Award Number: DAMD17-95-1-5003

TITLE: Identification of Novel Candidate Tumor Suppressor Genes Using C. elegans as a Model

PRINCIPAL INVESTIGATOR: Paul W. Sternberg, Ph.D.

CONTRACTING ORGANIZATION: California Institute of Technology
Pasadena, California 91125

REPORT DATE: November 1999

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Identification of Novel Candidate Tumor Suppressor Genes Using *C. elegans* as a Model

Molecular genetic analysis of the model organism *Caenorhabditis elegans* was used to identify and study mechanisms of action of negative regulators of tyrosine kinase/RAS mediated signal transduction that are candidate tumor suppressors. A homolog of the proto oncogene *cbl*, SLI-1, inhibits Ras activation by the epidermal growth factor receptor homolog LET-23. Three functional domains of SLI-1 have been identified. The ARK-1 protein kinase was discovered and shown to inhibit signaling by LET-23. New screens for additional negative regulators have identified at several genes that will be molecularly cloned.
FOREWORD

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and use of Laboratory Animals of the Institute of Laboratory Resources, national Research Council (NIH Publication No. 86-23, Revised 1985).

N/A For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

N/A In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

N/A In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

N/A In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

Signature 11-30-99

Date
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT COVER</td>
<td>1</td>
</tr>
<tr>
<td>REPORT DOCUMENTATION PAGE</td>
<td>2</td>
</tr>
<tr>
<td>FOREWORD</td>
<td>3</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>4</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>BODY</td>
<td>5</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>6</td>
</tr>
</tbody>
</table>
Introduction

The previous year’s report was reviewed as if it were a final report, even though there was a no-cost extension. This report serves as a brief addendum to the last report.

Body

The specific goals of the project are as follows.

1. Analyze SL1-1 function in C. elegans through molecular genetics.
4. Identify and clone additional genes acting in concert with sl-1, sl-2, and rok-1.
5. Examine the functional interactions of sl-1, sl-2, rok-1 in regulating other conserved signaling pathways.
6. Clone human sl-2, rok-1, and newly identified genes from human breast tissue libraries to generate reagents with which to test the hypothesis that these are novel tumor suppressor loci.
7. Test the functional homology of c-cbl and sl-1 by introducing the human cDNA into transgenic nematodes defective in sl-1.

1. sl-1.
Completed.

2. sl-2.

Our analysis of sl-2 is completed except for the molecular cloning. The main new genetic data is a test of the signal dependence of vulval differentiation in sl-2 mutants. The excessive vulval differentiation displayed by sl-2 in combination with other negative regulators is dependent on the inductive signal originating from the hermaphrodite gonad (Table 1).

Table 1. sl-2 hyperinduction is gonad dependent. Gonadal precursors were ablated in the indicated number of animals of each genotype, and the extent of vulval differentiation scored in the late L3 or L4 larval stages by examination with Nomarski optics.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Gonad (+)</th>
<th>Gonad (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sl-2(sy262)</td>
<td>3.0 (n=30)</td>
<td>0.0 (n=6)</td>
</tr>
<tr>
<td>let-23(sy1); sl-2(sy262)</td>
<td>3.9 (n=31)</td>
<td>0.0 (n=5)</td>
</tr>
<tr>
<td>sl-2(sy262); gap-1(n1691)</td>
<td>3.3 (n=20)</td>
<td>0.0 (n=8)</td>
</tr>
<tr>
<td>unc-101(sy108); sl-2(sy262)</td>
<td>3.2 (n=20)</td>
<td>0.0 (n=6)</td>
</tr>
</tbody>
</table>
3. Genetics and molecular cloning of *rok-1*

Completed.
A paper on *rok-1*, renamed *ark-1* (Ack-related kinase) in response to reviewers, is being revised for the journal *Cell*.

4. Identification and cloning of additional negative regulators

As described in previous reports, we have identified new negative regulators of LET-23 - RAS signaling. We will continue their analysis.

The mutation 46-1 isolated as an enhancer of the multivulva phenotype of *let-23(sa62)/+* has been mapped to Linkage Group IV between *unc-24* and *dpy-20*. The map position will be refined and this locus cloned.

5. Gene interactions

Completed.

6. Human homologs

Completed. We failed to identify a human homolog of *rok-1* (*ark-1*).

7. Human cbl in *C. elegans*.

Completed.

Conclusions

Analysis of SLI-1, *C. elegans* homolog of Cbl, revealed functionally important domains.

Discovery of ARK-1 an Ack-related protein kinase involved in negative regulation of LET-23 signaling. Genetic analysis of ARK-1 suggests that it is recruited to the LET-23 signaling complex by the adaptor SEM-5.

New regulatory genes were discovered as suppressors or enhancers of existing mutations.
Progress by task as per original Statement of Work:

A brief description of progress on each task is listed.

Task 1A. Determine whether SLI-1 truncation decreases or increases activity of the protein as assayed in transgenic animals. • [Completed]

Task 1B. Determine role of alternative spliced form of SLI-1. • [Completed].

Task 1C. sli-1 point mutation sequencing • [Completed].

Task 1D. sli-1 antisera. [not completed].

Task 2A Genetic characterization of sli-2. [completed]

Task 2B. Molecular cloning of SLI-2 from C. elegans. [not completed]

Task 3. Genetics and molecular cloning of ROK-1 from C. elegans. [Completed]

Task 4. Identification by genetic screens of new loci.
 a. Screen for new mutations, carry out screens in parallel. [completed]
 b. Genetic mapping and complementation of new mutations, parallel experiments • [completed]
 c. Molecular cloning [not completed]

Task 5. Examination interactions of genes in vivo • [completed]

Task 6. Human homologs. • [unsuccessful]