REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork

1. AGENCY USE ONLY (Leave blank)
2. REPORT DATE
Final- 1 April 2000 - 31 March 2001

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
(DURIP 01) A Femtosecond Laser Source for the Study and Development of Organic Photonic Materials

5. FUNDING NUMBERS
F49620-00-1-0208

6. AUTHOR(S)
Professor Bernard Kippelen
Optical Science Center

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Arizona
1630 E. University Boulevard
Tucson, AZ 85722

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NL
801 North Randolph Street, Room 732
Arlington, VA 22203-1977

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

13. ABSTRACT (Maximum 200 words)
This report is to certify that we have acquired a Spectra Physics femtosecond Ti:Sapp laser source comprised of a pump source Millennia XSP that delivers 10W of optical power, and a Tsunami femtosecond laser (Model: 3960X1BB. S/N: 2019) with broadband optics (700 nm-1000 nm) and a birefringent filter to pump an OPAL for the amount if $154,000. The laser was installed at the end of August of 2000 and has been running properly since then. This acquisition was complemented with that of an anti-vibration optical table, a high voltage power supply, a spectrometer, a computer for data acquisition, a source meter, and various optical and optomechanical components with matching funds provided by the University of Arizona.

12b. DISTRIBUTION UNLIMITED

14. SUBJECT TERMS
Femtosecond, laser

15. NUMBER OF PAGES
1

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
Unclas

18. SECURITY CLASSIFICATION OF THIS PAGE
Unclas

19. SECURITY CLASSIFICATION OF ABSTRACT
Unclas

20. LIMITATION OF ABSTRACT

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
NOTICE OF TRANSMISSION
ALTDTC. THIS TECHNICAL REPORT
HAS BEEN REVIEWED
AND IS APPROVED FOR PUBLIC RELEASE
LAW AFFR 130-12. DISTRIBUITION IS UNLIMITED.

20010402 104
Final Performance Report for
Defense University Research Instrumentation Program (DURIP)
FY 2000

Air Force Office of Scientific Research
Grant # F49620-00-1-0208

A femtosecond laser source for the study and development of organic photonic materials

Principal Investigator: Prof. Bernard Kippelen
Optical Science Center, The University of Arizona
520 621-4341; Kippelen@u.Arizona.edu

This report is to certify that we have acquired a Spectra Physics femtosecond Ti:Sapp laser source comprised of a pump source Millennia XsP that delivers 10W of optical power, and a Tsunami femtosecond laser (Model: 3960X1BB, S/N: 2019) with broadband optics (700 nm-1000 nm) and a birefringent filter to pump an OPAL for the amount if $154,000. The laser was installed at the end of August of 2000 and has been running properly since then. This acquisition was complemented with that of an anti-vibration optical table, a high voltage power supply, a spectrometer, a computer for data acquisition, a source meter, and various optical and optomechanical components with matching funds provided by The University of Arizona.

The laser system is used to establish the foundations for an understanding of charge injection, charge transport, charge trapping, and light-emission in organic molecules and polymers and their applications in storage, displays, and imaging. We are currently developing photorefractive polymers with non-destructive read-out. In these materials, photoconduction is initiated by exciting the organic composites via two-photon states. Photon-gated photorefractive polymers with non-destructive read-out properties are used for image filtering using holographic time gating techniques. The laser system will also be used to investigate the optical gain properties in light-emitting organic molecules and polymers in order to advance the development of organic lasers. The study and characterization of the electronic levels participating in the light-emission process will be conducted through femtosecond pump-probe experiments combined with ultrafast photoconductivity experiments.