Effect of Internal Energy Excitation on Supersonic Blunt-Body Aerodynamics

Graham V. Candler

University of Minnesota
110 Union Street SE
Minneapolis, MN 55455

AFOSR
801 N Randolph St. Room 732
Arlington, VA 22203-1977

Approved for Public Release
Distribution Unlimited

We have performed a computational study of the experiments performed by Lowry et al. at the Arnold Engineering and Development Center (AEDC). In these experiments, a RF discharge is used to weakly ionize a volume of air; then a projectile is fired through this plasma. Relative to the conditions without the discharge, the shock standoff distance is observed to increase substantially, and the bow shock becomes flatter. We have modeled the RF discharge and the resulting thermo-chemical state of the air within the discharge region. Based on these conditions, the projectile flow field was simulated to determine if the relaxation of the stored internal energy causes the shock movement. The results obtained indicate that the stored internal energy does not relax fast enough and therefore this effect is not responsible for the observed effects. We consider two additional mechanisms, and find that unsteady flight through thermal non-uniformities is the likely explanation.

weakly ionized gases, plasma aerodynamics, plasma dynamics
Effect of Internal Energy Excitation on
Supersonic Blunt-Body Aerodynamics

FINAL REPORT

Graham V. Candler
Department of Aerospace Engineering and Mechanics
University of Minnesota, Minneapolis MN 55455
Sergey O. Macheret, Mikhail N. Shneider
Department of Mechanical and Aerospace Engineering
Princeton University, Princeton NJ 08544
Igor V. Adamovich
Department of Mechanical Engineering
The Ohio State University, Columbus OH 43210
J. Daniel Kelley
The Boeing Company
St. Louis, MO 63166

March 20, 2001

U. S. Air Force Office of Scientific Research
Attn: Dr. Steven H. Walker
801 North Randolph Street, Room 732
Arlington, VA 22203-1977

Grant No. F49629-00-1-0177
Abstract

We have performed a computational study of the experiments performed by Lowry et al.1,2 at the Arnold Engineering and Development Center (AEDC). In these experiments, a RF discharge is used to weakly ionize a volume of air; then a projectile is fired through this plasma. Relative to the conditions without the discharge, the shock standoff distance is observed to increase substantially, and the bow shock becomes flatter. We have modeled the RF discharge and the resulting thermo-chemical state of the air within the discharge region. Based on these conditions, the projectile flow field was simulated to determine if the relaxation of the stored internal energy causes the observed shock movement. The results indicate that the stored internal energy does not relax fast enough to reproduce the experimental results, and therefore vibrational energy storage is not responsible for the observed shock movement. We consider two additional mechanisms to explain the experiments: modification of the electric field by the presence of the metallic projectile, and non-uniformities in the plasma. The latter effect appears to be the leading candidate.
Introduction

A series of experiments at the Arnold Engineering and Development Center (AEDC) has been carried out over the past several years. This work was originally planned to reproduce experiments performed in Russia that showed significant increases in shock standoff distances on spheres flying through a weakly ionized gas.3,4 In the AEDC experiments,1,2 an RF plasma generator similar to that used in the Russian experiments was installed in the AEDC S1 Hypervelocity Impact Range. \(\frac{3}{8}'' \) and \(\frac{3}{4}'' \) diameter spheres were fired through air and argon at pressures of 30 and 40 torr. The bow shock shape was measured with holographic interferometry methods, and the temperature within the discharge was measured with a variety of techniques. Figure 1 shows a schematic of the RF plasma generator used in the experiments, and Fig. 2 shows pictures of the generator operating in argon. The glowing regions indicate the primary current carrying paths of the plasma; note that there is substantial non-uniformity within the generator. The bow shock shape is measured when the projectile is nominally centered in the generator.

The AEDC experiments show that the bow shock tends to flatten and its standoff distance increases when the plasma generator is turned on. There is a substantial amount of scatter of the data, but the shock standoff distance, \(\Delta \), is measured to be up to \(\Delta/r_n = 0.63 \), where \(r_n \) is the projectile radius. This compares to the shock standoff distance of \(\Delta/r_n = 0.31 \) for a sphere flying through air at the range conditions using the average measured temperature of 1156 K. Thus, the change in the standoff distance is substantial and cannot be explained by simple thermal effects.

![Diagram of RF plasma generator](image-url)

Figure 1. Schematic of the AEDC RF plasma generator. Courtesy of Dr. Heard Lowry, Sverdrup/AEDC.
Candler and Kelley5 modeled the AEDC experiments by assuming that the excited gas within the discharge region was heated and vibrationally excited by the discharge. In addition, it was assumed that several percent of the oxygen was dissociated by the discharge. As the gas flows over the model, the vibrational energy relaxes, releasing heat and increasing the local speed of sound. This results in a reduction of the effective Mach number, and therefore an increase in the shock standoff distance.

The assumed levels of vibrational excitation and oxygen dissociation were varied parametrically to determine if a "reasonable" level of excitation could reproduce the experiments. It was found that if the vibrational energy is characterized by a temperature of 8000 K and there is a 3\% O-atom mole fraction, the computations could "reproduce" the experiments. This agreement may be completely fortuitous because no attempt was made to relate the assumed internal energy state to the actual plasma conditions.

In this work, we undertake a complete modeling of the RF discharge used in the AEDC experiments to determine the internal energy state under the experimental conditions. The results of this modeling are then used as input to the computational fluid dynamics code used in the previous study to determine if internal energy relaxation causes the observed shock motion.

Modeling calculations have been done in three stages. First, a one-dimensional RF discharge code was used to determine the electric field in the positive column of the discharge, taking into account the voltage drops across the dielectric layers covering the electrodes as well as across the sheaths. Second, a time-dependent vibrational kinetics / air chemistry code was used to determine the quasi-steady-state chemical composition and vibrational energy balance in the RF discharge plasma. Calculations were made for three values of
the effective ionization rate constant, calculated separately for regular air, and for air with
1% and 3% of NO, respectively. This allowed incorporating the effect of the chemical
composition change on the ionization rate in the RF discharge model. Finally, the results
of the time-dependent model were averaged over a time period and used as input to the
finite-rate thermo-chemistry CFD code to predict the modification of the flow field.

RF Discharge Model

The RF discharge is modeled through the use of an equivalent circuit, as shown in
Fig. 3. The voltage drop across the dielectric layers covering the electrodes as well as across
the sheaths is modeled. Then we solve the following one-dimensional continuity equations
for the electron density, \(n_e \), and positive ion density, \(n_+ \); in addition, the Poisson equation
for the potential is solved:

\[
\frac{\partial n_e}{\partial t} + \frac{\partial \Gamma_e}{\partial x} = \alpha |\Gamma_e| - \beta n_e n_+, \quad \Gamma_e = -\mu_e n_e E,
\]

\[
\frac{\partial n_+}{\partial t} + \frac{\partial \Gamma_+}{\partial x} = \alpha |\Gamma_e| - \beta n_e n_+, \quad \Gamma_+ = \mu_+ n_+ E,
\]

\[
\frac{\partial^2 \phi}{\partial x^2} = -\frac{e}{\varepsilon_o} (n_+ - n_e), \quad E = -\frac{\partial \phi}{\partial x},
\]

\[-\int_0^L E(x,t) \, dx = V_L(x,t) = V_g - Q/C_b,\]

where \(Q \) is the electric charge on the effective ballast capacitor with capacitance \(C_b \), and
\(V_g = 3500 (1 - \cos \omega t) \) (Volt) is the imposed voltage of the RF generator. \(I = \frac{\partial Q}{\partial t} \) is the
current in the external circuit. For a symmetric RF discharge: \(I(t) = [\varepsilon_o \partial E(x,t)/\partial t +
e (\Gamma_+(x,t) - \Gamma_e(x,t))] S \), where \(S \) is the surface area of the electrodes. In the RF discharge,
the boundary conditions on the dielectric surfaces are the same as on metal electrodes. At
\(x = 0 \):

\[\Gamma_e = -\gamma \Gamma_+ \text{ if } E(0,t) \leq 0\]

\[\Gamma_+ = 0 \text{ if } E(0,t) > 0\]

At \(x = L \), the boundary conditions are similar. The solution of these equations yields
the time-dependent variation of the voltage, current density, and reduced field in the RF
discharge region. For example, Fig. 4 plots the results of a sample calculation.
Figure 3. Equivalent circuit model of the RF plasma generator.

Figure 4. Voltage on the plasma gap; current density and reduced electric field in the middle of the gap for $T = 1150\,\text{K}$, $p = 30\,\text{torr}$, $\gamma = 0.01$, $f = 369\,\text{kHz}$, $C_b = 1.76 \times 10^{-12}\,\text{F/cm}^2$, $L = 6\,\text{cm}$.

$N_2 + O_2; \quad <n_e(L/2,t)> = 1.185 \times 10^{16} \, \text{cm}^{-3}$

$N_2 + O_2 + 3\% \text{NO}; \quad <n_e(L/2,t)> = 1.49 \times 10^{10} \, \text{cm}^{-3}$
Vibrational Kinetics and Air Chemistry Model

The results of the discharge modeling are then used to predict the vibrational and chemical state of the air within the discharge. The kinetic model used and the nonequilibrium air chemistry computer code incorporate electron impact processes, vibrational relaxation by vibration-translation (V-T) and vibration-vibration (V-V) processes, and chemical reactions including dissociation and the Zeldovich reactions. The rates of electron impact processes used by the code are evaluated separately using a Boltzmann equation solver. To estimate the effect of the plasma chemical composition on the electron kinetics, these rates have been evaluated for two different gas mixtures, air and air+1% nitric oxide. The rates of the V-T and V-V processes, as well as the chemical reaction rates are taken the same as in Ref. 7. The V-T and V-V rates used are given in the Appendix.

The vibrational kinetics and chemistry model incorporates three equations for the vibrational energy modes of N$_2$, O$_2$, and NO, respectively (based on the harmonic oscillator approximation). The quasi-steady-state concentrations of electronically excited species in the RF discharge are estimated to be quite small, and therefore the enthalpy stored in these species appears to be negligible.

In the absence of the gas flow in the RF discharge, the dominant cooling mechanism is by natural convection, which cannot be modeled with the one-dimensional approach used. For this reason, the gas temperature is assumed to be constant. In the calculations, two values of the gas temperature have been used, $T = 1100$ and 1600 K, which are likely to correspond to the average and the maximum values of the temperature measured in the AEDC experiments. The calculated time-averaged electron density is in the range $n_e = (1.2 - 1.5) \times 10^{10} \text{ cm}^{-3}$, which is consistent with the experimental value of $n_e = 0.8 \times 10^{10} \text{ cm}^{-3}$.

The electron energy relaxation time at the conditions of the AEDC experiments is shorter than the RF oscillation period, so that T_e (or, more exactly, the electron energy distribution function) oscillates with the field. Because of this, the vibrational kinetics and chemistry code had to be run until quasi-steady-state conditions were reached, which typically required about 0.2 seconds, or 10^5 electric field oscillation periods. The results are summarized in the following table. Calculations show that the vibrational mode temperatures and the chemical composition of the plasma are primarily controlled by the V-T relaxation of N$_2$ on O atoms, as well as by the N$_2$-NO and N$_2$-O$_2$ V-V exchanges. In particular, nitric oxide is mostly formed by Zeldovich mechanism reactions at the transient, highly nonequilibrium stage of the discharge development. The overshoot of the vibrational temperature of N$_2$, as well as the steady-state NO concentration are very sensitive
to the N$_2$-NO V-V and N$_2$-O V-T rates. On the other hand, the steady-state O atom concentration is much less sensitive to the V-T and V-V rates since O atoms are predominantly formed by the electron impact dissociation and thermal dissociation of O$_2$ (at the higher gas temperature). In all calculated regimes, the vibrational temperature of O$_2$ is very close to the gas temperature.

Table 1. Predicted quasi-steady-state RF discharge plasma conditions.

<table>
<thead>
<tr>
<th>T K</th>
<th>Gas</th>
<th>T_{vN_2} K</th>
<th>T_{vO_2} K</th>
<th>% O</th>
<th>% NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>Air</td>
<td>2270</td>
<td>1140</td>
<td>1.20</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>Air+1% NO</td>
<td>2260</td>
<td>1140</td>
<td>0.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1600</td>
<td>Air</td>
<td>2080</td>
<td>1615</td>
<td>2.46</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>Air+1% NO</td>
<td>2090</td>
<td>1615</td>
<td>2.01</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Computational Fluid Dynamics Model

The results of the RF discharge modeling were used as free-stream conditions for computational fluid dynamics simulations of the AEDC spherical projectiles. Rather than solving for the vibrational temperatures of the gas, a vibrational state-specific model is used. We use 5 vibrational levels each for N$_2$ and O$_2$ and 2 vibrational levels for NO. In addition, we include the presence of O atoms. Each of the vibrational species interact with each other through the V-T and V-V relaxation processes. Here we include only the dominant mechanisms, which are O$_2$ dissociation and recombination, N$_2$ V-T relaxation on O atoms, O$_2$ V-T relaxation on all species, NO V-T relaxation on all species, N$_2$-NO V-V relation, O$_2$-NO V-V relaxation, and N$_2$-O$_2$ V-V relaxation. These processes and the relevant rates are given in the Appendix. This model is fully consistent with that used by the one-dimensional Boltzmann solver that was used to obtain the vibrational and chemical state of the discharge.

The conservation equations for this gas mixture are solved on a finite-volume grid of 100 \times 200 cells for the forebody of a spherical projectile using a standard CFD method. Figure 5 shows a typical grid; note that the upstream edge of the grid has $x = \text{constant}$; this is for convenience in the studies discussed below.

In all calculations presented here, we simulated a \(\frac{3}{4}''\) diameter projectile traveling at a speed of 1600 m/s and a free-stream pressure of 30 torr (4000 Pa). Figure 6 plots the temperature along the stagnation streamline for the two assumed temperature conditions (1100 and 1600 K). We see that when the free-stream vibrational energy is elevated to
the values in Table 1, there is essentially no shock movement. Note that the maximum experimentally measured normalized shock distance was 0.63, which is much larger than any of the computed values. The N₂ vibrational energy does not relax as the gas passes through the flow field because the relaxation rates are relatively slow. There is appreciable O₂ relaxation, but because its vibrational temperature is only slightly elevated above the free-stream, the relaxation has little effect. There is little or no energy release due to O atom recombination, again due to relatively slow rates.

Figure 5. Example computational 100 (axial) × 200 (normal) point grid.

Figure 6. Temperature on the stagnation streamline for the two free-stream temperatures.
Figure 7. Computed vibrational state mass fractions on the stagnation streamline for the 1100 K free-stream conditions.
Figure 8. Computed vibrational state mass fractions on the stagnation streamline for the 1600 K free-stream conditions.
The lack of shock movement is therefore a result of very little relaxation of \(N_2 \) and essentially no excitation of \(O_2 \). This can be seen in Figs. 7 and 8, which plot the mass fractions of the \(N_2 \) and \(O_2 \) vibrational states along the stagnation streamline for the two assumed free-stream temperatures. Note that the mass fractions of the \(N_2 \) vibrational species do not change appreciably, while the \(O_2 \) upper levels start to increase at the shock.

Thus, \(N_2 \) relaxes too slowly to deposit energy into the flow field, and \(O_2 \) is too weakly excited to have any substantial effect. These results show that the predicted levels of internal energy excitation are insufficient to explain the experiments.

The question now remains: If it is not vibrational relaxation, what is it? In the remainder of the paper, we discuss two possible mechanisms: modification of the discharge due to the presence of the metallic projectile; and plasma thermal non-uniformities.

Modification of Discharge

It is possible that we have neglected an important effect in our model. As the metallic spherical projectile passes through the RF plasma generator, it may change the discharge properties. In essence, the sphere acts like an electrode in this RF discharge, which causes a concentration of the current density and field near the sphere. This results in higher Joule heating near the sphere, which may potentially account for the shock motion.

Completely modeling the interaction of the projectile with the plasma generator under operation would be extremely difficult. This is further complicated by the fact that the AEDC plasma generator has a relatively low frequency of 369kHz, which means that the sphere travels about 0.43 cm during each cycle. Therefore, it may not be possible to decouple the interaction between the flow field and the alteration of the discharge by the projectile. This further complicates the modeling of this effect.

Rather than attempting to model this complex interaction, we used a highly idealized model to assess its importance. We assume that as the projectile flies through the generator, the field is concentrated around the sphere. This results in increased Joule heating in concentric shells around the projectile. For simplicity, we assumed that an equal amount of energy is deposited in each spherical shell, and that 30% of 3.5 kW generator power goes directly into heating the gas.

Figure 9 plots the shock standoff distance as a function of time for this highly simplified model at a free-stream temperature of 1100 K. We observe some shock movement, but it is less than 4% for this case. While this is larger than the shock movement that can be attributed to vibrational energy storage, it is not sufficient to explain the experiments.
This result is consistent with the fact that the projectile residence time within the generator is very small; for a characteristic dimension of the generator of 30 cm, the residence time is 188 μs. The generator deposits less than one Joule of energy during this time, which is clearly not enough to raise the temperature appreciably. Thus, from our simple model and from simple scaling arguments, it does not make sense that the observed shock motion is caused by localized heating due to changes in the discharge.

![Graph](image)

Figure 9. Shock standoff distance as a function of time for simplified modified discharge model at 1100 K conditions.

Plasma Non-Uniformities

In this section we consider how thermal non-uniformities in the plasma may affect the bow shock standoff distance and shape. Figure 2 shows that the plasma is substantially non-uniform, with three strongly glowing regions where the gas is presumably hotter than the mean. This assumption is supported by the temperature measurements made by Lowry et al.\(^1\) in air. The exact variation of the temperature within the generator is of course impossible to model, so here we consider several limiting cases to determine how this type of thermal non-uniformities affects the bow shock.

First, let us consider the simple case where the projectile is flying through uniform air at 300 K, and then suddenly enters a region of elevated temperature, of either 1100 K or 1600 K. To model this computationally, we obtain a converged flow solution at the 300 K
conditions and a projectile speed of 1600 m/s, we then introduce high-temperature gas at the upstream edge of the computational domain, and use a small time step to obtain a time-accurate simulation of the resulting flow field. Because the upstream edge of the grid has a constant x location, the inflow gas enters the domain uniformly (see Fig. 5).

Figure 10 plots the shock standoff distance as a function of time, where $t = 0$ is taken as the time when the leading edge of the projectile encounters the high-temperature gas. We see that there is a significant overshoot in the shock standoff distance when the hot gas interacts with the bow shock. This begins at a slightly negative time, since the shock is upstream of the leading edge. The shock standoff distance increases to $\Delta/r_n = 0.408$ for $T = 1100$ K and $\Delta/r_n = 0.578$ for $T = 1600$ K. The shock standoff distance then oscillates and finally reaches its steady-state value for the imposed higher temperature. The maximum shock standoff distance occurs at $t = 8.2 \mu$sec at 1100 K and 10.8 μsec at 1600 K. These times are similar to the characteristic flow time, which can be defined as the time it takes the projectile to travel one diameter: $2r_n/u_\infty = 11.9 \mu$sec.

![Normalized Shock Standoff](image)

Figure 10. Shock standoff distance as a function of time for projectile traveling from $T = 300$ K into high-temperature gas at $t = 0$ (either 1100 K or 1600 K conditions).

Figure 11 plots the density contours at the time of maximum shock standoff distance for the two cases. We see that at this condition, the high-temperature gas piles up in front of the original shock wave, creating a weaker secondary shock and an apparently higher
shock standoff distance. This occurs primarily because the high-temperature gas has a significantly lower density than the 300 K gas. Also, the Mach number of the projectile in the high-temperature stream is much lower ($M_{\infty} = 2.00$ at 1600 K vs. 4.60 at 300 K). As a result, the stagnation pressure and temperature in the cold gas are much higher: For example at $T = 1600$ K, $p_{o,300 K}/p_{o,1600 K} = 4.9$ and $\rho_{o,300 K}/\rho_{o,1600 K} = 9.0$. Therefore, to the low density high-temperature gas, the original cold-gas stagnation region is essentially like an immovable object that is actually expanding outward into the lower pressure gas. Of course, this high pressure gas also flows downstream, draining the stagnation region. This difference in the stagnation region densities is illustrated schematically in Fig. 12.

Another way to think of the flow is that the hot gas has a lower mass flux and momentum flux, which causes the bow shock wave to move upstream to adjust to the new inflow conditions. At the same time, the high density gas remaining in the stagnation region flows downstream. Thus, there is a balance between the rate at which the new inflow gas encounters the bow shock, the rate at which the bow shock expands, and the rate at which the stagnation region is emptied of high density gas.

When the slug of high-temperature gas interacts with the curved bow shock, a baroclinic torque is generated. Consider the two-dimensional compressible Euler equation for the z-direction (out of plane) vorticity

$$\frac{D\omega_z}{Dt} = -\omega_z \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) - \left(\nabla \frac{1}{\rho} \times \nabla p \right)_z$$

The high-temperature flow has a low density, so that the gradient of $\frac{1}{\rho}$ is in the negative x-direction. The gradient of pressure across the shock is in the positive x-direction at the centerline, and has a negative y component off of the centerline. Therefore, the baroclinic torque tends to produce a negative vorticity away from the axis, which would tend to cause the bow shock to become more curved. The baroclinic torque competes with the effect of compression, which has a positive sign across the shock. However based on the time scales and the Figure 11, these processes are not responsible for the initial standoff distance overshoot; it is likely that they play a role later in the interaction.
Figure 11. Density contours at maximum shock standoff distance overshoot for projectile from $T = 300$ K into (a) 1100 K gas (at $t = 8.2 \mu$s); and (b) 1600 K gas (at $t = 10.8 \mu$s).
Figure 12. Schematic representation of stagnation region densities for the conditions corresponding to the AEDC experiments for an assumed discharge temperature of 1600 K.

In any case, it is abundantly clear that the effect of thermal non-uniformities is to cause an unsteady overshoot in the shock standoff distance when the projectile transitions from low to high temperature regions. This process occurs on a time scale that is consistent with the time scales of the projectile motion in the AEDC experiments.

The presence of two strong density gradients in Fig. 11 should perhaps appear in the interferograms used to visualize the shock shape in the AEDC experiments. However, the calculation performed here assumes a perfect interface between the hot and cold regions. In reality, the interface is changed by heat transfer and buoyancy within the plasma generator. Also, the temperature within the generator itself has significant variation, as shown by the dual laser induced fluorescence measurements performed by Lowry et al.¹

Argon Experiments

The AEDC group also performed ballistic range experiments in argon, and found significantly less change in the shock shape and standoff distance.² Standoff distance ratios of between 0.22 and 0.28 were measured, as compared to a ratio of 0.24 with no plasma. This small shock movement was attributed to the lack of vibrational excitation of argon as opposed to air.² However, with the new calculations presented in this report, we must re-assess this conclusion.

We performed simulations of a non-uniform temperature distribution for the argon experiment in the same fashion as described above for air. We use the appropriate properties for argon and use the estimated temperature in the discharge region of 650 K. Figure 13 plots the variation of the shock standoff distance ratio as a function of time. We see that the prior to entering the high-temperature gas, the shock standoff distance is 0.24, which is consistent with the no-plasma results from the AEDC measurements. The standoff ratio then reaches a maximum of 0.392 at $t = 8.1 \mu\text{sec}$. This is substantially less than the overshoot computed in the air simulations. This is due to the fact that the temperature is
lower in the argon experiments, and argon has a higher ratio of specific heats, resulting in a lower stagnation density ratio between the different temperature regions. This combines to result in a stagnation density ratio of just 2.6, as compared to 9.0 in the high-temperature air case. Figure 13 shows that the time scale to the overshoot is similar to the air simulations, but note that the shock standoff equilibrates to the new value corresponding to $T_\infty = 650$ K much more quickly than in air. This is because the relatively lower density gas is swept downstream more quickly in this case.

![Normalized Shock Standoff](chart)

Figure 13. Shock standoff distance as a function of time for projectile traveling from $T = 300$ K into 650 K argon.

Pulsed Microwave Experiments

As part of the effort to understand how plasmas affect supersonic aerodynamics, we made an attempt to model the pulsed microwave experiments that have been conducted in Russia over the past several years. In these experiments, a microwave discharge excites the supersonic air upstream of a sphere. Relative to the unheated flow conditions, reductions in the drag (of 10 to 15%) are measured, and the bow shock standoff distance is observed to increase. Our previous work attributed the drag reduction to vibrational relaxation, but we have found that there is insufficient oxygen excitation in these flows to explain the experimental results. Therefore, we investigated the effect of unsteady heating of the gas during the pulsed microwave discharge operation. During the 0.2 μsec discharge,
approximately 0.1 J of heat is added to the gas in an unknown volume.

To model this process, we simulate the flow at conditions characteristic of the experiments, and add the heat in various axisymmetrically shaped regions upstream of the model. Figure 14 plots the drag on the sphere as a function of time for three different assumed excitation regions. We see that there is an overshoot and undershoot in the drag coefficient; when we average of the typical experimental data taking time of about 100 μsec, we find that there is a net drag reduction of 5%. Clearly, if the first 40 to 60 μsec of the experiment are neglected, the apparent drag reduction can be much larger. Thus, our conclusion is that unsteady heating is consistent with the measurements made in this type of experiment.

![Figure 14. Drag coefficient as a function of time for three different assumed discharge volumes. Free-stream conditions are $p_\infty = 60$ torr $= 8.0$ kPa, $T_\infty = 150$ K and $M_\infty = 1.3$.](image)

Figure 14. Drag coefficient as a function of time for three different assumed discharge volumes. Free-stream conditions are $p_\infty = 60$ torr $= 8.0$ kPa, $T_\infty = 150$ K and $M_\infty = 1.3$.

Conclusions

The AEDC ballistic range experiments concerning anomalous shock standoff distances have been modeled. A one-dimensional time-dependent model of the RF plasma generator was used to provide voltage, current density, and reduced field data to a Boltzmann solver. This code was used to integrate the plasma properties over many generator cycles until a quasi-steady-state condition was obtained. These results were then used as input to an axisymmetric computational fluid dynamics code. This code uses a vibrational state-
specific representation of the gas, and includes all relevant vibrational relaxation processes, as well as finite-rate oxygen dissociation and recombination.

The results of the modeling the RF plasma generator are that very little vibrational excitation of the gas occurs, with the oxygen vibrational modes only slightly excited over the assumed translational temperature. There is negligible excitation of the electronic states as well. Therefore, when the CFD code is used to simulate the shock standoff distance on the ballistic range projectiles, there is no effect of vibrational relaxation on the shock standoff distance. This is contrasted with the results of Candler and Kelley5,9 that showed a substantial effect. However in that work, a high level of vibrational excitation was assumed; based on our current modeling results, that assumption was wrong. Therefore, we must conclude that the observed effects are not a result of vibrational relaxation of stored vibrational energy as postulated previously.

We have considered two possible mechanisms that may be responsible for the experimental observations. First, we considered how the presence of the metallic sphere within the discharge region may affect the gas heating. In particular, we expect that the sphere will act as an electrode during each generator cycle, resulting in localized heating around the sphere. We attempted to assess the importance of the effect using an extremely simplified model, however this did not produce much change in the shock standoff distance. Also, simple residence time arguments indicate that the plasma generator has insufficient power to change the flow field appreciably during the passage of the sphere.

The effects of thermal non-uniformities in the plasma were also considered by performing time-dependent simulations of the projectile flying from a cold region (at 300 K) into a hot region (at either 1100 or 1600 K). These calculations show that there is a significant unsteady effect due to the sudden transition; in effect, the hot, low-density gas piles up in front of the original shock layer, resulting in a substantially larger shock standoff distance. For example, for the higher temperature simulation, the normalized shock standoff increases to a maximum of $\Delta/r_n = 0.578$, which is in the range of the experimental results. Simulations in argon are consistent with the experimental measurements, in that they show much less shock movement due to the lower temperature and different gas properties.

We also performed simulations of pulsed microwave drag reduction experiments. We find that unsteady heat addition causes a temporary drag reduction of a similar magnitude to that measured in recent Russian wind-tunnel experiments. Thus, we find that the observed drag reduction is a thermal effect due to unsteady heating of the gas during the microwave pulse.
Our calculations do not definitively prove that thermal non-uniformities cause the shock movement, but at this point we feel that this is the leading contender for a physically-based mechanism to describe the experiments.

References

AIAA, Norfolk, VA, April 24-25, 1998.

Appendix: Relaxation Processes

V-T Relaxation Processes

\[AB(v) + M \rightleftharpoons AB(v - 1) + M \]

Rates (units of atm \cdot sec):

N\textsubscript{2}-N\textsubscript{2}, N\textsubscript{2}-O\textsubscript{2}, N\textsubscript{2}-NO:

\[p \tau_{VT} = \exp(234.9\ T^{-1/3} - 25.89) \]

N\textsubscript{2}-O, N\textsubscript{2}-N:

\[p \tau_{VT} = \exp(32.2\ T^{-1/3} - 16.35) \]

O\textsubscript{2}-O\textsubscript{2}, O\textsubscript{2}-N\textsubscript{2}, O\textsubscript{2}-NO:

\[p \tau_{VT} = \frac{T \exp(166.3\ T^{-1/3} - 33.32)}{1 - \exp(-2240/T)} \]

O\textsubscript{2}-O, O\textsubscript{2}-N:

\[p \tau_{VT} = \frac{T \exp(36.87\ T^{-1/3} - 27.15)}{1 - \exp(-2240/T)} \]

NO-NO, NO-N\textsubscript{2}, NO-O\textsubscript{2}:

\[p \tau_{VT} = \frac{T \exp(33.20\ T^{-1/3} - 25.00)}{1 - \exp(-2700/T)} \]

NO-O, NO-N:

\[p \tau_{VT} = \frac{3.8 \times 10^{-12} T}{1 - \exp(-2700/T)} \]

V-V Relaxation Processes

\[AB(v) + CD(w - 1) \rightleftharpoons AB(v - 1) + CD(w) \]

Rates (units of cm3/sec):

N\textsubscript{2}-O\textsubscript{2}:

\[k_{10}^{01} = \exp(-124.0\ T^{-1/3} - 22.50) \]

N\textsubscript{2}-NO:

\[k_{10}^{01} = \exp(-86.35\ T^{-1/3} - 21.60) \]

O\textsubscript{2}-NO:

\[k_{10}^{01} = \exp(-62.46\ T^{-1/3} - 22.35) \]