
U. S. N. A. – Trident Scholar project report; no. 273 (2000)

“NEURAL NETWORK CONTROL OF THE INTEGRATED POWER SYSTEM”

by

Midshipman Jonathan J. Cerrito, Class of 2000
United States Naval Academy

Annapolis, MD 21402

Certification of Advisor Approval

Assistant Professor Edwin L. Zivi
Department of Weapons and Systems Engineering

Lieutenant George D. Doney, USN
Department of Weapons and Systems Engineering

Acceptance of the Trident Scholar Committee

Professor Joyce E. Shade
Chair, Trident Scholar Committee

 USNA-1531-2

REPORT DOCUMENTATION PAGE

1. REPORT DATE
(DD-MM-YYYY)
07-05-2000

2. REPORT TYPE

USNA Trident
Scholar Project
Report

3. DATES COVERED (FROM - TO)
xx-xx-2000 to xx-xx-2000

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
Neural Network Control of the Integrated
Power System

Unclassified
5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Cerrito, Jonathan J. ;

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME AND
ADDRESS
U.S. Naval Academy

Annapolis , MD 21402

8. PERFORMING ORGANIZATION REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)9. SPONSORING/MONITORING AGENCY
NAME AND ADDRESS

,

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
A
PUBLIC RELEASE

,

13. SUPPLEMENTARY NOTES

Accepted by the U.S. Trident Scholar Committee

14. ABSTRACT
Neural networks are investigated for fault tolerant stabilization and control of an Integrated
Power System (IPS). Neural networks can be robust in the sense that they are not disabled by
incomplete or inconsistent information. As non- model based observers, neural networks are
ideally suited to estimation of complex, interactive power systems. Specifically, the ability of
neural networks to adapt to uncertain eventualities such as flooding, fire, and combat
casualties is investigated. The IPS under consideration will provide integrated propulsion and
ship?s service power generation and distribution for the next generation of U.S. Navy surface
ships also known as the DD-21. These solid state power systems involve nonlinear dynamics
which can lead to ?negative impedance? instability and voltage collapse. Feedforward back-
propagating neural networks were evaluated with respect to variable structure and data
degradation. This research represents an initial step toward unifying nonlinear, negative
impedance stabilization with robust neural network fault detection and isolation. The Naval
Sea Systems, Integrated Power System and the Office of Naval Research, Electrically
Reconfigurable Ship programs motivated this research.

15. SUBJECT TERMS
Neural Networks; Integrated Power System; Nonlinear Control Systems

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON

Fenster, Lynn
lfenster@dtic.mil

a. REPORT

Unclassifi
ed

b.
ABSTRACT

Unclassifie
d

c. THIS PAGE

Unclassifie
d

17.
LIMITATION
OF
ABSTRACT
Public
Release

18. NUMBER
OF PAGES
96

19b. TELEPHONE NUMBER
International Area Code

Area Code Telephone Number

703 737-9007
DSN 427-9007

1

Abstract

“Neural Network Control of an Integrated Power System”

Neural networks are investigated for fault tolerant stabilization and control of an Integrated
Power System (IPS). Neural networks can be robust in the sense that they are not disabled
by incomplete or inconsistent information. As non-model based observers, neural networks
are ideally suited to estimation of complex, interactive power systems. Specifically, the
ability of neural networks to adapt to uncertain eventualities such as flooding, fire, and
combat casualties is investigated. The IPS under consideration will provide integrated
propulsion and ship’s service power generation and distribution for the next generation of
U.S. Navy surface ships also known as the DD-21. These solid state power systems involve
nonlinear dynamics which can lead to “negative impedance” instability and voltage collapse.
Feedforward back-propagating neural networks were evaluated with respect to variable
structure and data degradation. This research represents an initial step toward unifying
nonlinear, negative impedance stabilization with robust neural network fault detection and
isolation. The Naval Sea Systems, Integrated Power System and the Office of Naval
Research, Electrically Reconfigurable Ship programs motivated this research.

Keywords

Neural Networks, Integrated Power System, Nonlinear Control Systems

2

Acknowledgments

LCDR Tim McCoy, IPS Technical Director, PMS 500, and LCDR Frank Novak, ONR 334,
provided significant insight and background concerning the automation of advanced
shipboard machinery. S.F. Glover, B.T. Kuhn, and S.D. Sudhoff of the Energy Systems
Analysis Consortium developed the IPS simulation under ONR sponsorship. Jack Copper of
NeuralWare provided no-cost access to the NeuralWorks Professional II/ Plus software.

3

Nomenclature

Backpropagation: a neural network learning characteristic in which the error is sent
 through the network from the output layer to the hidden layer(s) and then finally
 reaching the input layer.

Connection: the conduit supplying information from one neuron to the next neuron.

Epochs: the number of passes through a data file a neural network will make before
 updating the weights.

Fault Tolerance: ability of a system to continue to function when components of the
 system fail or are degraded.

Feedforward: a type of neural network in which the data is sent directly from the input
 to the respective hidden layers and then directly to the output layer.

Hyperbolic Tangent (TanH): a transfer function used to relate neuron input and output

 values in neural networks. It has an output range of –1 to 1.
I' -I'

I' -I'

()
T =

()
e e
e e

−
+

,

 where I’=I*Gain.

Input : data entered into the neural network; parameters measured from the system.

Layer: a grouping of neurons with the same transfer function and learning rule.

Learning: the process by which a neural network adjusts its weights to model a
 relationship between the input and output data.

Neuron: the most basic element of a neural network. The learning rule and transfer
 function are applied directly to this component.

Output: data that is either produced by the neural network or is desired by the system.

Processing Element: see Neuron.

Robustness: ability of the system to deal with large changes in measured quantities and
 evolving topology or architecture of the system.

Sensitivity: capacity of a control system to determine minimal changes in measured
 quantities within the system.

4

Testing: the evaluation of how well a neural network has learned by supplying the
 network with input data and allowing it to predict outputs. These predicted
 outputs are then compared with the desired outputs to determine the accuracy of
 the neural network.

Tractable: ability to be solved in simplified terms.

Training: see learning.

Variable Structure: changes in a system’s physical configuration.

Weights: factor applied to the connections between neurons in a network. It is determined
 through the learning process.

5

Table of Contents

ABSTRACT 1

KEYWORDS 1

ACKNOWLEDGMENTS 2

NOMENCLATURE 3

TABLE OF CONTENTS 5

1 INTRODUCTION 8

2 PRIOR WORK 9

2.1 INTEGRATED POWER SYSTEM 9
2.2 NEURAL NETWORKS 9
2.3 MODEL STRUCTURE 13
2.4 PRIOR RESEARCH 14

3 TECHNICAL APPROACH 17

4 PRELIMINARY INVESTIGATION 18

4.1 SIMULATION DESCRIPTION 18
4.2 TRANSITION FROM MATLAB TO NEURALWARE 19
4.3 NEURAL NETWORK DESIGN 20
4.4 TRAINING DATA 23
4.5 TESTING & RESULTS 23

5 INVESTIGATION OF IPS REFERENCE MODEL 26

5.1 DESCRIPTION OF THE INTEGRATED POWER SYSTEM SIMULATION 26
5.2 IPS SIMULATIONS 27
5.3 CONFIGURATIONS 29

5.3.1 INITIAL CONFIGURATION 29
5.3.2 RUN 1 CONFIGURATION 30
5.3.3 RUN 2 CONFIGURATION 31

6

5.3.4 RUN 3 CONFIGURATION 32
5.3.5 RUN 4 CONFIGURATION 33
5.3.6 RUN 5 CONFIGURATION 34
5.3.7 RUN 6 CONFIGURATION 35
5.3.8 RUN 7 CONFIGURATION 36
5.3.9 RUN 8 CONFIGURATION 37

6 VARIABLE STRUCTURE CONTROL OF IPS 38

6.1 38-1 VARIABLE STRUCTURE NEURAL NETWORK 38
6.2 36-2 VARIABLE STRUCTURE NEURAL NETWORK 41
6.3 40-20 VARIABLE STRUCTURE NEURAL NETWORK 44

7 FAULT TOLERANT CONTROL OF AN IPS 47

7.1 38-1 FAULT TOLERANT NEURAL NETWORK 47
7.2 40-20 FAULT TOLERANT NEURAL NETWORK 50

8 QUANTITATIVE ANALYSIS 53

8.1 CORRELATION 53
8.2 ACCURACY 53
8.3 RESULTS 54

9 SUMMARY 56

9.1 SYNOPSIS 56
9.2 CONCLUSIONS 56
9.3 RECOMMENDATIONS 56
9.4 CLOSURE 57

10 ENDNOTES 58

11 BIBLIOGRAPHY 60

12 APPENDICES 62

12.1 APPENDIX A – PRELIMINARY SIMULATION MATLAB CODE 62
12.2 APPENDIX B – IPS ACSL CODE 64
12.3 APPENDIX C – IPS ACSL SIMULATION COMMANDS 72
12.4 APPENDIX D – FILTER FOR DATA COMPATABILITY 82

7

12.5 APPENDIX E – FAULT DATA FILTER 83
12.6 APPENDIX F – 40-20 VARIABLE STRUCTURE NEURAL NETWORK: RUN 1 84
12.7 APPENDIX G – 40-20 VARIABLE STRUCTURE NEURAL NETWORK: RUN 5 88
12.8 APPENDIX H – 40-20 FAULTED NEURAL NETWORK: RUN 6 CORRUPTED DATA 92

8

1 Introduction

The effective management of electrical power will only increase in importance, as the
navigation, weapons, and propulsion systems aboard naval ships grow more complex in
nature. The need for efficient power management occurs during normal operations as well as
casualty conditions such as flooding, fire, or enemy attack. This requirement presents the
engineer with a unique challenge. The goal is to develop a system that is durable or robust
and yet precise. This system must be quick to respond to voltage collapse. However, it must
recognize routine changes in voltage as the ship carries on normal operations. Essentially,
the system must be able to “think.” Thanks to neural networks, a reasoning control system is
entirely possible. [1,2,3,4]

The Naval Sea Systems Command, Integrated Power System (IPS) and the Office of Naval
Research, Electrically Reconfigurable Ship (ERS) offer advanced power systems for
deployment of advanced weapons, propulsion, and navigation systems on the next generation
surface combatant. Because these systems often operate at constant power, they demand
continuous regulation to prevent negative impedance instability.

Traditional control systems cannot perform these tasks due to the time constraints and the
complexity of the control laws involved in managing the power system. Fortunately, neural
networks can predict the states of the system faster than models can determine the states
analytically. The complexity of the control laws demands a controller that has the flexibility
and adaptability to manage a constantly changing environment. Neural networks possess this
characteristic of robustness.

Neural networks will provide an IPS controller with the necessary robustness and speed.
Their application to this advanced power grid will not only enable the use of state-of-the-art
solid state components, but will assure the flexibility and survivability of a ship which must
endure the harshest of all conditions, combat. [5]

This research explores the application of a neural network as a non-model based estimator of
a shipboard power system. This power system must have the ability to continue to operate in
all conditions including combat. In order to meet this demand, a controller for this power
system must contend with multiple power plant configurations and corrupted data.
This investigation strives to resolve these issues through the design of neural networks.
These networks are trained, tested, and evaluated on data that is derived from a reference
model of the shipboard power system. The objective of this work is to provide a nonlinear,
robust neural network as an alternative to traditional, linear controllers for the Integrated
Power System.

9

2 Prior Work

2.1 Integrated Power System

The Secretary of the Navy has designated the next generation surface combatant, DD-21, as
an Integrated Power System ship. The IPS is the next stage in an engineering design process
that began in the 1970's with aero-derivative gas turbines. These were the first turbines in the
Navy that demanded automated control. During the 1980's, the Navy procured the DDG-51
which featured Tactical Digital Standards (TADSTANDS) including Navy Standard
Electronic Modules (SEMS) and the AN/USQ-82 Data Multiplexing System (DMS). Then,
at the beginning of the 1990’s, the Navy upgraded to a system based primarily on
commercial standards with the Standard Monitoring and Control System (SMCS). SMCS
included IEEE Futurebus+ computer backplane, IEEE Ethernet and ANSI Fiber Distributed
Data Interface (FDDI) networks, and C software. Key goals for the DD-21 include a 70%
crew size reduction and the ability to “fight thru” combat damage. [5]

To achieve these DD-21 goals, the Navy must develop an innovative control system. This
control system must be robust, dynamic, survivable, and stable. Robustness involves the
ability of the system to deal with large changes in measured quantities and evolving topology
or architecture of the system. By comparison, sensitivity is the capacity by which a control
system can determine small changes in measured quantities within the system. The control
system must be dynamic, which is to say that it can change with time. It cannot be inflexible
and unable to adapt to new conditions including the addition of new hardware and the loss of
sensors. A key aspect of the neural network is its ability to distinguish between casualties
and faulty data. Finally, stability or the ability to maintain a desired level of performance is a
major concern in any control system.

2.2 Neural Networks

Simon Haykin states [6] “a neural network is a massively parallel distributed processor that
has a natural propensity for storing experiential knowledge and making it available for use.”
Essentially, it is an attempt by mathematicians to model the biological process that the brain
conducts in order for humans to think.

The processing element of a neural network is equivalent to the human brain’s neurons.
Mathematicians have modeled the neuron through this equation:

1

)
N

i i
i

y w x bϕ
=

= (−∑ (2.1)

where x is the input, w is the weight, b is bias, and ϕ is the transfer function, and y is the
output of the neuron. The processing element (PE) or neuron accepts inputs from either other

10

neurons or directly from the input source. The input is processed by multiplying the weight
and the input less the bias and summed over a series of N iterations. The transfer function
then transforms this sum into an output. Other neurons may then accept this output as an
input via connection weights that represent the strength of the connection within the network.

In this research, linear transfer functions were employed for the input and output layers while
hyperbolic tangent functions were used for the hidden layers. Linear transfer functions
described algebraic relationships among the inputs and outputs. The hidden layers were
composed of hyperbolic tangent functions, which are commonly used for nonlinear
applications. The middle layers are called hidden because they do not receive nor transmit
input or output data.

Narendra and Parthasarathy [7] present an excellent discussion of the two fundamental
theorems that support the mathematics behind neural networks. These theorems are the
Weierstrass Theorem and the Stone-Weierstrass Theorem. The Weierstrass Theorem states
that if C([a,b]) is a space of continuous real valued functions on the interval [,]a b with the
norm of f C([a,b]) ∈ defined by sup{ () : [,]}f f t t a b= ∈ , then any functions in C([a,b]) can
be approximated arbitrarily closely by a polynomial. This Weierstrass Theorem and its
generalization to multiple dimensions are useful in approximating continuous functions

: n mf →¡ ¡ using polynomials. The Weierstrass Theorem is essentially the basis for pattern
recognition. In addition, the Stone-Weierstrass Theorem is a generalization of the
Weierstrass Theorem by Stone. This theorem states that [7]:

if β is a compact metric space and ρ is a subalgebra of C(,)β ¡ which contains the
constant functions and separates points of β , then ρ is dense in C(,)β ¡ .

The Stone-Weierstrass Theorem provides the basis for approximating bounded, continuous,
time- invariant causal operators. This result forms the foundation for the neural network
approximation of dynamic systems.

After the neural network has been constructed, the network must undergo a learning cycle in
order to become productive. Learning is the process of modifying the weights to coincide
with the correct output and input data. There are two significant types of learning,
supervised and unsupervised. Supervised learning occurs when both input and output data
are given to the network. Unsupervised learning entails only giving the neural network input
data and letting the network determine the output on its own. This project will exclusively
focus on supervised learning. Networks can also be referred to as hetero-associative or auto-
associative. Hetero-associative networks are trained on data that have outputs that are
different from the inputs. Auto-associative networks are trained on data in which both the
input and output sets are identical. [8,9,10]

A learning rule typically governs the adjustment of the neurons. This project applies
backpropagation methods via the Extended-Delta-Bar-Delta (EDBD) Learning Rule.

11

Backpropagation learning procedures assume that all weights are in error when an incorrect
output is received. Consequently, the error is sent back through each layer while modifying
the weights in each connection until the error reaches the input layer and the modification of
weights ceases. The EDBD algorithm assigns a time-varying momentum rate, [k]µ , and a
time-varying learning rate, [k]α , to each connection in the network (k is time) in order to
train the network and limit the error between predicted output and desired output. The
variable learning rate and variable momentum rate yield:

[k 1] [k]* [k] [k]* [k] w wα δ µ∆ + = + ∆ (2.2)

and

 [k 1] [k] [k 1]w w w+ = + ∆ + (2.3)

where w[k] and w∆ [k] are the connection weight and the connection delta weight
respectively and time, k. [k]δ is the gradient component of the weight change at time k.

[k]

[k]
[k]

E

w
δ

∂
=

∂
 (2.4)

where E[k] is the value of the error at time k. In order to provide greater increases in areas of
lesser slope than in areas of higher gradients, [k]δ is a weighted, exponential average of the
previous gradient components at time k:

 [k] 1 [k] [k+1]δ θδ θδ= − + (2.5)

where θ is the convex weighting factor. Constants necessary to complete the EDBD
algorithm are listed below:

ακ constant learning rate scale factor

µκ constant momentum rate scale factor

αγ constant learning rate exponential factor

µγ constant momentum rate exponential factor

αϕ constant learning rate decrement factor

µϕ constant momentum rate decrement factor

maxα upper bound on the learning rate

maxµ upper bound on the momentum rate

The learning rate change, [k]α∆ , for EDBD is:

12

()[k] ,if [k-1] [k] 0

[k] [k],if [k-1] [k] 0

0,otherwise

αγ δ
α

α

κ δ δ

α ϕ α δ δ

− >

∆ = − <







 (2.6)

The momentum rate change, [k]µ∆ , is:

()[k] ,if [k-1] [k] 0

[k] [k],if [k-1] [k] 0

0,otherwise

µγ δ
µ

µ

κ δ δ

µ ϕ µ δ δ

− >

∆ = − <







 (2.7)

The learning rate and momentum rate are adjusted based upon the results from equations
(2.6) and (2.7). In addition, [k-1] [k]δ δ determines whether the modification will be an
increase or decrease. Finally, the conditions, [] maxkα α≤ and max[k]µ µ≤ , are imposed on this
algorithm to limit excessive oscillations. These values are selected through trial and error to
allow for accelerated convergence while preventing instability.

A neural network must complete training, recall, and evaluation stages of development in
order to perform accurately. In the recall phase of development, the network is presented
with an input and then is expected to produce the output. In feedforward neural networks,
the information is passed in a direct manner from the input layer to the hidden layer or layers
and finally to the output layer. Lastly, the network’s output should be compared to the
desired output in order to evaluate the validity of the training. If the network’s error cannot
be attributed to intrinsic noise, then more training is required. The completion of the training
cycle can be determined both graphically and computationally. As the neural network
continues to learn, its ability to match training set data will improve until the network begins
to overfit the data. Memorization is evident on a plot when the neural network output
matches stochastic data points rather than the underlying relationship. Numerically, the
network is learning as long as the correlation is increasing for the independent test set and
decreasing for the training set. When the correlation starts to decrease for the independent
training set and increase for the training set, then the neural network is memorizing.
Independent test data evaluates the network’s ability to gene ralize. It is crucial during the
recall phase to present the neural network with data that it has not previously processed in its
training cycle in order to evaluate its performance on conditions to which it has not
previously been exposed.

Neural networks are ideal for nonlinear robust controls because they possess two attributes.
The first is pattern recognition. Neural networks can determine a relationship without the
need of a first principle explanation to relate all of the variables. Essentially, neural networks
apply the principle of induction while traditional controls fashion their relationships through
the principle of deduction. Secondly, fault tolerance is an extraordinary characteristic of

13

neural networks. Traditional controllers fail when parts of their system are destroyed or
disabled. If various components of a neural network including the sensors are destroyed or
disabled, the network will continue to function. Although the network’s performance will
degrade as more faulted information is presented, it will not immediately fail, as most
traditional controllers are prone to do. Consequently, neural networks are very applicable
and practical control tools that have unexplored potential.

2.3 Model Structure

The Integrated Power System and proposed neural network based controller are distributed
throughout the ship. These system components are modeled as distinct, interconnected,
lumped parameter subsystems. The lumped parameter assumption models distributed
elements using a finite number of ordinary differential equations. This formulation results in
a coupled system of nonlinear, time varying differential equations. Depending on the
complexity of the mathematical relationships, and the number of variables in the system, the
representation of system state can become very involved and difficult to solve. The
following four categories of state equations range from general, difficult to solve
formulations to simplified linear models with straightforward solutions:

C Implicit, Non- linear, Time-Varying:

 f((t), (t), (t),t) = 0x x u& (2.8)

C Explicit, Non- linear, Time Varying:

 (t)=f((t), (t),t)x x u& (2.9)

C Explicit, Linear, Time Varying:

 (t)= (t) (t)+ (t) (t)x A x B u& (2.10)

C Explicit, Linear, Time Invariant:

 (t)= (t)+ (t)x Ax Bu& (2.11)

In a lumped system, the system can be described by a finite number of state variables using
one of the equations in (2.8) through (2.11). The model of the system depends upon state
space equations plus an output equation of the form:

 = +y Cx Du (2.12)

14

where u is the input vector, x is the state variable vector, and y is the output vector.
The C and D matrices map the state and input vectors to the output vector.

In nonlinear control theory, researchers have made certain assumptions in order to make
nonlinear systems tractable or to simplify the system from a state equation such as the one
presented in equation (2.8) to an equation like the one presented in (2.11). In equation (2.8),
the relationships between the system state, x(t), the derivatives of the system state, ()tx& , and
the exogenous input, u(t), are implicit, nonlinear, and time varying. Equation (2.9) describes
an explicit formulation for ()tx& obtained through separation of algebraic and differential
portions of equations. The Integrated Power System Simulation, employed in this study, uses
the equation (2.9) formulation. This model is a variable structure, in the sense that the
system configuration changes with time. Equation (2.10) represents a state space model in
terms of matrices A(t) and B(t) which are linear, but time varying. Equation (2.11)
represents the simplest of state space models, an explicit, linear, time invariant system. For
convenience, the preliminary investigation was performed using a simplified electric circuit
in the form of equations (2.10) and (2.11).

The attraction to simplify an implicit, nonlinear, time varying system to an explicit, linear,
time invariant (LTI) system arises from the standard procedures common only to linear
systems for determining controllability, observability, and stability. Although these
assumptions were successful in solving some nonlinear systems, they cannot be applied to all
instances because of the complexity and unpredictability of nonlinear problems. However, a
neural network can and has been applied to explicit, nonlinear, time varying systems or those
similar to equation (2.9) and been successful. [7]

2.4 Prior Research

Work in applying neural networks in practical control systems has been ongoing for many
years. In 1990, Roger Barron et al. presented a paper [11] at the National Aerospace
Electronics Conference. The foci of this paper are Fault, Detection, Isolation, and Estimation
(FDIE) functions and Reconfigurable Flight Control. FDIE functions are challenged by the
inability to maintain complete observability during a multitude of casualty situations in an
aircraft. This large number of casualty situations presents many potential operational fault
conditions. In addition, the control issues involved in casualty cases are high order, time-
varying and nonlinear. The control processes have multiple variables and cannot be fully
observed. Finally, there are undefined aero- inertial parameters and undefined
aeroservoelastic characteristics especially in aircraft which are damaged. A controller
designed to handle these issues must be able to adapt to real time conditions and learn to deal
with unforeseen conditions.

Reconfigurable Flight Control demands adherence to four principles of reconfigurable
control law. First, estimated effector sensitivities should be used to adjust control law gains

15

via an explicit pseudo- inverse calculation. Secondly, estimated effector sensitivities should
be used to adjust control law gains via an implicit or neural network calculation. Third, fixed
and implicit (polynomial neural network) calculations should be used to infer control law
gains independently of estimated effector sensitivities. Finally, implicit, on-line adaptive
(polynomial neural network) calculations should be used to command the control effectors.
Barron et al. derived the Algorithm for Synthesis of Polynomial Networks – II (ASPN-II) for
feedforward polynomial neural network in a supervised, offline environment. These
networks are composed of a linear combination of polynomial transfer functions. An implicit
model of data containing a maximum of 200 input and output pairs was used to train the
neural network online. Barron et al. concluded that polynomial neural networks are potential
solutions to FDIE problems in reconfigurable flight systems since they responded by scoring
a 94.4% probability of detecting and correctly isolating effector impairments exceeding 50%
missing. [11]

Roger Barron and Eugene Parker wrote a white paper [4] in 1993 concerning the
applicability of neural networks to smart shipboard systems. Barron and Parker address
prediction, FDIE, and reconfiguration using neural networks in smart shipboard systems.
Barron et al. compare neural network controllers to expert system controllers. Hard
thresholds do not limit neural networks in making decisions. Neural networks can reduce the
number of rules inherent in expert systems. Neural networks utilize all pertinent observable
data including parameter that may be unfamiliar to humans. Neural networks can also
receive data from various sources and organize it into a coherent control strategy. Neural
networks are faster than expert systems in gathering input data. Neural networks can also
predict future states of instability and recognize potential casualties.

Barron et al. continue in their discussion to address fault detection and isolation (FDI) in
Shipboard Electric Power Distribution Systems. Barron’s polynomial neural network was
used to control an SPD Technologies solid-state circuit breaker that can open high-current
power circuits within a few microseconds. This circuit breaker was able to protect power
system components when certain fault classes instigated ten ampere/second current growth
rates. In this application, a polynomial neural network relying on its pattern recognition
capability dramatically improved fault detection and identification. This system has been
experimentally validated for three-phase AC power protection under normal, bolted-fault,
and arcing-fault conditions. [4]

In 1995, Guglielmi et al. applied [3] neural networks to solving real fault detection and
diagnostic problems in four heaters of a feedwater high-pressure line of a 320 MW power
plant. Their results show that neural networks can function in such an environment. The
neural networks used by Guglielmi et al. in this investigation were able to adequately
diagnose the system with respect to steady-state operation. Additionally, in transient modes
of operation, one of their neural network designs performed very well in detecting and
diagnosing faults.

16

Liu, Su, Tsay, and Wang [1] investigated the application of measuring phasors in order to
predict better real- time transient stability swings. They used specific Phasor Measurement
Units (PMUs) to find the phasor measurements throughout the system. Liu et al. showed that
neural networks can predict the behavior of a system faster than the behavior can be
computed analytically. Since they used an eight cycle window of phasor measurements, the
neural network was able to select the most pertinent data from an overdetermined set. They
used a combination of Supervised Decision Directed Learning and Backpropagation to train
their network. Liu et al. also used counterexamples of data to prevent the neural network
from “memorizing” the relationships evident within the system.

17

3 Technical Approach

The advanced Integration Power System is essential to the design of DD-21, the next
generation surface combatant. Without this power system, the ship will not be able to
employ the most sophisticated and state-of-the-art weapons, navigation, and propulsion
systems. These advanced systems and their solid-state components demonstrate non- linear
behavior with respect to power consumption. At the moment, no control system can
effectively manage these components as well as complete the necessary tasks in the event of
a casualty. It is the objective of this project to develop a control system through the
employment of feed-forward back propagating neural networks that will not only manage the
advanced Integrated Power System, but also be ready to contend with the unexpected
casualty.

There are two fundamental issues that a controller must address in order to operate
proficiently within the IPS environment. The first of these issues is the variable structure of
the power system. As the ship conducts operations, the configuration of the electrical system
and the electrical system’s loads will change. This dynamic environment presents a unique
challenge to a controller since there are multiple scenarios that it must consider. The second
fundamental issue is the fault tolerance of the controller. The controller must be able to
contend with both a complete sensor failure due to a casualty and degradation in the sensor
data. A competent controller will be able to cope with these two fundamental issues inherent
to the Integrated Power System.

18

4 Preliminary Investigation

4.1 Simulation Description

As an important first step toward the ultimate goal of controlling an Integrated Power
System, preliminary research was conducted on the simple circuit presented in figure 4-1.

Capacitator
(1x 10 -3 Farad)

Inductor
(1 Henry)

Resistor 2
(10 Ohms)

Resistor 1
(10 Ohms)

 E_a
(10 Volts)

i2 i3

 i1 e1

e2

Figure 4-1 Simple Circuit

This simple circuit represents a second order initial value problem formulated in the state
space equation (4.1). This circuit includes two resistors, a capacitor, an inductor, and a power
source.

 1 1 1 1 11 1

3 32

1 1

1 1 1

1
0

a

R C C R Ce ed
E

i iRdt
L L

− −   
         = +   −      
   
   

 (4.1)

19

1

3
1

2
11 3

2

21

11

0 0

0 0

1

0

1
0

a

a

a
a a

a a

a

E

e E

i
eE

E Ei
RR i

e
E E Ri

E
RR

   
   
   
   

     
          −  −  = +               
  −    

   
   −
   

     

 (4.2)

After developing the state-space equations necessary for this circuit, a MATLAB simulation
was used to determine the values of three currents and two voltages. To allow the neural
network to estimate derivatives, each input record contained the current data augmented with
shifted data. Effectively, each input record contained present data and one time step previous
data. This 1z − time shift operation was performed in MATLAB:

 1[]aug z−=Y Y YM (4.3)
or equivalently:

 () [() ()]augy n y n y n k= +M (4.4)

Equations (4.3) and (4.4) can be interpreted as augmenting the system response time series
with the system response time series shifted by t∆ .

MATLAB was used to generate the preliminary simulation results and to augment the results
with time shifted data. The MATLAB step command was used to determine the unit step
response given equations (4.1), (4.2), and initial conditions of zero. To generalize the results,
the MATLAB lsim command was used to determine the response given arbitrary initial
conditions. The generalized, lsim based, simulation script and the MATLAB script to
augment the simulation time series are enclosed in Appendix A.

4.2 Transition from MATLAB to NeuralWare

Although the initial neural network research was conduc ted using the MATLAB Neural
Network Toolbox, it was necessary to change neural network environments in order to
develop a more refined and flexible neural network.

20
MATLAB’s Neural Network Toolbox is limited in its ability to construct neural networks for
this project:

§ Absence of visualization capabilities
§ Inability to connect and disconnect specific weights within the neural network
§ Primitive mechanism for specifying the structure of the neural network

Due to these limitations in MATLAB’s Neural Network Toolbox, it became necessary to
adopt the NeuralWare Professional II/Plus software.

NeuralWare is a more flexible program since it does allow for a connection between
individual neurons in the input layer and individual neurons in the hidden layer. This
attribute of NeuralWare greatly enhanced the capability of the neural network. NeuralWare
also allows for the adjustment of each neuron’s transfer function and learning rule. Thus, the
ease with which one may operate NeuralWare as well as the visual representation available in
NeuralWare make it a superior tool for developing neural networks when compared to
MATLAB.

4.3 Neural Network Design

The neural network for this preliminary investigation is a feedforward backpropagating
neural network. Figure 4-2 presents the overall architecture of the neural network. It has
seven total layers: one input layer, one output layer, and five hidden layers. The input layer
has ten processing elements or neurons in order to accept the five selected parameters of 1i ,

2i , 3i , 1e and 2e and the five time-shifted parameters of 1i , 2i , 3i , 1e and 2e . These ten
processing elements used a linear transfer function and did not apply a learning rule. A
learning rule was not necessary for these neurons since their input did not pass through a
previous neuron. In other words, the data came directly from the sensors.

The input layer neurons were then connected via weighted connections to the five hidden
layers that applied the hyperbolic tangent transfer function and the EDBD learning rule. All
input neurons, except the neurons that contained the data to be estimated, were connected to
the hidden layers. This configuration was chosen to prohibit memorization and force the
neural network to learn the relationship between the other eight parameters. Each hidden
layer contained three processing elements. Thus, the hidden layer responsible for estimating

1i did not receive input from 1i .

The three hidden layer neurons were then connected directly to the output layer neuron that
was responsible for producing the parameter absent from the hidden layer. The output layer
connections also used a linear transfer function and the EDBD learning rule. There were also
connections that bypassed the hidden layer and directly connected input neurons to the
appropriate output neurons. Finally, a bias was connected to the hidden layer and output
neurons.

21
Since neural networks have no intrinsic ability to model dynamic systems, it was necessary
to augment the input with time-shifted data. These time-shifted data provided the neural
network with a way to estimate derivatives using finite differences. Entering the time-shifted
data is necessary because the neural network is “memoryless”. Better results could have been
obtained by explicitly providing the neural network derivatives. Time shifted data was
preferred over finite differences due to ease of implementation in real world scenarios.

22

Figure 4-2 Preliminary Neural Network Architecture

23

4.4 Training Data

The neural network was trained on three data sets. Initial training was conducted on
sequential, individual data sets that had completely accurate data. This training method did
not sufficiently train the neural network because it over emphasized the most recent training
set. To alleviate this problem, a single set of training data was constructed from individual
simulation results. This operation was performed by concatenating the individual training
sets into a single, aggregated training set. This change in training methods allowed the
neural network to weigh all training data equally. The neural network is unaware of the
sequential nature of the data. It randomly accesses the individual observations and each
observation represents a strobe of system state at a particular instant of time.

To achieve a fault tolerant neural network, the training set was modified to include sample
sensor faults. The sample faults included random variations and “drop outs.” Random
variations of 10%± were imposed to simulate sensors that were degraded or out of
calibration. “Drop outs” are a complete loss of signal, representing a loss of sensing
capability due to sensor failure of battle damage. In essence, this procedure trained the
neural network to be robust with respect to degraded sensor data. The quantity of faulty data
was limited to approximately 15% to minimize the adverse effects on network performance
metrics. During training, minimum summed squared error and other performance metrics
guide the neural network to the generalized solution. Increasing the proportion of faulty data
would drive the generalized solution to represent fault conditions rather than normal
conditions.

The amount of faulted data in comparison to the accurate data was also a concern during
training. The percentage of faulted data should not be greater than the percentage of accurate
data. In reality, the percentage of faulted data should be between 10% and 30%. The
accurate data should also not be derived from the same initial conditions. The neural
network’s accuracy was greatly enhanced when varying initial conditions were used to
produce accurate training data.

At this point, the neural network was able to reproduce the transient response but was not a
good predictor of initial conditions. This poor performance is attributable to the fact that
initial conditions represented only one out of 250 observations. To achieve a balanced
weighting of initial and transient response, the proportion of observations that represents
initial, steady state data was increased. This balancing was performed by extruding the initial
conditions in time. This extrusion repeated steady state conditions over an initial period of
time to increase the weight associated with initial conditions.

4.5 Testing & Results

After training the neural network, it was necessary to evaluate its performance.

24
The testing of the data was carried out by producing three sets of original test data. The
neural network was not exposed to this data at any point in its training cycle. By keeping the
test data separate from training data, the neural network was not given the opportunity to
recite memorized data. Instead, this separation allowed for the critical evaluation of the
relationship that the neural network had established to model the system. Thus, the test set
was completely foreign to the neural network and provided an accurate measurement of the
neural network’s performance.

The neural network’s best performance was produced after having trained for 10,000 epochs
on a combined data set of 10,500 points including varying initial conditions, data drop outs,
and ten percent error data. One epoch represents a single pass through the training data set.
As shown below, the results of testing that included missing data were very good.

Figure 4-3 Preliminary Neural Network Response to Missing Data

In this plot, the parameter, e1 and e1’s time shifted data were replaced with all zeros to
simulate a sensor failure. In this scenario, the network was able to compensate accurately for
the lack of e1 data with respect to predicting e1. However, since the e1 data have a strong
relationship to e2, the neural network was not able to predict e2 exactly. The zero columns
of e1 and e2 have a much more dramatic effect on the other parameters in this neural network
since there are only 10 total parameters. Having considered this effect, the results shown in
this plot are even more impressive.

Comparatively, when the network was tested on data that had a ten percent input error, the
neural network performed well again. In Figure 4-3, one can see that every 40 data points,
there is a slight shift in the network’s prediction. Due to the alternating between parameters
of the missing data, the network is able to maintain accurate predictions and handle a sensor

25
fault in any parameter. Additional sensors would further mitigate the adverse effect of a loss
of sensors.

Figure 4-4 Preliminary Neural Network Response to Degraded Data

These positive results paved the way for investigation of the Integrated Power System.

26

5 Investigation of IPS Reference Model

5.1 Description of the Integrated Power System Simulation

The Integrated Power System DC Zonal Electrical Distribution System or IPS DC ZEDS is a
vital component of the DD-21, next generation surface combatant project. This power
system provides the necessary power generation, distribution, and conditioning to support the
advanced weapons, navigation, and operating systems required by the mandates for DD-21.

The IPS simulation used in this project is a subset of the ent ire IPS system. It is complete in
the sense that it models the necessary components, connections, and architecture that are
present in the total system. S. F. Glover, B. T. Kuhn, and S. D. Sudhoff of Purdue University
developed this IPS simulation under Office of Naval Research funding. [12]

The Naval Sea System Integrated Power System (IPS) and Office of Naval Research
Electrically Reconfigurable Ship (ERS) provide advanced power distribution systems that
can reroute power around damage and maintain power continuity to vital loads.

As shown in Figure 5-1, these solid state power electronic modules include [12]:

• Power generation module composed of a Prime Mover (PM), Synchronous Machine
(SM), and voltage regulator

• Power Conversion Modules (PCMs)
• Ships Service Converter Modules (SSCMs)
• Propulsion Motor Module (PMM).

All of these components are interconnected for improved flexibility and survivability.

A 19 mega-Watt synchronous generator powers the IPS reference model. This 4160 Volt AC
Bus 1 distributes power to propulsion and redundant ships service supply busses. Electric
propulsion power is converted to mechanical power via a 19 mega-Watt induction motor and
drive system. Simultaneously, the Ship Service Power Supply (SSPS) converts AC Bus 1
power to 1100V DC for port and starboard distribution. Port and starboard Ship Service
Converter Modules (SSCMs) convert the 1100V distribution power to DC to 900V and 860V
DC. Auctioneering diodes draw power from whichever bus has the highest voltage potential.
This feature allows bumpless transfer from the primary to the secondary supply bus. AC
loads are served via Ship Service Converter Modules (SSCMs), producing 440V AC power.
Finally, large DC loads are directly connected to the port and starboard DC busses via
auctioneering diodes.

Glover et al. modeled this system through the use of the Advanced Continuous Simulation
Language (ACSL). It is a computer simulation that accurately represents the behavior of the
system. First, system components were modeled through a series of differential equations.
These equations were then combined to produce a mathematical model of the system.
Glover et al. then wrote a computer simulation program in the ACSL language based on this
mathematical model. [12]

27

Figure 5-1 IPS Reference Model

5.2 IPS Simulations

The Integrated Power System reference model, developed by the Energy Systems Analysis
Consortium (ESAC) was modified for this investigation [13]. All AC three phase voltages
and currents were converted to RMS magnitudes. Run time scripts were composed to
configure the system in eight distinct operating alignments. Once steady state operation was
achieved, each run consisted of a single transient event. This single event was the activation
of the induction motor attached to DC Buses 3 and 4 (commonly referred to as the “motor”).
These runs of different configurations lasted 10 seconds and had a sample rate of 100 Hz.
A total of eight runs were completed and logged. The initial settings for each run included
energizing the Exciter/Voltage Regulator, the Prime Mover, the Synchronous Machine, AC
Bus 1, and the AC to DC Converter, while connecting DC Bus 1 to DC Bus 3 and DC Bus 2
to DC Bus 4. The Propulsion Drive remained off. These two components were disconnected
because their reaction to change in the power system was at least an order of magnitude
slower. Consequently, their behavior would have minimal effect on the first 10 seconds of
the motor start. While each run deviated from these initial settings in its configuration, the

28
same twenty parameters were observed during each run. The following table names these
parameters and briefly describes them:

Table 5-1 IPS ACSL Simulation Variable Names
Voltages Description Currents Description

vmagb1 AC Bus 1 Voltage imagserv Ships Service Load Current

vmagb3 AC Bus 3 Voltage imagb3 AC Bus 3 Current
Vbus1 DC Bus 1 Voltage ibus1 DC Bus 1 Current
Vbus2 DC Bus 2 Voltage ibus2 DC Bus 2 Current
Vbus3 DC Bus 3 Voltage ibus3 DC Bus 3 Current
Vbus4 DC Bus 4 Voltage ibus4 DC Bus 4 Current

voutsscm3b Voltage from DC Bus 3 to Diode Bridge ibus1load DC Bus 1 Load Current
voutsscm4b Voltage from DC Bus 4 to Diode Bridge ibus2load DC Bus 2 Load Current

Vdc34b Voltage out of Auctioneering Diodes ioutsscm3b
Current from Bus 3 to Diode

Bridge

ioutsscm4b

Current from Bus 4 to Diode
Bridge

 idc34b
Current out of Auctioneering

Diodes

29

5.3 Configurations

This section deals exclusively with the configurations used to train and test the neural
networks. Quantitative and qualitative results are presented in subsequent chapters.

5.3.1 Initial Configuration
Prior to commencing any simulations, all power components were disconnected. However,
the DC Buses remained connected. Then, before every run, each component was energized
from this initial configuration.

Figure 5-2 Initial Configuration

30

5.3.2 Run 1 Configuration
Run 1’s configuration included an energized DC Bus 1 and DC Bus 3 with an active DC load
on DC Bus 3. DC Buses 2 and 4 were disconnected.

Figure 5-3 Run 1 Configuration

31

5.3.3 Run 2 Configuration
In the configuration for run 2, DC Buses 1 and 3 were disconnected while DC Buses 2 and 4
remained active with a resistive DC load on DC Bus 4.

Figure 5-4 Run 2 Configuration

32

5.3.4 Run 3 Configuration
Run 3 was similar to Run 2, but it added the Ships Service Inverter Module to DC Bus 2 that
energized AC Bus 3.

Figure 5-5 Run 3 Configuration

33

5.3.5 Run 4 Configuration
Run 4 built on the Run 3 configuration by adding DC Bus 1 to the Ships Service Inverter
Module. However, DC Bus 4 remained connected.

Figure 5-6 Run 4 Configuration

34

5.3.6 Run 5 Configuration
The configuration for Run 5 included energizing DC Buses 1, 2, 3, and 4. AC Bus 3 was
also energized and connected to both DC Buses 1 and 2. However, DC Bus 3 was not
connected to the motor.

Figure 5-7 Run 5 Configuration

35

5.3.7 Run 6 Configuration
All of the DC Buses and AC Bus 3 were energized and connected. Run 6 is the complete
power system operating.

Figure 5-8 Run 6 Configuration

36

5.3.8 Run 7 Configuration
DC Bus 4 was disconnected from DC Bus 2 for Run 7. However, the rest of the system
remained connected and energized.

Figure 5-9 Run 7 Configuration

37

5.3.9 Run 8 Configuration
In this final run, DC Buses 2 and 4 were disconnected while DC Buses 1 and 3 remained
energized. AC Bus 3 was still connected to DC Bus 1.

Figure 5-10 Run 8 Configuration

The IPS Simulation Code and the command file to exercise the simulation are found in
Appendices B and C, respectively.

38

6 Variable Structure Control of IPS

It is necessary for the IPS controller to contend with a varying physical structure within the
power system. An adept controller will have to adapt to such modifications in the power
system with ease. During this investigation, three different neural network architectures were
evaluated. At first, these networks were trained on millions of passes. Testing on
independent data indicated the neural network’s tendency to memorize the data instead of
generalizing. When this memorization occurred, the performance of the neural network
rapidly diminished. Consequently, the training of these variable structure networks was
repeated using a reduced number of passes. This training strategy limited the memorization
of the data by the neural networks and increased their robustness. The following sections
present each neural network and provide graphical results. Quantitative and summary results
are reported after discussion of individual neural network structures and results.

6.1 38-1 Variable Structure Neural Network

As shown in Figure 6-1, the 38-1 neural network has a 38 neuron input layer, a ten neuron
hidden layer, and a single neuron output layer. The hidden layer uses a hyperbolic tangent
transfer function. The network was trained using the Extended Delta-Bar-Delta (EDBD)
learning rule. The 38 neuron input layer accepted data from 19 of the 20 parameters and
their time-shifted equivalents. The auctioneering diode output, idc34b, is the current
supplied to the motor during the start sequence. This network trained for 10,000 passes on
runs 2, 3, 4, 6, 7, and 8. It was then tested on runs 1 (Figure 6-2) and 5 (Figure 6-3) without
ever having trained on such configurations. Given the difficulty of modeling variable
structure systems, the results exceed our expectations. Both runs very closely approximate
the expected values, testifying to the robustness of the neural network.

39

Figure 6-1 Neural Network with 38-1 Architecture

40

Figure 6-2 Run 1 Current Prediction with 38-1 Architecture

Figure 6-3 Run 5 Current Prediction with 38-1 Architecture

41

6.2 36-2 Variable Structure Neural Network

The 36-2 neural network, discussed in this section and illustrated in Figure 6-4, represents the
next logical progression in predictive capability. This network uses all inputs except vdc34b
and idc34b to predict both vdc34b and idc34b. As before, auctioneering diode output, idc34b
and vdc34 represent the current and voltage supplied to the motor during the start sequence.
The 36-2 nomenclature indicates 18 inputs plus 18 time shifted inputs and two outputs. The
hyperbolic tangent transfer function was retained for hidden layers and once again, EDBD
was the learning rule.

The 36-2 neural network was tested on runs 1 and 5 after having trained for 7,500 passes
exclusively on runs 2, 3, 4, 6, 7, and 8. This network was not expected to provide accurate
estimates for configurations that it had not seen during training. Nevertheless, Figures 6-5
and 6-6 indicate motor startup current predictions that are almost as good as the 38-1 case.
The small offsets between actual and predicted results are due to the variable structure of the
system. This observation is strengthened by examining the voltage predictions. Note that the
predicted voltage for test scenarios 1 and 5 are identical, indicating that the neural network is
unaware of the change in system configuration. The 36-2 network again demonstrated the
robustness of neural networks in estimating idc34b and vdc34b effectively with minimal
input information.

42

Figure 6-4 Neural Network with 36-2 Architecture

43

Figure 6-5 Run 1 Current Prediction with 36-2 Structure

Figure 6-6 Run 5 Current Prediction with 36-2 Structure

44

6.3 40-20 Variable Structure Neural Network

To complete the variable structure studies, a 40- input 20-output (40-20) neural network was
constructed. The 40-20 network is essentially twenty 38-1 networks acting in parallel. Since
the 40-20 interconnections are very complex, Figure 6-7 displays a simplified schematic of
the neural network. Each output estimates one of the twenty parameters that were observed
in the simulations. To prevent memorization, each output is not connected to its own input or
time-shifted input. Consequently, the neural network determines the output based upon the
other 38 inputs. These 38 inputs are sent to a hidden layer that is directly connected to the
corresponding single output neuron. In this network, the hidden layers all use the hyperbolic
tangent transfer functions and apply the EDBD learning rule. This neural network is an
attempt to extend the robustness of the 38-1 Variable Structure Neural Network into a
controller that can determine all twenty system parameters.

The results for the 40-20 neural network are very good. However, as the neural network is
trained on multiple output parameters, it tends to generalize. These generalizations limit the
correlation of the 40-20 neural network as compared to the 38-1 neural network since all
twenty output parameters in the 40-20 were weighted equally while the 38-1 network was
solely concerned with idc34b.

45

Figure 6-7 Neural Network: 40-20 Architecture

46

Figure 6-8 Run 1 Current & Voltage Prediction with 40-20 Architecture

Figure 6-9 Run 5 Current & Voltage Prediction with 40-20 Architecture

47

7 Fault Tolerant Control of an IPS

A capable controller for the IPS must be fault tolerant. The controller cannot be so brittle
that if sensor data degrades or is completely absent, it will fail. In order to address this
concern, two fault tolerant neural networks were designed, developed, and tested.

7.1 38-1 Fault Tolerant Neural Network

The 38-1 neural network, diagrammed in Figure 7-1, has 38 input layer neurons that accept
all of the parameters and their time-shifted equivalents except idc34b and its time-shifted
equivalent. The variable idc34b was selected as the output since it is the current associated
with the motor start sequence. The hidden layer contains ten neurons with hyperbolic
tangent transfer functions.

The neural network was trained on perfect data from all eight runs for a total of 1,000 passes.
It was then tested on a set of degraded data that originated from run 6. Run 6 data was
processed by the MATLAB filter included in Appendix E which randomly inserted errors
ranging from –10% to 10%. Then, columns of zeros were inserted into the file to simulate
sensor failure. These zeros were inserted in both the parameter and its time shifted
equivalent at the same time so that the data was consistent. The neural network was then
tested on this set of degraded data. Since the original eight runs had established a very brittle
neural network, it was unable to perform at an acceptable level during this test. Figure 7-2
displays the neural network’s poor performance as was expected since the neural network
had not yet been trained on inaccurate data. The weights obtained from the perfect data were
used as initial weight values for data degradation training. The neural network was trained on
degraded data from run 6 for 3,500 passes.

As shown in Figure 7-3, the neural network’s performance was greatly enhanced and was
able to handle both degraded data faults and sensor failure faults. There are two groups of
data points clustered at 8 seconds and 10 seconds in Figure 7-3 that depart significantly from
the actual values. These departures show the neural network’s ability to partially compensate
for sensor failure. With additional training on corrupted data, the neural network could learn
to minimize the sensitivity to sensor failure thereby enhancing robustness.

48

Figure 7-1 Neural Network with 38-1 Architecture

49

Figure 7-2 Initial Fault Tolerant Prediction with 38-1 Architecture

Figure 7-3 Improved Fault Tolerant Prediction with 38-1 Architecture

50

7.2 40-20 Fault Tolerant Neural Network

The 40 input and 20 output fault tolerant neural network is the culmination of this research.
The primary goal of this project was to construct neural networks that could model nonlinear
dynamics and be robust with respect to faulted data. This neural network is essentially
twenty 38-1 neural networks combined to form one “super” neural network. Once again, the
hidden layers are composed of hyperbolic tangent functions. Each output is a linear
combination of the independent inputs and a dedicated hidden layer. Likewise, the hidden
layer is connected to 38 input neurons excluding those that are directly related to the output.
In order to show this neural network in the least confusing manner possible, the connections
have been hidden in the Figure 7-4.

This network was trained in much the same way as the 38-1 Fault Tolerant Neural Network.
It trained for 5 million passes on completely accurate data from all eight runs. As with the
38-1 neural network, a “naïve” 40-20 neural network that was not trained on faulted data
could not predict faulted run 6 data. As before, training was continued using the degraded
data developed for the 38-1 fault tolerant investigation. Due to the complexity of the 40-20
network, a total of 10 million passes was performed without over training. Figure 7-5
clearly demonstrates the ability of the 40-20 neural network to generate accurate estimates in
spite of significant data degradation. The departures in Figure 7-5 are much smaller than
those observed in Figure 7-3. The generalization of the 40-20 neural network decreased its
sensitivity to sensor failure as compared to the 38-1 neural network in Figure 7-3. More
detailed results are provided in Appendix H.

51

Figure 7-4 Neural Network with 40-20 Architecture

52

Figure 7-5 Fault Tolerant Prediction with 40-20 Architecture

53

8 Quantitative Analysis

It is just as important to measure the performance of the neural networks quantitatively
(Table 8-1) as it is to demonstrate their performance graphically. Consequently, two types of
calculations were applied to quantify the results: correlation and accuracy.

8.1 Correlation

Correlation measures the similarity of trends in two sets of data. If two sets of data are
similar with respect to their slopes, they will have a correlation approaching 1. Their
correlation will also be high even if there is a large bias separating the two sets of data. If
two sets of data do not coincide with respect to their trends, then they will have a correlation
approaching 0. Essentially, correlation measures the ability of the neural network to produce
output data that tracks the trends of the desired output data without regard to scale.
Therefore, correlation is not a useful metric for constant parameters.

8.2 Accuracy

For those sets of data that are constant or nearly constant, i.e. most voltage measurements in
this research, an accuracy measurement was calculated using equation (8.1):

desired predicted

nominal

accuracy 1
x x

x

−
= − (8.1)

This calculation included averaging the two sets of data, including the desired output and the
predicted output, to be compared. Then, the absolute value of the difference between these
two averages was taken and divided by a nominal value. This quantity was then subtracted
from 1 to produce a measurement of accuracy. A value approaching 1 is very accurate while
a value close to 0 is inaccurate. The nominal value for each parameter was selected from the
design of the simulation. For bus vo ltages, the nominal value was the regulated voltage. For
currents, a nominal value of 250 amperes was used.

54

8.3 Results

As one can deduce from these values in Table 8-1, the neural network was successful in
predicting both transient and steady state responses. It should be noted that the 40-20
Variable Structure neural network failed to accurately predict vbus1 in run 1 and vbus2 and
voutsscm3b in run 5. The neural network’s poor performance with respect to these three
parameters is a result of its lack of exposure to configurations in training that would have
prepared it to predict these values. These results emphasize the importance of correctly
training a neural network on multiple scenarios.

In transitioning from a simulation of the Integrated Power System to an operational
Integrated Power System, the neural network’s performance would be expected to improve.
The greater amount of generalization necessary to observe an operational IPS would increase
the neural network’s robustness. An increase in sensors would also enhance the neural
network’s robustness. Finally, the computational expediency of the neural network would
aid its performance in an operational Integrated Power System.

55

Table 8-1 Correlation & Accuracy Values

56

9 Summary

9.1 Synopsis

Neural network control of the Integrated Power System was researched, investigated, and
evaluated from two distinct perspectives. The variable structure neural network was trained
on six different power system configurations and evaluated using two additional, independent
configurations. The training set was intentionally incomplete. This incompleteness was
desired in order to fully assess the neural network’s ability to analyze variable structure
configurations. Despite the absence of prior training, the neural network accurately predicted
the dynamics of the independent test configurations. The three isolated prediction failures
are directly traceable to the absence of relevant training data. This result emphasizes the
requirement for a complete training set. Subsequently, sensor degradation and failure were
introduced in addition to the variable structure. The neural network continued to predict
parameter values accurately.

9.2 Conclusions

The neural network did an excellent job of predicting uncertain power system parameters in a
variable structure system subjected to degraded sensor data. The isolated estimation failures
demonstrate that the training data must represent all possible system configurations. Given
these very promising results, neural networks appear to have a great potential to aid in the
fault tolerant control of complex, interactive systems such as the IPS.

9.3 Recommendations

In order to apply these promising results confidently to complex, interactive systems,
additional research should be conducted in the following areas:

§ Unexpected transients such as power system faults
§ Quantification of fault tolerance
§ Optimization of neural network structure, learning rules, and training
§ Adding feedback structures to the neural network architecture
§ Synthesize a hybrid control strategy where neural networks complement other

control technologies

57

9.4 Closure

This research has produced exciting results that validate the premise that neural networks can
be reliable, fault tolerant estimators of uncertain, complex, variable structure systems.

58

10 Endnotes

1. Liu, Chih-Wen, Mu-Chun Su, Shuenn-Shing Tsay, Yi-Jen Wang. “Application of a Novel

Fuzzy Neural Network to Real-Time Transient Stability Swings Prediction Based on
Synchronized Phasor Measurements” IEEE Transaction on Power Systems 14 (1999)
pp 685-692.

2. Ba-Razzouk, Adellfattah, Ahmed Cheriti, Guy Olivie, Pierre Sicard. “Field Oriented
Control of Induction Motors Using Neural-Network Decouplers” IEEE Transactions
on Power Electronics 12 (1997) pp 752-763.

3. Guglielmi, G., T. Parisini, G. Rossi. “Fault Diagnosis and Neural Networks: A Power
Plant Application” Control Engineering Practice 3 (1995) pp 601-620.

4. Barron, Roger L. and B. Eugene Parker, Jr. ”Applicability of Neural Networks to Smart
Shipboard Systems”, Barron and Associates, 11 June 1993.

5. Zivi, Edwin L., Timothy J. McCoy. “Control of a Shipboard Integrated Power System”
Procedings, 33rd Conference on Information Sciences and Systems, Johns Hopkins
University, March 18, 1999.

6. Haykin, Simon. Neural Networks: A Comprehensive Foundation. Englewood Cliffs:
Macmillan, 1994 p 2.

7. Narendra, K. S., K. Parthasarathy. “Identification and Control of Dynamical Systems
Using Neural Networks” IEEE Transactions on Neural Networks 1 (1990) pp 4-27.

8. Neural Computing: A Technology Handbook for Professional II/Plus and NeuralWorks
Explorer. Pittsburgh, NeuralWare, 1998.

9. NeuralWorks Advanced Reference Guide: A Software Reference for NeuralWorks
Professional II/Plus and NeuralWorks Explorer, Pittsburgh, NeuralWare, 1998.

10. NeuralWorks Reference Guide: NeuralWorks Professional II/Plus and NeuralWorks
Explorer. Pittsburgh, NeuralWare, 1998.

11. Barron, Roger L., Richard L. Cellucci, Paul R. Jordan, III, Norman E. Beam, Paul Hess
and Andrew Barron. “Application of Polynomial Neural Networks to FDIE and
Reconfigurable Flight Control.” National Aerospace Electronics Conference, Dayton
OH, 23-25 May1990.

12. Glover, S.F. , B.T., Kuhn., and S.D. Sudhoff, “IPS Reference Model”, Purdue University,

16 April 1999.

59
13. AEgis Simulation, Inc. Advanced Continuous Simulation Language (ACSL): Reference

 Manual. Huntsville: Aegis Simulation, 1999.

60
11 Bibliography

Antsaklis, Panos J. “Neural Networks for Control Systems.” IEEE Transactions on Neural

Networks. 1 (1990) pp 242-244.

Barron, Roger L., Richard L. Cellucci, Paul R. Jordan, III, Norman E. Beam, Paul Hess and

Andrew Barron. “Application of Polynomial Neural Networks to FDIE and
Reconfigurable Flight Control.” National Aerospace Electronics Conference, Dayton
OH, 23-25 May1990.

Barron, Roger L. and B. Eugene Parker, Jr. “Applicability of Neural Networks to Smart

Shipboard Systems.”, Barron and Associates, 11 June 1993.

Barron and Associates, Inc. “Unified Open Architecture for Intelligent Ship Systems

Automation.” Vol. 1: Technical Proposal and Management Approach.

Ba-Razzouk, Adellfattah, Ahmed Cheriti, Guy Olivie, Pierre Sicard. “Field Oriented Control

of Induction Motors Using Neural-Network Decouplers.” IEEE Transactions on
Power Electronics 12 (1997) pp 752-763.

Glover, S. F., B. T. Kuhn, and S. D. Sudhoff. “IPS System Description.”, Purdue

University, 16 April 1999.

Guglielmi, G., T. Parisini, G. Rossi. “Fault Diagnosis and Neural Networks: A Power Plant

Application.” Control Engineering Practice 3 (1995) pp 601-620.

Haykin, Simon. Neural Networks: A Comprehensive Foundation. Englewood Cliffs:

Macmillan, 1994.

Kumar, D. M. Vinod, S. C. Srivastava, S. Shah, S. Mathur. “Topology Processing and Static

State Estimation Uisng Aritficial Neural Networks.” IEE Proceedings-Generation,
Transmission and Distribution 143 (1996) pp 99-105.

Liu, Chih-Wen, Mu-Chun Su, Shuenn-Shing Tsay, Yi-Jen Wang. “Application of a Novel

Fuzzy Neural Network to Real-Time Transient Stability Swings Prediction Based on
Synchronized Phasor Measurements.” IEEE Transaction on Power Systems 14 (1999)

 pp 685-692.

Lu, Songwu, Tamar Basar. “Robust Nonlinear System Identification Using Neural Network

Models.” IEEE Transactions on Neural Networks. 9 (1998) pp 407-429.

Lively, Kenneth, Tracey Thompson, Timothy J. McCoy, Edwin Zivi. “Adavnced Control

Concepts for an Integrated Power System (IPS) Warship.”

61
Narendra, K. S., K. Parthasarathy. “Identification and Control of Dynamical Systems Using

Neural Networks.” IEEE Transactions on Neural Networks 1 (1990) pp 4-27.

Neural Computing: A Technology Handbook for Professional II/Plus and NeuralWorks

Explorer. Pittsburgh: NeuralWare, 1998.

NeuralWorks Advanced Reference Guide: A Software Reference for NeuralWorks

Professional II/Plus and NeuralWorks Explorer. Pittsburgh: NeuralWare, 1998.

NeuralWorks Reference Guide: NeuralWorks Professional II/P lus and NeuralWorks

Explorer. Pittsburgh: NeuralWare, 1998.

Nikiforov, I., V. Varavva, V. Kireichikov. “Application of Statistical Fault Detection

Algorithms to Navigation System Monitoring.” Automatica 3 (1993) pp 1275-1290.

Rao, Valluru, Hayagriva Rao. C++ Neural Networks and Fuzzy Logic, 2nd Edition. New

York: MIS:Press, 1995.

Sudhoff, S. D., D.H. Schmuker, R. A. Youngs, H.J. Hegner. “Stability Analysis of DC

Distribution Systems Using Admittance Space Constraints.”

Sun, Y., H. Jiang, D. Wang. “Fault Synthetic Recognition for an EHV Transmission Line

Using a Group of Neural Networks with a Time-Space Property.” IEE Proceedings-
Generation, Transmission and Distribution 145 (1998) pp 265-270.

Zivi, Edwin L. Submission of NARC Research Program “Dependable Automation Systems.”

16 November 1998.

Zivi, Edwin L., Timothy J. McCoy. “Control of a Shipboard Integrated Power System”

Procedings, 33rd Conference on Information Sciences and Systems, Johns Hopkins
University, March 18, 1999.

62

12 Appendices

12.1 Appendix A – Preliminary Simulation MATLAB Code

% Preliminary Investigation - Simulation Data for Neural Network
% Single Matrix Output with Shifted Data [y1 y2]
% 27 MAR 00

clear;

%Define Lumped Parameters
ea = 10;
C1 = 1e-3;
L1 = 1;
R1 = 10;
R2 = 10;

%Derive the State-Space Matrix
A = [-1/(R1*C1) -1/C1;1/L1 -R2/L1];
B = [1/(C1*R1);0];
C = [ea 0;0 ea;-ea/R1 -ea; ea -ea*R2;-ea/R1 0];
D = [0;0;ea/R1;0;ea/R1];
sys = ss(A,B,C,D);
t=0:.001:.25;
U = ones(length(t),1);
XO=[0 0]';
[y,ts] = lsim(sys,U,t,XO);

% Single Matrix Output y
e1 = y(:,1);
i3 = y(:,2);
i2 = y(:,3);
e2 = y(:,4);

i1= y(:,5);

% Shifted Matrix Output y_a
y1=y(1:length(y)-1,:);
y2=y(2:length(y),:);
y_a=[y1 y2];

%Plot simulation
clf
[ax1,h1,h2] = plotyy(t,i1,t,e1);
set(h1,'LineStyle','o')
set(h2,'LineStyle','-')
set(h2,'Marker','.')
set(h1,'Color','k')
set(h2,'Color','k')
title('Simulation Data for Neural Network')
xlabel('Time, sec.')
axes(ax1(1));

63
axis([0 max(t), -0.2 1])
ylabel('Current, A')
grid; hold on
plot(t,i2,'k+')
plot(t,i3,'kdiamond')
legend('i1','i2','i3',0)
axes(ax1(2));
axis([0 max(t), -2 10])
set(h2,'LineStyle','-.')
ylabel('Voltage, V')

grid; hold
plot(t,e2,'k:')
legend('e1','e2',4)

%Faulty Data
z=zeros(size(e1));
save sim1dat;

64

12.2 Appendix B – IPS ACSL Code

!---!
! !
! Authors: S.F. Glover, B.T. Kuhn, S.D. Sudhoff !
! Purdue University !
! Department of Electrical and Computer Engineering !
! 1285 Electrical Engineering Building !
! West Lafayette, IN 47907 !
! (765)-494-3246 !
! For: Roger A. Dougal !
! University of South Carolina !
! Department of Electrical and Computer Engineering !
! Columbia, South Carolina 29208 !
! Award # 97-364 - Modeling and Translator Development !
! Date: 4/16/99 !
! Version: 2.0 !
! !
! Modified: E.L. Zivi for 1/C Cerrito Trident Research 3/27/00 !
! !
!---!

INCLUDE 'macros/asscm.mac'
INCLUDE 'macros/diobravm.mac'
INCLUDE 'macros/mc.mac'
INCLUDE 'macros/dcresld.mac'
INCLUDE 'macros/inductqd.mac'
INCLUDE 'macros/rotor.mac'
INCLUDE 'macros/speedld.mac'
INCLUDE 'macros/dctxline.mac'
INCLUDE 'macros/assim.mac'
INCLUDE 'macros/apwsp.mac'
INCLUDE 'macros/revtrans.mac'
INCLUDE 'macros/srf.mac'
INCLUDE 'macros/aexciter.mac'
INCLUDE 'macros/asmsat.mac'
INCLUDE 'macros/aacbus.mac'
INCLUDE 'macros/pmm8.mac'

PROGRAM scsystem

 DYNAMIC

 ALGORITHM IALG=2
 MAXTERVAL MAXT=1.0e-4
 MINTERVAL MINT=1.0e-20
 CINTERVAL CINT = 1.0e-3
 CONSTANT TSTOP = 1.0
 VARIABLE T,TIC=0.0
 TERMT(t .GE. tstop-0.5*cint,'Exit on Tstop')

 DERIVATIVE main

65
 !----------AC GENERATION--!

 !Turbine
 CONSTANT wrsm=377.0
 CONSTANT we=377.0
 SRF(1,we,qe)

 !Synchronous Machine IEEE Type 2 Excitation System"
 AEXCITER(ex,vqdsesm, vfd, &
 "vrefex=4160.0","vfdicex=22.1354", &
 "trex=1.05e-3","kaex=380.0","taex=0.019", &
 "vrminex=0.0","vrmaxex=7.3", &
 "kfex=31.5e-3","tf1ex=0.95","tf2ex=0.96", &
 "keex=0.95","teex=0.84", &
 "se100ex=0.903","se75ex=0.525", &
 "vbsmex=2.52e3","vfdbsmex=28.77")

 !Salient Synchronous Machine With 1 Damper"
 ASMSAT(sm,vqde1,we,vfd,wrsm,cbsm,vqdsesm, &
 iqdesm,ifda1,tesm, &
 "vfdicsm=22.1354","delta0sm=0.0", &
 "rssm=1.399e-3","llssm=372.115e-6", &
 "lmqsm=2.769e-3", &
 "llkqsm=141.66e-6","rkqsm=5.80e-3", &
 "llkdsm=72.05e-6", "rkdsm=5.08e-3", &
 "llfdsm=236.392e-6", "rfdsm=470.34e-6", &
 "nsfdsm=6.328e-2","npsm=2.0", &
 "masm=21899.65","mdsm=21585.83", &
 "tautsm=7.396","lamtsm=11.01","ithreshsm=1.0e7")

 !----------AC Bus 1--!

 ! Bus Voltage Magnitude
 CONSTANT root3o2=1.2247
 vmagb1 = SQRT(vqde1(1)**2 + vqde1(2)**2)*root3o2

 PROCEDURAL(imagb1, imagprop, imagserv = iqdesm, iqimprop, &
 idimprop, iqdepwsp)
 ! Bus 1 Generator Supply Current Magnitude
 imagb1 = SQRT(iqdesm(1)**2 + iqdesm(2)**2)*root3o2
 ! Bus 1 Propulsion Load Current Magnitude
 imagprop = SQRT(iqimprop**2 + idimprop**2)*root3o2
 ! Bus 1 Ships Service Load Current Magnitude
 imagserv = SQRT(iqdepwsp(1)**2 + iqdepwsp(2)**2)*root3o2
 END !procedural

 ! Calculate the bus voltage, - rbus is about 10 pu
 AACBUS(bs, iqdebc1, vqde1, &
 "rbs=2.622","tau1bs=1.0e-6","tau2bs=1.0e-4")
 PROCEDURAL(iqdebc1 = iqdesm,iqdepwsp,iqdemcprop)
 SUM(iqdebc1 = iqdesm,iqdepwsp,iqdemcprop)
 END !procedural

66
 !---------PROPULSION SYSTEM-------------------------------------!

 ! Propulsion controller
 PMM8(mcprop,opmcprop,vqde1,we,iqimprop,idimprop, &
 wrmimprop,wrmstarprop, &
 vqimprop,vdimprop,weimprop,iqdemcprop, &
 "cdcmcprop=0.2","taumcprop=0.1", &
 "rsmcprop=8.83e-3","Lssmcprop=10.073e-3", &
 "wbemcprop=30.02","vlinkicmcprop=0.0", &
 "vlinkminmcprop=4250.0", &
 "accllmcprop=-0.1241","acculmcprop=0.1241", &
 "npmcprop=4.0","kpmcprop=1.0", &
 "kimcprop=1.0","vsmaxmcprop=3396.6", &
 "ramptmcprop=10.0", &
 "lacmcprop=6.786e-6","rlcmcprop=0.0", &
 "vscrmcprop=0.0","ldcmcprop=3.0e-3", &
 "rdcmcprop=6.786e-3")

 ! 19MW induction motor
 INDUCTQD(improp, vqimprop,vdimprop,weimprop,wrmimprop, &
 iqimprop,idimprop,teimprop, &
 "rsimprop=8.83e-3","Llsimprop=173.1e-6", &
 "Lmimprop=9.9e-3","rrpimprop=63.5e-3", &
 "Llrpimprop=173.1e-6","nPimprop=4.0", &
 "lamdsicimprop=0.0","lamdrpicimprop=0.0")
 ROTOR(improp, teimprop,tlimprop, wrmimprop, &
 "Jimprop=3.698e6","wrmicimprop=0.0")
 SPEEDLD(improp, wrmimprop, tlimprop, &
 "wrmbaserpmimprop=148.1","tlbaseimprop=1.23e6")

 !---------DC POWER SUPPLY-------------------------------------!

 CONSTANT vrefpwsp= 1100.0
 CONSTANT odflagpwsp = .TRUE.
 CONSTANT cnntpwsp1 = .TRUE.
 CONSTANT cnntpwsp2 = .TRUE.
 INITIAL
 cbpwsp = .TRUE.
 oppwsp =. FALSE.
 END !initial
 APWSP(pwsp, oppwsp,cbpwsp,odflagpwsp,cnntpwsp1, &
 cnntpwsp2,vrefpwsp,vqde1, &
 vbus1,vbus2,we,qe, itranpwsp1,itranpwsp2,iqdepwsp, &
 "rppwsp=52.06e-3","llppwsp=2.07e-3", &
 "rspwsp=.069","llspwsp=7.61e-3","npwsp=9.8", &
 "vscrpwsp=0.0","ldcpwsp=128.0e-6", &
 "rdcpwsp=0.19e-3","cdcpwsp=17.6e-3", &
 "kpvpwsp=0.011","kivpwsp=22.0","limvpwsp=10000.0", &
 "ilimitpwsp=10000.0","kpipwsp=0.012","kiipwsp=0.0", &
 "limipwsp=0.0","alphaminpwsp=0.0", &
 "alphamaxpwsp=3.14","vmaxpwsp=1175.0", &
 "taufltpwsp=4.364e-3","dismodepwsp=.FALSE.", &
 "ithreshpwsp=1.0e7","L1txpwsp=10.0e-6", &
 "r1txpwsp=0.01","L2txpwsp=10.0e-6","r2txpwsp=0.01")

67

 !---------DC BUS 1-------------------------------------!

 !calculate bus voltage
 pvbus1 = (itranpwsp1 - itran13 - ilinsscm1a)/Cinsscm1a
 vbus1 = INTEG(pvbus1, 0.0)

 PROCEDURAL(ibus1, ibusload = itranpwsp1, ioutsscm1a)
 ibus1 = itranpwsp1
 ibus1load = ioutsscm1a
 END ! Procedural

 !sscm1a
 ASSCM(sscm1a, opsscm1a,vbus1,ioutsscm1a, &
 ilinsscm1a,Cinsscm1a,voutsscm1a, &
 "vinstarsscm1a=1100.0","vrefsscm1a=900.0", &
 "Cin1sscm1a=500.0e-6","Cin2sscm1a=100.0e-6", &
 "Coutsscm1a=1.0e-3","Linsscm1a=70.0e-6", &
 "Loutsscm1a=100.0e-6","kpsscm1a=2.0e-3", &
 "kisscm1a=0.7","fswsscm1a=20.0e3", &
 "tausscm1a=7.96e-6","vswsscm1a=1.0", &
 "vdiodesscm1a=1.0","RLinsscm1a=0.01", &
 "RLoutsscm1a=0.02","RCoutsscm1a=1.0", &
 "trampsscm1a=30.0e-3")

 !---------DC BUS 2-------------------------------------!

 !calculate bus voltage
 pvbus2 = (itranpwsp2 - itran24 - ilinsscm2a)/Cinsscm2a
 vbus2 = INTEG(pvbus2, 0.0)

 PROCEDURAL(ibus2, ibus2load = itranpwsp2, ioutsscm2a)
 ibus2 = itranpwsp2
 ibus2load = ioutsscm2a
 END ! Procedural

 !sscm2a
 ASSCM(sscm2a, opsscm2a,vbus2,ioutsscm2a, &
 ilinsscm2a,Cinsscm2a,voutsscm2a, &
 "vinstarsscm2a=1100.0","vrefsscm2a=860.0", &
 "Cin1sscm2a=500.0e-6","Cin2sscm2a=100.0e-6", &
 "Coutsscm2a=1.0e-3","Linsscm2a=70.0e-6", &
 "Loutsscm2a=100.0e-6","kpsscm2a=2.0e-3", &
 "kisscm2a=0.7","fswsscm2a=20.0e3", &
 "tausscm2a=7.96e-6","vswsscm2a=1.0", &
 "vdiodesscm2a=1.0","RLinsscm2a=0.01", &
 "RLoutsscm2a=0.02","RCoutsscm2a=1.0", &
 "trampsscm2a=30.0e-3")

 !--------------LOADS FED FROM BUSSES 1 & 2----------!

68

 !~~~~~~position a~~~~~~!
 !diode bridge
 DIOBRAVM(db12a, voutsscm1a,voutsscm2a,vdc12a,faultdb1a,faultdb2a,
&
 ioutsscm1a,ioutsscm2a,idc12a, &
 "L1db12a=1.0e-6","r1db12a=0.01", &
 "L2db12a=1.0e-6","r2db12a=0.01")

 !SSIM
 ASSIM(ssim12a, opssim12a,iqim12a,idim12a,idc12a, &
 voqssim12a,vodssim12a,vdc12a, &
 "cdcssim12a=1000.0e-6", &
 "rlfssim12a=0.05","lfssim12a=20.0e-6", &
 "cfssim12a=30.0e-6","rfssim12a=0.2", &
 "voutstarssim12a=359.26","wessim12a=377.0", &
 "cfestssim12a=30.0e-6", &
 "kpvssim12a=0.8","kivssim12a=25.0", &
 "kpissim12a=0.11","kiissim12a=750.0", &
 "ilimitssim12a=742.07")

 !50 HP induction motor
 INDUCTQD(im12a, voqssim12a,vodssim12a,wessim12a,wrmim12a, &
 iqim12a,idim12a,teim12a, &
 "rsim12a=0.087","Llsim12a=0.0008011", &
 "Lmim12a=0.03469","rrpim12a=0.228", &
 "Llrpim12a=0.0008011","nPim12a=4.0", &
 "lamdsicim12a=0.0","lamdrpicim12a=0.0")
 ROTOR(im12a, teim12a,tlim12a, wrmim12a, &
 "Jim12a=1.662","wrmicim12a=0.0")
 SPEEDLD(im12a, wrmim12a, tlim12a, &
 "wrmbaserpmim12a=1705.0","tlbaseim12a=198.0")

 !---------AC BUS 3-------------------------------------!

 PROCEDURAL (vmagb3, imagb3 = voqssim12a, vodssim12a, iqim12a, idim12a)
 ! Bus 3 Voltage Magnitude
 vmagb3 = SQRT(voqssim12a**2 + vodssim12a**2)*root3o2
 ! Bus 3 Load Current Magnitude
 imagb3 = SQRT(iqim12a**2 + idim12a**2)*root3o2
 END !procedural

 !-------Transmission Lines--------------------------!

 !transmission line between busses 1 and 3
 DCTXLINE(tran13, optran13,vbus1,vbus3, itran13, &
 "Ltran13=10.0e-6","Rtran13=0.01")

 !transmission line between busses 2 and 4
 DCTXLINE(tran24, optran24,vbus2,vbus4, itran24, &
 "Ltran24=10.0e-6","Rtran24=0.01")

 !---------DC BUS 3-------------------------------------!

69
 !calculate bus voltage
 pvbus3 = (itran13 - ilinsscm3a - ilinsscm3b)/(Cinsscm3a + Cinsscm3b)
 vbus3 = INTEG(pvbus3, 0.0)

 PROCEDURAL(ibus3 = ioutsscm3a)
 ibus3 = ioutsscm3a
 END ! Procedural

 !sscm3a
 ASSCM(sscm3a, opsscm3a,vbus3,ioutsscm3a, &
 ilinsscm3a,Cinsscm3a,voutsscm3a, &
 "vinstarsscm3a=1100.0","vrefsscm3a=900.0", &
 "Cin1sscm3a=500.0e-6","Cin2sscm3a=100.0e-6", &
 "Coutsscm3a=1.0e-3","Linsscm3a=70.0e-6", &
 "Loutsscm3a=100.0e-6","kpsscm3a=2.0e-3", &
 "kisscm3a=0.7","fswsscm3a=20.0e3", &
 "tausscm3a=7.96e-6","vswsscm3a=1.0", &
 "vdiodesscm3a=1.0","RLinsscm3a=0.01", &
 "RLoutsscm3a=0.02","RCoutsscm3a=1.0", &
 "trampsscm3a=30.0e-3")

 !sscm3b
 ASSCM(sscm3b, opsscm3b,vbus3,ioutsscm3b, &
 ilinsscm3b,Cinsscm3b,voutsscm3b, &
 "vinstarsscm3b=1100.0","vrefsscm3b=900.0", &
 "Cin1sscm3b=500.0e-6","Cin2sscm3b=100.0e-6", &
 "Coutsscm3b=1.0e-3","Linsscm3b=70.0e-6", &
 "Loutsscm3b=100.0e-6","kpsscm3b=2.0e-3", &
 "kisscm3b=0.7","fswsscm3b=20.0e3", &
 "tausscm3b=7.96e-6","vswsscm3b=1.0", &
 "vdiodesscm3b=1.0","RLinsscm3b=0.01", &
 "RLoutsscm3b=0.02","RCoutsscm3b=1.0", &
 "trampsscm3b=30.0e-3")

 !---------DC BUS 4-------------------------------------!

 !calculate bus voltage
 pvbus4 = (itran24 - ilinsscm4a - ilinsscm4b)/(Cinsscm4a + Cinsscm4b)
 vbus4 = INTEG(pvbus4, 0.0)

 PROCEDURAL(ibus4 = ioutsscm4a)
 ibus4 = ioutsscm4a
 END ! Procedural

 !sscm4a
 ASSCM(sscm4a, opsscm4a,vbus4,ioutsscm4a, &
 ilinsscm4a,Cinsscm4a,voutsscm4a, &
 "vinstarsscm4a=1100.0","vrefsscm4a=860.0", &
 "Cin1sscm4a=500.0e-6","Cin2sscm4a=100.0e-6", &
 "Coutsscm4a=1.0e-3","Linsscm4a=70.0e-6", &
 "Loutsscm4a=100.0e-6","kpsscm4a=2.0e-3", &
 "kisscm4a=0.7","fswsscm4a=20.0e3", &
 "tausscm4a=7.96e-6","vswsscm4a=1.0", &
 "vdiodesscm4a=1.0","RLinsscm4a=0.01", &

70
 "RLoutsscm4a=0.02","RCoutsscm4a=1.0", &
 "trampsscm4a=30.0e-3")

 !sscm4b
 ASSCM(sscm4b, opsscm4b,vbus4,ioutsscm4b, &
 ilinsscm4b,Cinsscm4b,voutsscm4b, &
 "vinstarsscm4b=1100.0","vrefsscm4b=860.0", &
 "Cin1sscm4b=500.0e-6","Cin2sscm4b=100.0e-6", &
 "Coutsscm4b=1.0e-3","Linsscm4b=70.0e-6", &
 "Loutsscm4b=100.0e-6","kpsscm4b=2.0e-3", &
 "kisscm4b=0.7","fswsscm4b=20.0e3", &
 "tausscm4b=7.96e-6","vswsscm4b=1.0", &
 "vdiodesscm4b=1.0","RLinsscm4b=0.01", &
 "RLoutsscm4b=0.02","RCoutsscm4b=1.0", &
 "trampsscm4b=30.0e-3")

 !--------------LOADS FED FROM BUSSES 3 & 4----------!

 !~~~~~~position a~~~~~~!
 !diode bridge
 DIOBRAVM(db34a, voutsscm3a,voutsscm4a,vdc34a,faultdb3a,faultdb4a,
&
 ioutsscm3a,ioutsscm4a,idc34a, &
 "L1db34a=1.0e-6","r1db34a=0.01", &
 "L2db34a=1.0e-6","r2db34a=0.01")

 !resistive load
 DCRESLD(res34a, opres34a,idc34a, vdc34a, &
 "cdcres34a=1000.0e-6","rdcres34a=4.05")

 !~~~~~~position b~~~~~~!
 !diode bridge
 DIOBRAVM(db34b, voutsscm3b,voutsscm4b,vdc34b,faultdb3b,faultdb4b,
&
 ioutsscm3b,ioutsscm4b,idc34b, &
 "L1db34b=1.0e-6","r1db34b=0.01", &
 "L2db34b=1.0e-6","r2db34b=0.01")

 !induction motor controller
 MC(mc34b, opmc34b,idc34b,iqim34b,idim34b, &
 wrmim34b,wrmstarim34b, &
 vdc34b,vqim34b,vdim34b,weim34b, &
 "cdcmc34b=100.0e-6","taumc34b=0.1", &
 "rsmc34b=0.087","Lssmc34b=3.549e-2", &
 "wbemc34b=377.0","vdcicmc34b=0.0", &
 "accllmc34b=-4.0","acculmc34b=30.0", &
 "npmc34b=4.0","kpmc34b=1.0", &
 "kimc34b=20.0","vsmaxmc34b=375.5")

 !50 HP induction motor
 INDUCTQD(im34b, vqim34b,vdim34b,weim34b,wrmim34b, &
 iqim34b,idim34b,teim34b, &
 "rsim34b=0.087","Llsim34b=0.8011e-3", &
 "Lmim34b=34.69e-3","rrpim34b=0.228", &

71
 "Llrpim34b=0.8011e-3","nPim34b=4.0", &
 "lamdsicim34b=0.0","lamdrpicim34b=0.0")
 ROTOR(im34b, teim34b,tlim34b, wrmim34b, &
 "Jim34b=1.662","wrmicim34b=0.0")
 SPEEDLD(im34b, wrmim34b, tlim34b, &
 "wrmbaserpmim34b=1705.0","tlbaseim34b=198.0")

 END !Derivative

 SRFD(1,qe)
 apwspd(pwsp,we,oppwsp)

 DISCRETE cbcontrol
 ASMSATD(sm,cbsm)
 END ! DISCRETE

 END ! Dynamic

END ! Program

72

12.3 Appendix C – IPS ACSL Simulation Commands

!---!
! !
! Authors: S.F. Glover, B.T. Kuhn, S.D. Sudhoff !
! Purdue University !
! Department of Electrical and Computer Engineering !
! 1285 Electrical Engineering Building !
! West Lafayette, IN 47907 !
! (765)-494-3246 !
! For: Roger A. Dougal !
! University of South Carolina !
! Department of Electrical and Computer Engineering !
! Columbia, South Carolina 29208 !
! Award # 97-364 - Modeling and Translator Development !
! Date: 4/16/99 !
! Version: 1.0 !
! !
! Modified: E.L. Zivi for 1/C Cerrito Trident Research 4/1/00 !
! !
!---!
s hvdprn=.f.
s weditg=.f. !write events to log file
s strplt=.t. !strip plots
s calplt=.f. !plots on one graph
s alcplt=.f. !no colored plots
s cjvitg=.f. !turns off checking of jacobian validity

output t,cioitg,cssitg /nciout=10

prepare t ! needed for output command
prepare wrmimprop ! prop shaft speed

 !----------AC Bus 1--!
prepare imagb1 ! AC Bus 1 Generator Supply Current Magnitude
prepare imagprop ! AC Bus 1 Propulsion Load Current Magnitude
! << neural net data starts here >>
prepare imagserv ! AC Bus 1 Ships Service Load Current Magnitude
prepare vmagb1 ! AC Bus 1 Voltage Magnitude

 !---------DC BUS 1--!
prepare vbus1 ! DC Bus 1 voltage
prepare ibus1 ! DC Bus 1 total current (load + bus3)
prepare ibus1load ! DC Bus 1 load current

 !---------DC BUS 2--!
prepare vbus2 ! DC Bus 2 voltage
prepare ibus2 ! DC Bus 2 total current (load + bus3)
prepare ibus2load ! DC Bus 2 load current

 !---------AC BUS 3--!
prepare vmagb3 ! AC Bus 3 Voltage Magnitude
prepare imagb3 ! AC Bus 3 Load Current Magnitude

73
 !---------DC BUS 3--!
prepare vbus3 ! DC Bus 3 voltage
prepare ibus3 ! DC Bus 3 total current = load current

 !---------DC BUS 4--!
prepare vbus4 ! DC Bus 4 voltage
prepare ibus4 ! DC Bus 4 total current = load current

 !---------DC BUS 3/4 Load B Converters--------------------------!
prepare voutsscm3b ! voltage from Bus 3 to diode bridge
prepare voutsscm4b ! voltage from Bus 3 to diode bridge
prepare vdc34b ! voltage out of auctioneering diodes
prepare ioutsscm3b ! current from Bus 3 to diode bridge
prepare ioutsscm4b ! current from Bus 4 to diode bridge
prepare idc34b ! current out of auctioneering diodes
! << neural net data ends here >>

 !---------DC BUS 3/4 Load B Motor Drive------------------------!
prepare wrmim34b ! commanded motor speed, rad/sec
prepare wrmstarim34b ! actual motor speed, rad/sec

PROCEDURE initrun ! establish standard initial alignment
 s tic=-5 ! need time to reach steady state
 action /var=tic/val=.t./loc=cnntpwsp1 ! connect DC bus 1
 action /var=tic/val=.t./loc=cnntpwsp2 ! connect DC bus 2
 action /var=tic/val=.t./loc=oppwsp ! turn on AC/DC power supply
 action /var=tic/val=.t./loc=optran13 ! connect DC bus 1 -> 3
 action /var=tic/val=.t./loc=optran24 ! connect DC bus 2 -> 4
 action /var=tic/val=.f./loc=opsscm1a ! ship service converters off
 action /var=tic/val=.f./loc=opsscm2a
 action /var=tic/val=.f./loc=opsscm3a
 action /var=tic/val=.f./loc=opsscm3b
 action /var=tic/val=.f./loc=opsscm4a
 action /var=tic/val=.f./loc=opsscm4b
 action /var=tic/val=.f./loc=opssim12a ! ship service inverter off
 action /var=tic/val=.f./loc=opmcprop ! propulsion off
 action /var=tic/val=180/loc=wrmstarim34b ! cmd induction motor 1719 rpm
 action /var=tic/val=0.0/loc=wrmstarprop ! cmd prop. zero shaft speed
END !initrun

PROCEDURE plotrun ! standard plots for each run
 ! AC Bus 1 voltage, AC Bus 1, ship service, propulsion current
 plot/xlo=0.0 vmagb1/lo=4100/hi=4220,imagb1/lo=0/hi=7500, &
 imagserv/lo=0/hi=100,wrmimprop/lo=0/hi=15
 ! DC Bus 1,2 voltage, current
 plot/xlo=0.0 vbus1/lo=1000/hi=1200,ibus1/lo=0/hi=300, &
 vbus2/lo=1000/hi=1200,ibus2/lo=0/hi=300
 ! DC Bus 1,2 loads, AC Bus 3 voltage, current
 plot/xlo=0.0 ibus1load/lo=0/hi=50,ibus2load/lo=0/hi=50 &
 vmagb3/lo=400/hi=500,imagb3/lo=0/hi=100
 ! DC Bus 3,4 voltage, current
 plot/xlo=0.0 vbus3/lo=1000/hi=1200,ibus3/lo=0/hi=300, &
 vbus4/lo=1000/hi=1200,ibus4/lo=0/hi=300
 ! motor drive supply voltages, drive voltages, command
 plot/xlo=0.0 voutsscm3b/lo=600/hi=1000,voutsscm4b/lo=600/hi=1000, &

74
 vdc34b/lo=600/hi=1000,wrmstarim34b/lo=0/hi=200
 ! motor drive supply currents, drive current, motor speed
 plot/xlo=0.0 ioutsscm3b/lo=0/hi=100,ioutsscm4b/lo=0/hi=100, &
 idc34b/lo=0/hi=100,wrmim34b/lo=0/hi=200
END ! plotrun

PROCEDURE plotinit ! standard plots for each run w/ initial transients
 ! AC Bus 1 voltage, AC Bus 1, ship service, propulsion current
 plot/xaxis=t/xlo=-5 vmagb1/lo=0/hi=4300,imagb1/lo=0/hi=7500, &
 imagserv/lo=0/hi=100,wrmimprop/lo=0/hi=15
 ! DC Bus 1,2 voltage, current
 plot/xaxis=t/xlo=-5 vbus1/lo=0/hi=1200,ibus1/lo=0/hi=300, &
 vbus2/lo=0/hi=1200,ibus2/lo=0/hi=300
 ! DC Bus 1,2 loads, AC Bus 3 voltage, current
 plot/xaxis=t/xlo=-5 ibus1load/lo=0/hi=50,ibus2load/lo=0/hi=50 &
 vmagb3/lo=0/hi=500,imagb3/lo=0/hi=100
 ! DC Bus 3,4 voltage, current
 plot/xaxis=t/xlo=-5 vbus3/lo=0/hi=1200,ibus3/lo=0/hi=300, &
 vbus4/lo=0/hi=1200,ibus4/lo=0/hi=300
 ! motor drive supply voltages, drive voltages, command
 plot/xaxis=t/xlo=-5 voutsscm3b/lo=0/hi=1000,voutsscm4b/lo=0/hi=1000, &
 vdc34b/lo=0/hi=1000,wrmstarim34b/lo=0/hi=200
 ! motor drive supply currents, drive current, motor speed
 plot/xaxis=t/xlo=-5 ioutsscm3b/lo=0/hi=100,ioutsscm4b/lo=0/hi=100, &
 idc34b/lo=0/hi=100,wrmim34b/lo=0/hi=200
END ! plotinit

PROCEDURE run1 ! IPS Motor Start: DC Bus 1,3 DC Load
 initrun ! set generic initial conditions
 action /var=tic/val=.f./loc=cnntpwsp2 ! disconnect DC bus 2
 !turn on the system components, start motor at t = 0.0
 action /var=-4.9/val=.t./loc=opsscm3a ! DC bus 3 converters on
 action /var=-4.9/val=.t./loc=opsscm3b
 action /var=-4.9/val=.t./loc=opres34a ! DC bus 3/4 resistive load
 action /var=0.0/val=.t./loc=opmc34b ! DC bus 3/4 induction motor

 !start the study
 s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4
 start
 s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4
 cont
 s title=120*" " ! clear title
 ! plot title 1234567890123456789012345678901234567890
 s title(01)="IPS Motor Start Run 1"
 s title(41)="DC Bus 1,3 Energized"
 s title(81)="DC Load On"
 ! plotrun ! standard plots
 ! print/noheader/file="run1.txt"/all
 action /clear
END !run1

PROCEDURE run2 ! IPS Motor Start: DC Bus 2,4 DC Load
 initrun ! set generic initial conditions
 action /var=tic/val=.f./loc=cnntpwsp1 ! disconnect DC bus 1
 !turn on the system components, start motor at t = 0.0

75
 action /var=-4.9/val=.t./loc=opsscm4a ! DC bus 4 converters on
 action /var=-4.9/val=.t./loc=opsscm4b
 action /var=-4.9/val=.t./loc=opres34a ! DC bus 3/4 resistive load
 action /var=0.0/val=.t./loc=opmc34b ! DC bus 3/4 induction motor

 !start the study
 s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4
 start
 s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4
 cont
 s title=120*" " ! clear title
 ! plot title 1234567890123456789012345678901234567890
 s title(01)="IPS Motor Start Run 2"
 s title(41)="DC Bus 2,4 Energized"
 s title(81)="DC Load On"
 ! plotrun ! standard plots
 ! print/noheader/file="run2.txt"/all
 action /clear
END !run2

PROCEDURE run3 ! IPS Motor Start: DC Bus 2,4 AC+DC Loads
 initrun ! set generic initial conditions
 action /var=tic/val=.f./loc=cnntpwsp1 ! disconnect DC bus 1
 !turn on the system components, start motor at t = 0.0
 action /var=-4.9/val=.t./loc=opsscm4a ! DC bus 4 converters on
 action /var=-4.9/val=.t./loc=opsscm4b
 action /var=-4.9/val=.t./loc=opres34a ! DC bus 3/4 resistive load
 action /var=-4.7/val=.t./loc=opsscm2a ! DC bus 2 converter on
 action /var=-4.5/val=.t./loc=opssim12a ! ship service inverter on
 action /var=0.0/val=.t./loc=opmc34b ! DC bus 3/4 induction motor

 !start the study
 s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4
 start
 s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4
 cont
 s title=120*" " ! clear title
 ! plot title 1234567890123456789012345678901234567890 (40
characters/line)
 s title(01)="IPS Motor Start Run 3"
 s title(41)="DC Bus 2,4 AC Bus 3 Energized"
 s title(81)="DC Load, AC Load On"
 ! plotrun ! standard plots
 ! print/noheader/file="run3.txt"/all
 action /clear
END !run3

PROCEDURE run4 ! IPS Motor Start: Bus 1,2,4 AC+DC Loads
 initrun ! set generic initial conditions
 action /var=tic/val=.f./loc=optran13 ! disconnect DC bus 1 -> 3
 !turn on the system components, start motor at t = 0.0
 action /var=-4.9/val=.t./loc=opsscm4a ! DC bus 4 converters on
 action /var=-4.9/val=.t./loc=opsscm4b
 action /var=-4.9/val=.t./loc=opres34a ! DC bus 3/4 resistive load

76
 action /var=-4.8/val=.t./loc=opsscm1a ! DC bus 1 converter on

 action /var=-4.7/val=.t./loc=opsscm2a ! DC bus 2 converter on
 action /var=-4.5/val=.t./loc=opssim12a ! ship service inverter on
 action /var=0.0/val=.t./loc=opmc34b ! DC bus 3/4 induction motor

 !start the study
 s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4
 start
 s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4
 cont
 s title=120*" " ! clear title
 ! plot title 1234567890123456789012345678901234567890
 s title(01)="IPS Motor Start Run 4"
 s title(41)="DC Bus 1,2,4 AC Bus 3 Energized"
 s title(81)="DC Load, AC Load On"
 ! plotrun ! standard plots
 ! print/noheader/file="run4.txt"/all
 action /clear
END !run4

PROCEDURE run5 ! IPS Motor Start: Bus 1,2,3a,4 AC+DC Loads
 initrun ! set generic initial conditions
 !turn on the system components, start motor at t = 0.0
 action /var=-4.9/val=.t./loc=opsscm4a ! DC bus 4 converters on
 action /var=-4.9/val=.t./loc=opsscm4b
 action /var=-4.9/val=.t./loc=opres34a ! DC bus 3/4 resistive load
 action /var=-4.8/val=.t./loc=opsscm1a ! DC bus 1 converter on

 action /var=-4.7/val=.t./loc=opsscm2a ! DC bus 2 converter on
 action /var=-4.8/val=.t./loc=opsscm3a ! DC Bus 3a converter
 action /var=-4.5/val=.t./loc=opssim12a ! ship service inverter on
 action /var=0.0/val=.t./loc=opmc34b ! DC bus 3/4 induction motor
 !start the study
 s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4
 start
 s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4
 cont
 s title=120*" " ! clear title
 ! plot title 1234567890123456789012345678901234567890
 s title(01)="IPS Motor Start Run 5"
 s title(41)="DC Bus 1,2,3a,4 AC Bus 3 Energized"
 s title(81)="DC Load, AC Load On"
 ! plotrun ! standard plots
 ! print/noheader/file="run5.txt"/all
 action /clear
END !run5

PROCEDURE run6 ! IPS Motor Start: Bus 1,2,3a,4 AC+DC Loads
 initrun ! set generic initial conditions
 !turn on the system components, start motor at t = 0.0
 action /var=-4.9/val=.t./loc=opsscm4a ! DC bus 4 converters on
 action /var=-4.9/val=.t./loc=opsscm4b
 action /var=-4.9/val=.t./loc=opres34a ! DC bus 3/4 resistive load

77
 action /var=-4.8/val=.t./loc=opsscm1a ! DC bus 1 converter on

 action /var=-4.7/val=.t./loc=opsscm2a ! DC bus 2 converter on
 action /var=-4.8/val=.t./loc=opsscm3a ! DC Bus 3a converters
 action /var=-4.8/val=.t./loc=opsscm3b
 action /var=-4.5/val=.t./loc=opssim12a ! ship service inverter on
 action /var=0.0/val=.t./loc=opmc34b ! DC bus 3/4 induction motor
 !start the study
 s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4
 start
 s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4
 cont
 s title=120*" " ! clear title
 ! plot title 1234567890123456789012345678901234567890
 s title(01)="IPS Motor Start Run 6"
 s title(41)="DC Bus 1,2,3a,4 AC Bus 3 Energized"
 s title(81)="DC Load, AC Load On"
 ! plotrun ! standard plots
 ! print/noheader/file="run6.txt"/all
 action /clear
END !run6

PROCEDURE run7 ! IPS Motor Start: Bus 1,2,3a,3b AC+DC Loads
 initrun ! set generic initial conditions
 action /var=tic/val=.f./loc=optran24 ! disconnect DC bus 2 -> 4
 !turn on the system components, start motor at t = 0.0
 action /var=-4.9/val=.t./loc=opsscm1a ! DC bus 1 converter on

 action /var=-4.9/val=.t./loc=opsscm2a ! DC bus 2 converter on
 action /var=-4.9/val=.t./loc=opsscm3a ! DC Bus 3 converters on
 action /var=-4.9/val=.t./loc=opsscm3b
 action /var=-4.9/val=.t./loc=opres34a ! DC bus 3/4 resistive load
 action /var=-4.5/val=.t./loc=opssim12a ! ship service inverter on
 action /var=0.0/val=.t./loc=opmc34b ! DC bus 3/4 induction motor

 !start the study
 s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4
 start
 s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4
 cont
 s title=120*" " ! clear title
 ! plot title 1234567890123456789012345678901234567890
 s title(01)="IPS Motor Start Run 7"
 s title(41)="DC Bus 1,2,3a,3b AC Bus 3 Energized"
 s title(81)="DC Load, AC Load On"
 ! plotrun ! standard plots
 ! print/noheader/file="run7.txt"/all
 action /clear
END !run7

PROCEDURE run8 ! IPS Motor Start: Bus 1,3 AC+DC Loads
 initrun ! set generic initial conditions
 action /var=tic/val=.f./loc=cnntpwsp2 ! disconnect DC bus 2
 action /var=tic/val=.f./loc=optran24 ! disconnect DC bus 2 -> 4
 !turn on the system components, start motor at t = 0.0

78
 action /var=-4.9/val=.t./loc=opsscm1a ! DC bus 1 converter on

 action /var=-4.9/val=.t./loc=opsscm3a ! DC Bus 3 converters on
 action /var=-4.9/val=.t./loc=opsscm3b
 action /var=-4.9/val=.t./loc=opres34a ! DC bus 3/4 resistive load
 action /var=-4.5/val=.t./loc=opssim12a ! ship service inverter on
 action /var=0.0/val=.t./loc=opmc34b ! DC bus 3/4 induction motor

 !start the study
 s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4
 start
 s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4
 cont
 s title=120*" " ! clear title
 ! plot title 1234567890123456789012345678901234567890
 s title(01)="IPS Motor Start Run 8"
 s title(41)="DC Bus 1,3 AC Bus 3 Energized"
 s title(81)="DC Load, AC Load On"
 ! plotrun ! standard plots
 ! print/noheader/file="run8.txt"/all
 action /clear
END !run8

PROCEDURE test1init
s nrwitg=.t.
run1
s psfspl=0.9
s devplt=5
file/pltfile='run1init.ps'
plotinit
plot/close
s nrwitg=.f.
END ! test1init

PROCEDURE test1
s nrwitg=.f.
run1
s psfspl=0.9
s devplt=5
file/pltfile='run1.ps'
plotrun
plot/close
print/noheader/file="run1.txt"/all
s nrwitg=.f.
END ! test1init

PROCEDURE test2init
s nrwitg=.t.
run2
s psfspl=0.9
s devplt=5
file/pltfile='run2init.ps'
plotinit
plot/close
s nrwitg=.f.

79
END ! test2init

PROCEDURE test2
s nrwitg=.f.
run2
s psfspl=0.9
s devplt=5
file/pltfile='run2.ps'
plotrun
plot/close
print/noheader/file="run2.txt"/all
s nrwitg=.f.
END ! test2init

PROCEDURE test3init
s nrwitg=.t.
run3
s psfspl=0.9
s devplt=5
file/pltfile='run3init.ps'
plotinit
plot/close
s nrwitg=.f.
END ! test3init

PROCEDURE test3
s nrwitg=.f.
run3
s psfspl=0.9
s devplt=5
file/pltfile='run3.ps'
plotrun
plot/close
print/noheader/file="run3.txt"/all
s nrwitg=.f.
END ! test3init

PROCEDURE test4init
s nrwitg=.t.
run4
s psfspl=0.9
s devplt=5
file/pltfile='run4init.ps'
plotinit
plot/close
s nrwitg=.f.
END ! test4init

PROCEDURE test4
s nrwitg=.f.
run4
s psfspl=0.9
s devplt=5
file/pltfile='run4.ps'
plotrun

80
plot/close
print/noheader/file="run4.txt"/all
s nrwitg=.f.
END ! test4init

PROCEDURE test5init
s nrwitg=.t.
run5
s psfspl=0.9
s devplt=5
file/pltfile='run5init.ps'
plotinit
plot/close
s nrwitg=.f.
END ! test5init

PROCEDURE test5
s nrwitg=.f.
run5
s psfspl=0.9
s devplt=5
file/pltfile='run5.ps'
plotrun
plot/close
print/noheader/file="run5.txt"/all
s nrwitg=.f.
END ! test5init

PROCEDURE test6init
s nrwitg=.t.
run6
s psfspl=0.9
s devplt=5
file/pltfile='run6init.ps'
plotinit
plot/close
s nrwitg=.f.
END ! test6init

PROCEDURE test6
s nrwitg=.f.
run6
s psfspl=0.9
s devplt=5
file/pltfile='run6.ps'
plotrun
plot/close
print/noheader/file="run6.txt"/all
s nrwitg=.f.

END ! test7init
PROCEDURE test7init
s nrwitg=.t.
run7

81
s psfspl=0.9
s devplt=5
file/pltfile='run7init.ps'
plotinit
plot/close
s nrwitg=.f.
END ! test7init

PROCEDURE test7
s nrwitg=.f.
run7
s psfspl=0.9
s devplt=5
file/pltfile='run7.ps'
plotrun
plot/close
print/noheader/file="run7.txt"/all
s nrwitg=.f.
END ! test7init

PROCEDURE test8init
s nrwitg=.t.
run8
s psfspl=0.9
s devplt=5
file/pltfile='run8init.ps'
plotinit
plot/close
s nrwitg=.f.
END ! test8init

PROCEDURE test8
s nrwitg=.f.
run8
s psfspl=0.9
s devplt=5
file/pltfile='run8.ps'
plotrun
plot/close
print/noheader/file="run8.txt"/all
s nrwitg=.f.
END ! test8init

82

12.4 Appendix D – Filter for Data Compatability

% filter for 1/C Cerrito neural net project
% E. Zivi 4/1/00

i=input('Enter run # : ');
varname=['run' num2str(i)];
infilename=[varname '.txt'];
outfilename=[varname 'f.nna'];
load(infilename);
cutx=eval([varname '(:,6:25)']);
[r,c]=size(cutx);
shiftx=[cutx(1:r-1,:) cutx(2:r,:) cutx(1:r-1,:)];
fid=fopen(outfilename,'w');
for i=1:r-1,
 fprintf(fid,'%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f
%12.4f %12.4f\n',shiftx(i,:));
end
fclose(fid);

83

12.5 Appendix E – Fault Data Filter

% Fault Data Filter for neural net project
% J. Cerrito 4/7/00

i=input('Enter run # : ');
varname=['run' num2str(i)];
infilename=[varname '.txt'];
outfilename=[varname 'falt.nna'];
load(infilename);
matrixf=eval([varname '(:,:)']);
[r,c]=size(matrixf);

for i=1:r,
 for j=1:c-20,
 sign=rand(1);
 if (sign<.6 & sign>.4)
 matrixf(i,j)=matrixf(i,j);
 end
 if sign>=.6
 matrixf(i,j)=((.1*rand(1)*matrixf(i,j))+matrixf(i,j));
 end
 if sign<.4
 matrixf(i,j)=(matrixf(i,j)-(.1*rand(1)*matrixf(i,j)));
 end
 end
end
fid=fopen(outfilename,'w');
for i=1:r-1,
 fprintf(fid,'%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f
%12.4f %12.4f%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f
%12.4f %12.4f%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f
%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f
%12.4f %12.4f\n',matrixf(i,:));
end
fclose(fid);

84

12.6 Appendix F – 40-20 Variable Structure Neural Network: Run 1

85

86

87

88

12.7 Appendix G – 40-20 Variable Structure Neural Network: Run 5

89

90

91

92

12.8 Appendix H – 40-20 Faulted Neural Network: Run 6 Corrupted
Data

93

94

95

