
</tr>
</tbody>
</table>
Introduction:

At least 46,000 women die from metastatic breast cancer each year in the United States. Median survival remains 12-18 months from the diagnosis of metastatic disease, and progression-free survival beyond 5 years is rare (<10%). This has led to the testing of escalated, marrow ablative doses of chemotherapy followed by stem cell rescue (MAT/SR). This approach produces a high frequency of objective responses in patients with metastatic breast cancer, with up to 40-50% complete responses. Unfortunately, responses tend to be short-lived, and only a minority of women (10-20%) achieve long-term disease free survival. Relapses may be due to both minimal tumor contamination of stem cells reinfused into patients, as well as residual chemotherapy resistant tumor cells not cleared by the MAT/SR regimen. IL-2 activated lymphocytes, termed lymphokine-activated killer (LAK) cells have significant cytotoxic activity against autologous breast cancer cells and breast cancer cell lines. Our own studies have demonstrated that multidrug-resistant tumor cells remain sensitive to LAK cell mediated killing. We have completed a phase I study to test the feasibility of administering a single course of low-dose IL-2 (1.6 million IU/m²/day as a continuous i.v. infusion) as consolidation treatment to patients with metastatic breast cancer early after MAT/SR. This study established that IL-2 consolidation could be safely begun starting on day +14 post MAT/SR with minimal toxicity. Substantial LAK cell induction was observed, using flow cytometric and cytotoxicity assays. Thus far, only 3 of 10 patients have had breast cancer relapse or progression, and a small second breast cancer was detected in 1 patient. Seven patients (60%) remain in complete remission at a median of 435 days (range: 224 - 720 days) post stem cell transplantation. Because patients with metastatic breast cancer transplanted with active disease have a 60% and 80% probability of relapse at 1 year and 3 years, respectively (without IL-2), we are proposing to test this promising immunotherapy consolidation strategy in a single-institution randomized prospective trial. We propose to perform cytoreduction in patients with metastatic breast cancer using MAT/SR, followed by continuous infusions of low-dose IL-2 starting on day +14 to activate lymphocytes to kill residual chemotherapy-resistant cancer cells. Based on preliminary data, we hypothesize that a single course of IL-2 will result in a significant improvement in disease-free survival, with minimal toxicity. Effectiveness of this approach may correlate with the effective induction of LAK precursor and effector cells, as well as evidence for reduction in the burden of minimal residual cancer cells. In Specific Aim 1 we propose to perform a prospective randomized clinical trial to test whether the addition of 1 cycle of continuous i.v. infusion of IL-2 in women with metastatic breast cancer, starting on day +14 after treatment with MAT/SR, can increase progression-free and overall survival by 25%. In Specific Aim 2 we will evaluate possible immunologic effector mechanisms
induced following MAT/SR and IL-2 infusion. Phenotypic and functional assays for LAK cell induction and enzyme immunoassays for circulating pro-inflammatory cytokines will be performed. Following review by the US Army, **Specific Aim 3** (detection of residual tumor cells in bone marrow and stem cell products by flow cytometry and RT-PCR) was omitted.

Body:
Accrual to this study has been delayed due to two unanticipated events. Shortly after this proposal was funded in 1999, a series of randomized trials was reported at the American Society of Clinical Oncology meetings comparing standard dose chemotherapy and marrow ablative therapy and stem cell rescue (MAT/SCR) for treatment of advanced breast cancer. The conclusions of all but one of these trials was that there was no advantage to stem cell transplants in breast cancer patients (1-3). The remaining trial (Bezwoda, et al) was found to contain fraudulent data (4). These findings made the proposed control arm of our randomized clinical trial (MAT/SCR alone) unacceptable. Since the goal of MAT/SCR in our trial was to provide maximal cytoreduction prior to IL-2 based immunotherapy, this goal was still felt scientifically reasonable, given our impressive phase I trial results. In order to further prove the validity of these observations, it was felt by Dr. Peterson and myself that a change from a randomized trial to a single arm phase II study (MAT/SCR followed by an 18 day infusion of IL-2) was warranted. This change was discussed with the USAMRMC and the study protocol and consent documents were rewritten. A second point holding up the clinical trials was due to negotiations between the University of Utah lawyers and the USAMRMC concerning required liability clauses in the consent document. After many months of negotiations, a finalized consent language and protocol have now been agreed upon. A final draft has been submitted to the University of Utah IRB. Once IRB approval and approval by the USAMRMC research safety officer have been obtained, the study will open to patient accrual (tentatively within 2 months). Having overcome these unanticipated delays, we remain enthusiastic to test the scientific hypothesis that IL-2 consolidation following MAT/SCR will produce long term disease free survival in 30-40% of metastatic breast cancer patients with acceptable toxicity.

Personnel required for the start of this clinical trial are all in place, ready to being patient accrual once IRB and USAMRMC approval are obtained. All methodologies required for patient IL-2 treatment and sample analysis for LAK cell induction have been worked out and are ready for use in this trial. Our proposal is to add an additional year onto study accrual, due to the delayed start of the trial, as a no-cost extension, using funds carried over from preceding years.
Task 1: Patient Enrollment: (months 1-36-delayed to month 14)

- Protocol will be presented to eligible patients prior to MAT/SCR.
- Patients will be randomized according to a random number generator computer program.
- Appropriate people/departments will be notified of patient enrollment and randomization, to include: site pharmacy, Dr. Wolf Samlowski and/or lab and Dr. Wayne Green and/or lab.
- A Progress Note will be entered into the patient’s medical record regarding patient consent, enrollment, randomization, and the study requirements.

Task 2: Administration of IL-2: (months 1-36-delayed to month 14)

- On Day + 14, the patient will come to clinic (if discharged), where they will be have their vital signs taken and be seen by a physician extender for a baseline physical exam.
- The CADD-1 pump and supplies will be reviewed with the patient and caregiver(s).
 - IL-2 will be started and the patient will remain in clinic for at least one hour to monitor vital signs and any adverse reactions.
 - A patient diary will be given to the patient to help monitor and track fevers, other reactions, admissions, etc. (See attached sample.)
 - Patient will be seen in clinic a minimum of once per week and also as needed. IL-2 cassettes will be changed every six days by the Research Nurse. Review of any adverse reactions or other problems will take place.

Task 3: Specimen Collection: (months 1-44-delayed to month 14)

- Approximately 50 cc’s of blood will be collected in heparinized, green top tubes on Day 0, +7, +14, +21, +32 and +100 and delivered to Dr. W. Samlowski’s and Dr. W. Green’s labs. (See below for details of lab procedures)
- Samples of pre-transplant and day 100 bone marrow material, as well as stem cell products will be transported to Dr. W. Samlowski’s lab for evaluation of minimal residual tumor cells (5 ml marrow or PBSC cells in a heparinized syringe).

Task 4: Analysis of LAK cell induction (months 1-44-delayed to month 14)

- Samples will be analyzed for T cell and LAK cell markers by flow cytometry (Dr. Green’s lab)
- Analysis of patient samples for LAK precursor and cytolytic cell function will be performed (Dr. Samlowski's lab)

Task 5: Assays for tumor cell detection in bone marrow and stem cell products (deleted)
from funding by USAMRMC)

Task 6: Data Collection (months 1-48-delayed to month 14):
- The following will be collected while the patient is being followed by the Blood & Marrow Transplant team: priming dates, G-CSF dosing, BMT date, engraftment, side effects of IL-2 (fevers, rash, etc), infections, readmission, relapse, death and other significant events.
- At day 100, the patient will be seen by the physician to evaluate their disease and health status. Information such as infections, readmission, relapse and death will be collected.
- Patients will then be followed yearly or as needed to monitor disease status and/or death.

Task 7: Interim Analysis: (approximately month 36)
- After approximately 30 patients are enrolled, data collected from Dr. Wolf Smalowski’s lab and Dr. Wayne Green’s lab, together with information collected in the CRF’s will be analyzed by the principal investigators.

Task 8: Final Analysis: (month 60)
- After enrollment of 60 patients is complete, data collected from Dr. Wolf Smalowski’s lab and Dr. Wayne Green’s lab and information collected in the CRF’s will be analyzed by the principal investigators. At the completion of this study a report will be generated.

Key research accomplishments:

We treated 20 patients with MAT/SCR in our phase I pilot trial. Patients received IL-2 either starting on day 1 (10 patients) or day 14 (10 patients) following stem cell infusion. A total of 17 patients were evaluable for response at the time of initial analysis. A total of 17 patients (85%) completed the IL-2 course. Three patients receiving IL-2 from day 1 required IL-2 infusions to be terminated early (2 fever, 1 thrombocytopenia). Relapse free survival was 45% with 580 day median follow-up (135-1175 days), with 75% overall survival.

LAK cell activation was evaluated in patients undergoing IL-2 infusions starting either day 1 (5 patients) or day 14 post stem cell infusion (5 patients). Cytotoxicity against the MCF-7 breast cancer line was detected in all patients, regardless of whether the IL-2 infusion was started day 1 or 14. Increased cytolytic activity was detected in cytotoxicity assays performed with the addition of IL-2, suggesting a substantial increase in
circulating LAK cell precursors in both patient populations. Phenotypic evaluation established that while CD56+ cell populations were expanded in both patient groups, the absolute number of circulating CD56+ cells was 10-fold higher in patients receiving IL-2 starting on day 14.

Due to these results, our current clinical trial will treat patients beginning on day +14 with a 18 day infusion of IL-2 to verify these exciting clinical results in this high-risk breast cancer population.

Reportable outcomes:

We have published the results of our phase I trial in abstract form (copies enclosed):

2. Petersen FB and Samlowski WE. Low dose interleukin-2 (IL-2) therapy after marrow ablative therapy and peripheral blood stem cell rescue (MAT/SR) for metastatic breast cancer (M-BRCA) induces significant non-specific lymphokine activated killer (LAK) cell activity against the MCF-7 breast cancer cell line in vitro: Blood 19:57b, 1999

A manuscript for submission to a peer reviewed journal (J. Clinical Oncology) is currently being prepared.

Conclusions:

The proposed use of IL-2 following maximal cytoreduction of tumor by MAT/SCR remains promising based on our preliminary data, with 45% of patients achieving ~2-year disease free survival. As soon as regulatory approval of the revised protocol and consent documents are obtained, we will confirm the effectiveness of this regimen in a larger scale phase II trial.

References:

1) Stadtmauer EA et al. Phase III randomized trial of high dose chemotherapy and stem cell support shows no difference in overall survival or severe toxicity compared to maintenance chemotherapy with cyclophosphamide, methotrexate and 5-fluorouracil
(CMF) for women with metastatic breast cancer who are responding to standard induction chemotherapy. Proc ASCO 18:1a, 1999.

3) Scandinavian Breast Cancer Study Group. Results of a randomized adjuvant breast cancer study with CTCb supported by autologous bone marrow stem cells versus dose-escalated and tailored FEC therapy. Proc ASCO 18:2a, 1999.

4) Bezwoda WR. Randomized controlled trial of high dose chemotherapy (HD-CNVP) versus standard dose (CAF) chemotherapy for high-risk, surgically treated primary breast cancer. Proc ASCO 18:2a, 1999.
CD34-selection has been associated with unusual Ols (cryptopodiosis and Pneumocystis carinii pneumonia (PCP)) in recent reports of ASCT recipients, perhaps due to a more profound cell-mediated immune deficit. To further evaluate this, we performed a retrospective cohort study of Oi risk in patients with NHL who underwent dose-intensive therapy (DIT) followed by CD34+ ASCT and compared them to a concurrent control patient group with NHL who received UHS ASCT. Median follow-up was 300 days in the CD34+ group and 475 days in the UHS group. Baseline variables (age, gender, race, weight) were matched and there were no differences between groups in post-ASCT chemotherapy. However, there was a trend toward earlier NHL recurrence (median disease-free survival) 248 days in the CD34+ group vs. 360 days in the UHS group, and significantly more (>0.001) protocol-mandated use of cyclophosphamide/etoposide/carboplatin/TBI as a preparative regimen in the CD34+ group.

Table 1. OIs in NHL Patients > 30 Days After CD34-Selected or Unselected AHSCCT

<table>
<thead>
<tr>
<th>CD34+ Group</th>
<th>Unselected Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>OI (n=22)</td>
<td>OI (n=10)</td>
</tr>
</tbody>
</table>

The relative risk of PCP, 9.8 (p=0.05) or any serious OI, 16.9 (p=0.02) was higher in the CD34+ group. In addition, three CD34+ patients had multiple OIs (CMV and HZ; PCP and HZ; PCP, HZ and HVS) vs. none in the UHS group. The overall incidence of herpes viral infections did not differ.

Conclusion: OIs may occur more frequently in recipients of CD34-selected AHSCCT. However, a larger study is needed to control for variables such as preparative regimen, length of follow-up and disease recurrence to definitively determine the role of CD34 selection in OI risk.

Abstract# 4927
SUCCESSFUL LUNG TRANSPLANTATION IN AN ADULT PATIENT WITH BRONCHIOLITIS OBLITERANS ASSOCIATED WITH GRAFT-VERSUS-HOST DISEASE AFTER MARROW TRANSPLANTATION. W. Rabitsch*, E. Deviatik*, T. Birsan*, H. Lohdst*, A. Schulenburg*, F. Kell*, C. Henold*, G. Decker*, K. Lechner, H. T. Greinix, W. Klepetko*. Bone marrow transplantation-related bronchiolitis obliterans (BO) occurs in patients who develop extensive graft-versus-host disease (GVHD). If the disease does not respond to immunosuppressive therapy within 6 months the prognosis is dismal.

We present a 37-year-old male with extensive GVHD following allogeneic bone marrow transplantation (BMT) from his HLA-identical sister because of chronic myelogenous leukemia in chronic phase. After conditioning therapy with busulfan and cyclophosphamide, 2.09±1.5% CD34+ cells/kg body weight were infused. GVHD prophylaxis consisted of cyclosporin A(CSA) and short course methotrexate. After hematological reconstitution the patient was discharged without signs of GVHD. Seven months after transplantation the patient presented clinically with persistent cough, inspiratory rales, bronchospasm and exertional dyspnea. Pulmonary function tests revealed obstructive ventilatory impairment with hyperinflation. No bronchiolitis obliterans was diagnosed. Despite immunosuppressive and broad-spectrum antibiotic therapy his clinical status and his pulmonary function test worsened further (FEV1/FVC<40%). Eight months after onset of GVHD a double-lung transplantation (LTX) was performed. Immunosuppressive therapy consisted of CSA, mycophenolate mofetil(MMF) and steroids. Prophylaxis against infection was uneventful. At present, 29 months after BMT and 13 months after LTX, the patient is in complete hematological remission and has pulmonary function tests in the normal range (FEV1/FVC<121%) enabling him to perform various sporting activities. Lung transplantation is now accepted as a therapeutic option for a broad spectrum of otherwise incurable lung diseases. Selected patients with BO after allogeneic BMT who are refractory to conventional immunosuppressive therapy might widen this spectrum.

Abstract# 4928

The role of allogeneic bone marrow transplant (allo-BMT) after relapse following an autologous or allogeneic bone marrow transplant is controversial. We analyzed the outcomes of patients at our center that have undergone a second allogeneic bone marrow transplant who relapsed after receiving an autologous or allo-BMT. Between September 1992 and July 1999, 22 patients underwent allogeneic bone marrow transplant (BMT2) for relapsed disease. Median follow-up after BMT2 was 4 months (range 0-42). Indication for 2nd allo-BMT included: AML (n=12), CML (n=2), Hodgkin's disease (HD) (n=3), non-Hodgkin's lymphoma (NHL) (n=3), multiple myeloma (MM) (n=1) and myelodysplastic syndrome (MDS) (n=1). First transplants (BMT1) included 9 allo-BMTs and 13 auto-BMTs. Second transplants (BMT2) included 8 matched unrelated donor (MUD) and 14 matched related donor. Preparative regimens for BMT2 included BuCy (n=4), CY/TBI (n=4), VP/16 BuCy (n=6), VP16/Cy/TBI (n=4). Patient characteristics: M:F=12:10; median age at time of BMT2=38 yrs (17-53 yrs); median time from BMT1 to BMT2=16 mo (range 6-84), from BMT1 to relapse=10 mo (range 3-74), and from relapse to BMT2=4 mo (range 1-19). For all patients, the 2 yr disease-free survival (DFS) was 34% (n=5) and 43% (n=3), 1 yr OS was 42% (n=3) and 62% (n=2), 2 yr OS was 45% and 2 yr OS was 45% and 2 yr OS=45%

 foremost for sibling donors transplants was 45% and 2 yr OS=45%. For all patients with AML/MDS (n=13), the 2 yr DFS was 40% and OS 12%. For all other diseases (n=9), the 2 yr DFS was 59% and 2 yr OS was 33%. Median time to ANC>200=14 days (range 1-22) and median time to platelet transfusions was 5 months (range 3-12). Four of these 5 patients have died, with a median time from relapse to death < 37 days. Cause of death in patients in CR were multiorgan failure (1), pulmonary embolism (1), pleural effusion (1), cerebral hemorrhage (1) and pulmonary hemorrhage (1). In univariate analysis for DFS, predictors of poor outcome included time from BMT1 to relapse < 6 months (p=0.001) and time from BMT1 to BMT2 < 12 months (p=0.002). In conclusion, second allogeneic bone marrow transplant as treatment for relapsed hematologic malignancy is feasible and can provide long-term DFS. Our 2-yr DFS (34%) and OS (43%) are similar to recent reports. The rate of relapse (less than 6 months from BMT1) and less than 12 months between first and second transplants predict for both poor DFS and OS. Patients who received an unrelated donor transplant had a poorer outcome than those patients with a matched-sibling related donor transplant.

Abstract# 4929
HIGH FREQUENCY OF ISOLATED EXTRAMEDULLARY RELAPSE IN PATIENTS TRANSPLANTED FOR ACUTE MYELOID LEUKEMIA. G. De Rosa*, L. Pezzuolo*, A. Lucia**, C. Selleri, B. Rotoli. Department of Hematology, Federico II University Medical School, Naples, Italy.

Extramedullary (EM) localizations of acute myeloid leukemia (AML) are infrequent at diagnosis and difficult to eradicate with conventional systemic chemotherapy (CHT). Aim of this study was to evaluate the impact of CHART on EM disease. A total of 82 patients with AML were treated with CHART alone in comparison with transplanted patients (either allogeneic or autoBMT). The two cohorts of patients were sufficiently similar for age and treatment protocol; no patient had EM sites involved at diagnosis. The CHT group was composed of 101 patients, most of whom were treated with a routine approach; median age 47y, range 15-65. In this group 47/101 patients relapsed; relapse was hematological in 43 (91%) and EM in 4 (9%), 60 patients were transplanted (median age 39y, range 10-65); 35 underwent alloBMT and 25 autoBMT; all were conditioned with BuCy2. In this group 22/30 patients relapse (73%) and 12/30 relapsed (40%). In the CHART group, 12/47 patients relapsed; relapse was hematological in 12 (93%) and EM in 4 (32%) (p=0.001). The 7 EM relapses occurring in the BMT group, 4 were seen in the alloBMT group and 3 in the autoBMT group. The higher frequency of EM relapses in transplanted patients is probably due to insufficient eradication by the conditioning regimen. Possible explanations could be: i) the immunomodulating effect of CHART on disseminated extramedullary disease. This is supported by the observation of normal-appearing homing of leukemic cells after myeloablative and immunomodulatory regimens; ii) less effective GvL effect in "sensitive" sites. Sites of EM relapse were CNS and spine in alloBMT, CNS and skin (2 patients) in autoBMT; absence of skin relapse in alloBMT might support the relevance of GVH-associated GvL as protective mechanism, considering that skin is the most common site of GvH.
CORD BLOOD LYMPHOCYTES HAVE A HIGH THRESHOLD FOR ACTIVATION BY PHORBOL ESTER. Isabel Perez-Cruz,*† Katarzyna Boganía-Kubik,*‡ Paul Fallon,*§ Alejandro Madrigal,* Shaara Cohen,* Anthony Nolan Research Institute, The Royal Free School of Medicine, London, United Kingdom; 2Harzefeld Institute of Immunology, Wroclaw, Poland; 3Hematology, The Royal Free School of Medicine, London, United Kingdom.

The use of cord blood (CB) instead of bone marrow (BM) has provided a promising alternative for stem cell transplantation. One advantage of CB may be that CB transplantation does not cause less graft versus host disease (GVHD) due to the fact that CB is obtained through the umbilical cord, which is not an organ. CB-derived natural killer (NK) cells have reduced function compared to adult NK cells, and both these cell types are important effectors in rejection of tumors. Since cytokine production and cell surface molecule expression were reported to be downregulated in CB compared to BM under in vitro culture conditions, the biological relevance of this phenomenon is still unclear.

Recently, several groups have reported that CB-derived lymphocyte subpopulations have unique features, such as enhanced expression of regulatory molecules and reduced cytotoxic activity. CB-derived lymphocytes may have a lower threshold for activation by mitogens and cytokines compared to adult lymphocytes.

Cord blood lymphocytes are more susceptible to activation by mitogens and cytokines compared to adult lymphocytes. CB-derived lymphocytes may have a lower threshold for activation by mitogens and cytokines compared to adult lymphocytes. CB-derived lymphocytes may have a lower threshold for activation by mitogens and cytokines compared to adult lymphocytes. CB-derived lymphocytes may have a lower threshold for activation by mitogens and cytokines compared to adult lymphocytes.