U. S. N. A. —Trident Scholar project report; no. 273 (2000)

“NEURAL NETWORK CONTROL OF THE INTEGRATED POWER SYSTEM”

by

Midshipman Jonathan J. Cerrito, Class of 2000
United States Naval Academy
Annapolis, MD 21402

Certification of Advisor Approval

Assistant Professor Edwin L. Zivi
Department of Weapons and Systems Engineering

Lieutenant George D. Doney, USN
Department of Weapons and Systems Engineering

Acceptance of the Trident Scholar Committee

Professor Joyce E. Shade
Chair, Trident Scholar Committee

USNA-1531-2



REPORT DOCUMENTATION PAGE

1. REPORT DATE | 2. REPORT TYPE 3. DATES COVERED (FROM - TO)
(DD-MM-YYYY) USNA Trident XX-XX-2000 to xx-xx-2000
07-05-2000 Scholar Project

Report
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Neura Network Control of the Integrated
Power System

5b. GRANT NUMBER

. 5c. PROGRAM ELEMENT NUMBER
Unclassified

6. AUTHOR(S) 5d. PROJECT NUMBER
Cerrito, Jonathan J. ;

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME AND 8. PERFORMING ORGANIZATION REPORT NUMBER
ADDRESS

U.S. Naval Academy

Annapolis, MD 21402

9. SPONSORING/MONITORING AGENCY 10. SPONSOR/MONITOR'S ACRONYM(S)
NAME AND ADDRESS

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
A

PUBLIC RELEASE




13. SUPPLEMENTARY NOTES
Accepted by the U.S. Trident Scholar Committee

14. ABSTRACT
Neural networks are investigated for fault tolerant stabilization and control of an Integrated
Power System (IPS). Neural networks can be robust in the sense that they are not disabled by
incomplete or inconsistent information. As non- model based observers, neural networks are
ideally suited to estimation of complex, interactive power systems. Specifically, the ability of
neural networks to adapt to uncertain eventualities such as flooding, fire, and combat
casudtiesisinvestigated. The IPS under consideration will provide integrated propulsion and
ship?s service power generation and distribution for the next generation of U.S. Navy surface
ships also known as the DD-21. These solid state power systems involve nonlinear dynamics
which can lead to Pnegative impedance? instability and voltage collapse. Feedforward back-
propagating neural networks were evaluated with respect to variable structure and data
degradation. This research represents an initial step toward unifying nonlinear, negative
impedance stabilization with robust neural network fault detection and isolation. The Naval
Sea Systems, Integrated Power System and the Office of Naval Research, Electrically
Reconfigurable Ship programs motivated this research.

15. SUBJECT TERMS
Neura Networks; Integrated Power System; Nonlinear Control Systems

16. SECURITY CLASSIFICATION OF: 17. 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
IE)Illl/IITATION OF PAGES Fenster, Lynn
estracT | 0 Ifenster@dtic.mil
Public
a. REPORT | b. c. THIS PAGE o 19b. TELEPHONE NUMBER
Unclassifi | ABSTRACT Unclassifie Release International Area Code
ed Unclassifie | ¢
d Area Code Telephone Number
703 737-9007
DSN 427-9007




Abstract

“Neural Network Control of an Integrated Power System”

Neura networks are investigated for fault tolerant stabilization and control of an Integrated
Power System (IPS). Neural networks can be robust in the sense that they are not disabled
by incomplete or inconsistent information. As non-model based observers, neura networks
are ideally suited to estimation of complex, interactive power systems. Specificaly, the
ability of neural networks to adapt to uncertain eventualities such as flooding, fire, and
combat casudties is investigated. The IPS under consideration will provide integrated
propulsion and ship’s service power generation and distribution for the next generation of
U.S. Navy surface ships aso known as the DD-21. These solid state power systemsinvolve
nonlinear dynamics which can lead to “negative impedance” instability and voltage collapse.
Feedforward back-propagating neural networks were evaluated with respect to variable
structure and data degradation. This research represents an initial step toward unifying
nonlinear, negative impedance stabilization with robust neural network fault detection and
isolation. The Naval Sea Systems, Integrated Power System and the Office of Naval
Research, Electrically Reconfigurable Ship programs motivated this research.
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Nomenclature

Backpropagation: aneura network learning characteristic in which the error is sent
through the network from the output layer to the hidden layer(s) and then finally
reaching the input layer.

Connection: the conduit supplying information from one neuron to the next neuron.

Epochs: the number of passes through a data file a neural network will make before
updating the weights.

Fault Tolerance: ability of a system to continue to function when components of the
system fail or are degraded.

Feedforward: atype of neura network in which the data is sent directly from the input
to the respective hidden layers and then directly to the output layer.

Hyperbolic Tangent (TanH): atransfer function used to relate neuron input and out put
_(e-¢)

valuesin neural networks. It hasan output rangeof -1tol. T i)’
e +e

where I’=I*Gain.
Input: data entered into the neural network; parameters measured from the system.
Layer: agrouping of neurons with the same transfer function and learning rule.

L earning: the process by which a neural network adjusts its weights to model a
relationship between the input and output data.

Neuron: the most basic element of a neural network. The learning rule and transfer
function are applied directly to this component.

Output: datathat is either produced by the neural network or is desired by the system.
Processing Element: see Neuron.

Robustness: ability of the system to deal with large changes in measured quantities and
evolving topology or architecture of the system.

Senditivity: capacity of a control system to determine minimal changes in measured
guantities within the system.



Testing: the evaluation of how well a neura network has learned by supplying the
network with input data and alowing it to predict outputs. These predicted
outputs are then compared with the desired outputs to determine the accuracy of
the neura network.

Tractable: ability to be solved in simplified terms.

Training: seelearning.

Variable Structure: changes in a system’s physical configuration.

Weights: factor applied to the connections between neurons in a network. It is determined
through the learning process.
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1 Introduction

The effective management of electrical power will only increase in importance, as the
navigation, weapons, and propulsion systems aboard naval ships grow more complex in
nature. The need for efficient power management occurs during normal operations as well as
casualty conditions such as flooding, fire, or enemy attack. This requirement presents the
engineer with a unique challenge. The goa isto develop a system that is durable or robust
and yet precise. This system must be quick to respond to voltage collapse. However, it must
recognize routine changes in voltage as the ship carries on normal operations. Essentially,
the system must be able to “think.” Thanks to neural networks, a reasoning control systemis
entirely possible. [1,2,3,4]

The Naval Sea Systems Command, Integrated Power System (IPS) and the Office of Naval
Research, Electrically Reconfigurable Ship (ERS) offer advanced power systems for
deployment of advanced weapons, propulsion, and navigation systems on the next generation
surface combatant. Because these systems often operate at constant power, they demand
continuous regulation to prevent negative impedance instability.

Traditional control systems cannot perform these tasks due to the time constraints and the
complexity of the control laws involved in managing the power system. Fortunately, neural
networks can predict the states of the system faster than models can determine the states
analytically. The complexity of the control laws demands a controller that has the flexibility
and adaptability to manage a constantly changing environment. Neural networks possess this
characteristic of robustness.

Neura networks will provide an IPS controller with the necessary robustness and speed.
Their application to this advanced power grid will not only enable the use of state-of-the-art
solid state components, but will assure the flexibility and survivability of a ship which must
endure the harshest of all conditions, combat. [5]

This research explores the application of a neural network as a non- model based estimator of
a shipboard power system. This power system must have the ability to continue to operate in
all conditions including combat. In order to meet this demand, a controller for this power
system must contend with multiple power plant configurations and corrupted data.

This investigation strives to resolve these issues through the design of neural networks.
These networks are trained, tested, and evaluated on data that is derived from areference
model of the shipboard power system. The objective of thiswork is to provide a nonlinear,
robust neural network as an alternative to traditional, linear controllers for the Integrated
Power System.



2 Prior Work

2.1 Integrated Power System

The Secretary of the Navy has designated the next generation surface combatant, DD-21, as
an Integrated Power System ship. The IPS is the next stage in an engineering design process
that began in the 1970's with aero-derivative gas turbines. These were the first turbines in the
Navy that demanded automated control. During the 1980's, the Navy procured the DDG-51
which featured Tactical Digital Standards (TADSTANDYS) including Navy Standard
Electronic Modules (SEMS) and the AN/USQ-82 Data Multiplexing System (DMS). Then,
at the beginning of the 1990's, the Navy upgraded to a system based primarily on
commercia standards with the Standard Monitoring and Control System (SMCS). SMCS
included |EEE Futurebust+ computer backplane, |EEE Ethernet and ANSI Fiber Distributed
Data Interface (FDDI) networks, and C software. Key goals for the DD-21 include a 70%
crew size reduction and the ability to “fight thru” combat damage. [5]

To achieve these DD-21 goals, the Navy must develop an innovative control system. This
control system must be robust, dynamic, survivable, and stable. Robustness involves the
ability of the system to deal with large changes in measured quantities and evolving topology
or architecture of the system. By comparison, sensitivity is the capacity by which a control
system can determine small changes in measured quantities within the system. The control
system must be dynamic, which isto say that it can change with time. It cannot be inflexible
and unable to adapt to new conditions including the addition of new hardware and the loss of
sensors. A key aspect of the neural network is its ability to distinguish between casualties
and faulty data. Finally, stability or the ability to maintain a desired level of performanceis a
major concern in any control system.

2.2 Neural Networks

Simon Haykin states [6] “a neural network is a massively parallel distributed processor that
has a natural propensity for storing experiential knowledge and making it available for use.”
Essentidly, it is an attempt by mathematicians to model the biological process that the brain
conducts in order for humansto think.

The processing element of a neural network is equivalent to the human brain’s neurons.
Mathematicians have modeled the neuron through this equation:

N
y=j (8 wx - b) (2.1)
i=1
where x is the input, w is the weight, b is bias, and) is the transfer function, and y is the
output of the neuron. The processing element (PE) or neuron accepts inputs from either other
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neurons or directly from the input source. The input is processed by multiplying the weight
and the input less the bias and summed over a series of N iterations. The transfer function
then transforms this sum into an output. Other neurons may then accept this output as an
input via connection weights that represent the strength of the connection within the network.

In this research, linear transfer functions were employed for the input and output layers while
hyperbolic tangent functions were used for the hidden layers. Linear transfer functions
described agebraic relationships among the inputs and outputs. The hidden layers were
composed of hyperbolic tangent functions, which are commonly used for nonlinear
applications. The middle layers are called hidden because they do not receive nor transmit
input or output data.

Narendra and Parthasarathy [7] present an excellent discussion of the two fundamental
theorems that support the mathematics behind neural networks. These theorems are the
Weierstrass Theorem and the Stone-Weierstrass Theorem. The Weierstrass Theorem states
that if C([ab]) is a space of continuous real valued functions on the interval [a,b] with the

normof f1 C([a,b]) defined by |f|=sup{|f(t):tl [a,b]}, then any functionsin C(fab]) can
be approximated arbitrarily closely by a polynomial. This Weierstrass Theorem and its
generalization to multiple dimensions are useful in approximating continuous functions
f :R"® R™using polynomials. The Welerstrass Theorem is essentially the basis for pattern

recognition. In addition, the Stone-Weierstrass Theorem is a generdization of the
Weierstrass Theorem by Stone. This theorem states that [7]:

if b is acompact metric space and r is a subalgebra of C(b,R) which contains the
constant functions and separates pointsof b ,then r isdensein C(b,R).

The Stone-Weierstrass Theorem provides the basis for approximating bounded, continuous,
time-invariant causal operators. This result forms the foundation for the neural network
approximation of dynamic systems.

After the neural network has been constructed, the network must undergo a learning cycle in
order to become productive. Learning is the process of modifying the weights to coincide
with the correct output and input data. There are two significant types of learning,
supervised and unsupervised. Supervised learning occurs when both input and output data
are given to the network. Unsupervised learning entails only giving the neural network input
data and letting the network determine the output on its own. This project will exclusively
focus on supervised learning. Networks can also be referred to as hetero-associative or auto-
associative. Hetero-associative networks are trained on data that have outputs that are
different from the inputs. Auto-associative networks are trained on data in which both the
input and output sets are identical. [8,9,10]

A learning rule typically governs the adjustment of the neurons. This project applies
backpropagation methods via the Extended-Delta-Bar-Delta (EDBD) Learning Rule.
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Backpropagation learning procedures assume that all weights are in error when an incorrect
output is received. Consequently, the error is sent back through each layer while modifying
the weights in each connection until the error reaches the input layer and the modification of
weights ceases. The EDBD algorithm assigns a time-varying momentum rate, njk], and a

time-varying learning rate,a[k], to each connection in the network (k is time) in order to

train the network and limit the error between predicted output and desired output. The
variable learning rate and variable momentum rate yield:

Dwik +1] =a[k]*d[K] + nik]* Dwik] (2.2)
and
Wk +1] = Wk] + Dwk +1] (2.3)

where w[k] and Dw[k] are the connection weight and the connection delta weight
respectively and time, k. d[k] is the gradient component of the weight change at time k.

_ fELK]

d[k
. Tiwfk]

(2.4)

where E[K] is the value of the error at time k. In order to provide greater increases in areas of
lesser slope than in areas of higher gradients, d[k] is a weighted, exponential average of the
previous gradient components at time k:

d[K] = 1- qd[K]+qd[k+1] (2.5)

where q is the convex weighting factor. Constants necessary to complete the EDBD
algorithm are listed below:

k., constant learning rate scale factor

a

k, constant momentum rate scale factor

g, constant learning rate exponential factor
g,, constant momentum rate exponential factor
] » constant learning rate decrement factor

] » constant momentum rate decrement factor
a . upper bound on the learning rate

m..,, upper bound on the momentum rate

The learning rate change, Da[k], for EDBD is:
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Tk, %D it dk-11d[Kk] > 0

Da[k] = % -j ,a[K],if dk-1]d[k] <0 (2.6)

! 0,otherwise

The momentum rate change, Dnik], is:

Tk o B it drk-11dik] > 0

Dnik] :} - nK.if d[k-1]d[K] <O (2.7)

! 0,otherwise

The learning rate and momentum rate are adjusted based upon the results from equations
(2.6) and (2.7). In addition, d[k-1d[k] determines whether the modification will be an
increase or decrease. Finally, the conditions, a[k]£a,, and n{k]£m,, , areimposed on this

algorithm to limit excessive oscillations. These values are selected through trial and error to
allow for accelerated convergence while preventing instability.

A neura network must complete training, recall, and evaluation stages of development in
order to perform accurately. In the recall phase of development, the network is presented
with an input and then is expected to produce the output. In feedforward neura networks,
the information is passed in a direct manner fromthe input layer to the hidden layer or layers
and finally to the output layer. Lastly, the network’s output should be compared to the
desired output in order to evaluate the validity of the training. If the network’s error cannot
be attributed to intrinsic noise, then more training is required. The completion of the training
cycle can be determined both graphically and computationally. As the neural network
continues to learn, its ability to match training set data will improve until the network begins
to overfit the data. Memorization is evident on a plot when the neura network output
matches stochastic data points rather than the underlying relationship. Numerically, the
network is learning as long as the correation is increasing for the independent test set and
decreasing for the training set. When the correlation starts to decrease for the independent
training set and increase for the training set, then the neural network is memorizing.
Independent test data evaluates the network’s ability to generalize. It is crucia during the
recall phase to present the neural network with data that it has not previously processed in its
training cycle in order to evaluate its performance on conditions to which it has not
previously been exposed.

Neura networks are ideal for nonlinear robust controls because they possess two attributes.
The first is pattern recognition. Neura networks can determine a relationship without the
need of afirst principle explanation to relate all of the variables. Essentially, neural networks
apply the principle of induction while traditional controls fashion their relationships through
the principle of deduction. Secondly, fault tolerance is an extraordinary characteristic of
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neural networks. Traditional controllers fail when parts of their system are destroyed or
disabled. If various components of a neural network including the sensors are destroyed or
disabled, the network will continue to function. Although the network’s performance will
degrade as more faulted information is presented, it will not immediately fail, as most
traditional controllers are prone to do. Consequently, neural networks are very applicable
and practical control tools that have unexplored potential.

2.3 Model Structure

The Integrated Power System and proposed neural network based controller are distributed
throughout the ship. These system components are modeled as distinct, interconnected,
lumped parameter subsystems. The lumped parameter assumption models distributed
elements using a finite number of ordinary differential equations. This formulation resultsin
a coupled system of nonlinear, time varying differential equations. Depending on the
complexity of the mathematical relationships, and the number of variables in the system, the
representation of system state can become very involved and difficult to solve. The
following four categories of state equations range from general, difficult to solve
formulations to ssimplified linear models with straightforward solutions:

¢ Implicit, Norlinear, Time-Varying:
f(x(t),x (B),u ).y = 0 (2.8)

¢ Explicit, Norlinear, Time Varying:
X(H)=F(x(t),u (t).t) (2.9)

C Explicit, Linear, Time Varying:

%(H)=A (O ()+B (u (1) (2.10)
C Explicit, Linear, Time Invariant:
(1) =Ax (t)+Bu (t) (2.11)

In alumped system, the system can be described by afinite number of state variables using
one of the equationsin (2.8) through (2.11). The mode of the system depends upon state
space equations plus an output equation of the form:

y =Cx+Du (2.12)
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where u isthe input vector, X is the state variable vector, and y is the output vector.
The C and D matrices map the state and input vectors to the output vector.

In nonlinear control theory, researchers have made certain assumptions in order to make
nonlinear systems tractable or to ssimplify the system from a state equation such as the one
presented in equation (2.8) to an equation like the one presented in (2.11). In equation (2.8),
the relationships between the system state, x(t), the derivatives of the system state, x(t), and
the exogenous input, u(t), are implicit, nonlinear, and time varying. Equation (2.9) describes
an explicit formulation for x(t) obtained through separation of algebraic and differential
portions of equations. The Integrated Power System Simulation, employed in this study, uses
the equation (2.9) formulation. This model is a variable structure, in the sense that the
system configuration changes with time. Equation (2.10) represents a state space model in
terms of matrices A(t) and B(t) which are linear, but time varying. Equation (2.11)
represents the ssimplest of state space models, an explicit, linear, time invariant system. For
convenience, the preliminary investigation was performed using a smplified electric circuit
in the form of equations (2.10) and (2.11).

The attraction to ssimplify an implicit, nonlinear, time varying system to an explicit, linear,
time invariant (LTI) system arises from the standard procedures common only to linear
systems for determining controllability, observability, and stability. Although these
assumptions were successful in solving some nonlinear systems, they cannot be applied to all
instances because of the complexity and unpredictability of nonlinear problems. However, a
neural network can and has been applied to explicit, nonlinear, time varying systems or those
similar to equation (2.9) and been successful. [7]

2.4 Prior Research

Work in applying neura networks in practical control systems has been ongoing for many
years. In 1990, Roger Barron et al. presented a paper [11] at the National Aerospace
Electronics Conference. Thefoci of this paper are Fault, Detection, Isolation, and Estimation
(FDIE) functions and Reconfigurable Flight Control. FDIE functions are challenged by the
inability to maintain complete observability during a multitude of casualty situationsin an
aircraft. Thislarge number of casualty stuations presents many potential operational fault
conditions. In addition, the control issues involved in casualty cases are high order, time-
varying and nonlinear. The control processes have multiple variables and cannot be fully
observed. Finally, there are undefined aero-inertial parameters and undefined

aeroservoel astic characteristics especialy in aircraft which are damaged. A controller
designed to handle these issues must be able to adapt to real time conditions and learn to ded
with unforeseen conditions.

Reconfigurable Flight Control demands adherence to four principles of reconfigurable
control law. First, estimated effector sensitivities should be used to adjust control law gains
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viaan explicit pseudo-inverse calculation. Secondly, estimated effector sensitivities should
be used to adjust control law gains via an implicit or neural network calculation. Third, fixed
and implicit (polynomial neural network) calculations should be used to infer control law
gains independently of estimated effector sengitivities. Finally, implicit, on-line adaptive
(polynomial neural network) calculations should be used to command the control effectors.
Barron et al. derived the Algorithm for Synthesis of Polynomia Networks— 11 (ASPN-II) for
feedforward polynomial neural network in a supervised, offline environment. These
networks are composed of alinear combination of polynomial transfer functions. An implicit
model of data containing a maximum of 200 input and output pairs was used to train the
neura network online. Barron et al. concluded that polynomial neural networks are potential
solutions to FDIE problems in reconfigurable flight systems since they responded by scoring
a94.4% probability of detecting and correctly isolating effector impairments exceeding 50%
missing. [11]

Roger Barron and Eugene Parker wrote a white paper [4] in 1993 concerning the
applicability of neura networks to smart shipboard systems. Barron and Parker address
prediction, FDIE, and reconfiguration using neural networks in smart shipboard systems.
Barron et a. compare neural network controllers to expert system controllers. Hard
thresholds do not limit neural networks in making decisions. Neural networks can reduce the
number of rulesinherent in expert systems. Neural networks utilize all pertinent observable
data including parameter that may be unfamiliar to humans. Neural networks can aso
receive data from various sources and organize it into a coherent control strategy. Neural
networks are faster than expert systems in gathering input data. Neural networks can aso
predict future states of instability and recognize potential casualties.

Barron et a. continue in their discussion to address fault detection and isolation (FDI) in
Shipboard Electric Power Distribution Systems. Barron’s polynomia neural network was
used to control an SPD Technologies solid-state circuit breaker that can open high-current
power circuits within a few microseconds. This circuit breaker was able to protect power
system components when certain fault classes instigated ten ampere/second current growth
rates. In this application, a polynomia neural network relying on its pattern recognition
capability dramatically improved fault detection and identification. This system has been
experimentally validated for three-phase AC power protection under normal, bolted-fault,
and arcing-fault conditions. [4]

In 1995, Guglielmi et al. applied [3] neura networks to solving real fault detection and
diagnostic problems in four heaters of a feedwater high-pressure line of a 320 MW power
plant. Their results show that neural networks can function in such an environment. The
neural networks used by Guglielmi et a. in this investigation were able to adequately
diagnose the system with respect to steady-state operation. Additionally, in transient modes
of operation, one of their neura network designs performed very well in detecting and
diagnosing faults.
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Liu, Su, Tsay, and Wang [1] investigated the application of measuring phasorsin order to
predict better real- time transient stability swings. They used specific Phasor M easurement
Units (PMUSs) to find the phasor measurements throughout the system. Liu et al. showed that
neural networks can predict the behavior of a system faster than the behavior can be
computed analytically. Since they used an eight cycle window of phasor measurements, the
neural network was able to select the most pertinent data from an overdetermined set. They
used a combination of Supervised Decision Directed Learning and Backpropagation to train
their network. Liu et a. also used counterexamples of datato prevent the neural network
from “memorizing” the relationships evident within the system.
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3 Technical Approach

The advanced Integration Power System is essential to the design of DD-21, the next
generation surface combatant. Without this power system, the ship will not be able to
employ the most sophisticated and state-of-the-art weapons, navigation, and propulsion
systems. These advanced systems and their solid-state components demonstrate nor linear
behavior with respect to power consumption. At the moment, no control system can
effectively manage these components as well as complete the necessary tasks in the event of
acasualty. Itisthe objective of this project to develop a control system through the
employment of feed-forward back propagating neural networks that will not only manage the
advanced Integrated Power System, but also be ready to contend with the unexpected
casualty.

There are two fundamental issues that a controller must address in order to operate
proficiently within the IPS environment. The first of these issues is the variable structure of
the power system. As the ship conducts operations, the configuration of the electrical system
and the electrical system’sloads will change. This dynamic environment presents a unique
challenge to a controller since there are multiple scenarios that it must consider. The second
fundamental issue is the fault tolerance of the controller. The controller must be able to
contend with both a complete sensor failure due to a casualty and degradation in the sensor
data. A competent controller will be able to cope with these two fundamertal issues inherent
to the Integrated Power System.
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4 Preliminary Investigation
4.1 Simulation Description

As an important first step toward the ultimate goal of controlling an Integrated Power
System, preliminary research was conducted on the simple circuit presented in figure 4-1.

] i1 ’ el '
Resistor 1 O Resistor 2
(10 Ohms) (10 Ohms)

O e2

E a Capacitator Inductor
(10 Volts) (1x 103 Farad) (1 Henry)

i2 i3

Figure4-1 Smple Circuit

This ssimple circuit represents a second order initial value problem formulated in the state
space equation (4.1). This circuit includes two resistors, a capacitor, an inductor, and a power
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After developing the state-space equations necessary for this circuit, aMATLAB simulation
was used to determine the values of three currents and two voltages. To allow the neural
network to estimate derivatives, each input record contained the current data augmented with
shifted data. Effectively, each input record contained present data and one time step previous

data. This z'* time shift operation was performed in MATLAB:

Yy =[YiZ7Y] (4.3)
or equivalently:

Yag (M) =[¥(N): y(n+K)] (4.4)

Equations (4.3) and (4.4) can be interpreted as augmenting the system response time series
with the system response time series shifted by Dt.

MATLAB was used to generate the preliminary simulation results and to augment the results
with time shifted data. The MATLAB st ep command was used to determine the unit step
response given equations (4.1), (4.2), and initial conditions of zero. To generalize the results,
the MATLAB | si mcommand was used to determine the response given arbitrary initial
conditions. The generalized, | si mbased, ssmulation script and the MATLAB script to
augment the simulation time series are enclosed in Appendix A.

4.2 Transition from MATLAB to NeuralWare

Although the initial neural network research was conducted using the MATLAB Neural
Network Toolbox, it was necessary to change neural network environments in order to
develop a more refined and flexible neural network.



20

MATLAB'’s Neura Network Toolbox is limited in its ability to construct neural networks for
this project:

= Absence of visualization capabilities

= |nability to connect and disconnect specific weights within the neural network

= Primitive mechanism for specifying the structure of the neura network
Due to these limitationsin MATLAB’s Neural Network Toolbox, it became necessary to
adopt the NeuralWare Professional 11/Plus software.

NeuralWare is a more flexible program since it does allow for a connection between
individual neurons in the input layer and individual neurons in the hidden layer. This
attribute of NeuralWare greatly enhanced the capability of the neural network. NeuraWare
also allows for the adjustment of each neuron’s transfer function and learning rule. Thus, the
ease with which one may operate NeuraWare as well as the visua representation available in
NeuraWare make it a superior tool for developing neura networks when compared to
MATLAB.

4.3 Neural Network Design

The neural network for this preliminary investigation is a feedforward backpropagating
neural network. Figure 4-2 presents the overall architecture of the neural network. It has
seven total layers: one input layer, one output layer, and five hidden layers. The input layer
has ten processing elements or neurons in order to accept the five selected parameters of i,
I,, i5, € and e, and the five time-shifted parametersof i, i,, i,, § and e,. Theseten
processing elements used a linear transfer function and did not apply alearning rule. A

learning rule was not necessary for these neurons since their input did not pass through a
previous neuron. In other words, the data came directly from the sensors.

The input layer neurons were then connected via weighted connections to the five hidden
layers that applied the hyperbolic tangent transfer function and the EDBD learning rule. All
input neurons, except the neurons that contained the data to be estimated, were connected to
the hidden layers. This configuration was chosen to prohibit memorization and force the
neural network to learn the relationship between the other eight parameters. Each hidden
layer contained three processing elements. Thus, the hidden layer responsible for estimating

i, did not receive input from i, .

The three hidden layer neurons were then connected directly to the output layer neuron that
was responsible for producing the parameter absent from the hidden layer. The output layer
connections aso used a linear transfer function and the EDBD learning rule. There were also
connections that bypassed the hidden layer and directly connected input neurons to the
appropriate output neurons. Finally, a bias was connected to the hidden layer and output
neurons.
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Since neural networks have no intrinsic ability to model dynamic systems, it was necessary
to augment the input with time-shifted data. These time-shifted data provided the neural
network with a way to estimate derivatives using finite differences. Entering the time-shifted
datais necessary because the neural network is “memoryless’. Better results could have been
obtained by explicitly providing the neural network derivatives. Time shifted data was
preferred over finite differences due to ease of implementation in real world scenarios.
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4.4 Training Data

The neural network was trained on three data sets. Initial training was conducted on
sequentia, individual data sets that had completely accurate data. This training method did
not sufficiently train the neural network because it over emphasized the most recent training
set. To aleviate this problem, a single set of training data was constructed from individual
simulation results. This operation was performed by concatenating the individual training
setsinto a single, aggregated training set. This change in training methods alowed the
neural network to weigh al training data equally. The neural network is unaware of the
sequential nature of the data. 1t randomly accesses the individual observations and each
observation represents a strobe of system state at a particular instant of time.

To achieve a fault tolerant neural network, the training set was modified to include sample
sensor faults. The sample faults included random variations and “drop outs.” Random
variationsof +10% were imposed to simulate sensors that were degraded or out of
calibration. “Drop outs’” are a complete loss of signal, representing a loss of sensing
capability due to sensor failure of battle damage. In essence, this procedure trained the
neural network to be robust with respect to degraded sensor data.  The quantity of faulty data
was limited to approximately 15% to minimize the adverse effects on network performance
metrics. During training, minimum summed squared error and other performance metrics
guide the neura network to the generalized solution. Increasing the proportion of faulty data
would drive the generalized solution to represent fault conditions rather than normal
conditions.

The amount of faulted datain comparisonto the accurate data was also a concern during
training. The percentage of faulted data should not be greater than the percentage of accurate
data. In redlity, the percentage of faulted data should be between 10% and 30%. The
accurate data should also not be derived from the same initial conditions. The neural
network’ s accuracy was greatly enhanced when varying initial conditions were used to
produce accurate training data.

At this point, the neural network was able to reproduce the transient response but was not a
good predictor of initial conditions. This poor performance is attributable to the fact that
initial conditions represented only one out of 250 observations. To achieve a balanced
weighting of initial and transient response, the proportion of observations that represents
initial, steady state data was increased. This balancing was performed by extruding the initial
conditions in time. This extrusion repeated steady state conditions over an initia period of
time to increase the weight associated with initial conditions.

4.5 Testing & Results

After training the neural network, it was necessary to evaluate its performance.
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The testing of the data was carried out by producing three sets of original test data. The
neural network was not exposed to this data a any point in itstraining cycle. By keeping the
test data separate from training data, the neural network was not given the opportunity to
recite memorized data. Instead, this separation allowed for the critical evaluation of the
relationship that the neural network had established to model the system. Thus, the test set
was completely foreign to the neural network and provided an accurate measurement of the
neural network’s performance.

The neura network’ s best performance was produced after having trained for 10,000 epochs
on a combined data set of 10,500 points including varying initial conditions, data drop outs,
and ten percent error data. One epoch represents a single pass through the training data set.
As shown below, the results of testing that included missing data were very good.
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Figure4-3 Preliminary Neural Network Responseto Missing Data

In this plot, the parameter, el and el’s time shifted data were replaced with al zeros to
simulate a sensor failure. In this scenario, the network was able to compensate accurately for
the lack of el data with respect to predicting €l1. However, since the el data have a strong
relationship to €2, the neural network was not able to predict e2 exactly. The zero columns
of el and €2 have a much more dramatic effect on the other parameters in this neural network
since there are only 10 total parameters. Having considered this effect, the results shown in
this plot are even more impressive.

Comparatively, when the network was tested on data that had a ten percent input error, the
neural network performed well again. In Figure 4-3, one can see that every 40 data points,
there is a dight shift in the network’s prediction. Due to the aternating between parameters
of the missing data, the network is able to maintain accurate predictions and handle a sensor
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fault in any parameter. Additional sensors would further mitigate the adverse effect of aloss

of sensors.
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These positive results paved the way for investigation of the Integrated Power System.
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5 Investigation of IPS Reference Model

5.1 Description of the Integrated Power System Simulation

The Integrated Power System DC Zonal Electrical Distribution System or IPSDC ZEDSisa
vital component of the DD-21, next generation surface combatant project. This power
system provides the necessary power generation, distribution, and conditioning to support the
advanced weapons, navigation, and operating systems required by the mandates for DD-21.

The IPS smulation used in this project is a subset of the entire IPS system. It iscompletein
the sense that it models the necessary components, connections, and architecture that are
present in the total system. S. F. Glover, B. T. Kuhn, and S. D. Sudhoff of Purdue University
developed this IPS simulation under Office of Naval Research funding. [12]

The Naval Sea System Integrated Power System (IPS) and Office of Naval Research
Electrically Reconfigurable Ship (ERS) provide advanced power distribution systems that
can reroute power around damage and maintain power continuity to vital loads.

As shown in Figure 5-1, these solid state power electronic modules include [12]:
Power generation module composed of a Prime Mover (PM), Synchronous Machine
(SM), and voltage regulator
Power Conversion Modules (PCMs)
Ships Service Converter Modules (SSCMs)
Propulsion Motor Module (PMM).
All of these components are interconnected for improved flexibility and survivability.

A 19 mega-Watt synchronous generator powers the IPS reference model. This 4160 Volt AC
Bus 1 distributes power to propulsion and redundant ships service supply busses. Electric
propulsion power is converted to mechanical power via a 19 mega-Watt induction motor and
drive system. Simultaneously, the Ship Service Power Supply (SSPS) converts AC Bus 1
power to 1100V DC for port and starboard distribution. Port and starboard Ship Service
Converter Modules (SSCMs) convert the 1100V distribution power to DC to 900V and 860V
DC. Auctioneering diodes draw power from whichever bus has the highest voltage potential .
This feature allows bumpless transfer from the primary to the secondary supply bus. AC
loads are served via Ship Service Converter Modules (SSCMs), producing 440V AC power.
Finaly, large DC loads are directly connected to the port and starboard DC busses via
auctioneering diodes.

Glover et a. modeled this system through the use of the Advanced Continuous Simulation
Language (ACSL). It isacomputer ssmulation that accurately represents the behavior of the
system. First, system components were modeled through a series of differential equations.
These equations were then combined to produce a mathematical model of the system.

Glover et a. then wrote a computer simulation program in the ACSL language based on this
mathematical model. [12]
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IPS Simulations

The Integrated Power System reference model, developed by the Energy Systems Analysis
Consortium (ESAC) was modified for this investigation [13]. All AC three phase voltages
and currents were converted to RM S magnitudes. Run time scripts were composed to
configure the system in eight distinct operating alignments. Once steady state operation was
achieved, each run consisted of a single transient event. This single event was the activation
of the induction motor attached to DC Buses 3 ad 4 (commonly referred to as the “motor”).
These runs of different configurations lasted 10 seconds and had a sample rate of 100 Hz.
A total of eight runs were completed and logged. The initia settings for each run included
energizing the Exciter/V oltage Regulator, the Prime Mover, the Synchronous Machine, AC
Bus 1, and the AC to DC Converter, while connecting DC Bus 1 to DC Bus 3 and DC Bus 2
to DC Bus 4. The Propulsion Drive remained off. These two components were disconnected
because their reaction to change in the power system was at |east an order of magnitude
dower. Consequently, their behavior would have minimal effect on the first 10 seconds of
the motor start. While each run deviated from these initial settings in its configuration, the
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same twenty parameters were observed during each run. The following table names these
parameters and briefly describes them:

Table5-1 IPSACSL Simulation Variable Names

Voltages Description Currents Description
vmagbl AC Bus 1 Voltage imagserv | Ships Service Load Current
vmaghb3 AC Bus 3 Voltage imagb3 AC Bus 3 Current
Vbus1 DC Bus 1 Voltage ibusl DC Bus 1 Current
Vbus2 DC Bus 2 Voltage ibus2 DC Bus 2 Current
Vbus3 DC Bus 3 Voltage ibus3 DC Bus 3 Current
Vbus4 DC Bus 4 Voltage ibus4 DC Bus 4 Current

voutsscm3b| Voltage from DC Bus 3 to Diode Bridge| ibuslload DC Bus 1 Load Current
voutsscm4b| Voltage from DC Bus 4 to Diode Bridge| ibus2load DC Bus 2 Load Current
Vdc34b Voltage out of Auctioneering Diodes |ioutsscm3b Current frorgr%l;]se3 to Diode
Current from Bus 4 to Diode
ioutsscm4b Bridge
. Current out of Auctioneering
idc34b Diodes




5.3 Configurations

This section deals exclusively with the configurations used to train and test the neural
networks. Quantitative and qualitative results are presented in subsequent chapters.

5.3.1 Initial Configuration

Prior to commencing any ssimulations, all power components were disconnected. However,
the DC Buses remained connected. Then, before every run, each component was energized

from thisinitial configuration.
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5.3.2 Run 1 Configuration

Run 1's configuration included an energized DC Bus 1 and DC Bus 3 with an active DC load
on DC Bus 3. DC Buses 2 and 4 were disconnected.
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5.3.3 Run 2 Configuration

In the configuration for run 2, DC Buses 1 and 3 were disconnected while DC Buses 2 and 4
remained active with aresistive DC load on DC Bus 4.
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5.3.4 Run 3 Configuration

Run 3 was similar to Run 2, but it added the Ships Service Inverter Module to DC Bus 2 that
energized AC Bus 3.

—— IPS DC Zonal Electrical Distribution System
VoltageRegulator (DC /E DS)
e

4180V AC
Bz 1 DG Bus 1 DC Bus 3
1100V DC 1100V D
AD 900v DC
PCM-4 55P5 — i
— MW | 8O0V OC
1100V DC
Motor
1100V DC 860V DC AC Bus 3 860V DC Driva
Ac A 440V AC 860V DC
Legend 3 Phasge AD A AD A
S55P5 - Ship Service Power Supply ey e Vs
S5CM - Ship Service Converter Module 1100V DC | ssc S5CH
55IM - Ship Service Inverter Module | |
CB - Circuit Breaker DG Bus 2

AD - Auctioneering Diodas DC Bus4
SM - Synchronous Machine

PM - Prime Mover

Inactive Component
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5.3.5 Run 4 Configuration

Run 4 built on the Run 3 configuration by adding DC Bus 1 to the Ships Service Inverter
Module. However, DC Bus 4 remained connected.
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5.3.6 Run 5 Configuration

The configuration for Run 5 included energizing DC Buses 1, 2, 3, and 4. AC Bus3 was
also energized and connected to both DC Buses 1 and 2. However, DC Bus 3 was hot

connected to the motor.
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5.3.7 Run 6 Configuration

All of the DC Buses and AC Bus 3 were energized and connected. Run 6 is the complete
power system operating.
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5.3.8 Run 7 Configuration

DC Bus 4 was disconnected from DC Bus 2 for Run 7. However, the rest of the system

remained connected and energized.
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5.3.9 Run 8 Configuration

In thisfinal run, DC Buses 2 and 4 were disconnected while DC Buses 1 and 3 remained
energized. AC Bus 3 was still connected to DC Bus 1.
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The IPS Simulation Code and the command file to exercise the ssimulation are found in
Appendices B and C, respectively.
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6 Variable Structure Control of IPS

It is necessary for the IPS controller to contend with a varying physical structure within the
power system. An adept controller will have to adapt to such modifications in the power
system with ease. During this investigation, three different neural network architectures were
evaluated. At first, these networks were trained on millions of passes. Testing on
independent data indicated the neural network’ s tendency to memorize the data instead of
generalizing. When this memorization occurred, the performance of the neura network
rapidly diminished. Consequently, the training of these variable structure networks was
repeated using a reduced number of passes. Thistraining strategy limited the memorization
of the data by the neural networks and increased their robustness. The following sections
present each neural network and provide graphical results. Quantitative and summary results
are reported after discussion of individual neural network structures and results.

6.1 38-1 Variable Structure Neural Network

As shown in Figure 6-1, the 38-1 neural network has a 38 neuron input layer, a ten neuron
hidden layer, and a single neuron output layer. The hidden layer uses a hyperbolic tangent
transfer function. The network was trained using the Extended Delta-Bar-Delta (EDBD)
learning rule. The 38 neuron input layer accepted data from 19 of the 20 parameters and
their time-shifted equivalents. The auctioneering diode output, idc34b, is the current
supplied to the motor during the start sequence. This network trained for 10,000 passes on
runs 2, 3, 4, 6, 7, and 8. It was then tested on runs 1 (Figure 6-2) and 5 (Figure 6-3) without
ever having trained on such configurations. Given the difficulty of modeling variable
structure systems, the results exceed our expectations. Both runs very closely approximate
the expected values, testifying to the robustness of the neural network.
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6.2 36-2 Variable Structure Neural Network

The 36-2 neural network, discussed in this section and illustrated in Figure 6-4, represents the
next logical progression in predictive capability. This network uses al inputs except vdc34b
and idc34b to predict both vdc34b and idc34b. As before, auctioneering diode output, idc34b
and vdc34 represent the current and voltage supplied to the motor during the start sequerce.
The 36-2 nomenclature indicates 18 inputs plus 18 time shifted inputs and two outputs. The
hyperbolic tangent transfer function was retained for hidden layers and once again, EDBD
was the learning rule.

The 36-2 neural network was tested on runs 1 and 5 after having trained for 7,500 passes
exclusively onruns 2, 3, 4, 6, 7, and 8. This network was not expected to provide accurate
estimates for configurations that it had not seen during training. Nevertheless, Figures 6-5
and 6-6 indicate motor gartup current predictions that are almost as good as the 38-1 case.
The small offsets between actual and predicted results are due to the variable structure of the
system. This observation is strengthened by examining the voltage predictions. Note that the
predicted voltage for test scenarios 1 and 5 are identical, indicating that the neural network is
unaware of the change in system configuration. The 36-2 network again demonstrated the
robustness of neural networks in estimating idc34b and vdc34b effectively with minimal

input information.
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6.3 40-20 Variable Structure Neural Network

To complete the variable structure studies, a 40- input 20-output (40-20) neural network was
constructed. The 40-20 network is essentially twenty 38-1 networks acting in parallel. Since
the 40-20 interconnections are very complex, Figure 6-7 displays a simplified schematic of
the neural network. Each output estimates one of the twenty parameters that were observed
in the simulations. To prevent memorization, each output is not connected to its own input or
time-shifted input. Consequently, the neural network determines the output based upon the
other 38 inputs. These 38 inputs are sent to a hidden layer that is directly connected to the
corresponding single output neuron. In this network, the hidden layers all use the hyperbolic
tangent transfer functions and apply the EDBD learning rule. This neura network is an
attempt to extend the robustness of the 38-1 Variable Structure Neural Network into a
controller that can determine all twenty system parameters.

The results for the 40-20 neural network are very good. However, as the neural network is
trained on multiple output parameters, it tends to generalize. These generalizations limit the
correlation of the 40-20 neural network as compared to the 38-1 neural network since all
twenty output parameters in the 40-20 were weighted equally while the 38-1 network was
solely concerned with idc34b.
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Figure6-7 Neural Network: 40-20 Architecture
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Figure6-8 Run 1 Current & Voltage Prediction with 40-20 Architecture
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7 Fault Tolerant Control of an IPS

A capable controller for the IPS must be fault tolerant. The controller cannot be so brittle
that if sensor data degrades or is completely absent, it will fail. In order to address this
concern, two fault tolerant neural networks were designed, developed, and tested.

7.1 38-1 Fault Tolerant Neural Network

The 38-1 neural network, diagrammed in Figure 7-1, has 38 input layer neurons that accept
all of the parameters and their time-shifted equivalents except idc34b and its time-shifted
equivalent. The variable idc34b was selected as the output since it is the current associated
with the motor start sequence. The hidden layer contains ten neurons with hyperbolic
tangent transfer functions.

The neural network was trained on perfect datafrom all eight runs for atotal of 1,000 passes.
It was then tested on a set of degraded data that originated from run 6. Run 6 datawas
processed by the MATLAB filter included in Appendix E which randomly inserted errors
ranging from —10% to 10%. Then, columns of zeros were inserted into the file to simulate
sensor faillure. These zeros were inserted in both the parameter and its time shifted
equivalent at the same time so that the data was consistent. The neural network was then
tested on this set of degraded data. Since the original eight runs had established avery brittle
neural network, it was unable to perform at an acceptable level during thistest. Figure 7-2
displays the neural network’s poor performance as was expected since the neural network
had not yet been trained on inaccurate data. The weights obtained from the perfect data were
used asinitial weight values for data degradation training. The neural network was trained on
degraded data from run 6 for 3,500 passes.

As shown in Figure 7-3, the neural network’ s performance was greatly enhanced and was
able to handle both degraded data faults and sensor failure faults. There are two groups of
data points clustered at 8 seconds and 10 seconds in Figure 7-3 that depart significantly from
the actual values. These departures show the neural network’ s ability to partially compensate
for sensor failure. With additional training on corrupted data, the neural network could learn
to minimize the sensitivity to sensor failure thereby enhancing robustness.
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Figure7-3 Improved Fault Tolerant Prediction with 38-1 Architecture



50

7.2 40-20 Fault Tolerant Neural Network

The 40 input and 20 output fault tolerant neural network is the culmination of this research.
The primary goal of this project was to construct neural networks that could model nonlinear
dynamics and be robust with respect to faulted data. This neural network is essentially
twenty 38-1 neural networks combined to form one “super” neura network. Once again, the
hidden layers are composed of hyperbolic tangent functions. Each output is alinear
combination of the independent inputs and a dedicated hidden layer. Likewise, the hidden
layer is connected to 38 input neurons excluding those that are directly related to the output.
In order to show this neural network in the least confusing manner possible, the connections
have been hidden in the Figure 7-4.

This network was trained in much the same way as the 38-1 Fault Tolerant Neural Network.
It trained for 5 million passes on completely accurate data from al eight runs. Aswith the
38-1 neural network, a“nai ve’ 40-20 neural network that was not trained on faulted data
could not predict faulted run 6 data. As before, training was continued using the degraded
data developed for the 38-1 fault tolerant investigation. Due to the complexity of the 40-20
network, atotal of 10 million passes was performed without over training. Figure 7-5
clearly demonstrates the ability of the 40-20 neura network to generate accurate estimatesin
spite of significant data degradation. The departures in Figure 7-5 are much smaller than
those observed in Figure 7-3. The generalization of the 40-20 neural network decreased its
sensitivity to sensor failure as compared to the 38-1 neural network in Figure 7-3. More
detailed results are provided in Appendix H.
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Figure 7-4 Neural Network with 40-20 Architecture



Auctioneering Diode Yoltage: Actual and Predicted
I I I I I I I

— wvdc34b actual
940 | < wde3db predicted

Tirne, sec

Auctioneeting Diode Current: Actual and Predicted
[=0n]

a0

40

30

Current, A

20

— 1dc34b actual
© ide34b predicted |7
! I I ! I I

0 1 2 3 4 i B 7 8 9 10
Time, sec

Figure7-5 Fault Tolerant Prediction with 40-20 Architecture

52



53

8 Quantitative Analysis

It isjust as important to measure the performance of the neural networks quantitatively
(Table 8-1) asit isto demonstrate their performance graphicaly. Consequently, two types of
calculations were applied to quantify the results: correlation and accuracy.

8.1 Correlation

Correlation measures the similarity of trends in two sets of data. If two sets of dataare
similar with respect to their slopes, they will have a correlation approaching 1. Their
correlation will also be high even if there is alarge bias separating the two sets of data. If
two sets of data do not coincide with respect to their trends, then they will have a correlation
approaching 0. Essentialy, correlation measures the ability of the neural network to produce
output data that tracks the trends of the desired output data without regard to scale.

Therefore, correlation is not a useful metric for constant parameters.

8.2 Accuracy

For those sets of data that are constant or nearly constant, i.e. most voltage measurements in
this research, an accuracy measurement was calculated using equation (8.1):

)_(desjred - )_(predicted
accuracy =1- 8.1

nominal

This calculation included averaging the two sets of data, including the desired output and the
predicted output, to be compared. Then, the absolute value of the difference between these
two averages was taken and divided by a nominal value. This quantity was then subtracted
from 1 to produce a measurement of accuracy. A value approaching 1 isvery accurate while
avaue close to O isinaccurate. The nominal value for each parameter was selected from the
design of the simulation. For bus voltages, the nominal value was the regulated voltage. For
currents, a nominal value of 250 amperes was used.



8.3 Results

As one can deduce from these values in Table 8-1, the neural network was successful in
predicting both transient and steady state responses. It should be noted that the 40-20
Variable Structure neural network failed to accurately predict vbusl in run 1 and vbus2 and
voutsscm3b in run 5. The neural network’s poor performance with respect to these three
parameters is a result of its lack of exposure to configurations in training that would have
prepared it to predict these values. These results emphasize the importance of correctly
training a neural network on multiple scenarios.

In transitioning from a ssimulation of the Integrated Power System to an operational
Integrated Power System, the neural network’s performance would be expected to improve.
The greater amount of generalization necessary to observe an operational 1PS would increase
the neural network’s robustness. An increase in sensors would also enhance the neural
network’ s robustness. Finaly, the computationa expediency of the neural network would
aid its performance in an operational Integrated Power System.



55

Table 8-1 Correlation & Accuracy Values
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9 Summary
9.1 Synopsis

Neura network control of the Integrated Power System was researched, investigated, and
evaluated from two distinct perspectives. The variable structure neural network was trained
on six different power system configurations and evaluated using two additional, independent
configurations. The training set was intentionally incomplete. This incompleteness was
desired in order to fully assess the neural network’s ability to analyze variable structure
configurations. Despite the absence of prior training, the neural network accurately predicted
the dynamics of the independent test configurations. The three isolated prediction failures
are directly traceable to the absence of relevant training data. This result emphasizes the
requirement for a complete training set. Subsequently, sensor degradation and failure were
introduced in addition to the variable structure. The neural network continued to predict
parameter values accurately.

9.2 Conclusions

The neural network did an excellent job of predicting uncertain power system parametersin a
variable structure system subjected to degraded sensor data. The isolated estimation failures
demonstrate that the training data must represent all possible system configurations. Given
these very promising results, neural networks appear to have a great potential to aid in the
fault tolerant control of complex, interactive systems such as the IPS.

9.3 Recommendations

In order to apply these promising results confidently to complex, interactive systems,
additional research should be conducted in the following areas:

Unexpected transients such as power system faults

Quantification of fault tolerance

Optimization of neural network structure, learning rules, and training

Adding feedback structures to the neural network architecture

Synthesize a hybrid control strategy where neural networks complement other
control technologies
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9.4 Closure

This research has produced exciting results that validate the premise that neural networks can
be reliable, fault tolerant estimators of uncertain, complex, variable structure systems,
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12 Appendices
12.1 Appendix A —Preliminary Simulation MATLAB Code

% Prelimnary Investigation - Sinulation Data for Neural Network
% Single Matrix Qutput with Shifted Data [yl y2]

% 27 MAR 00

cl ear;

%efi ne Lunped Paraneters

ea = 10;
Cl = 1le-3;
L1 = 1;
R1 = 10;
R2 = 10;

%erive the State-Space Matrix

A =[-1/(R1*C1l) -1/C1;1/L1 -R2/L1];

B =[1/(C1*R1);0];

C =[ea 0;0 ea;-ea/Rl -ea; ea -ea*R2;-ea/ Rl 0];
D =[0;0;eal Rl;0;eal R1];

sys = ss(A B, C D);

t=0:.001:. 25;

U = ones(length(t), 1);

XO=[0 0]"';

[y,ts] = Isimsys,Ut, XO;

% Single Matrix Qutput y

el =y(:,1);
i3 =y(:,2);
i2 =vy(:,3);
e2 =y(:,4);
il= vy(:,5);

% Shifted Matrix Qutput y_a
yl=y(1l:length(y)-1,:);
y2=y(2:length(y),:);
y_a=[yl y2];

9%l ot sinulation

clf

[ax1, hl,h2] = plotyy(t,il,t,el);
set(hl,'LineStyle','0")

set (h2,'LineStyle','-")

set (h2,' Marker','.")
set(hl,'Color',"k")

set(h2," Color'," k")

title('Sinulation Data for Neural Network')
x|l abel (" Time, sec.')

axes(ax1l(1));



axis([0 max(t), -0.2 1])
yl abel (' Current, A')
grid; hold on
plot(t,i2,"'k+")
plot(t,i3,"'kdianond")
legend('il,"i2","i3,0)
axes(ax1l(2));

axis([0 max(t), -2 10])
set(h2,'LineStyle' ,'-.")
yl abel (' Vol tage, V')

grid; hold
plot(t,e2,"k:")
| egend(' el',"'e2', 4)

%aul ty Data
z=zeros(size(el));
save simldat;
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12.2 Appendix B — IPS ACSL Code

Aut hor s: S.F. dQover, B.T. Kuhn, S.D. Sudhoff
Pur due University
Department of Electrical and Conputer Engi neering
1285 El ectrical Engineering Building
West Lafayette, I N 47907
(765) -494- 3246
For: Roger A. Douga
Uni versity of South Carolina
Departnment of Electrical and Conputer Engi neering
Col unbi a, South Carolina 29208
Award # 97-364 - Mdeling and Transl at or Devel opnent
Dat e: 4/ 16/ 99
Ver si on: 2.0

Modi fied: E.L. Zivi for 1/C Cerrito Trident Research 3/27/00

| NCLUDE
| NCLUDE
I NCLUDE
| NCLUDE
| NCLUDE
I NCLUDE
I NCLUDE
I NCLUDE
I NCLUDE
| NCLUDE
I NCLUDE
I NCLUDE
| NCLUDE
| NCLUDE
I NCLUDE
I NCLUDE

macr os/ asscm mac'
macr os/ di obravm mac'
macr os/ nc. mac'

macr os/ dcresl d. mac'
macr os/ i nduct qd. nmac'
macr os/ rotor. mac'
macr os/ speedl d. nac’
macr os/ dct xl i ne. mac'
macr os/ assi m nac'
macr os/ apwsp. nac’
macr os/ revtrans. mac'
macros/ srf. mac'

macr os/ aexci ter. mac'
macr os/ asnsat . mac'
macr os/ aacbhus. mac'
macr os/ pmm8. mac'

PROGRAM scsystem
DYNAM C

ALGORI THM | ALG=2
MAXTERVAL MAXT=1. Oe- 4
M NTERVAL M NT=1. Oe- 20
CINTERVAL CINT = 1.0e-3
CONSTANT TSTOP = 1.0
VARI ABLE T, TI C=0.0
TERMI(t .GE. tstop-0.5*cint,'Exit on Tstop')

DERI VATI VE mmai n



I Tur bi ne

CONSTANT wr sm=377.0
CONSTANT we=377.0
SRF( 1, we, ge)

I Synchronous Machi ne | EEE Type 2 Excitation Systent

AEXCI TER( ex, vqdsesm vfd, &
"vrefex=4160. 0", "vfdi cex=22. 1354", &
"trex=1. 05e-3", "kaex=380. 0", "taex=0. 019", &
"vrm nex=0.0", "vrmaxex=7. 3", &
"kfex=31.5e-3","tflex=0.95","tf2ex=0.96", &
"keex=0. 95", "t eex=0. 84", &
"sel00ex=0.903", "se75ex=0. 525", &
"vbsnmex=2. 52e3", "vfdbsnmex=28.77")

I Sal i ent Synchronous Machine Wth 1 Danper"”
ASMSAT(sm vqgdel, we, vfd, wsm cbsm vgdsesm &
i gdesmifdal,tesm &
"vfdi csm=22. 1354", "del taOsm=0. 0", &
"rssnrl. 399e-3", "1 1 ssme372. 115e-6", &
"l mgsm=2. 769e- 3", &
"Il kqsme141. 66e-6", "rkqsm=5. 80e-3", &
"Il kdsme72. 05e-6", "rkdsme5.08e-3", &
"Il fdsm=236. 392e-6", "rfdsm=470. 34e-6", &
"nsfdsnme6. 328e- 2", "npsm=2. 0", &
"masm=21899. 65", "ndsm=21585. 83", &
"tautsme7. 396", "l ant sme11. 01", "it hreshsnmel. 0e7")

I Bus Vol tage Magnitude
CONSTANT r oot 302=1. 2247
vmagbl = SQRT(vqdel(1l)**2 + vqdel(2)**2)*root302

PROCEDURAL (i magb1, i magprop, imagserv = iqdesm iqinprop, &
i di mprop, iqdepwsp)
I Bus 1 Generator Supply Current Magnitude
i magbl = SQRT(iqdesn(1)**2 + iqdesm(2)**2)*root 302
I Bus 1 Propul sion Load Current Magnitude
i mgprop = SQRT(iqgi nprop**2 + idinprop**2)*root 302
I Bus 1 Ships Service Load Current Magnitude
i mgserv = SQRT(i qdepwsp(1l)**2 + iqdepwsp(2)**2)*root 302
END ! procedura

I Calculate the bus voltage, - rbus is about 10 pu
AACBUS( bs, iqdebcl, vqdel, &
"rbs=2.622","taulbs=1. Oe- 6", "t au2bs=1. Oe-4")
PROCEDURAL (i gdebcl = i gdesm i gdepwsp, i qdenctpr op)
SUM i qdebcl = i gdesm i gdepwsp, i gdenctpr op)
END ! procedura
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I Propul sion controller
PMMB( ncpr op, opnepr op, vgdel, we, i gi nprop, i di nprop, &

wWr mi nprop, wr st ar prop, &
vgi npr op, vdi npr op, wei npr op, i gdencprop, &
"cdcncprop=0. 2", "tauncprop=0.1", &
"rsncprop=8. 83e-3", "Lssncprop=10. 073e-3", &
"wbentprop=30. 02", "vl i nki cncprop=0. 0", &
"vlinkm nncprop=4250.0", &
"accl | ncprop=-0.1241", "accul ncprop=0. 1241", &
"npncprop=4.0", "kpntprop=1.0", &
"Kki mcprop=1. 0", "vsmaxncpr op=3396. 6", &
"ranpt ncprop=10. 0", &
"l acncprop=6. 786e-6","rl cncprop=0.0", &
"vscrncprop=0.0", "l dcncprop=3. 0e-3", &
"rdcncprop=6. 786e-3")

I 19MW i nducti on notor

I NDUCTQD( i npr op, vqi nprop, vdi npr op, wei nprop, wr nmi nprop, &
i qi mprop,idinprop,teinprop, &
"rsinprop=8.83e-3", "Ll sinprop=173. le-6", &
"Lm nprop=9. 9e-3", "rrpi nprop=63. 5e-3", &
"LIrpi nprop=173. 1e- 6", "nPi nprop=4. 0", &
"l anmdsi ci nprop=0. 0", "Il amdr pi ci npr op=0. 0")

ROTOR(i nprop, teinprop,tlinprop, wmnprop, &

"Ji nprop=3. 698e6", "wr i ci nprop=0. 0")

SPEEDLD(i nprop, wm nprop, tlinprop, &

"wr nbaser pm nmprop=148. 1", "t | basei nprop=1. 23e6")

CONSTANT vr ef pwsp= 1100. 0
CONSTANT odf | agpwsp = . TRUE

CONSTANT cnnt pwspl = . TRUE
CONSTANT cnnt pwsp2 = . TRUE
I NI TI AL

cbpwsp = . TRUE

oppwsp =. FALSE
END !'initia

APWSP( pwsp, oppwsp, cbpwsp, odf | agpwsp, cnnt pwspl, &
cnnt pwsp2, vref pwsp, vqdel, &
vbusl, vbus2, we, ge, itranpwspl,itranpwsp2,iqdepwsp, &
"r ppwsp=52. 06e- 3", "I | ppwsp=2. 07e-3", &
"rspwsp=. 069", "I | spwsp=7. 61le-3", "npwsp=9. 8", &
"vscrpwsp=0. 0", "l dcpwsp=128. 0e-6", &
"rdcpwsp=0. 19e- 3", "cdcpwsp=17. 6e- 3", &
"kpvpwsp=0. 011", " ki vpwsp=22. 0", "l i mvpwsp=10000. 0", &
“ilimtpwsp=10000. 0", "kpi pwsp=0. 012", "ki i pwsp=0.0", &
“lim pwsp=0.0", "al pham npwsp=0.0", &
"al phamaxpwsp=3. 14", "vmaxpwsp=1175. 0", &
"taufltpwsp=4. 364e- 3", "di snodepwsp=. FALSE. ", &
"ithreshpwsp=1.0e7", " L1t xpwsp=10. Oe-6", &
"r 1t xpwsp=0. 01", " L2t xpwsp=10. Oe- 6", "r 2t xpwsp=0. 01")



Ical cul ate bus voltage
pvbusl = (itranpwspl - itranl3 - ilinsscmla)/Cinsscmla
vbusl = I NTEE pvbusl, 0.0)

PROCEDURAL (i busl, ibusload = itranpwspl, ioutsscnila)
i busl = itranpwspl
i busll oad = ioutsscmla
END ! Procedural

I'sscnla

ASSCM sscnilla, opsscmila, vbusl, i outsscnla, &

i linsscmla, Ci nsscnla, vout sscnla, &
"vinstarsscmla=1100. 0", "vref sscmla=900. 0", &
"Ci nlsscmla=500. 0e- 6", " Ci n2sscnla=100. Oe- 6",
"Cout sscmla=1. 0e- 3", "Li nsscnmla=70. Oe-6", &
"Lout sscmla=100. Oe- 6", "kpsscnila=2. 0e-3", &
"kisscmla=0. 7", "fswsscnmila=20. 0e3", &
"tausscmila=7. 96e- 6", "vswsscnila=1. 0", &

"vdi odesscnila=1. 0", "RLi nsscnmila=0. 01", &
"RLout sscmla=0. 02", "RCout sscnla=1. 0", &
"tranpsscnila=30. Oe- 3")

Ical cul ate bus voltage

pvbus2 = (it

ranpwsp2 - itran24 - ilinsscnRa)/CinsscnRa

vbus2 = | NTEE pvbus2, 0.0)

PROCEDURAL( i

bus2, ibus2load = itranpwsp2, ioutsscnRa)

i bus2 = itranpwsp2
i bus2l oad = ioutsscnRa
END ! Procedural

I sscnka

ASSCM sscnRa, opsscnRa, vbus2,ioutsscnma, &

ilinsscnRa, Ci nsscnRa, vout sscnma, &
"vinstarsscnma=1100. 0", "vr ef sscnRka=860. 0", &
"Ci nlsscna=500. 0e-6", " Ci n2sscna=100. Oe- 6"
"Cout sscnRa=1. 0e- 3", "Li nsscna=70. 0e-6", &
"Lout sscnma=100. Oe- 6", "kpsscnRa=2. 0e-3", &
"ki sscnma=0. 7", "fswsscnma=20. 0e3", &
"tausscnma=7. 96e- 6", "vswsscnka=1. 0", &

"vdi odesscnRa=1. 0", "RLi nsscnma=0. 01", &
"RLout sscna=0. 02", " RCout sscnka=1. 0", &
"tranpsscna=30. 0e- 3")

&

&
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[~~~ position a~~~~~~ !
I di ode bridge
DI OBRAVM dbl12a, voutsscnia, voutsscnRa, vdcl2a, faul tdbla, faul tdb2a

i out sscnila, i out sscnka, i dcl2a, &
"Lldbl2a=1. Oe-6","r1db12a=0. 01", &
"L2db1l2a=1. Oe- 6", "r2db12a=0. 01")

I SSI M

ASSI M ssi mL2a, opssiml2a,iqim?2a,idim?2a,idcl2a, &
voqgssi nl2a, vodssi ml2a, vdcl2a, &
"cdcssi nl2a=1000. Oe- 6", &
"rlfssinl2a=0. 05", "I fssim2a=20. 0e-6", &
"cfssim2a=30. O0e-6", "rfssinl2a=0.2", &
"vout starssi ml2a=359. 26", "wessi mML.2a=377.0", &
"cfestssinl2a=30. 0e-6", &
"kpvssi nl2a=0. 8", "ki vssi nl2a=25. 0", &
"kpi ssinl2a=0. 11", "ki i ssi ml2a=750. 0", &
"ilimtssinl2a=742.07")

I'50 HP induction notor
| NDUCTQD(i mL2a, voqssi ml2a, vodssi ml2a, wessi ml2a, wrm ml2a, &
i gi m2a,idimz2a,tei m2a, &
"rsinl2a=0.087", "Ll si ml2a=0. 0008011", &
"Lm nl2a=0. 03469", "rrpi m2a=0.228", &
“LI rpi m2a=0.0008011", "nPi mL2a=4. 0", &
"l anmdsi ci ml2a=0. 0", " | andr pi ci mL2a=0. 0")
ROTOR(i nl2a, teiml2a,tlinml2a, wmnl2a, &
"Ji m2a=1. 662", "w mni ci nl2a=0. 0")
SPEEDLD(i ml2a, wrm ml2a, tlinl2a, &
"wr nbaser pm ml2a=1705. 0", "t | basei mL2a=198. 0")

PROCEDURAL (vmagb3, inagb3 = vogssi ml2a, vodssiml2a, iqiml2a, idinil2a)
I Bus 3 Voltage Magnitude
vmagbh3 = SOQRT(vogssi ml2a**2 + vodssi nl2a**2) *r oot 302
I Bus 3 Load Current Magnitude
i magh3 = SQRT(iqi nl2a**2 + idinl2a**2)*root 302
END ! procedura

ltransm ssion |line between busses 1 and 3
DCTXLI NE(tranl3, optranl3, vbusl, vbus3, itranl3, &
"Ltranl13=10. Oe- 6", "Rt ran13=0. 01")

ltransm ssion |line between busses 2 and 4
DCTXLI NE(tran24, optran24,vbus2, vbus4, itran24, &
"Ltran24=10. Oe- 6", "Rt ran24=0. 01")



Ical cul ate bus voltage
pvbus3 = (itranl3 - ilinsscnBa - ilinsscnBb)/(Ci nsscnBa + Ci nsscnBhb)
vbus3 = | NTEGE pvbus3, 0.0)

PROCEDURAL( i bus3 = i out sscnBa)
i bus3 = ioutsscnBa

END ! Procedural

I sscnBa
ASSCM sscnBa,

I'sscnBb
ASSCM sscnBb,

opsscnBa, vbus3, i out sscnBa, &
i i nsscnBa, Ci nsscnBa, vout sscnBa, &
"vinstarsscnmBa=1100. 0", "vr ef sscn3a=900. 0"

&

"Ci nlsscnBa=500. 0e- 6", " Ci n2sscnBa=100. Oe- 6",

"Cout sscnBa=1. 0e- 3", "Li nsscnBa=70. Oe- 6",
"Lout sscnBa=100. Oe- 6", "kpsscnBa=2. 0e- 3",
"ki sscmBa=0. 7", "f swsscnBa=20. 0e3", &
"tausscnmBa=7. 96e- 6", "vswsscnBa=1. 0", &
"vdi odesscnBa=1. 0", "RLi nsscnmB8a=0. 01", &
"RLout sscnmBa=0. 02", "RCout sscnBa=1. 0", &
"t ranmpsscnBa=30. Oe- 3")

opsscnBb, vbus3, i out sscnBb, &
i i nsscnBb, Ci nsscnBb, vout sscnBb, &
"vinstarsscnBb=1100. 0", "vr ef sscn83b=900. 0"

&
&

&

"Ci n1lsscnBb=500. 0e-6", " Ci n2sscnB8b=100. Oe- 6",

" Cout sscnBb=1. 0e- 3", "Li nsscnmBb=70. Oe- 6",
"Lout sscnmBb=100. Oe- 6", "kpsscnBb=2. 0e- 3",
"ki sscnmBb=0. 7", "f swsscnmBb=20. 0e3", &
"tausscnBb=7. 96e-6", "vswsscnBb=1. 0", &
"vdi odesscnBb=1. 0", "RLi nsscnB8b=0. 01", &
"RLout sscnBb=0. 02", "RCout sscnBb=1. 0", &
"tranmpsscnBb=30. Oe- 3")

I'cal cul ate bus voltage
pvbus4 = (itran24 - ilinsscmda - ilinsscmdb)/(Ci nsscmda + Cinsscmib)
vbus4 = | NTEE pvbus4, 0.0)

PROCEDURAL( i bus4 = i outsscn¥a)
ibus4 = ioutsscnmda

END ! Procedural

I'sscnda
ASSCM sscmia,

opsscnda, vbus4, i out sscnda, &
i linsscmda, Ci nsscmda, vout sscmda, &
"vinstarsscmda=1100. 0", "vr ef sscnda=860. 0"

&
&

&

"Ci nlsscm4a=500. Oe- 6", " Ci n2sscn4a=100. Oe- 6",

"Cout sscmda=1. 0e- 3", "Li nsscmda=70. Oe- 6",
"Lout sscm4a=100. Oe- 6", "kpsscnda=2. Oe- 3",
"ki sscmda=0. 7", "f swsscmda=20. 0e3", &
"tausscmda=7. 96e-6", "vswsscnda=1. 0", &
"vdi odesscmda=1. 0", "RLi nsscm4a=0. 01", &

&
&

&

&

&
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"RLout sscrmda=0. 02", "RCout sscnda=1. 0", &
"tranpsscnda=30. Oe- 3")

I sscmdb

ASSCM sscmib, opsscmib, vbus4, i out sscmib, &
i linsscmdb, Ci nsscmdb, vout sscmdb, &
"vinstarsscmdb=1100. 0", "vref sscndb=860. 0", &
"Ci n1lsscmb=500. Oe- 6", "Ci n2sscn4b=100. Oe- 6", &
"Cout sscmdb=1. 0e- 3", "Li nsscmib=70. Oe-6", &
"Lout sscmtb=100. Oe- 6", "kpsscmdb=2. 0e-3", &
"ki sscmib=0. 7", "f swsscmdb=20. 0e3", &
"tausscmib=7. 96e- 6", "vswsscmdb=1. 0", &
"vdi odesscmdb=1. 0", "RLi nsscm4b=0. 01", &
"RLout sscmdb=0. 02", "RCout sscnmdb=1. 0", &
"tranmpsscnmdb=30. Oe- 3")

|~~~ position a~~~~~~ !
I di ode bridge
DI OBRAVM db34a, voutsscnBa, vout sscnda, vdc34a, f aul t db3a, f aul t db4a

i out sscnBa, i out sscnda, i dc34a, &
"Lldb34a=1. Oe-6", "r 1db34a=0. 01", &
"L2db34a=1. Oe- 6", "r 2db34a=0. 01")

Iresistive | oad
DCRESLD( r es34a, opres34a,idc34a, vdc34a, &
"cdcres34a=1000. Oe- 6", "rdcres34a=4. 05")

|~ position b~~~~~~ !
I di ode bridge
DI OBRAVM db34b, voutsscnBb, vout sscmdb, vdc34b, faul t db3b, f aul t db4b,

i out sscnBb, i out sscnib, i dc34b, &
"L1db34b=1. 0e-6", "r 1db34b=0. 01", &
"L2db34b=1. Oe- 6", "r 2db34b=0. 01")

i nduction notor controller

MC(nc34b, opnt34b,idc34b, i qi nB4b, i di nB4b, &
wr m n84b, wr nst ari n84b, &
vdc34b, vqgi nB4b, vdi n34b, wei n84b, &
"cdcnc34b=100. Oe- 6", "t aunc34b=0. 1", &
"rsnc34b=0. 087", "Lssnc34b=3. 549e- 2", &
"wbenc34b=377. 0", "vdci cnc34b=0. 0", &
"accl | nc34b=-4. 0", "accul nc34b=30.0", &
"npnt34b=4. 0", "kpnc34b=1. 0", &
"Kki nc34b=20. 0", "vsmaxnc34b=375. 5")

150 HP i nducti on notor

| NDUCTQD( i n84b, vqi nB4b, vdi nB4b, wei n84b, wr mi nB4b, &
i qi mB4b, i di nB4b, tei nB4b, &
"rsinm34b=0. 087", " LI si nB4b=0. 8011e-3", &
"Lm n84b=34. 69e- 3", "rrpi nB4b=0. 228", &
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"Ll r pi m84b=0. 8011e- 3", "nPi nB4b=4. 0", &
"l anmdsi ci n84b=0. 0", " | andr pi ci m34b=0. 0")
ROTOR(i mB4b, teinB4b,tlinB4b, wm nB84b, &
"Ji nB4b=1. 662", "wr m ci m34b=0. 0")
SPEEDLD(i m84b, wrm nB84b, tlinB4b, &
"wr nbaser pm nm84b=1705. 0", "t | basei M84b=198. 0")

END ! Deri vati ve

SRFD( 1, ge)
apwspd( pwsp, we, oppwsp)

DI SCRETE cbcontr ol
ASMSATD(sm cbsm)
END ! DI SCRETE
END ! Dynamic

END ! Program



12.3Appendix C— IPS ACSL Simulation Commands

Aut hor s: S.F. Gover, B.T. Kuhn, S.D. Sudhoff
Pur due University
Department of Electrical and Conputer Engi neering
1285 El ectrical Engi neering Buil ding
West Lafayette, I N 47907
(765)-494- 3246
For: Roger A. Douga
Uni versity of South Carolina
Department of Electrical and Conputer Engi neering
Col unbi a, South Carolina 29208
Award # 97-364 - Mdeling and Transl at or Devel opnent
Dat e: 4/ 16/ 99
Ver si on: 1.0

Modi fi ed: E.L. Zivi for 1/C Cerrito Trident Research 4/1/00

s hvdprn=.f.

s weditg=.f. 'wite events to log file

s strplt=.t. !strip plots

s calplt=.f. !'plots on one graph

s alcplt=.f. !'no colored plots

s cjvitg=.f. !turns off checking of jacobian validity

output t,cioitg,cssitg /nciout=10

prepare t I needed for output conmmand
prepare wninprop ! prop shaft speed

R R AC BUS d------mmmmm oo e oo !
prepare inmagbl I' AC Bus 1 Generator Supply Current Magnitude
prepare imagprop ! AC Bus 1 Propul sion Load Current Magnitude
I << neural net data starts here >>
prepare imgserv ! AC Bus 1 Ships Service Load Current Magnitude
prepare vmaghl! AC Bus 1 Vol tage Magnitude

prepare vbusl ! DC Bus 1 voltage
prepare ibusl ! DC Bus 1 total current (load + bus3)
prepare i buslload ! DC Bus 1 | oad current

prepare vbus2 ! DC Bus 2 voltage
prepare ibus2 ! DC Bus 2 total current (load + bus3)
prepare ibus2load ! DC Bus 2 | oad current

R AC BUS 3----- - s mmmmm i m i i i m s !
prepare vmagh3! AC Bus 3 Vol tage Magnitude
prepare i magh3! AC Bus 3 Load Current Magnitude
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current =

current | oad current

B Converters-------------------------- !
fromBus 3 to diode bridge

fromBus 3 to diode bridge

of auctioneering di odes

fromBus 3 to diode bridge

fromBus 4 to diode bridge

of auctioneering di odes

Pemeee - - - DC BUS 3--------
prepare vbus3 ! DC Bus 3 voltage
prepare i bus3 ! DC Bus 3 total

R DC BUS 4--------
prepare vbus4 | DC Bus 4 voltage
prepare ibus4 ! DC Bus 4 total

R DC BUS 3/4 Load
prepare voutsscnBb ! voltage
prepare voutsscnmdb ! voltage
prepare vdc34b ! voltage out
prepare ioutsscnBb ! current
prepare i outsscnmdb ! current
prepare idc34b ! current out
I << neural net data ends here >>

DC BUS 3/4 Load
prepare wr mi n34b !
prepare w nstari n34b !

commanded notor speed,
act ual

B Mot or
rad/ sec

not or speed, rad/sec

PROCEDURE i ni trun I establish standard initial alignnment
s tic=-5 ! need time to reach steady state
action /var=tic/val=.t./loc=cnntpwspl ! connect DC bus 1
action /var=tic/val=.t./loc=cnnt pwsp2 ! connect DC bus 2
action /var=tic/val=.t./| oc=oppwsp I turn on AC/ DC power supply
action /var=tic/val=.t./loc=optranl3 I connect DC bus 1 -> 3
action /var=tic/val=.t./|oc=optran24 I connect DC bus 2 -> 4
action /var=tic/val=.f./l oc=opsscmila I ship service converters off
action /var=tic/val=.f./l oc=opsscnRa
action /var=tic/val=.f./l oc=opsscnBa
action /var=tic/val=.f./l oc=opsscnBb
action /var=tic/val=.f./l oc=opsscmia
action /var=tic/val=.f./loc=opsscmib
action /var=tic/val=f./loc=opssim22a ! ship service inverter off
action /var=tic/val=f./loc=opnctprop I propul sion off
action /var=tic/val 180/Ioc =wrnst ari n84b! cnd i nduction notor 1719 rpm
action /var=tic/val =0.0/loc=wrnstarprop ! cnd prop. zero shaft speed
END !'initrun
PROCEDURE pl otrun ! standard plots for each run

I AC Bus 1 voltage, AC Bus 1, ship service, propulsion current

pl ot/ xl 0=0.0 vrmagbl/1 0=4100/ hi =4220, i magb1/ | 0=0/ hi =7500, &
i mgserv/ | o0=0/hi =100, wr m nprop/ | 0=0/ hi =

I DC Bus 1,2 voltage, current

pl ot/ x|l 0=0. 0 vbusl/1 0=1000/ hi =1200, i bus1/1 0=0/ hi =300, &
vbus2/1 0=1000/ hi =1200, i bus2/1 0=0/ hi =300

I DC Bus 1,2 |oads, AC Bus 3 voltage, current

pl ot/ xl 0=0. 0 i busll oad/ | 0=0/ hi =50, i bus2l oad/ | 0=0/ hi =50 &
vmagb3/ 1 0=400/ hi =500, i magb3/1 0=0/ hi =100

I DC Bus 3,4 voltage, current

pl ot/ xI 0=0. 0 vbus3/1| 0=1000/ hi =1200, i bus3/1 0=0/ hi =300, &
vbus4/1 0=1000/ hi =1200, i bus4/1 0=0/ hi =300

I notor drive supply voltages, drive voltages, comand

pl ot/ xl 0=0. 0 vout sscnBb/| 0=600/ hi =1000, vout sscndb/ | 0=600/ hi =1000, &



vdc34b/ 1 0=600/ hi =1000, wr nst ari n34b/ | 0=0/ hi =200
I notor drive supply currents, drive current, notor speed
pl ot/ xl 0=0. 0 ioutsscnBb/ | 0=0/hi =100, i out sscmib/ | 0=0/ hi =100, &
i dc34b/ 1 0=0/ hi =100, wr m mB84b/ | 0=0/ hi =200
END ! plotrun

PROCEDURE plotinit ! standard plots for each run w initial transients
I AC Bus 1 voltage, AC Bus 1, ship service, propulsion current
pl ot/ xaxi s=t/xl o=-5 vmagbl/| 0=0/ hi =4300, i magb1/1 0=0/ hi =7500, &
i mgserv/ | o0=0/hi =100, wr m nprop/ | 0=0/ hi =15

I DC Bus 1,2 voltage, current

pl ot/ xaxi s=t/xl o=-5 vbusl/| 0=0/hi =1200, i bus1/1 0=0/ hi =300, &
vbus?2/1 0=0/ hi =1200, i bus2/ 1 0=0/ hi =300

I DC Bus 1,2 |oads, AC Bus 3 voltage, current

pl ot/ xaxi s=t/xl 0o=-5 i busll oad/| 0=0/ hi =50, i bus2| oad/ | 0=0/ hi =50 &
vimagb3/ 1 0=0/ hi =500, i magb3/1 0=0/ hi =100

I DC Bus 3,4 voltage, current

pl ot/ xaxi s=t/ xl o=-5 vbus3/1 0=0/ hi =1200, i bus3/1 0=0/ hi =300, &

vbus4/ 1 0=0/ hi =1200, i bus4/1 0=0/ hi =300
I notor drive supply voltages, drive voltages, comand
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pl ot/ xaxi s=t/ xl o=-5 vout sscnBb/| 0=0/ hi =1000, vout sscmib/ | 0=0/ hi =1000, &

vdc34b/ | 0=0/ hi =1000, wr st ar i m84b/ | 0=0/ hi =200
I notor drive supply currents, drive current, notor speed
pl ot/ xaxi s=t/xl 0o=-5 i outsscnBb/| 0=0/ hi =100, i out sscndb/ | 0=0/ hi =100, &
i dc34b/ | 0=0/ hi =100, wr mi mB84b/ | 0=0/ hi =200
END ! plotinit

PROCEDURE runl! |IPS Motor Start: DC Bus 1,3 DC Load

initrun | set generic initial conditions

action /var=tic/val=.f./loc=cnntpwsp2 I di sconnect DC bus 2
I'turn on the system conponents, start notor at t = 0.0

action /var=-4.9/val =.t./| oc=opsscnBa ! DC bus 3 converters on

action /var=-4.9/val
action /var=-4.9/val
action /var=0.0/val =.t./| oc=opnc34b I DC bus 3/4 induction notor

t./ |l oc=opsscnBb

I'start the study
s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4

pl ot run I standard plots
print/noheader/file="runl.txt"/al
action /clear

start

s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4

cont

s title=120*" " 1| clear title

I plot title 1234567890123456789012345678901234567890
s title(01)="IPS Mtor Start Run 1"

s title(41)="DC Bus 1,3 Energized"

s title(81)="DC Load On"

I

I

END !'runl
PROCEDURE run2! IPS Motor Start: DC Bus 2,4 DC Load
initrun | set generic initial conditions
action /var=tic/val=.f./loc=cnntpwspl I di sconnect DC bus 1

l'turn on the system conponents, start nmotor at t = 0.0

t./l oc=opres3da I DC bus 3/4 resistive |oad
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action /var=-4.9/val =.t./| oc=opsscnmda ! DC bus 4 converters on
action /var=-4.9/val =.t./| oc=opsscn¥b

action /var=-4.9/val =.t./| oc=opres34a ! DC bus 3/4 resistive | oad
action /var=0.0/val =.t./| oc=opnc34b I DC bus 3/4 induction notor

Istart the study
s tstop=0.0, cint=1.0e-2, nmaxt(1l)=5.0e-4

pl ot run I standard plots

print/noheader/file="run2.txt"/al
action /clear

END ! run2

start

s tstop=10.0, cint=1.0e-2, nmaxt(1)=5.0e-4

cont

s title=120*" " | clear title

I plot title 1234567890123456789012345678901234567890
s title(01)="1PS Mtor Start Run 2"

s title(41)="DC Bus 2,4 Energi zed"

s title(81)="DC Load On"

|

|

PROCEDURE run3! | PS Motor Start: DC Bus 2,4 AC+DC Loads

initrun | set generic initial conditions

action /var=tic/val=.f./loc=cnntpwspl I di sconnect DC bus 1

I'turn on the system conponents, start nmotor at t = 0.0

action /var=-4.9/val=.t./| oc=opsscnda I DC bus 4 converters on
action /var=-4.9/val =.t./| oc=opsscnib

action /var=-4.9/val =.t./| oc=opres34a ! DC bus 3/4 resistive | oad
action /var=-4.7/val =.t./| oc=opsscnRa ! DC bus 2 converter on
action /var=-4.5/val =.t./| oc=opssi m2a ! ship service inverter on
action /var=0.0/val =.t./| oc=opnc34b I DC bus 3/4 induction notor

I'start the study
s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4

start

s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4
cont

s title=120*" " ! clear title

I plot title 1234567890123456789012345678901234567890 (40
characters/Iline)

s title(01)="1PS Mtor Start Run 3"

s title(41)="DC Bus 2,4 AC Bus 3 Energized"

s title(81)="DC Load, AC Load On"

I plotrun I standard plots

I print/noheader/file="run3.txt"/al

action /clear

END ! run3
PROCEDURE run4! |IPS Motor Start: Bus 1,2,4 AC+DC Loads
initrun | set generic initial conditions
action /var=tic/val=.f./loc=optranl3 I disconnect DC bus 1 -> 3
I'turn on the system conmponents, start nmotor at t = 0.0
action /var=-4.9/val=.t./l oc=opsscnda I DC bus 4 converters on

action /var=-4.9/val =.t./| oc=opsscnib
action /var=-4.9/val =.t./| oc=opres34a ! DC bus 3/4 resistive | oad
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action /var=-4.8/val =.t./| oc=opsscnila ! DC bus 1 converter on
action /var=-4.7/val =.t./| oc=opsscnRa ! DC bus 2 converter on
action /var=-4.5/val=.t./| oc=opssi m2a ! ship service inverter on
action /var=0.0/val =.t./| oc=opnc34b I DC bus 3/4 induction notor

Istart the study
s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4

pl ot run I standard plots

print/noheader/file="run4.txt"/al
action /clear

END ! run4

start

s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4

cont

s title=120*" " I clear title

I plot title 1234567890123456789012345678901234567890
s title(01)="1PS Mtor Start Run 4"

s title(41)="DC Bus 1,2,4 AC Bus 3 Energized"

s title(81)="DC Load, AC Load On"

|

|

PROCEDURE run5! |IPS Motor Start: Bus 1,2,3a,4 AC+DC Loads
initrun I set generic initial conditions

I'turn on the system conponents, start nmotor at t = 0.0

action /var=-4.9/val=.t./| oc=opsscnda I DC bus 4 converters on
action /var=-4.9/val =.t./| oc=opsscnib

action /var=-4.9/val =.t./| oc=opres34a ! DC bus 3/4 resistive | oad
action /var=-4.8/val =.t./| oc=opsscnila ! DC bus 1 converter on
action /var=-4.7/val =.t./| oc=opsscnRa ! DC bus 2 converter on
action /var=-4.8/val =.t./| oc=opsscnBa ! DC Bus 3a converter
action /var=-4.5/val=.t./| oc=opssi m2a ! ship service inverter on
action /var=0.0/val =.t./| oc=opnc34b I DC bus 3/4 induction notor

Istart the study
s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4

start

s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4
cont

s title=120*" " | clear title

plot title 1234567890123456789012345678901234567890
title(01l)="1PS Mtor Start Run 5"

title(41)="DC Bus 1, 2,3a,4 AC Bus 3 Energized"
title(81)="DC Load, AC Load On"

pl ot run I standard plots
print/noheader/file="run5.txt"/al

act|0n /cl ear

—_—— o n -

END ! run5
PROCEDURE run6! |IPS Motor Start: Bus 1,2,3a,4 AC+DC Loads
initrun | set generic initial conditions
I'turn on the system conponents, start notor at t = 0.0
action /var=-4.9/val=.t./l oc=opsscnda I DC bus 4 converters on

action /var=-4.9/val =.t./| oc=opsscnib
action /var=-4.9/val =.t./| oc=opres34a ! DC bus 3/4 resistive | oad
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action /var=-4.8/val =.t./| oc=opsscnila ! DC bus 1 converter on
action /var=-4.7/val =.t./| oc=opsscnRa ! DC bus 2 converter on
action /var=-4.8/val =.t./| oc=opsscnBa ! DC Bus 3a converters
action /var=-4.8/val =.t./| oc=opsscnBb

action /var=-4.5/val=.t./| oc=opssi m2a ! ship service inverter on
action /var=0.0/val=.t./l oc=opnc34b I DC bus 3/4 induction notor

Istart the study
s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4

pl ot run I standard plots
print/noheader/file="run6.txt"/al
action /clear

start

s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4

cont

s title=120*" " I clear title

I plot title 1234567890123456789012345678901234567890
s title(01)="1PS Motor Start Run 6"

s title(41)="DC Bus 1, 2,3a,4 AC Bus 3 Energi zed"

s title(81)="DC Load, AC Load On"

|

|

END ! run6

PROCEDURE run7! |IPS Motor Start: Bus 1,2, 3a,3b AC+DC Loads
initrun I set generic initial conditions
action /var=tic/val=.f./loc=optran24 I disconnect DC bus 2 -> 4
I'turn on the system conponents, start nmotor at t = 0.0
action /var=-4.9/val =.t./| oc=opsscnila ! DC bus 1 converter on
action /var=-4.9/val =.t./| oc=opsscnRa ! DC bus 2 converter on
action /var=-4.9/val =.t./| oc=opsscnBa ! DC Bus 3 converters on
action /var=-4.9/val =.t./| oc=opsscnBb
action /var=-4.9/val =.t./| oc=opres34a ! DC bus 3/4 resistive | oad
action /var=-4.5/val=.t./| oc=opssi m2a ! ship service inverter on
action /var=0.0/val=.t./l oc=opnc34b I DC bus 3/4 induction notor
Istart the study
s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4
start
s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4
cont
s title=120*" " I clear title
I plot title 1234567890123456789012345678901234567890
s title(01)="1PS Motor Start Run 7"
s title(41)="DC Bus 1, 2, 3a, 3b AC Bus 3 Energi zed"
s title(81)="DC Load, AC Load On"
I plotrun I standard plots
I print/noheader/file="run7.txt"/al
action /clear

END !'run7

PROCEDURE run8! IPS Mdtor Start: Bus 1,3 AC+DC Loads
initrun I set generic initial conditions
action /var=tic/val=f./loc=cnnt pwsp2 I di sconnect DC bus 2
action /var=tic/val=f./loc=optran24 I di sconnect DC bus 2 -> 4

l'turn on the system conponents, start nmotor at t = 0.0
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action /var=-4.9/val =.t./| oc=opsscnila ! DC bus 1 converter on
action /var=-4.9/val =.t./| oc=opsscnBa ! DC Bus 3 converters on
action /var=-4.9/val =.t./| oc=opsscnBb

action /var=-4.9/val =.t./| oc=opres34a ! DC bus 3/4 resistive | oad
action /var=-4.5/val=.t./| oc=opssi m2a ! ship service inverter on
action /var=0.0/val=.t./l oc=opnc34b I DC bus 3/4 induction notor

Istart the study
s tstop=0.0, cint=1.0e-2, maxt(1)=5.0e-4

pl ot run I standard plots

print/noheader/file="run8.txt"/al
action /clear

END !run8

start

s tstop=10.0, cint=1.0e-2, maxt(1)=5.0e-4

cont

s title=120*" " I clear title

I plot title 1234567890123456789012345678901234567890
s title(01)="1PS Motor Start Run 8"

s title(41)="DC Bus 1,3 AC Bus 3 Energi zed"

s title(81)="DC Load, AC Load On"

|

I

PROCEDURE t est 1i ni t

s nrwitg=.t.

runl

s psfspl =0.9

s devplt=5
file/pltfile="runlinit.ps'
pl otinit

pl ot/ cl ose

s nrwitg=.f.

END ! testlinit

PROCEDURE t est 1

s nrwitg=.f.

runl

s psfspl =0.9

s devplt=5
file/pltfile="runl.ps’
pl ot run

pl ot/ cl ose
print/noheader/file="runl.txt"/al
s nrwitg=.f.

END ! testlinit

PROCEDURE t est 2i ni t

s nrwitg=.t.

run2

s psfspl =0.9

s devplt=5
filel/lpltfile="run2init.ps'
pl otinit

pl ot/ cl ose

s nrwitg=.f.



END ! test2init

PROCEDURE t est 2

s nrwitg=.f.

run2

s psfspl =0.9

s devplt=5
file/pltfile="run2.ps
pl ot run

pl ot/ cl ose
print/noheader/file="run2.txt"/al
s nrwitg=.f.

END ! test2init

PROCEDURE t est 3i ni t

s nrwitg=.t.

run3

s psfspl =0.9

s devplt=5
file/pltfile="run3init.ps'
pl otinit

pl ot/ cl ose

s nrwitg=.f.

END ! test3init

PROCEDURE t est 3

s nrwitg=.f.

run3

s psfspl =0.9

s devplt=5
file/pltfile="run3.ps’
pl ot run

pl ot/ cl ose
print/noheader/file="run3.txt"/al
s nrwitg=.f.

END ! test3init

PROCEDURE t est 4i ni t

s nrwitg=.t.

rund

s psfspl =0.9

s devplt=5
filel/pltfile="rundinit.ps'
pl otinit

pl ot/ cl ose

s nrwitg=.f.

END ! testdinit

PROCEDURE t est 4
s nrwitg=.f.

rund
s psfspl=0.9
s devplt=5

file/pltfile='rund. ps'
pl ot run
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pl ot/ cl ose
print/noheader/file="run4.txt"/al
s nrwitg=.f.

END ! testdinit

PROCEDURE t est 5i ni t

s nrwitg=.t.

runs

s psfspl =0.9

s devplt=5
file/pltfile="run5init.ps'
pl otinit

pl ot/ cl ose

s nrwitg=.f.

END ! testbinit

PROCEDURE t est 5

s nrwitg=.f.

runs

s psfspl =0.9

s devplt=5
file/pltfile="runb.ps’
pl ot run

pl ot/ cl ose
print/noheader/file="run5.txt"/al
s nrwitg=.f.

END ! test5init

PROCEDURE t est 6i ni t

s nrwitg=.t.

runé

s psfspl =0.9

s devplt=5
file/pltfile="run6init.ps'
pl otinit

pl ot/ cl ose

S nrwitg=.f.

END ! test6init

PROCEDURE t est 6

s nrwitg=.f.

runé

s psfspl =0.9

s devplt=5

file/pltfile= run6. ps'

pl ot run

pl ot/ cl ose
print/noheader/file="run6.txt"/al
s nrwitg=.f.

END ! test7init
PROCEDURE t est 7i ni t
s nrwitg=.t.

runv
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s psfspl =0.9

s devplt=5
file/pltfile="run7init.ps'
pl otinit

pl ot/ cl ose

s nrwitg=.f.

END ! test7init

PROCEDURE t est 7

s nrwitg=.f.

runv

s psfspl =0.9

s devplt=5
file/pltfile="run7.ps’
pl ot run

pl ot/ cl ose
print/noheader/file="run7.txt"/al
s nrwitg=.f.

END ! test7init

PROCEDURE t est 8i ni t

s nrwitg=.t.

run8

s psfspl =0.9

s devplt=5
file/pltfile="run8init.ps'
pl otinit

pl ot/ cl ose

S nrwitg=.f.

END ! test8init

PROCEDURE t est 8

s nrwitg=.f.

run8

s psfspl =0.9

s devplt=5
file/pltfile="run8.ps'
pl ot run

pl ot/ cl ose
print/noheader/file="run8.txt"/al
s nrwitg=.f.

END ! test8init
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12.4 Appendix D - Filter for Data Compatability

%filter for 1/C Cerrito neural net project
% E. Zivi 4/ 1/ 00

i=input('Enter run # : ');
varname=['run' nunm@2str(i)];
infilename=[varnanme '.txt'];
outfil ename=[varname 'f.nna'];
| oad(infil enane);
cut x=eval ([varname '(:,6:25)']);
[r,c]=size(cutx);
shiftx=[cutx(1:r-1,:) cutx(2:r,:) cutx(l:r-1,:)];
fi d=fopen(outfilenane,'w);
for i=1:r-1,

fprintf(fid, ' %2.4f 942. 4f 9%d2. 4f 9%d2. 4f 942. 4f 9%d2. 4f %d2. 4f 942. 4f
%2. 4f 942. Af 9d2. 4f 9%d2. 4f 942. 4f 9%d2.4f 9%d2. 4f 942. 4f 9d2. 4f 9%d2. 4f
%2. 4f 942. Af 9d2. 4f 9%d2. 4f 942. 4f 9%d2.4f 9%d2. 4f 942. 4f 9d2. 4f 9%d2. 4f
%2. Af 942. Af 9d2. 4f 9%d2. 4f 9d2. Af 9d2.4f 9%d2. Af 9d2. 4f 9d2. 4f 9%l 2. 4f
% 2. Af 9d2. Af 9d2. 4f 9%d2. Af 9d2. Af 9d2. 4f 9%d2. 4f 9d2. 4f 9d2. 4f 9%d2. 4f
% 2. Af 9d2. 4f 9d2. 4f 9%d2. Af 9d2. Af 9d2.4f %d2. 4f 9d2. Af 9d2. 4f 9%d2. 4f
oud2. 4f 942. 4f\n" ,shiftx(i,:));
end
fclose(fid);



12.5 Appendix E - Fault Data Filter

% Fault Data Filter for neural net project
%J. Cerrito 4/ 7/ 00

i=input('Enter run # : ');
varname=['run' nunm@2str(i)];

i nfilename=[varnanme '.txt'];
outfilename=[varnane 'falt.nna'];
| oad(infil enane);

mat ri xf=eval ([varnane '(:,:)']);
[r,c]=size(matrixf);

for i=1:r,
for j=1:c-20,
sign=rand(1);
if (sign<.6 & sign>.4)
matrixf(i,j)=matrixf(i,j);

end
if sign>=.6
matri xf(i,j)=((.2*rand(1)*matrixf(i,j))+matrixf(i,j));
end
if sign<.4
matrixf(i,j)=(matrixf(i,j)-(.1*rand(1)*matrixf(i,j)));
end
end
end
fid=fopen(outfilenane,'w);
for i=1:r-1,

fprintf(fid,"'%d2.4f 9d2.4f 9%d2. 4f 9%d2. 4f 9d2. 4f 9%42. 4f 9%d2. 4f 94 2. 4f
%2. Af 9d2. 4f9d2. Af 9d2. 4f 9d2. 4f 9%d2. 4f 9d2. 4f 942. 4f %d2. 4f 94 2. 4f
%2, 4f 942, Af 9 2. 4f 942. Af 9%d2. 4f %d2. 4f 942. 4f 9%d2.4f %d2. 4f 942. 4f
%l2. 4f 942. Af 9d2. 4f 9%d2. 4f 942. 4f 9d2.4f %d2. 4f 942. 4f 9d2. 4f 9%d2. 4f
%2. 4f 942. 4f 9d2. 4f 9%d2. 4f 942. 4f 9%d2.4f 9%d2. 4f 942. 4f 9d2. 4f 9%d2. 4f
%2. Af 942. Af 9d2. 4f 9%d2. 4f 9d2. Af 9d2.4f 9%d2. 4Af 9d2. 4f 9d2. 4f 9%l 2. 4f
%2, 4f 9d2. 4f\n' ,matrixf(i,:));
end
fclose(fid);
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12.6 Appendix F—40-20 Variable Structure Neural Network: Run 1
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DC Bus 3 to Diode Bridge Current: Actual and Predicted
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12.7 Appendix G- 40-20 Variable Structure Neural Network: Run 5
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O Bug 3 b0 Dicde Bridge Curmenl: Actual ard Prodiched
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12.8 Appendix H— 40-20 Faulted Neural Network: Run 6 Corrupted
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