Simulation of Structural Bending modes of Large Aircraft

Dr. Daniel Bieza

California Polytechnic State University
San Luis Obispo, CA 93407

Air Force Office of Scientific Research
Edwards AFB, CA

Large aircraft may possess slow structural modes that can affect handling qualities if excited. Little has been done to simulate these structural modes during pilot-in-the-loop analyses. A fast and simple method to simulate the longitudinal structural modes of large aircraft has been developed. A shape function for fuselage was obtained from a finite element model. This deflection function was used to develop transfer functions for flight simulation. The transfer functions were developed in a method similar to that used at NASA Dryden Flight Research Center. Flight simulations were developed to explore the effects of the structural modes on handling qualities of the aircraft in question. These calculations were validated by correlating wind tunnel data with simulation predicted data.
INVESTIGATION OF DYNAMIC STRUCTURAL MODELS SUITABLE FOR THE SIMULATION
OF LARGE AIRCRAFT

Daniel J. Biezad, Ph.D.

California Polytechnic State University
San Luis Obispo
June 2000
ABSTRACT

SIMULATION OF STRUCTURAL BENDING MODES OF LARGE AIRCRAFT

By Aaron R. Munger

Large aircraft may possess slow structural modes that can affect handling qualities if excited. Little has been done to simulate these structural modes during pilot-in-the-loop analyses. A fast and simple method to simulate the longitudinal structural modes of large aircraft has been developed. A shape function for fuselage was obtained from a finite element model. This deflection function was used to develop transfer functions for flight simulation. The transfer functions were developed in a method similar to that used at NASA Dryden Flight Research Center. Flight simulations were developed to explore the effects of the structural modes on handling qualities of the aircraft in question. These calculations were validated by correlating wind tunnel data with simulation predicted data.
ACKNOWLEDGEMENTS

Acknowledgement and appreciation are owed to Mr. Fred Webster and Mr. Kurt Buehler of the Air Force Flight Test Center, Edwards Air Force Base, and to Dr. Len Sakell of the U.S. Air Force Office of Scientific Research, for their support of this research project. The support and guidance of Dr. Daniel Biezad, Dr. Faysal Kolkailah, and Dr. Eltahry Elghandour were important in bringing this project to a successful completion. The interaction with and support of Wendy Hashii were also instrumental during the course of the project. Special thanks to Jonathan Almond for his expertise and support, as well as to committee members Dr. Don Hartig and Dr. Roger Ludin. Finally, thanks to all of those who supported and assisted in making this work possible.
# LIST OF FIGURES

IX

# NOMENCLATURE

XII

# CHAPTER 1

2

Introduction

2

Background

2

Variable Definitions

2

Literature Search

6

# CHAPTER 2

9

Problem Statement

9

Problem Definition

9

Problem Statement

9

# CHAPTER 3

10

Methodologies for Solution

10

Previous Work of Smith and Berry

10

Previous Work of Rodden and Winther

12

Previous Work of Powers

12

# CHAPTER 4

18

Methodologies for Simulation

18
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Finite Element Analysis</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>COSMOS/M Modeling Software</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Validation</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Matching and Prediction Capability</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>More Complicated Models</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>Simulation</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Existing Simulations</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Simulation Theory</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Modifications to Linear Simulation</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Augmented Transfer Function Simulation</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Augmented Transfer Function Simulation Results</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Non linear Pheagle Simulation</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Pheagle Simulation Results</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>Wind Tunnel Test Model</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>The Test Model</td>
<td>48</td>
</tr>
</tbody>
</table>
APPENDIX F ................................................................. 138
Wind Tunnel Tests.......................................................... 138
LIST OF FIGURES

Figure 1. Large Aircraft in Flight .......................................................... 2
Figure 2. Coordinate Systems for a Deflected Aircraft Fuselage ................. 3
Figure 3. Geometry of Deformed Flight Vehicle ....................................... 6
Figure 4. Type I PIO Interaction ............................................................ 8
Figure 5. Analysis Methodology for Type I PIO ....................................... 10
Figure 6. YF-12 First Bending Mode Shape .......................................... 11
Figure 7. Powers' Cantilever Beam Solution Fit to GVT Data .......... 14
Figure 8. Powers' Structural Simulation Verses Flight Test Data .............. 16
Figure 9. SIMULINK Block Diagrams of Transfer Functions .............. 20
Figure 10. Flat FE Model .............................. 23
Figure 11. Experimental Results ......................................................... 24
Figure 12. First Bending Mode ............................................................ 24
Figure 13. Shape of First Bending Mode ............................................. 26
Figure 14. Complex Model in COSMOS/M Software ............................. 27
Figure 15. Mode Shape for Wind Tunnel Test Model ............................... 27
Figure 16. Body Axes System ............................................................. 29
Figure 17. State Space Implementation ................................................. 31
Figure 18. State Space Simulation Block Diagram in SIMULINK ............. 33
Figure 19. Transfer Function Simulation SIMULINK Block Diagram ......... 35
Figure 20. SIMULINK Block Diagram for Lateral Subsystem with Aileron Input .... 35
Figure 21. Longitudinal Transfer Function Block Structurally Augmented .... 37
Figure 45. MATLAB Prediction for the B-1 ................................................................. 71
Figure 46. Three-View of Wind Tunnel Model ........................................................... 139
Figure 47. LabView Data Acquisition Program ....................................................... 140
Figure 48. Steady State Tuck Condition ................................................................. 141
Figure 49. First Bending Mode of Wind Tunnel Model ........................................... 142
Figure 50. First Bending Mode Upward of Wind Tunnel Model ............................ 143
NOMENCLATURE

\( a_i \) polynomial coefficients

\( A \) system matrix

\( A_1 \) mode shape bias

\( A_2 \) mode shape angular scaling factor

\( A_{n_s} \) normal acceleration due to structural bending

\( A(s) \) actuator transfer function

\( B \) control matrix

\( c \) viscous damping coefficient, lb-sec/ft

\( cg \) center of gravity

\( C \) output matrix

\( D \) output control matrix

\( E \) modulus of elasticity, psi

\( F \) harmonically varying force, lbf

\( F_1 \) maximum value of force, lbf

\( F_\sigma \) stick force, lbf

\( F_{c_m} \) control surface input effectiveness, in/deg

\( F_i \) finite element

\( FS \) fuselage station, in

\( FS_r \) reference fuselage station, in

\( g \) gravitational constant, ft/sec^2

\( GVT \) ground vibration test

\( H(s) \) Laplace transfer function, feedback loop

\( I \) identity matrix

\( I_x \) moment of inertia about x axis, similar for y and z

\( I_{n_x} \) product of inertia about x and y axes, similar for other axes

\( K_i \) displacement constant

\( K_{\phi} \) pitch attitude gain, deg/deg
L characteristic length, in
LCO limited cycle oscillation
p roll rate
PIO pilot-induced oscillation
q pitch rate
r yaw rate
RPO residual pitch oscillation
s Laplacian operator
SAS stability augmentation system
t time, sec
u control vector
u forward air speed
v horizontal air speed
w vertical air speed
x state vector
x derivative of state vector
x horizontal axis coordinate, in
x velocity, in/sec
x acceleration, in/sec²
x steady-state solution, in
y output vector
y horizontal position
z vertical position
δ deflection
δe elevator deflection, deg or rad
δe elevator deflection due to stick position, rad
Δδ elevator deflection from trim
ζ damping ratio
η structural modal displacement, in
\( \dot{\eta} \) : structural modal velocity, in/sec
\( \ddot{\eta} \) : structural modal acceleration, in/sec²
\( \theta \) : pitch angle
\( \dot{\theta} \) : pitch rate
\( \phi \) : nondimensional constant
\( \Phi \) : roll angle
\( \psi \) : heading angle
\( \omega \) : frequency, rad/sec
\( \omega_d \) : damped natural frequency, rad/sec
\( \omega_n \) : natural frequency, rad/sec

**Subscripts**

0 : bias term
d : damped natural frequency
e : elevator
n : natural frequency
s : structural value
ss : steady state value
CHAPTER I
INTRODUCTION

Background
The strength and flexibility characteristics of large, modern aircraft structures
often produce structural modes of vibration that are of the same order of magnitude as the
bare airframe short-period response. The first bending mode of the structure may in this
case have an effect on the handling qualities of the aircraft and should considered in a
piloted simulation of the vehicle. Currently, piloted simulations do not include structural
modes, most of which are highly dependent on configuration. MIL-STD 1797 Flying
Qualities of Piloted Aircraft\textsuperscript{1} does not provide metrics for the handling quality related
structural modes of an aircraft.

Variable Definitions
In this investigation, a large aircraft (see Figure 1) is considered a combination of
a fuselage (including the tail) and right and
left wings. The wings and tail provide
excitation inputs to the flexible fuselage,
which is allowed to bend as viewed from
the side but not allowed any degrees of
freedom in twist.

The aircraft is free to pitch about its
center of gravity, and the center of gravity
is allowed to shift slightly along the longitudinal axis. When the airplane is disturbed

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1}
\caption{Large Aircraft in Flight.}
\end{figure}
from its equilibrium state, the resulting motion in the longitudinal plane may be considered the sum of the motion due to the nonlinear equations of motion plus the linear vibration oscillation.

When considering the bending modes due to aeroelastic effects of large aircraft a few system parameters must be defined in order to provide a clear understanding of the problem. At any instant during flight a flexible aircraft fuselage can take on the shape similar the one shown in Figure 2. The dark blue line represents the deformed shape of

\[+z\]

\[\text{Nose}\]

\[\text{Tail}\]

Normalized Deflection

\[\text{Node}\]

\[\text{Node}\]

\[\text{Antinode}\]

\[\text{Normalized Fuselage Location}\]

\[\text{Figure 2. Coordinate Systems for a Deflected Aircraft Fuselage}\]
the fuselage during flight. The mode shape is defined as the deformed shape which the fuselage of a flexible aircraft takes on during flight. The horizontal axis is the normalized fuselage position. The normalized fuselage position is used to determine the placement of items such as accelerometers and gyros along the longitudinal axis of the aircraft. Normalized fuselage position is obtained by taking the horizontal reference system and dividing all values by the overall fuselage length. Normalized deflection of the fuselage is shown on the vertical axis of Figure 2. Normalized deflection is defined as the amount which the fuselage deflects from a given reference system. The deflections are normalized by determining the maximum deflection (usually at the nose of the aircraft) and then dividing the deflection distribution by this parameter. Figure 2 also shows the two nodes of the first bending mode. A node is a point of zero displacement and is represented by the points where the deflected fuselage (the dark blue line) crosses the horizontal axis. Nodes are points along the fuselage which experience no translational motion only rotational motion. An aircraft can have any number of nodes depending on the mode of vibration which is being excited. The first bending mode of the aircraft is shown here in Figure 2. The first bending mode is observed when the mode shape of the fuselage has two distinct nodes as shown in Figure 2. The second bending mode is observed when three distinct nodes are present along the fuselage. The node and bending mode relationship can continue to infinity governed by the following equation:

\[ \text{Bending Mode} = \text{Total Number of Nodes} - 1 \]