**Title and Subtitle**
DNA: Computation The Search for the "Killer" Application

**Author(s)**
Professor Lipton

**Performing Organization Name(s) and Address(es)**
Princeton University
Dept of Computer Science
Princeton, NJ 08544

**Sponsoring/Monitoring Agency Name(s) and Address(es)**
AFOSR
801 N. Randolph Street, Room 732
Arlington, VA 22203-1977

**Supplementary Notes**
Approved for Public Release.

**Abstract**
We successfully expanded the field of "DNA Computers" to RNA to develop and execute a general approach for the solution of Satisfiability problems. A challenge to this field has been the need for a design that is scalable to more difficult computations.
AFOSR Grant: F49620-97-1-0190
DNA Computation: The Search for the "Killer" application

We successfully expanded the field of "DNA Computers" to RNA to develop and execute a general approach for the solution of Satisfiability problems. A challenge to this field has been the need for a design that is scalable to more difficult computations. In Faulhammer et al. (2000) we presented a scalable approach to computing by expanding the field of DNA computers to RNA, which can be cleaved in several parallel ways, and we used this approach to solve the most difficult problem to date using either molecular or quantum computing. As a demonstration of a general solution to a wide class of mathematical search problems, we solved a 9-bit instance of a satisfiability problem derived from chess, which the founder of this field regards as "the world champion so far" (Adleman in Science 2000, 287:1182). Using specific ribonuclease digestion to manipulate strands of a 10-bit binary RNA library, we developed a molecular algorithm and applied it to a 3×3 chessboard as a 9-bit instance of this problem. Here, the nine spaces on the board correspond to nine 'bits' or placeholders in a combinatorial RNA library. We recovered a set of 'winning' molecules that describe solutions to this problem.

Publications associated with award