REPORT DOCUMENTATION PAGE

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1244, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 01/18/01 3. REPORT TYPE AND DATES COVERED Final, 01/15/97-1/14/2001

4. TITLE AND SUBTITLE Phonon kinetics and heat removal from low dimensional semiconductor structures

6. AUTHOR(S) Professor Vladimir Mitin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Wayne State University

8. PERFORMING ORGANIZATION REPORT NUMBER 3-31071

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211

10. SPONSORING / MONITORING AGENCY REPORT NUMBER AR034912.7-EL

11. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Our research on electron-phonon and phonon-phonon processes in low-dimensional semiconductor nanostructures has been focused on the effects of a surfaces and interfaces on the electron energy momentum relaxation rates due to acoustic phonon emission, new specific mechanism of electron interaction with acoustic phonons in semiconductor heterostructures, and phonon-induced processes of charge carrier scattering and phase coherence in heterostructures. Our research provides the necessary basis for the control of carrier dissipation and for the design of nanodevices with electron-phonon relaxation and dephasing rates required for specific applications.

14. SUBJECT TERMS Nanostructures, electron-phonon scattering, confined phonons, electron relaxation and dephasing, interference of scattering processes, quantum transport, Keldysh diagram technique.

15. NUMBER OF PAGES 8

16. PRICE CODE Standard

17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED
18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED
19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED

20. LIMITATION OF ABSTRACT UL

NSN 7540-01-280-5500
Form 298 (Rev.2-89)
Prescribed by ANSI Std. 239-18

298-102
Final Progress Report

Phonon kinetics and heat removal from low-dimensional semiconductor structures

Statement of the problems studied

Our research on electron-phonon and phonon-phonon processes in low-dimensional semiconductor nanostructures has been focused on the effects of a surfaces and interfaces on the electron energy and momentum relaxation rates due to acoustic phonon emission [1-8, 11, 16-21], new specific mechanism of electron interaction with acoustic phonons in semiconductor heterostructures [9-10], electron and phonon heating [1,7, 12-14], and phonon-induced processes of charge carriers loosing phase coherence in heterostructures [4,7]. Our research provides the necessary basis for the control of the heat dissipation and for the design of nanodevices with electron-phonon relaxation rates required for specific applications, such as quantum computing [4,23], ultrasensitive hot-electron detectors and quantum nanocalorimeters [5], fast transistors, and light-emitting devices. The following briefly describes our results.

Summary of the most important results

1. Effects of Surfaces and Interfaces on Energy and Momentum Relaxation Rates

In the first part of our study, we addressed the effect of proximity of a quantum well to a stress-free surface of the semiconductor heterostructure on the momentum relaxation rate of two-dimensional electrons interacting with acoustic phonons via piezoelectric and deformation potentials. The peculiarities of the near-surface scattering originate from two sources: modification of the acoustic-
phonon modes caused by the stress-free crystal surface and dependence of the phonon-induced piezoelectric potential on the dielectric properties of a medium ion contact with the semiconductor. The result obtained demonstrate that for narrow quantum wells placed close to the surface the relaxation rate at low temperatures (Bloch-Gruneisen regime) is changed considerably in comparison with that of a two-dimensional electron gas placed in a bulk of semiconductor. For the temperatures where the piezoelectric potential interaction dominates over the deformation potential interaction, the near-surface relaxation rate is enhanced in the case of a semiconductor-vacuum system and is suppressed in the case of the surface covered by a thin metal film. The temperature dependence of the near-surface momentum relaxation rate is found to be T^{-3} for values of the temperature T far below the Bloch-Gruneisen temperature. For a semiconductor-vacuum system, $\alpha=3$ and $\alpha = 5$ for piezoelectric and deformation potential scattering, respectively; for a semiconductor-metal system, $\alpha = 5$ for both mechanisms. The screening effects taking into account changes the temperature dependencies of momentum relaxation rates: for a semiconductor-vacuum system, the temperature dependencies are now determined by $\alpha = 7$ and also $\alpha = 7$ for piezoelectric and deformation potential scattering, respectively. Surprisingly, the screening does not change the value of α in the case of metal-semiconductor system.

In the second part, we model the influence of a cap layer with a fixed thickness placed on top of a semi-infinite heterostructure on the energy and momentum relaxation rates for two-dimensional electrons localized in the lowest subband of a quantum well and interacting with the acoustic phonon via the deformation potential. The relaxation rates are derived from the corresponding balance equations for a small deviation from the thermodynamics equilibrium. Our numerical results indicate that at low temperatures the efficiency of the scattering is changed substantially depending on the mechanical conditions at the surface; the cases of free and rigid surfaces are considered. We have analyzed the dependencies of the electron energy and momentum rates on the distance from the electron layer to the surface, on the temperature and electron concentration. The efficiencies of relaxation are shown to change substantially (up to two times for standard parameters of GaAs of InAs based quantum wells) depending nonmonotonically on the distance of the 2D layer to the surface and on the electron temperature. Decreasing the momentum relaxation rate due to the surface effect in thin (to 5 nm width) quantum wells gives rise to the possibility of obtaining 2D electron layers with extremely high mobility, limited only by the scattering on structure defects and on roughness of the interfaces, under higher temperatures. Thus, phonon engineering may be used to substantially modify the relaxation processes in selected quantum-based devices.

We have considered the emission of nonequilibrium acoustic phonons in the process of spin-flip transitions of electrons in non-symmetric quantum wells. The spin-splitting of the electron energy spectra causes the modifications of the energy and angular distributions as functions of the transverse voltage. The spin-flip
contribution to the emission rate is substantial for the phonons being emitted at considerable angles to the normal direction. The intensity of phonon emission for such angles increases in several times for InAs-based quantum wells, due to the contribution of spin-flip transitions.

2. Contribution of Effective Mass Variation to Electron Scattering on Acoustic Phonons

In bulk semiconductors, interaction via the deformation potential is the predominant mechanisms of electron scattering on acoustic phonons. This interaction was also thought to determine the kinetics of confined electrons in quantum heterostructures, the size and shape of the heterostructure affecting only the wave functions of participating phonon modes. We have suggested and explored a new specific mechanism of electron interaction with acoustic phonons in heterostructures, which is determined by the electron effective mass variation in the structure.

We have demonstrated the role of the deformation dependence of the electron effective mass in the interaction of electrons with acoustic phonons in quantum heterostructures. Starting from microscopic consideration, we have derived the electron-acoustic phonon interaction Hamiltonian, which describes the deformation-potential interaction and the overall contribution of the interfaces. To determine the electron energy perturbation caused by a smooth lattice displacement, we used the model of deformed ions. In this approach, the presence of interfaces is accounted for by the lattice potential. To calculate the electron wave functions, we exploited a tight-binding approach in a crystal with a simple cubic lattice and assumed that only first-neighbor cell couplings are nonzero.

We have demonstrated that the interaction of electrons confined in a nanostructure with acoustic phonons in a cubic crystal is described by a deformation-potential tensor whose symmetry is determined by the geometry of the nanostructure. The deformation dependence of the effective mass contributes considerably to a size-dependent part to the electron-acoustic phonon interaction. This contribution can exceed those from the usual deformation potential and from complementary mechanism due to the vibrations of heterointerface boundaries. Unlike the usual deformation interaction in cubic crystals, the new mechanism as well as the boundary-vibration mechanism may involve electron interaction with transverse acoustic phonons. For narrow quantum wells, the interaction with longitudinal acoustic modes caused by the new mechanism is comparable to and may overcome that from the bulk deformation potential.

Having used the obtained general formulas, we considered the finite-size effect in the interlevel transitions in cubical quantum dots in a GaAs structure. The new contribution to the electron-acoustic phonon Hamiltonian which is caused by the
deformation dependence of the electron effective mass is proportional to inverse square of the quantum dot. Therefore, the obtained correction terms grow considerably with the dot size decreasing. For small GaAs-based quantum dots, this contribution is comparable with and can overcome that from the usual deformation potential coupling.

However, for small (<50nm) quantum dots our continuum approach becomes inappropriate. Thus, further development of the theory is necessary to describe small-dot structures, which are especially important in applications.

3. Phonon-induced Electron Dephasing in Heterostructures

The electron dephasing in ultrathin films and nanostructures is of vital importance for nanoelectronics and has been intensively studied during recent decades. Temperature-dependent dephasing rate is mainly determined by the electron-electron and electron-phonon interactions. While theoretical results pertaining to electron-electron scattering are confirmed by many experiments, the electron-phonon mechanism is still poorly understood.

Unfortunately, most researchers employ the standard clean-limit concept, its uncritical application leading to incorrect and controversial conclusions. We suggest and investigate more reliable electron-phonon interaction model taking into account electron scattering from boundaries, defects and impurities. We found that even relatively weak static potential drastically changes the effective electron-phonon coupling and corresponding electron dephasing rate.

The electron scattering from boundaries and impurities destroys the single-particle picture of the electron-phonon interaction. We have shown that quantum interference between 'pure' electron-phonon and electron-boundary/impurity scattering may result in the reduction as well as to the significant enhancement of the electron dephasing rate. This effect crucially depends on the extent to which electron scatterers, such as boundaries and impurities, are dragged by phonons.

In our model [1,7], both static and vibrating scatterers are described by two dimensionless parameters qI and qL, where q is the wave vector of the thermal phonon, I is the total electron mean free path, and L is the mean free path due to scattering from static scatterers. Without static scatterers, the dephasing rate at low temperatures is slower by the factor $1/qI$ than the rate in a pure bulk material. In contrast, in the presence of static potential the dephasing becomes $1/qL$ times faster. This low-temperature electron dephasing is mainly determined by transverse phonons.

Thus, at low temperatures electron dephasing and energy relaxation may be controlled by electron boundary/impurity scattering in a wide range, which is
apparently important for applications. The dephasing rate can be increased or decreased compared to the rate in a pure bulk material. The predicted enhancement of the electron-phonon interaction due to disorder and T^2-dependence of the electron-phonon dephasing rate have been found recently in experiments on thin metallic films and semiconducting heterostructures. In the next year, we plan to continue investigations in this direction with improved theoretical model incorporating modification of the phonon spectrum.

4. Impact on Solid-State Elements for Quantum Computing

Study of the electron-phonon interaction in nanostructures will also have immediate impact on the design of solid-state elements for quantum computing and crytopgraphy [4, 23, 24]. The electron-phonon interaction plays a twofold role in solid-state elements for quantum computing. In coherent boxes, it controls the dephasing of electron subsystem and limits the time, which may be used for quantum manipulation. In readout nanodevices, the electron-phonon interaction is a basic mechanism of electron relaxation, it determines the characteristic time and sensitivity of quantum electrometers. The requirements on coupling between the coherent box and environment during quantum manipulations and quantum measurements contradict each other. During manipulations, decoherence should be minimized, while during measurements the quantum state should be dephased. To provide dephasing, the quantum measurement is performed by driving the electrometer out of equilibrium. After nonequilibrium dephasing the electrometer should relax to equilibrium as fast as possible.

The problem of the fast electron-phonon relaxation after quantum measurement is even more important. The increase of electron-phonon scattering time with decreasing operating temperature is very significant: it causes a very large thermal resistance between electrons and phonons. As a result, electrons are easily overheated by an external disturbance and slowly relax to equilibrium. For instance, at an operating temperature of 25mK and a bias current of $I=5pA$ via the electrometer, the effective temperature was found to be 220mK (see [4,23]). At an operating temperature of 20 mK the effective electron temperature was determined to be about 80mK. Thus, as emphasized slow electron-phonon relaxation limits applications of solid-state elements at ultralow temperatures.

Our research allows one to control the electron-phonon relaxation and dephasing rates in nanostructures, which are considered as promising elements for quantum computing.

6. List of all publications and technical reports supported under this grant.

Papers published in peer-reviewed journals:

1. "Breakdown of Pippard Ineffectiveness Condition for Phonon-electron Scattering in Micro and Nanostructures", A. Sergeev and V. Mitin, Europhysics

197-200.

Papers presented at meetings, but not published in conference proceedings:

1. "Influence of the Heterostructure Surface on the Relaxation Rate of 2D-electrons", V. Mitin, Workshop on Surfaces and Interfaces of Mesoscopic Devices, Kaanapali, HA, December 7-12, 1997, Tu3.3.

7. **Scientific personal**

The following researches have been supported from this grant:

1. Mitin V., Professor;
1. Korshak O., Research Associate;
1. Romanov D., Research Associate;
1. Glavin B., Research Associate;
1. Sergeev A., Research Associate;
1. Vagidov N, graduate student.

Working on this project, N. Vagidov has completed his is Ph.D. dissertation that he will defend in two months.