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INTRODUCTION

Our first-year report was accepted as an excellent report as submitted. The review of our
first year report indicated that the report was well-written with extensive background
material and meticulous description of the theoretical basis for the algorithms, which are
not necessary in future annual reports and could be referred to with appropriate citations.
Thus, in this final report, we have substantially shortened the background sections and
refer the reviewer to our first-year report.

Although mammography is currently the best method for the detection of breast cancer, between
10-30% of women who have breast cancer and undergo mammography have negative mammograms.
In approximately two-thirds of these false-negative mammograms, the radiologist failed to detect the
cancer that was evident retrospectively. Low conspicuity of the lesion, eye fatigue and inattentiveness
are possible causes for these misses. We believe that the effectiveness (early detection) and efficiency
(rapid diagnosis) of screening procedures could be increased substantially by use of a computer
system that successfully aids the radiologist by indicating locations of suspicious abnormalities in
mammograms. In addition, many breast cancers are detected and referred for surgical biopsy on the
basis of a radiographically detected mass lesion or cluster of microcalcifications. Although general
rules for the differentiation between benign and malignant breast lesions exist, considerable
misclassification of lesions occurs with the current methods. On average, only 10-30% of masses
referred for surgical breast biopsy are actually malignant. Surgical biopsy is an invasive technique that
is an expensive and traumatic experience for the patient and leaves physical scars that may hinder later
diagnoses (to the extent of requiring repeat biopsies for a radiographic tumor-simulating scar). A
computerized method capable of detecting and analyzing the characteristics of benign and malignant
masses, in an objective manner, should aid radiologists by reducing the numbers of false-positive
diagnoses of malignancies, thereby decreasing patient morbidity as well as the number of surgical
biopsies performed and their associated complications.

Purpose of the present work

The main hypothesis to be tested is that given dedicated computer-vision programs for the
computer-assisted interpretation of mammograms, the diagnostic accuracy for mamnmographic
interpretation will be improved, yielding earlier detection of breast cancer (i.e., a reduction in the
number of missed lesions) and a reduction in the number of benign cases sent to biopsy. Computer-
aided diagnosis (CAD) can be defined as a diagnosis made by a radiologist who takes into
consideration the results of a computerized analysis of radiographic images and uses them as a
"second opinion" in detecting lesions and in making diagnostic decisions. The final diagnosis would
be made by the radiologist.

Methods of approach

The objective of the proposed research is to develop computer-aided diagnosis methods for use in
mammography in order to increase the diagnostic decision accuracy of radiologists and to aid in
mammographic screening programs. The CAD methods will include a parallel method for the
detection of a range of mass types and for the incorporation of information from multiple views (i.e.,
CC and MILO, and prior mammograms).

The specific objectives of the research to be addressed are:
(1) Development of advanced computerized schemes for the detection and classification of masses in
digital mammograms.

(a) Development of a computerized detection scheme for spiculated lesions and architectural
distortions based on the calculation of the Hough spectrum.
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(b) Development of a computerized detection scheme for small, low-contrast early cancers based
on gradient and circularity filters.

(c) Incorporation of the two new methods with a previously-developed bilateral-subtraction
method along with feature analyses into a system for lesion detection.

(d) Further development of computerized classification schemes for masses.
(2) Development of computerized methods based on multiple views for enhanced mammographic
interpretation.

(a) Development of computerized methods for the incorporation of image information from the
CC and MLO views of mammographic examinations.

(b) Development of computerized methods for analysis of temporal change between
mammographic examinations.
(3) Incorporation of the computer-vision methods with an Mammo/Icon mammographic review
system for enhanced diagnosis.

(a) Expansion of the Mammo/Icon database descriptors to include CAD derived parameters.
(b) Calculation of the computer extracted features of images in the Mammo/Icon database.
(c) Development of hardware and software interfaces for CAD and Mammo/Icon.

(4) Evaluation of the CAD methods for mammography.

BODY (Results to date)

Development of advanced computerized schemes for the detection of masses in digital
mammograms.

With the single-image method for detection of small invasive breast cancers localized density
peaks on mammograms are identified using a gradient/circularity filter. Lesion contours were
generated by matching a deformable template onto a second derivative edge map. In our study
(without further feature analyses to reduce false positives) using 45 non-palpable invasive breast
cancers, all with a size less than 1 cm (median size of 7 mam), 82% of the cancers were detected with an
average false-positive rate of 2.8 per image.

In the Hough spectrum geometric texture analysis technique, the mammogram is analyzed ROI
by ROI. Each ROI is transformed into its Hough spectrum and then thresholding is performed with
its threshold level based on the statistical properties of the spectrum. ROIs with strong signals of
spiculation are then screened out as regions of potential lesions. In a preliminary study, 32 images
containing spiculated lesions/architectural distortions (biopsy confirmed) were analyzed using
information extracted from the Hough spectrum. Our studies, using only the Hough spectrum based
technique without further feature analyses to reduce false positives, yielded sensitivities of 81% for
spiculated masses and 67% for architectural distortions at false positives rates of 0.97 and 2.2 per
image, respectively. We also converted the method into an AVS based program to expedite the
development and optimization of the parameters such as ROI size.

Output from the bilateral subtraction method and that of the gradient/circularity filtering were
combined and analyzed. Many masses were detected by both preprocessing methods. For a database
of 20 cancer cases, the bilateral yielded a sensitivity of 75% (at 1.8 false-positives detections per
image) and the gradient/circularity filter yielded a sensitivity of 70% at the same false postivie rate.
Upon comparison, the gradient/circularity filter found masses that the bilateral did not, thus allowing
the sensitivity to increase to 80%.

Since November 8, 1994, all screening mammograms taken at the University of Chicago Hospitals
have been analyzed on our clinical prototype mammography worstation, except during downtimes.
Over 25,000 screening cases have been digitized. Downtime has been minimal, less than 20 days in
total, which includes a 3-week period when the mammography section moved to a new outpatient
center. During that move, networking problems in the new facility contributed to computer system
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difficulties. For cases in which a cancer was detected, we also retrospectively reviewed any previous
mamnmograms that were in our study cohort. Two radiologists independently reviewed the cases and
stated whether the cancer was visible in a previous exam and whether, knowing that the lesion was
present, that they would call the patient back for a diagnostic exam based on the findings in the
previous exam. In this way, the number of cancers detected by the computer that were initially missed
by the radiologists was determined. With follow-up on the first 10,000 cases, 61 patients have been
diagnosed with breast cancer. In 12 of these cases, the screening mammogram(s) were negative even
in retrospect. For the mamnmographically visible cases (n=49), the sensitivity of the two schemes was
68% (34/49). Clinically, 96% of the cancers were detected (47/49). More important than the absolute
sensitivity of the workstation is its ability to detect breast cancers that may be missed by a radiologist.
In 30 of the 61 cancers, the patient had a screening exam that was read as negative and was included in
our study. That is, a screening manmmogram that was read as normal, which preceded the cancer being
diagnosed. In 14 of these cases, no lesion could be seen in retrospect, i.e., mammographically
negative. In 9 of 16 cases, the computer was able to identify the region on the negative-read (cancer
visible in retrospect) screening mammogram that corresponded to where the cancer was subsequently
detected. Overall, the computer was able to identify the cancer approximately one year before it was
diagnosed in approximately 15% (9/6 1) of all cancer cases and in 56% (9/16) of cases were the cancer
was visible in retrospect on a negative-read screening mammogram. The false-positive rate was
approximately 1.3 false clusters per image and 2.1 false masses per image. The types of false-positive
detections found by the computer in mass detection and clustered microcalcification detection were
investigated for 1296 cases. Of the false positives that were indicated by the computer, over 80% of
the mass false positives were due to nodular densities on the film.

In order to determine the effect of false-positive detections on mammographic interpretation, we
calculated the call-back rate in one-year time periods before and after implementation of the
workstation in the clinical area. The callback rate is the fraction of screening mammograms read as
abnormal. Before introduction of CAD, 13.2% of screeners were called back for further workup and
after the introduction of CAD, 12.6% of screeners were called back for further workup. Thus, the
false-positive output from the computer did not increase the number of women called back.

A new development, which has been implemented into the detection scheme for mammographic
masses, is a new region growing algorithm. The segmentation of lesions from surrounding
background is a vital step in many computerized mass detection schemes. We have developed two
novel lesion segmentation techniques -- one based on a single feature called the radial gradient index
(similar feature to that described above) and one based on a simple probabilistic model to segment
mass lesions from surrounding background. In both methods a series of image partitions is created
using gray-level information as well as prior knowledge of the shape of typical mass lesions. With the
former method the partition that maximizes the radial gradient index is selected. In the latter method,
probability distributions for gray-levels inside and outside the partitions are estimated, and
subsequently used to determine the probability that the image occurred for each given partition. The
partition that maximizes this probability is selected as the final lesion partition (contour). We tested
these methods against our previous region-growing algorithm using a database of biopsy-proven,
malignant lesions and found that the new lesion segmentation algorithms more closely match
radiologists' outlines of these lesions. At an overlap threshold of 0.30, gray level region growing
correctly delineates 62% of the lesions in our database while the radial gradient index (RGI) algorithm
and the probabilistic segmentation algorithm correctly segment 92% and 96% of the lesions,
respectively. With these new segmentation results we hope to find and extract new features that will
help differential between actual lesions and false-positive detections, thus improving the overall
performance of computerized mass detection.

In order to improve the classifier performance in the detection method for distinguishing between
actual lesions and false-positive detections, we investigated feature selection with limited datasets and
the use of probabilistic artificial neural networks. In many computerized schemes, numerous features
can be extracted to describe suspect image regions. A subset of these features is then employed in a



*Final Report DAN/ID 17-96-1-6058 8

data classifier to determine whether the suspect region is abnormal or normal. Different subsets of
features will, in general, result in different classification performances. A feature selection method is
often used to determine an "optimal" subset of features to use with a particular classifier. A classifier
performance measure (such as the area under the receiver operating characteristic (ROC) curve) must
be incorporated into this feature selection process. With limited datasets, however, there is a
distribution in the classifier performance measure for a given classifier and subset of features. We
investigated the variation in the selected subset of "optimal" features as compared with the true optimal
subset of features caused by this distribution of classifier performance. We considered examples in
which the probability that the optimal subset of features is selected can be analytically computed. We
showed the dependence of this probability on the dataset sample size, the total number of features
from which to select, the number of features selected, and the performance of the true optimal subset.
Once a subset of features has been selected, the parameters of the data classifier must be determined.
We showed that, with limited datasets and/or a large number of features from which to choose, bias is
introduced if the classifier parameters are determined using the same data that were employed to select
the "optimal" subset of features.

It is well understood that the optimal classification decision variable is the likelihood ratio or any
monotonic transformation of the likelihood ratio. An automated classifier which maps from an input
space to one of the likelihood ratio family of decision variables is an optimal classifier or an ideal
observer. Artificial neural networks (ANNs) are frequently used as classifiers for many problems. In
the limit of large sample sizes, an ANN approximates a mapping function which is a monotonic
transformation of the likelihood ratio, i.e., it estimates an ideal observer decision variable. The
disadvantages of conventional ANNs include the potential over-parameterization of the mapping
function which results in a poor approximation of an optimal mapping function for smaller sample
sizes. Recently, Bayesian methods have been applied to ANNs in order to regularize training to
improve the robustness of the classifier. A Bayesian ANN should thus better approximate the optimal
decision variable given small sample sizes. We have evaluated the accuracy of Bayesian ANN models
of ideal observer decision variables as a function of the number of hidden units used, the signal-to-
noise ratio of the data, and the number of features or dimensionality of the data. We showed that
when enough tralning data are present, excess hidden units do not substantially degrade the accuracy
of Bayesian ANNs. The minimum number of hidden units required to best model the optimal
mapping function, however, varies with the complexity of the data.

A new extension of the region growing method was developed to perform as a filter. The radial
gradient index (RGI) region growing method is now being implemented at the very first stage of the
mass detection algorithm in order to increase the sensitivity for mass detection. Thus, this RGI
algorithm replaces the bilateral subtraction methodology in the overall computerized mass detection
method. The benefit of this change is that cases with unilateral mammograms can be analyzed by the
computer method. In addition, the sensitivity of the detection algorithm increased by 15%.

In addition to the RGI filtering method, we have developed a method that uses a Bayesian neural
network to merge multiple feature images (RGI being one of them) pixel by pixel. This method,
which represents only the preprocessing stage of the algorithm, reaches a similar performance level of
the current mass detection method. We are now incorporating this new preprocessing stage with the
feature-extraction stage for further improvements.

Development of advanced computerized schemes for the classification of masses in digital
mammograms.

We are investigating the potential usefulness of computer-aided diagnosis as an aid to
radiologists in the characterization and classification of mass lesions in mammography. Ninety-five
mammograms containing masses from 65 patients were digitized. Various features related to the
margin, shape and density of each mass were extracted automatically from the neighborhoods of the
computer-identified mass regions. Selected features were merged into an estimated likelihood of
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malignancy using three different automated classifiers. The performance of the three classifiers in
distinguishing between benign and malignant masses was evaluated by receiver operating characteristic
(ROC) analysis, and compared with those of an experienced mammographer and of five less
experienced mammographers. Our computer classification scheme yielded an Az value of 0.94,
similar to that of an experienced mammographer (Az=0.91) and statistically significantly higher than
the average performance of the radiologists with less mammographic experience (Az=0.80). With the
database we used, the computer scheme achieved, at 100% sensitivity, a positive predictive value of
83%, which was 12% higher than that of the experienced mammographer and 21% higher than that of
the average performance of the less experienced mammographers at a p-value of less than 0.001.
Thus, automated computerized classification schemes may be useful in helping radiologists
distinguish between benign and malignant masses.

We have also investigated the effect of dominant features on neural network performance in the
task of classification of mammographic lesions. Two different classifiers, an artificial neural network
(ANN) and a hybrid system (one step rule-based method followed by an artificial neural network)
were investigated to merge computer-extracted features in the classification of malignant and benign
masses. Four computer-extracted features were used in the study: spiculation, margin sharpness and
two density-related measures. ROC analysis showed that the hybrid system performed significantly
better than the ANN method at the high sensitivity levels, yielding an A, of 0.94 with a specificity of
69% at 100% sensitivity, whereas, the ANN method yielded an Az of 0.90 with a specificity of 19% at
100% sensitivity. To understand the difference between the two classifiers in their performance, we
investigated their learning and decision-making processes by studying the relationships between the
outputs and input features. The correlation study showed that the outputs from the ANN alone
method strongly correlated with one of the input features (spiculation measure), yielding a correlation
coefficient of 0.91 while the correlation coefficients (absolute value) for the other features range from
0.19 to 0.40. The strong correlation between the ANN output and spiculation measure indicates the
learning and decision-making processes of the ANN alone method was dominated by the spiculation
measure. A series of three-dimensional plots of the computer output as functions of the input features
demonstrate that the ANN method did not learn as effectively as the hybrid system from the other
three features in differentiating subtle (non-spiculated) malignant masses from benign masses, thus,
resulting in the inferior performance at the high sensitive levels. We found that with a limited
database, it is detrimental for an ANN to learn the significance of other features in the presence of a
dominant feature. The hybrid system, which initially applied a rule on the spiculation measure prior to
an ANN, prevents the over-learning from the dominant feature and performed better than the ANN
alone method in merging the computer-extracted features into a correct diagnosis on the malignancy of
the masses.

Currently in mammography, the digital image on which CAD analysis is performed is obtained
by digitizing a screen-film mammogram. Since the image is sampled when digitized, the digitization
of a image using two different scanners will not produce exactly the same digital image (because of
different designs, sampling aperture, sampling distance and internal electronic noise, etc. of the laser
scanners and the different calibration curves for the transformation of the optical density (OD) to pixel
value). Thus, the contrast, noise and resolution of the two images may differ. Thus, as long as CAD
analysis relies upon digitized screen-film images, a CAD system (film digitization and computer
analysis) may suffer from the variability in the digital formats of a image, which may lead to variations
in the performance of the CAD scheme. Two different databases and three different digitizers were
involved in this study. One database consisted of 95 mammograms collected from 65 cases: 39
biopsy-confirmed malignant cases, 25 biopsy-confirmed benign cases and one benign case which was
determined through more than five years of follow-up. These mammograms were digitized using an
optical drum scanner (FIP II, Fuji Film, Tokyo, Japan) at a sampling distance of 0.1 mm and 10-bit
quantization. Another database consisted of 110 new cases which were collected from the University
of Chicago Radiology files. Of these, 50 cases are biopsy-confirmed malignant, 50 cases are biopsy-
confirmed benign diseases and 10 cases are aspiration-confirmed cysts. For each case, two standard
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views of the affected breast were chosen from a single screening exam. Of the 110 cases, 8 cases had
a mass appearing on one view only. Each mammogram this second database was digitized twice using
two different laser scanners -- a Konica digitizer (LD 4500; Konica Medical, Wayne, NJ) at 0.1-mm
pixel size and 10-bit quantization and a Lumisys laser scanner (Lumiscan 100, Lumisys, Sunnyvale,
CA) at a 0.1-mm pixel size and 12-bit quantization. In the evaluation of our classification scheme,
both Az and 0.90Az are important indices. The Az value was used to evaluate the overall performance,

while the partial area index (0.90A'z) was designed to evaluate the performance of a scheme at a
preselected high sensitivity level for those who are interested in knowing the performance at the high

sensitivity. In addition, the difference in the partial area index 0.90Az quantitatively evaluates, to some
degree, the difference in the shape of the two ROC curves. The differences in Az between the two
digital formats were the same for both the ANN-alone and hybrid classifiers. Two-tailed p values
obtained from the CLABROC programs showed that the difference in the performance of the
classification scheme, due to the difference between the two digitization techniques, using both the
ANN and the hybrid classifier were not statistically significant at the level of 0.05 in terms of the Az
and 0.90Az.

In order to observe the effect of the computer aid on radiologists' performance in the task of
distinguishing between malignant and benign lesions, we performed two observer studies. The first
observer study was at RSNA '98. The mass classification method was run on both the MiLO and CC
views and the magnification views. We showed that the average performance of 128 radiologists (who
participated in the study) increased significantly from an Az of 0.89 to an Az of 0.94 (p < 0.05) when
the computer aid was used in distinguishing 20 mass lesions cases. In addition, at RSNA 99, we
presented results of an observer study in which the radiologist-observers interpreted 110
mammographic mass lesion cases without and with the computer output of the likelihood of
malignancy. Six general radiologists (certified in reading mammograms) and five mammographers
participated. The average of performance of the radiologists in term of Az showed a statistically
significant increase when the computer aid was used (p < 0.05) for all eleven observers, for just the
general radiologists, and for just the mammographers.

At RSNA 99, we presented preliminary results from our investigation of the potential of the
computerized mass classification method to digital mammography (106). We retrospectively obtained
96 mass cases imaged on a LORAD small/medium-field digital mammography system at
Northwestern University. We first tested the computerized method that has been trained on the
screen/film database which yielded an Az of 0.72 on the digital mammography data. However, after
retraining the computerized method, but using the same computer-extracted features, we obtained an
Az of 0.91 in a round-robin analysis. This was similar to the subjective rating given by the
radiologists during their clinical workup of the cases (0.92). We concluded that the CAD screen/film
method could be ported over for use with digital mammography after recalibration of the parameters in
the computerized method. We are continuing to investigate the differences as well as examine the
porting of the screen/film computerized classification method to FFDM.

Development of computerized methods based on multiple views for enhanced
mammographic interpretation

We have evaluated the potential benefit of incorporating a temporal subtraction scheme with our
bilateral subtraction technique for improving the sensitivity of mass detection. A database of 79 cases
was used, each of which contained a lesion in at least the current exam. Two methods for image
registration of the temporal images were investigated: one used translation and rotation based on
computer-determined skin lines and the other used a warping technique based on the cross-correlation
of regions of interest located throughout the parenchyma. The characteristics of the false-positive
detections resulting from the bilateral subtraction and from the temporal subtraction were analysed.
The distribution of the true positives and false positives were similar despite the fact that many of the
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false positives resulting from the two schemes were in different locations in the breast parenchyma. At
a false-positive rate of four per image, the combined (Logical OR) scheme detected 85% of the
masses, which was 8% greater than the bilateral subtraction technique alone. The combined use of
bilateral and temporal subtraction methods shows potential for an improvement in sensitivity in the
detection of masses.

We are investigating how the lesion features as calculated from the CC, MILO, and magnification
views vary. To date we have collected approximately 150 cancer cases from digitized films.
Spiculation has been shown to be a dominate feature and is influenced by linear-shaped parenchymal
structures that transverse the lesion on the 2-D projection image. This is one of the reasons
radiologists prefer to have a computer rating given per view as opposed to per case - since the
projected view of a lesion and a linear parenchymal pattern could lead to an erroneous increase in the
degree of spiculation as calculated by the computer method. It is important that radiologists
understand what feature the computer is "looking" at and understand is the computer under-or over
calls a lesion. This evaluation is presented later in this report.

Incorporation of the computer-vision methods with an Mammo/Icon mammographic review
system for enhanced diagnosis.

Dr. Swetts at Yale has left academics and gone into private practice in Seattle. No grant funds
have been transferred to him. Instead researchers on the team at the University of Chicago are creating
an "Mammo/Icon-like" system. The features (as well as the merged values from the artificial neural
network) from the malignant and benign cases are tabulated and retained in the computer.

We have developed an intelligent search display into which we have incorporated our
computerized mass classification method. Upon viewing an unknown mammographic case, the
display shows both the computer classification output as well as images of lesions having both known
diagnoses (e.g., malignant vs. benign) and similar computer-extracted features. The similarity index
used in the search can be selected by the radiologist and can be based on a single feature, multiple
features, or on the computer estimate of the likelihood of malignancy. Note that the output of a
computer-aided diagnostic scheme can take a variety of forms such as the estimated likelihood that a
lesion is malignant either in terms of probabilities or along a standardized rating scale. This
information is then available for use by the radiologist as he or she sees fit when making decisions
regarding patient management. An alternative approach, which is provided for with the intelligent
search workstation, is for the computer to display a variety of lesions that have characteristics similar
to the one at hand and for which the diagnosis is known, thereby providing a visual aid for the
radiologist in decision making.

Our intelligent workstation recalls lesions in the known database based either on a single feature,
multiple features, or a computer-estimate of the likelihood of malignancy. The computer workstation
displays similar malignant and benign known cases by use of a color-coding scheme allowing instant
visual feedback to the radiologist. (Figure 1) The probability distributions of the malignant and
benign cases in the known database are shown by images along with the "location" of the unknown
case relative to these two distributions. Features calculated include a spiculation measure, a radial
gradient index, margin sharpness, and two density measures. For the example shown, based on the
degree of spiculation, similar images from the known database of 175 cases (301 images) are
displayed. Each of the known images are enclosed in either a white box corresponding to a benign
case or in a black box corresponding to a malignant case. In addition, the user has the option to have
the computer-extracted feature value and the "distance in feature value" from the unknown case
displayed adjacent to each of the known images. The distribution of malignant and benign cases in the
known database of the workstation will affect which cases are displayed when an unknown case is
examined. The search for similar images can also be performed using multiple features, the output
from an artificial neural network [2] or the likelihood of malignancy, as criteria.
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Figure 1. Display interface pf the intelligent search workstation showing a malignant case. Black
borders around known cases indicate that they are malignant. White border indicate the lesions are
benign.

The intelligent search workstation combines the benefit of computer-aided diagnosis with prior
knowledge obtained from confirmed clinical cases. It is expected that the display of known lesions
with similar features will aid the radiologist in his/her workup of a suspect lesion, especially when the
radiologist's assessment of the lesion differs from the computer output. An observer study involving
the workstation is ongoing.

Evaluation of the CAD methods for mammography

Databases are continuously being collected. For mass detection, we have approximately 175.
clinical cases of malignant masses. New data for the classification database includes the 150
malignant cases as well as 100 benign cases, which were used in the robustness evaluation, and an
additional 100 cases collected for the intelligent search workstation evaluation.

Our computerized mass classification method was independently evaluated on a 110-case
database of digitized screen/film mammograms containing 50 malignant and 60 benign mass cases
[3]. The effects of variations in both case mix and in film digitization technique were assessed. The
method achieved an Az value (area under the ROC curve) of 0.90 on the prior training database for
categorization of lesions as malignant or benign (Fuji scanner digitization) in a round-robin evaluation,
and Az values of 0.82 and 0.81 for the independent database with Konica and Lumisys digitization
formats, respectively [3]. However, we failed to show a statistical significant difference between the
performance on the training database and that on the independent validation database (p-values >
0.10). Thus, our computer-based method for the classification of lesions on mammograms would
seem robust to variations in case mix and film digitization technique [3,4].
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We evaluated the mass classification method at RSNA 98. The mass classification method was run
on both the MILO and CC views and the magnification views. We showed that the average
performance of 128 radiologists (who participated in the study) increased significantly from an Az of
0.89 to an Az of 0.94 (p < 0.05) when the computer aid was used in distinguishing 20 mass lesions
cases.

We also evaluated the mass classification method on mammographic benign and malignant mass
lesions based on the analysis of mammograms of special views. The scheme was trained on a
database consisting of 65 cases (95 mammograms of standard views - CC and MLO) and yielded an
Az of 0.90 in a round-robin analysis. With no retraining of the scheme, the computerized method was
validated on an independent database consisting of 71 cases, each case having mammograms of the
two standard views and a special view (a magnified or spot compression view. The classification
scheme achieved Az values of 0.78, 0.75 and 0.95 for CC, NMLO and special views, respectively, in
differentiating between benign and malignant masses. The performance based on the analysis of the
special views is significantly better (p=0.0055, 0.0050) than that based on the analysis of the standard
mammographic views. Our computerized classification scheme performed well on the independent
database. Computerized analysis of special mammographic views is important for the diagnosis of a
mammographic mass lesion.

We are also investigating the potential usefulness of computer-aided diagnosis as an aid to
radiologists in the characterization of mass lesions on digital mammography. We evaluated our
computerized classification method, initially developed using digitized screen/film mammograms, on a
database of digital mammograms. We retrospectively collected 212 consecutive digital mammograms
from 110 patients obtained with a LORAD stereotactic imaging system. These images had initially
been performed for needle localization or core biopsy of a suspect mass lesion. The database
consisted of 44 malignant cases and 66 benign cases. The computer classification method, as
described above for the digitized screen/film mammogram study, includes automated segmentation of
the mass lesions from the breast parenchyma, automated extraction of lesion features, and automated
classification o 'f the suspect lesion into an estimate of the likelihood of malignancy. It should be
noted, however, that in this study, the automatic classification was performed by a Bayesian neural
network (BANN). The BANN was used to merge the four features of spiculation, margin sharpness,
average gray level, and texture. The BANN uses regularization to prevent overtraining of the network
[5,6]. The computerized classification method, which incorporated the BANN, was trained on our
screen/film database and yielded an Az of 0.90 in the training. This trained computer method yielded
an A,, of 0.79 on the independent digitized S/F database and an Az of 0.71 on the independent digital
mammography (LORAD) database. Note here that the computer method/network weights and
parameters were set using the digitized screen/film database. The BANN was then re-trained using the
digital mammographic images from the LORAD digital system. Thus, the structure, weights, and
parameters of the network changed although the same features were automatically extracted from each
mass lesion. After re-training of the BANN, the Az reached a value of 0.89 for the digital
mammographic images. Radiologists' ratings of suspicion, from the clinical interpretation, of the same
lesions on the basis of prior screen/film images, the LORAD digital images, and clinical data achieved
a similar Az (0.92). Further investigation of the features in the study showed that the spiculation
feature performed better on the screen/film database, whereas the texture feature performed better on
the digital mammography database. In summary, we have extended our computerized method for the
characterization of mass lesions on mammography to the analysis of mammographic images obtained
directly from a digital system. Results indicate that the computer-extracted features are robust and can
be used to classify lesion on digital mammography. However, retraining of the classifier, which uses
the extracted features as input, may be require "calibration." That is, due to differences in the physical
characteristics of the two image acquisition systems, however, the classifier may have to be retrained
with images obtained using the same modality to optimize performance.
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KEY RESEARCH ACCOMPLISHMENTS

1.Improvements in the computerized detection of mass lesions on mammograms
"* Incorporation of temporal image data
"* Development of a new lesion extraction (region growing) method
"* Development of new single image detection method instead of bilateral subtraction
"* Development of a Bayesian neural network technique for merging features as well as feature

images
"* Investigation into feature selection and feature merging with limited datasets
"* Development of a new pixel-based multiple-feature image filtering technique

2. Improvements in the computerized classification of mass lesions on mammograms
"* Investigation of a hybrid (rule-based plus ANN) system for classification
"* Validation on an independent database showing robustness of the method
"* Incorporation of special views, beyond just MILO and CC views, in the computer analysis

3. Incorporation of the CAD methods into an intelligent search workstation
"* Expansion of known database descriptors to include CAD derived parameters
"* Development of a similarity index for extracting similar cases from the known database
"* Development of the intelligent search workstation

4. Evaluation of the CAD methods for mammography.
"* Evaluation of the computerized mass detection method on 10,000 consecutive screening

mammography cases
"* Evaluation of the computerized mass classification method on an independent database of

cases of cancers and benign cases
"* Evaluation of the computerized mass classification method (developed on digitized screen/film

mammograms) on digital mammograms (from a LORAD unit)
"* Evaluation (by way of observer studies) of the computerized method as an aid to radiologists

in the task of distinguishing between malignant and benign lesions and in recommending
biopsy.
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CONCLUSIONS

The research supported by this grant has produced improvements for the computerized detection and
classification of lesions on mammography. The research has also provided investigators with new
methods for feature selection, feature merging (i.e., classifiers), and methods for evaluation. In
addition, observer studies from this research have shown at a statistically significant level that use of
the computer aid does improve the diagnostic decision making of radiologists. This work is ready to
be translated to clinical environment.
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Abstract. Two different classifiers, an artificial neural network (ANN) and a hybrid system
"(one step rule-based method followed by an artificial neural network) have been investigated to
merge computer-extracted features in the task of differentiating between malignant and benign
masses. A database consisting of 65 cases (38 malignant and 26 benign) was used in the study. A
total of four computer-extracted features-spiculation, margin sharpness and two density-related
measures-was used to characterize these masses. Results from our previous study showed that
the hybrid system performed better than the ANN classifier. In our current study, to understand
the difference between the two classifiers, we investigated their learning and decision-making
processes by studying the relationships between the input features and the outputs. A correlation
study showed that the outputs from the ANN-alone method correlated strongly with one of the input
features (spiculation), yielding a correlation coefficient of 0.91, whereas the correlation coefficients
(absolute value) for the other features ranged from 0.19 to 0.40. This strong correlation between
the ANN output and spiculation measure indicates that the learning and decision-making processes
of the ANN-alone method were dominated by the spiculation measure. Three-dimensional plots
of the computer output as functions of the input features demonstrate that the ANN-alone method
did not learn as effectively as the hybrid system in differentiating non-spiculated malignant masses
from benign masses, thus resulting in an inferior performance at the high sensitivity levels. We
found that with a limited database it is detrimental for an ANN to learn the significance of other
features in the presence of a dominant feature. The hybrid system, which initially applied a
rule concerning the value of the spiculation measure prior to employing an ANN, prevents over-
learning from the dominant feature and performed better than the ANN-alone method in merging
the computer-extracted features into a correct diagnosis regarding the malignancy of the masses.

1. Introduction

Various classifiers (Gale et al 1987, Getty et al 1988, Cook and Fox 1989, Swets et al 1991,

Wu et al 1993) are being investigated for use in merging computer-extracted image features
and in medical decision making, such as in the classification of mass lesions in mammography.

Mammographic classification of mass lesions is a difficult task, because mass lesions vary in

appearance and similar attributes are shared by some benign and malignant masses (Tabar and

Dean 1985, Sickles 1991, D'Orsi and Kopans 1993, Knutzen and Grisvold 1993). In addition,

it has been shown that general radiologists can extract individual features from radiographs at

a level similar to that of experienced mammographers (Getty et al 1988). However, general

radiologists differ from experienced radiologists in their ability to merge extracted information

into a correct diagnostic decision. Researchers have shown that computer-based systems
reached a correct diagnosis more often than did general radiologists (Gale et al 1987, Getty et al

t Author to whom correspondence should be addressed.
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1988, Swets et al 1991, Wu et al 1993). Studies have shown also that computer classifiers
were able to merge features extracted by a computer into a correct diagnosis at a level similar
to that of expert radiologists (Jiang et al 1996, Huo et al 1998).

Computer-based systems, however, have limitations in their learning abilities and decision-
making processes when they are used alone. For example, while a rule-based expert system
can adopt pre-existing knowledge and, thus, can employ prior information directly, there are
limitations in the availability of knowledge and knowledge usage. Also, the translation of
particular 'intuitive' knowledge into rules may be difficult and even detrimental if expressed
incorrectly. Artificial neural networks, on the other hand, are able to learn ill-defined
relationships from noisy examples and, in this way, can acquire their own knowledge that can
be used to classify new cases if the ANNs have the proper architecture and are 'taught' with a
sufficiently large number of training data (Haykin 1994). However, artificial neural networks
may not provide users with explanations about the internal decisions and may not be able to
incorporate well-established prior knowledge. Moreover, it is uncertain in some situations as
to whether a final learning goal of an ANN is achieved, because overtraining or undertraining
of an ANN may occur when only a limited sample of training data is available (Haykin 1994).
To emulate humans in their learning and decision-making for particular practical problems,
two or more types of computer classifiers may need to be integrated into a hybrid system in
order to overcome the limitations of each kind of system and, thereby, to improve the learning
and decision-making processes.

Rule-based approaches have be used as classification tools in making diagnostic decisions
(Cook and Fox 1989). Also, artificial neural networks evolved into one of the major alternative
methods in medical decision-making as the ability of ANNs to learn and generalize became
recognized in the field (Wu et al 1993, Jiang et al 1996, Lo et al 1997). Levels of decision
performance obtained with different classifiers, such as rule-based methods and artificial neural
networks, have been compared (Nagel et al 1995, Katsuragawa et al 1997, Huo et al 1998).
Results showed that combined methods yielded better performance than either the rule-based
methods or the artificial neural networks (Nagel et al 1995, Katsuragawa et al 1997, Huo et al
1998); however, the differences in the levels of performance were not investigated.

We have developed a computerized scheme that differentiates malignant masses from
benign masses on the basis of information in digitized mammograms (Huo et al 1995,
1998). The scheme automatically extracts four radiographic features, similar to those used
by radiologists in the classification of masses, from a mass and merges these features into an
estimated likelihood of malignancy (Huo et al 1998).

We report here a study in which we investigated the effect of having a dominant feature
on the training and performance of classifiers used in the classification of mass lesions. We
studied the advantages of a combined rule-based and ANN system (i.e. a hybrid system) over
a method that employs an ANN alone in merging the four computer-extracted features into a
correct diagnosis. We present a detailed discussion about the advantages and the limitations
of the two classifiers in their ability to learn the significance of the four features in classifying
masses in a database. In addition, to understand the difference between the two classifiers, we
studied the relationships between the input features and the classifier output.

2. Materials and methods

2.]1. Database

Ninety-five mass-containing mammograms were collected from 65 patients: 39 with breast
cancer and 26 with benign breast disease. Sixty-four of the 65 patients were biopsied for the
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suspicion of breast cancer; the remaining one was deemed benign by more than 5 years follow-
up. The mammograms were digitized with an optical drum scanner (FIP II, Fuji Film, Tokyo,
Japan) at a sampling distance of 0.1 mm and 10-bit quantization. Two expert mammographers
characterized the 95 mammographic masses in terms of their margin spiculation, shape, density
and size (Huo et al 1998). According to the subjective opinion of two expert mammographers,
the database represents a typical clinical distribution of mammographic masses in terms of
margin, shape, density and size, though not in terms of the ratio of benign to malignant
cases.

2.2. Computerized classification method

Our computerized classification method has been presented and evaluated elsewhere (Huo
et al 1998). We summarize its components and status here. We used this classification method
in our study of the effect of dominant features on performance. The following two sections
review the computer-extracted features and classifiers used in the classification methods.

2.2.1. Computer-extracted features. The four computer-extracted features used in the study
are spiculation, margin sharpness, mass density and texture measure, and have been discussed
in detail elsewhere (Huo et al 1998). The lesion is first automatically extracted from the
parenchymal background in the mammographic image. The features are then automatically
extracted from the neighbourhood of each mammographic mass.

Degree of spiculation of a mass is defined as the average angle (in degrees) by which the
direction of the maximum gradient along the margin of a mass deviates from the radial direction
(Huo et al 1995). The margin sharpness measure is defined as the average magnitude of the
maximum gradients along the margin of the mass and is used to characterize the margin of a
mass as well-defined, partially well-defined or ill-defined (Huo et al 1995, 1998). The density
of a mass is quantified by both the average grey level (opacity) within a mass and a texture
measure, which is the standard deviation of the gradients within a mass (Huo et al 1998). In
clinical practice, spiculation is the major diagnostic feature for malignancy that is used by
radiologists, with a spiculated mass having a greater than 95% probability of being a cancer
(Kopans 1989). An ill-defined mass is associated with a higher probability of malignancy
than a well-defined mass. A mass with higher radiographic density is associated with a higher
probability of being a malignant mass than one with lower radiographic density.

It should be noted that we used two features to quantify the density of a mass because it
is difficult to quantitatively assess the density of a mass radiographically. A mass is a three-
dimensional object. Factors that include overlying tissue and x-ray exposure conditions affect
measures of mass density that are based upon the absolute value of grey level. Therefore, the
texture feature was employed to quantify the density of a mass from a different perspective,
by characterizing patterns that arise from veins, trabeculae and other structures which may
be visible through a low-density mass, but not through a high-density mass. A mass of low
radiographic density should have a low value of average grey level and a high value of the texture
feature, whereas a mass of high radiographic density should have a high value of average grey
level and a low value of the texture feature. Since the average grey level within a mass depends
on the x-ray exposure condition, the average grey-level measure may not be as robust as the
other three features, which are gradient-based measures and depend only on the relative values
of absolute grey values. However, variations in digitization may affect the performances
of these features. In our study, the mammograms in the database- were digitized using the
same digitizer under the same condition. In a separate study using an independent database
(110 cases), we digitized the database twice using two different digitizers. Results from that
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Table 1. Performance of the four individual computer-extracted features in differentiating between
malignant masses and benign masses in terms of A, based on ROC analysis of the 95 mammographic
mass images and of the 36 mammographic mass images after the spiculation cutoff.

A, A,

(entire database) (non-spiculated masses)
Features n - 95 n = 36

Spiculation 0.88 0.53
Sharpness 0.56 0.68
Average grey level 0.65 0.66
Texture measure 0.54 0.71

independent study showed that the classification method is robust to variations in digitization
technique (Huo 1998).

Our previous studies demonstrated that these computer-extracted features agree well with
radiologists' visual impressions in characterizing benign and malignant mass lesions (Huo
et al 1995, 1998). The individual abilities of these four features to differentiate malignant
from benign masses for the 95 mammographic mass images in our database were evaluated
with ROC analysis (Metz 1986, 1989). The area under a fitted ROC curve, Az, was generated
from the ROC analysis as an index to evaluate the performance of the individual features. The
spiculation measure is more significant than the other three features in distinguishing between
benign and malignant masses, yielding an A, value of 0.88 compared with A, values ranging
from 0.54 to 0.65 for the other three features, as shown in table 1.

It is interesting to note that spiculation is not only a clinically important feature used
by radiologists in the classification of mass lesions, but also the dominant feature for our
computer scheme. In our previous study, we compared the performance of the spiculation
feature alone with that of an experienced mammographer's spiculation ratings. Our analysis
showed that the computer-extracted spiculation feature performed at a level (A, = 0.88)
similar to that of an expert mammographer's spiculation rating (A, = 0.85) in terms of ability
to distinguish between benign and malignant masses, and correlated well with the experienced
mammographer's spiculation ratings (r = 0.63; p < 0.0001) (Huo et al 1995).

2.2.2. Automated classifiers. Figure 1 illustrates the structures of the artificial neural network
(ANN) and the hybrid system that were used as classifiers in our study. In the ANN-
alone method, the ANN had four input units (each corresponding to a computer-extracted
feature), two hidden units and one output unit. All four features were input to the four-input
ANN used in the ANN-alone method. In the hybrid system, the spiculation measure was
input to the first part of the hybrid system (i.e. the rule-based component), which initially
classifies the masses into 'spiculated' and 'non-spiculated' categories. Masses classified
as 'non-spiculated' in this way were analysed subsequently by an artificial neural network
that had three input units (corresponding to the three computer-extracted features other than
spiculation measure), two hidden units and one output unit. Both artificial neural networks
were trained using an error back-propagation algorithm with a sigmoid activation function
(Haykin 1994).

The four-input ANN was trained on the entire database. The round-robin (i.e. leave-one-
out) method (Gong 1986) was used to test the generalization ability of the ANN architecture
for this data set. In the round-robin method, all cases but one were used to train the neural
network, with the single left out case used to test the neural network. To avoid bias for cases
with images having two views (medio-lateral and cranio-caudal views) of the breast, both
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Figure 1. The structures of (a) the ANN-alone method and (b) the hybrid classifier used in the
study.

images of the pair were left out in the round-robin training, and the higher of the two values so
obtained was reported as the estimated likelihood of malignancy for that case. This procedure
was repeated for all the cases so that every case in the database serves once as a cross-validation
case. The ANN used in the hybrid system was trained and tested on the non-spiculated masses
only, again using the round-robin technique.

ROC analysis (Metz 1986, 1989, Metz et al 1998) was employed to evaluate the
performance of the two classifiers in their ability to merge the four computer-extracted features
into a correct diagnosis regarding malignancy. The statistical significance of differences in the
area under fitted binormal ROC curves, Az, and of differences in a partial-area index, TPFA'z,

was tested by using a modified version of our CLABROC (Metz et al 1984, 1998, Jiang et al
1996) algorithm. The partial area index TPFA'z is the portion of the area under the ROC curve
that lies above a preselected sensitivity threshold (TPF > selected threshold) in a conventional
ROC graph divided by the constant (1-TPF) (Jiang et al 1996). It should be noted that the
ROC curve for the hybrid system was determined using the spiculation values for the lesions
that 'passed' the 'spiculation rule' and using the output of the ANN for the lesions that did not
pass the rule.

Results from our previous study showed that the overall levels of classification performance

in terms of A, value are 0.94 and 0.90 for the hybrid classifier and the ANN-alone method
respectively in the task of distinguishing between benign and malignant masses (Huo et al
1998). The ROC curves from the round-robin ANN outputs of the two classifiers are shown
in figure 2. As can be seen from the ROC curves (figure 2), the difference in the performance
of the two classifiers is mainly due to the difference in the upper parts of the ROC curves.
Although the difference in A, for the two classifiers is not statistically significant (p = 0.2),
the differences in partial areas (Jiang et al 1996) at the high-sensitivity levels (TPF > 0.90 and
TPF > 0.80) are statistically significant (p = 0.007 and p = 0.036 respectively), as shown
in table 2. The performance at the high-sensitivity levels, particularly above 90%, is clinically
relevant, because high sensitivity is demanded for mammography in order to maximally reduce
the mortality of breast cancer. Therefore, the statistically significant difference between the
performance of two classifiers at high sensitivity is important.
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Figure 2. The ROC curves of the ANN-alone and hybrid classifiers in distinguishing malignant
masses from benign masses. Individual symbols indicate the empirical (TPF, FPF) points prior to
ROC curve fitting.

Table 2. Performances of the ANN and hybrid classifiers in distinguishing between malignant
masses and benign masses in terms of Az, 0,90A' (TPF > 0.90) and 0 .80 A (TPF > 0.80) based on
ROC analysis of the 65 cases.

Az 0.90A'z (TPF > 0.90) 0.8oAz (TPF > 0.80)

ANN-alone method 0.90 0.40 0.58

Hybrid system 0.94 0.73 0.80

Two-tailed p-value 0.2 0.007 0.036

It should be noted that the two ROC curves (figure 2) are quite similar in the range of
sensitivities below 0.80, which indicates that the abilities of the two classifiers are similar
in distinguishing obvious malignant masses from benign masses. On the other hand, the
difference in the upper parts of the ROC curves indicates that the two classifiers differ in
distinguishing subtle malignant masses from benign masses.

3. Results

The hybrid system was introduced in this study to improve the learning process of the classifier.
In clinical practice, many radiologists look for spiculation first in their determination of the
likelihood of malignancy of a mass due to the high specificity of this measure. Thus, in our
study, we first applied a threshold on the spiculation measure to classify masses as spiculated
or non-spiculated. The masses classified as spiculated were deemed highly suspicious for
malignancy and were not subjected to further computer analysis. The likelihood of malignancy
for a spiculated mass was determined solely on the basis of its degree of spiculation. The
other features were used in the classification of the non-spiculated (i.e. remaining) masses,
because these features are important only in the clinical evaluation of non-spiculated masses
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Figure 3. The relationship between outputs from the four-input ANN and the spiculation measures
from the 95 mammographic mass images. The vertical line corresponds to the spiculation rule
cutoff (critical value) used in the hybrid classifier.

(Tabar et al 1985). Our feature analysis showed that these three features were more useful in
the evaluation of non-spiculated masses in the sense that the levels of performance of these
features, in terms of Az, improved when they were used to classify only the non-spiculated
masses (table 1). These feature are less specific and are interrelated in the determination of
malignancy of non-spiculated masses, and thus the merging of these three features is well
suited to the use of an ANN.

Intuitively, one might expect that with a sufficient number of hidden units in the ANNs
and with sufficient training, the two (i.e. hybrid and ANN-alone) classifiers would be able to
perform at a similar level in differentiating both the spiculated and non-spiculated malignant
masses from the benign masses. In other words, instead of the sequential learning process in
the hybrid system (rule-based on spiculation followed by ANN to acquire decision rules on the
other three features), a four-input ANN trained on the entire database should be able to learn
the simple rule applied on the spiculation measure to differentiate the spiculated malignant
masses from benign masses and at the same time learn the rules on the other three features to
differentiate the non-spiculated malignant masses from the benign masses. However, as shown
from the ROC analysis, the four-input ANN performed statistically significantly worse than
did the hybrid system in differentiating non-spiculated malignant masses from benign masses.

3.1. Correlation between the ANN output and individual input features

To understand how the two classifiers determine the likelihood of malignancy of a mass on
the basis of input features, we first studied the correlation between the output from the four-
input ANN (ANN-alone method) and each of its four input features for the 95 masses, as
well as the correlation between the output from the three-input ANN and each of its three
input features for the 36 'non-spiculated' masses. Figure 3 shows the correlation (r = 0.91;
p < 0.0001) between the output from the four-input ANN and its input spiculation measure
for the 95 masses. Compared with other features (table 3), the spiculation measure shows a
strong correlation with the ANN output, apparently causing the decision-making process to be
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Table 3. Correlation coefficients between the outputs from the four-input ANN trained on the entire
database and its four input features, and between the outputs from the three-input ANN trained on
the non-spiculated masses and its three input features.

Margin Margin Average grey Texture

Classifier spiculation sharpness level measure

Four-input ANN (N = 95) 0.91 -0.19 0.36 -0.34
Three-input ANN (N = 36) - -0.40 0.38 -0.33

dominated by the spiculation measure. This strong correlation also indicates that the four-input
ANN trained on the entire database was able to learn the simple spiculation rule and determine
the likelihood of malignancy of spiculated malignant masses based on their spiculation
measures, thus obtaining a performance similar to that of the hybrid system in differentiating
the obvious (spiculated) malignant masses from the benign masses as demonstrated in the
lower parts of the ROC curves (figure 2). The spiculation rule cut-off (critical value) used in
the hybrid classifier is indicated in figure 3 by a line.

This strong correlation was expected, because clinical experience suggests that the
likelihood of malignancy of a mass is determined largely by spiculation and because our
computer-extracted spiculation measure performed at the level similar to a radiologist's
spiculation ratings. The clinical utility of the spiculation measure was brought into the hybrid
system through a one-step rule-based method.

3.2. Input-output mapping in two-dimensional feature space

The relationships between the outputs of the ANNs and the input features were analysed also
in terms of a series of three-dimensional surface plots, which illustrated the relationships of
the ANN output as a function of two input features, with each input feature ranging from
zero to one in increments of 0.1. The input features were normalized relative to the minimum
and maximum values of each individual feature for the 95 masses by assigning zero to the
minimum and unity to the maximum. These plots represent hypothetical masses having the
range of values of the given two input features. The features not shown in these plots were
held constant.

Figures 4(a)-(c) are three-dimensional plots of outputs from the four-input ANN as
functions of the spiculation measure and one of the other three features. The spiculation
measure can be seen to dominate the decision-making process for the benign and malignant
masses, as indicated by the fast-descending curvature of the ANN outputs along the spiculation
measure as compared with the slow change along the direction of the other features in the
surface plots. It should be noted that the critical value of the spiculation rule (normalized
value of 0.43) used in the hybrid system lies in the range of the steepest slope of these surface
plots.

Figures 5(a)-(c) show the relationships between outputs from the four-input ANN with
two of the other three features (excluding the spiculation measure). Figures 5(d)-(f) show
the relationships of outputs from the three-input ANN with two of its three input features. In
order to compare the performance difference between the four-input ANN and the three-input
ANN in analysing the non-spiculated masses, the spiculation measure in figures 5(a)-(c) was
set at 0.35, which is below the threshold value (0.43) we used on the spiculation measure in
the hybrid system. Thus, the ANN outputs in figures 5(a)-(c) represent masses in the non-
spiculated category (spiculation measure < threshold). Features not shown in figure 5 were
held constant in the two ANNs.
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Figure 4. Three-dimensional surface plots showing outputs from the four-input ANN (trained on
the entire database) as functions of: (a) margin sharpness and spiculation; (b) average grey value
and spiculation; and (c) texture and spiculation.

The difference between the three- and four-input ANNs in deciding the malignancy of
masses in the non-spiculated category can be understood from figure 5. As shown in these

plots, the general trend of the ANN outputs in terms of the directionality of the maximum

ANN output values is similar for the four-input ANN (figures 5(a)-(c)) and three-input ANN

(figures 5(d)-(f)). For example, masses with low margin sharpness and high average grey-value
measures (figure 5(a) and 5(d)), masses with low margin sharpness and low texture measures

(figures 5(b) and 5(e)), and masses with low texture and high average grey-value measures

(figures 5(c) and 5(f)) yielded high output values from both classifiers. However, the change

of the ANN output in the three-input ANN is more dramatic, whereas the change of the ANN
output in the four-input ANN is more gradual. In clinical practice, as mentioned earlier, the

likelihood of malignancy increases as margin sharpness decreases from well-defined to ill-

defined, and the likelihood of malignancy increases with density; therefore, a dense mass with
an ill-defined margin should be associated with an even higher likelihood of malignancy. As

shown in figure 5(d) and (e), the sharp increase in output at the comers of low margin sharpness

and high density for the three-input ANN emphasize the increasing likelihood of malignancy for

these masses. Unfortunately, the four-input ANN (figures 5(a) and (b)) did not emphasize this

as much as the three-input ANN trained with the non-spiculated cases only. Moreover, it seems

that the significance of the margin characteristics (margin sharpness measure) was suppressed
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(a) Margin sharpness vs. average gray level (d) Margin sharpness vs. average gray level
(4-input ANN trained on entire database) (3-input ANN trained on non-spiculated cases)

(b) Margin sharpness vs. texture (e) Margin sharpness vs. texture
(4-input ANN trained on entire database) (3-input ANN trained on non-spiculated cases)
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Figure 5. Outputs from the four-input ANN (trained on the entire database) as functions of:
(a) margin sharpness and average grey value; (b) margin sharpness and texture; and (c) texture and
average grey value. Outputs from the three-input ANN (trained only on the non-spiculated cases)
are shown as functions of: (d) margin sharpness and average grey value; (e) margin sharpness and
texture; and (f) texture and average grey value.

by that of the density characteristics (the average grey value and texture measures) in the
learning of the four-input ANN, because the output from the four-input ANN varies less with the
margin sharpness measure than with the average grey level and texture measures. As shown in
figures 5(a) and (b), masses with similar densities but different margin sharpness values produce
approximately the same outputs from the four-input ANN. The three-input ANN (trained on
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Figure 6. The structure of the alternative hybrid system, which consists of a rule-based method
followed by a four-input ANN.

the non-spiculated masses) was able to learn better the significance of the margin sharpness
and density measures in determining the likelihood of malignancy for a non-spiculated mass
than did the four-input ANN (trained on the entire database). This difference in their learning
resulted in a significant difference in their performance levels at high sensitivity.

The dip, instead of a peak, in figure 5(d) at very low margin sharpness and very high
average grey value is probably due to over-learning from the small database, because such
masses are not included in the clinical database we used. This does not necessarily mean that
an ill-defined, high-density mass will have a lower estimate of the probability of malignancy.
Since we also used the texture measure to quantify the density of a mass, an ill-defined, high-
density mass can be correctly characterized on the basis of its margin sharpness and texture,
as shown in figure 5(e). As mentioned earlier, the density of a mass cannot be evaluated
exclusively on the basis of absolute grey value.

As shown in the graphs (figure 4), the spiculation measure dominated the learning and
decision-making processes of the four-input ANN in determining the malignancy of a mass
when spiculated masses are included. The learning of the other three features to classify non-
spiculated masses is substantially limited in that situation. To show that it was the dominant
nature (A, = 0.88) of the spiculation measure and not the ANN's structure that introduced the
difference in the learning of the two ANNs, we replaced the three-input ANN in the hybrid
system with a four-input ANN, thereby including the spiculation measure as an additional input
feature (figure 6). Note that the spiculation measure is not a prominent feature (A, = 0.53)
in classifying malignant and benign masses in the non-spiculated category (table 1). Three-
dimensional surface plots were generated for the four-input ANN trained only on the non-
spiculated masses. As shown in figures 7(a)-(f), the spiculation measure is not a dominant
feature in the learning and decision-making processes of the four-input ANN when trained
only on the non-spiculated masses as it was for the four-input ANN when trained on the entire
database. This can be seen from the fact that relationships between the ANN outputs from the
four-input ANN (trained on the non-spiculated masses) and the three input features as shown in
figures 7(d)-(f) are similar to the relationships between the ANN outputs from the three-input
ANN (trained on the non-spiculated masses) and the same three input features as shown in
figures 5(d)-(f). Note that the features not shown in figure 7 were kept constant at the same
values as those used to produce figures 4 and 5.
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(a) Margin sharpness vs. spiculation (d) Margin sharpness vs. average gray level
(4-input ANN trained on non-spiculated cases) (4-input ANN trained on non-spiculated cases)

Wb Average gray level vs. spiculation (e) Margin sharpness vs. texture
(4-input ANN trained on non-spiculated cases) (4-input ANN trained on non-spiculated cases)

(c) Texture vs. spiculation (f) Texture vs. average gray level
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Figure 7. Three-dimensional surface plots showing outputs from the four-input ANN trained only
on the non-spiculated cases as functions of: (a) margin sharpness and spiculation; (h) average grey
value and spiculation; (c) texture and spiculation; (d) margin sharpness and average grey value;
(e) margin sharpness and texture; and (f) texture and average grey value.

4. Discussion

We found that the two classifiers were actually similar in distinguishing spiculated (obvious)
malignant masses from benign masses but differed significantly in distinguishing non-
spiculated (subtle) malignant masses from benign masses. Our studies demonstrate that
the ANN-alone method (the four-input ANN), when trained on all cases, learned to rely
heavily upon the spiculation measure in classifying masses as malignant or benign (figure 3).
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Figure 8. Comparison of ROC curves of the hybrid system when the critical value for the initial
rule on the spiculation measure was varied by ±100.

Thus, similar levels of performance were achieved by the ANN-alone method and by the hybrid
classifier in determining the likelihood of malignancy for spiculated masses (corresponding to
the lower portion of the ROC curves in figure 2). However, the ANN-alone method did not
perform as well as the hybrid classifier in distinguishing between malignant masses and benign
masses at the high sensitivity levels. The difference in their performance (figure 2) is due mainly
to the difference in their ability to distinguish non-spiculated malignant masses from benign

masses, as shown in figure 5. The dominant nature of the spiculation measure prevented the
four-input ANN from learning the significance of the other three features in differentiating non-
spiculated malignant masses from benign masses. Although slight over-learning occurred in
the three-input ANN, probably because it was trained with a small number of non-spiculated
cases (figure 5(d)), it seems that only when the ANN was employed after the spiculation
criterion did the ANN learn effectively to interpret the complicated interrelationships among
the remaining three features in determining the likelihood of malignancy of the non-spiculated
cases. Therefore, it may be advantageous to employ a rule-based method when a single
computer-extracted feature provides a strong separation between two classes, particularly when
the computer-extracted feature (e.g. the spiculation measure here) correlates well with that used
by humans in the decision-making task.

A hybrid system of the kind we employed can be optimized by varying the initial rule's
critical value and then retraining the three-input ANN for each setting of the critical value.
The result of such variation is demonstrated in figure 8, which shows results obtained when the
critical value for the initial rule on the spiculation feature was varied by + 10'. Such variation
resulted in a reduction in A, and partial A,. This result further indicates the need to accurately
categorize the lesions as spiculated or non-spiculated prior to the introduction of the other three
features and the training of the ANN.

The rule in our hybrid system was used as a classifier in which lesions were categorized
as either spiculated or non-spiculated. For the purpose of ROC analysis, values of the
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Table 4. Variation in the performance of the hybrid system with changes in the critical value of

the spiculation rule as well as with changes in the conversion of the spiculation feature value after
implementation of the rule. The values after '±' are the standard deviations of the corresponding
A, values obtained from LABROC4 programs (Metz et al 1998).

Use of continuous spiculation value or a constant value of one

if lesions pass the spiculation rule

Continuous Constant
Hybrid system

critical value o.90Alz 0.9oA'z
(rule) A (TPF > 0.90) Az (TPF > 0.90)

0.19 0.89+±0.04 0.34+0.16 0.81 + 0.19 0.31 ±-0.13
0.25 0.89+-0.04 0.39±0.16 0.82+-0.18 0.38 ±0.14
0.31 0.89 ± 0.04 0.35 +-0.17 0.87 ± 0.09 0.33 ± 0.16
0.37 0.91 +-0.04 0.50 ±0.16 0.76+-0.11 0.50±-0.11
0.43 0.94 ± 0.03 0.73 ± 0.11 0.92 ± 0.06 0.76 ± 0.09
0.49 0.92 ± 0.03 0.49 ± 0.17 0.92 ± 0.03 0.51 ± 0.17
0.55 0.87 ± 0.04 0.30 ± 0.15 0.85 ± 0.05 0.34 ± 0.14
0.61 0.90+-0.04 0.57+-0.13 0.9'0+1-0.04 0.59+±0.13
0.67 0.75 ± 0.06 0.17 ± 0.10 0.75 ± 0.0,6 0.17 ± 0.10

spiculation feature that are categorized as 'spiculated' can be either used directly as a decision
variable (perhaps after monotonic transformation and/or renormalization), as in our analysis, or
converted to a constant value that is strongly indicative of malignancy. However, the resulting
ROC curve may depend upon the treatment of the feature after implementation of the rule. In
fact, the lower-left part of the fitted ROC curve loses meaning if a constant value is assigned
to those lesions that 'pass' the rule (i.e. are classified as 'spiculated'). Table 4 and figure 9
compare the calculated A, and TpFA' values for the alternative analyses in which (a) the lesions
that passed the spiculation rule are assigned a continuous value, or (b) the lesions that passed
the spiculation rule are assigned a constant value of 1.0 prior to ROC analysis. (Note that
the output of the ANN varies from 0 to 1.) It should be noted that the A, values can vary
substantially depending on whether the feature is assigned a continuous or constant value,
whereas the partial A, values show relatively little variation (figure 9). This is expected,
because the method of assignment for the feature after passing the rule only affects the lower
part of the ROC curve.

Our rationale for integrating the rule-based method and the artificial neural network is to
take advantage of the benefits of both approaches and to assign to each the tasks that best match
their inherent abilities. Such an integration may provide us with maximum discriminant power
and flexibility for the classification task, especially when the database and learning resources
are limited. It is not that an artificial neural network is inherently unable to learn by itself a
strategy to deal with this particular problem: artificial neural networks are good at learning ill-
defined relationships from noisy examples and therefore can acquire their own knowledge for
complex problems. However, there is great concern regarding proper training and performance
evaluation of ANNs when training sample sizes are small (Tourassi and Floyd 1997). It is
desirable to obtain good generalization even with few training data, because it is impossible to
guarantee sufficient appropriate data for real-world problems. Other investigators have studied
specialized networks with algorithms that reduce the network complexity by putting restrictions
on synaptic weights to improve the ability to generalize from few training data (Mozer and
Smolensky 1989, Nowlan and Hinton 1992, Fukushima 1993, Reed 1993). Over-learning of a
particular important feature may occur in neural networks because a large number of neurons
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Figure 9. Plots of (a) the A, and (b) o.9o A' values, along with the standard deviations, indicating
the performance level of the hybrid system as functions of the cut-off value (for the initial rule on
the spiculation measure) for the situation when the lesions that passed the cut-off value are assigned
a continuous value and for when they are assigned a constant value of 1.0.

may be involved in the learning of the significance of the feature (Haykin 1994). Our hybrid
system can be thought of as a way to prevent over-learning of the important feature-spiculation
measure, in our situation-and thus to 'free' the ANN (or a majority of neurons thereof) to
learn the significance of the other three features in the classification of non-spiculated masses.
Further, it is apparent that more effort will be required to build a specialized network that can
incorporate prior information concerning the spiculation than is required to develop a one-step
rule-based method. In other words, one can take advantage of existing rules and different
computer classifiers to intelligently tailor them into a hybrid system. The hybrid system can



2594 Z Huo et al

be used as an alternative way to optimize the learning process of the system for a particular
problem, thus reaching the final learning goal. However, one must be cautious in determining
which features are important. When the database is small, a feature that yields good separation
between two classes in the database may result purely from fortuitous case sampling. In our
study, the rule on the spiculation measure was not only determined on the basis of the separation
seen in our database, but was also consistent with a feature used visually by radiologists.

Finally, it is important to note that with a sufficiently large database, the ANN-alone
method (with a sufficient number of hidden units) would be expected to function as well as the
hybrid system in the classification of mass lesions, i.e. it would be able to learn the significance
of the dominant feature as well as the significance of the other features in classifying mass
lesions when given enough samples. Nevertheless, it appears that use of a hybrid system is
more efficient to bring well-known knowledge directly into a system in order to avoid lengthy
training times, uncertainty concerning whether the final learning goal (well-known rules) is
achieved, and the need for a large database. In another study, we did perform an independent
validation of our computerized classification method on a 110-case database and showed that
the ANN-alone and the hybrid classifiers were robust to case mix and digitization technique
(Huo 1998).
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Automated Computerized Classification of
Malignant and Benign Masses on Digitized

Mammograms
Zhimin Huo, MSc, Maryellen L. Giger, PhD, Carl J. Vyborny, MD, PhD

Dulcy E. Wolverton, MD, Robert A. Schmidt, MD, Kunio Doi, PhD

The present widespread use of mammography for earlyRationale and Objectives. To develop a method for dif- detection of breast cancer in asymptomatic women in-

ferentiating malignant from benign masses in which a

computer automatically extracts lesion features and creases the importance of radiologists recognizing the

merges them into an estimated likelihood of malignancy. mammographic features that distinguish carcinomas from

Materials and Methods. Ninety-five mammograms de- benign abnormalities. Despite improvements in the crite-

picting masses in 65 patients were digitized. Various fea- ra used to differentiate benign from malignant lesions of

tures related to the margin and density of each mass were the breast (1-6), considerable misclassification of lesions

extracted automatically from the neighborhoods of the occurs in everyday clinical practice. At many centers,
computer-identified mass regions. Selected features were only 15%-30% of mammographically detected lesions
merged into an estimated likelihood of malignancy by analyzed by means of surgical breast biopsy are actually
using three different automated classifiers. The perfor- malignant (7,8). There also is great variation (7%-40%)
mance of the three classifiers in distinguishing between in positive biopsy rates among individual radiologists (9).
benign and malignant masses was evaluated by receiver Computer-aided diagnosis in mammography can be
operating characteristic analysis and compared with the
performance of an experienced mammographer and that defined as a diagnosis made by a radiologist who takes
of five less experienced mammographers. into account the output from a computer analysis of a

Results. Our computer classification scheme yielded an mammogram. Many investigators have studied the use of

area under the receiver operating characteristic curve computer analysis as an aid in the early detection of

(A.) value of 0.94, which was similar to that for an expe- breast cancer (10-13). The development of computer aids
rienced mammographer (A = 0.91) and was statistically that help in the classification portion of a mammographic
significantly higher than the average performance of the work-up also has been studied. An objective computer
radiologists with less mammographic experience (A = classification scheme capable of differentiating between
0.81) (P = .013). With the database used, the computer benign and malignant masses at a level similar to that of
scheme achieved, at 100% sensitivity, a positive predic-
tive value of 83%, which was 12% higher than that for
the performance of the experienced mammographer and Acad Radiol 1998; 5:155-168

21% higher than that for the average performance of the I From Kurt Rossmann Laboratories for Radiologic Image Research,
less experienced mammographers (P < .0001). Department of Radiology, MC2026, University of Chicago, 5841 S
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experienced mammographers would help radiologists im- effectiveness of each individual feature and the role of
prove accuracy, decrease variability, and reduce the num- each feature in classification of masses were studied.
ber of unnecessary biopsies. To process the computer-extracted features more ef-

In the classification of lesions, investigators have fectively, a two-step rule-based method and an ANN were
taken advantage of the ability of radiologists to extract used to merge these features. To overcome the limitations
features related to the margin and density of mammo- of these two individual types of classifiers for this par-
graphic abnormalities and have used computers to merge ticular task, integration of a rule-based method and an
these (human-extracted) features into diagnoses (14-18). ANN was introduced as a hybrid information-processing
Use of computer-based decision systems such as rule- approach. The hybrid system provides more power as a
based methods, discriminant analysis, and artificial neu- computer-based classifier by allowing emulation of hu-
ral networks (ANNs) to merge the information extracted mans in their information-processing and decision-mak-
by either human observers or computers has been investi- ing capabilities. The ability of the three classifiers to
gated (14-19). In addition, computerized techniques can merge the computer-extracted features into a correct di-
be used to automatically extract individual image features agnosis was evaluated in 65 patients by using receiver op-
such as spiculation (20-22), margin sharpness (23), ir- erating characteristic (ROC) analysis (27,28). The perfor-
regularity (24), and density (25). Some investigators have mance of the computer was compared with that of an ex-
attempted to use multiple computer-extracted features to perienced mammographer and five radiologists with less
classify masses (24,26). mammographic experience.

In this study, we address the classification task in mam-
mographic work-up and introduce a set of morphologic M
features similar to the ones used by practicing radiologists
to characterize margin and density of a mass. We then The database used in this study consisted of 95 clinical
merge these features with a spiculation measure into an es- mammographic images (Min-R screen/OM-1 film; East-
timated likelihood of malignancy for individual lesions. It man Kodak, Rochester, NY), each of which contained a
should be noted that our fully automated computerized mass. Thirty-eight of the images showed benign lesions,
method includes automated lesion segmentation, auto- and 57 showed malignant lesions. The 95 mammograms
mated feature extraction, and automated classification. The were collected from examinations of 65 patients and repre-
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sented an entire database gathered in our laboratory from tive fraction [TPF0] above 0.90) were evaluated for both
December 1985 to October 1989. Twenty-six of the 65 pa- our classification schemes and the observers by using a
tients had benign breast abnormalities, and 39 patients had partial area index, TPFAZ', from 0 to 1, which is the portion
breast cancer. Both mediolateral oblique and craniocaudal of the AZ that lies above a preselected sensitivity thresh-
views were available for 30 of the patients (12 of 26 pa- old (TPF0) in a conventional ROC graph divided by the
tients with benign lesions and 18 of 39 patients with malig- constant (1 - TPF0 ) (30). These performances, in terms of
nant lesions). According to the original selection criteria, specificity at a given sensitivity level, were also evalu-
patients were chosen who had masses that were difficult to ated. In this study, we chose to calculate specificity at a
classify and who had undergone open biopsy or long-term sensitivity level of 100% because the aim of creating the
mammographic follow-up. All but one patient underwent computer output in our research was to aid radiologists in
biopsy for the suspicion of breast cancer, and in the re- reducing the number of unnecessary biopsies performed
maining one patient the disease was deemed benign on the without misclassifying any cancers.
basis of follow-up of more than 5 years. The screen-film
mammograms were digitized with an optical drum scanner Segmentation
(FIP II; Fuji Film, Tokyo, Japan) at a sampling distance of Segmentation of a mass from the background paren-
0.1 mm and 10-bit quantization. chyma was accomplished by using a multiple-transition-

To characterize the database, two experienced mam- point, gray-level, region-growing technique (22). Seg-
mographers (C.J.V., D.E.W.) rated each mass with re- mentation begins within a 512 x 512-pixel region of
spect to spiculation, lobulation, shape, and density by us- interest manually centered about the abnormality in ques-
ing a five-point scale in which 1 corresponded to not tion, as illustrated in Figure 2a and 2b. In clinical prac-
spiculated, not lobulated, circular, or fat containing and 5 tice, the location of the mass could be identified either by
corresponded to definitely spiculated, lobulated, ovoid, or a radiologist or with a computer-detection scheme (31)
very dense, respectively. These distributions are shown in and then fed into the classification scheme for an output
Figure la-ld. The size of each mass in terms of effective in regard to the likelihood of malignancy. To correct
diameter was also estimated based on the region outlined for the nonuniformity of the background distribution and
on the computer by an experienced mammographer to enhance image contrast for better segmentation of
(D.E.W.). The effective diameter of a mass is defined as masses, background trend-correction and histogram-
the diameter of the equivalent circle (whose area is the equalization techniques were applied to the 512 x 512-
same as the area of the grown region) of the identified pixel region of interest (22). The corresponding enhanced
mass region (29). The distribution of size in terms of ef- images of the malignant and benign masses are shown in
fective diameter for the masses depicted on the 95 images Figure 2c and 2d, respectively. The computer-identified
is shown in Figure le; the average size was approxi- margins of the malignant and benign masses are superim-
mately 1.3 cm. posed on the images of the original masses in Figure 2e

Our current classification scheme consists of three and 2f. For comparison, margins of the same images hand
stages: (a) automated segmentation of mammographic drawn by an experienced mammographer are shown in
masses from surrounding parenchyma, (b) automated fea- Figure 2g and 2h.
ture extraction, and (c) automated classification, which
yields an estimation of malignancy of a mass by means of Computer-extracted Radiographic Features:
one of three classifiers-a rule-based method, an ANN, Margin and Density
or a hybrid system (ie, a combination of a one-step rule- The margin, shape, and density of a mass are three
based method and an ANN). major characteristics used by radiologists in classifying

The area under the ROC curve (A.) was used to evalu- masses. Different characteristics of these features are as-
ate the ability of our computer classification scheme to sociated with different levels of probability of malig-
utilize the three different classifiers to differentiate be- nancy (4,6,32). To determine the likelihood of malig-
nign from malignant masses. Clinically, the specificities nancy associated with different margin and density char-
at high sensitivity levels are most relevant because the acteristics, we developed algorithms that extract two
"cost" of missing a cancer is greater than the cost of per- features that characterize the margin of a mass (spicula-
forming a biopsy to assess a benign lesion. Thus, the av- tion, sharpness) and three features that characterize the
erage performances in a high sensitivity range (true-posi- density of a mass (average gray level, contrast, texture).
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Figure 2. Mammographic images of (a) a
malignant mass and (b) a benign mass in a
512 x 512-pixel region of interest; enhanced
images of the (c) malignant and (d) benign
masses after image processing; and com-
puter-extracted margins superimposed on
the (e) malignant and (f) benign masses
(Fig 2 continues).

a. b.

C. d.

e. L

We did not explicitly devise a specific measure to charac- tion and sharpness-were measured. Margin spiculation
terize the shape of a mass for the purpose of classifica- is the most important indicator for malignancy, with
tion, but measures related to shape are embedded within spiculated lesions having a greater than 90% probability
the other measures. of malignancy (6). Margin sharpness is also very impor-

Margin.-Margin characteristics are very important in tant in determining whether a mass is benign or malig-
differentiating between benign and malignant masses. To nant; an ill-defined margin indicates possible malignancy,
determine the likelihood of malignancy of a mass based and a well-defined margin indicates likely benignity.
on its margin, two major margin characteristics-spicula- Only about 2% of well-defined masses are malignant (2).
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Figure 2 (continued). An experienced mam-
mographer's hand-drawn margins of the (g)
malignant and (h) benign masses.

g. h.
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Figure 3. Illustration of the four neighborhoods used for
feature extraction: (a) grown region, (b) margin, (c) en- Figure 4. Correlation of the spiculation measure (weighted
compassing region, and (d) surrounding periphery (cross- FWHM, in degrees) with the spiculation ratings (Fig 1 a) of an
hatched region), experienced mammographer for a database of 95 mass im-

ages. The error bars indicate the variation in the spiculation
measure for each spiculation rating given by the radiologist.

The spiculation measure is determined from an analy- varies greatly from its radial direction, whereas the direc-
sis of radial edge gradients (22). The spiculation measure tion of the maximum gradient along the margin of a
evaluates the average angle (in degrees) by which the di- smooth mass is similar to its radial direction. The spicula-
rection of the maximum gradient at each point along the tion measure was extracted not only along and within the

margin of a mass deviates from the radial direction, the margin of a mass (Fig 3a, 3b) but also in enlarged neigh-
direction pointing from the geometric center of the mass borhoods of the computer-identified mass region as
to the point on the margin. The actual measure is the full shown in Figure 3c and 3d. In this way, potentially more
width at half maximum (FWHM) of the normalized edge- subtle spicules that are difficult to delineate by region

gradient distribution calculated for a neighborhood of the growing could be better extracted. The two enlarged
grown region of the mass with respect to the radial direc- neighborhoods included 20 additional pixels around the
tion (22). This measure is able to quantify the degree of computer-identified mass region. A neighborhood of this

spiculation of a mass primarily because the direction of size is large enough to accommodate thin or short spi-
maximum gradient along the margin of a spiculated mass cules radiating from the margin of a mass.
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To maximize the sensitivity of the spiculation measure, More well-defined

all the possible signs of spiculation identified from the four 300

neighborhoods were considered; the greatest value of the F Benign,

FWHM measures from the four neighborhoods was used to 0 0 ee 1 Malignant

indicate the spiculation of a mass. However, because of dif- 200- ° °.
ferences in the ability of FWHM measures from the four A ® • A °

A P AA A,%
neighborhoods to capture spiculation information (22), the A* s M AA Aa A w

FWHM measures were weighted differently. The weighting E 100 A Aof spiculation

factor used for the two enlarged neighborhoods was 1.0, and E
that used for the other two neighborhoods was 0.85. This
weighted spiculation measure correlates well with an experi- 00 200 400 600 $00 1000 1200 1400

enced mammographer's spiculation rating (r = .64; P < Average Maximum Gradient

.0001) (Fig 4). In addition, the level of performance of the Along the Margin

spiculation measure (A. = 0.88) was similar to that of the ex- Figure 5. Cluster plot of the spiculatlon measure (weighted
FWHM) versus the margin sharpness measure (average gradi-

perienced mammographer's spiculation ratings (A. = 0.85) ent) along the margin for 95 mass images. The horizontally
in terms of the ability to distinguish between benign and ma- drawn line indicates the cutoff on the FWHM measure cho-
lignant masses based solely on spiculation (22). sen to distinguish between spiculated and nonspiculated

masses.
The sharpness of the margin of a mass can be describ-

ed as well defined, partially ill defined, or ill defined.
The average margin sharpness can be quantified by calcu-
lating the magnitude of the average gradient along the

Figure 6. Examples of masses with (a) a
spiculated margin, (b) an ill-defined mar-
gin, (c) a partially ill-defined margin, and
(d) a well-defined margin shown by mam-
mography.

a. b.

C. d.
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Table I
Examples of Spiculation and Margin-Sharpness Measures for Four Selected Masses

Radiologist's FWHM Average Gradient
Mass Type Spiculation Rating Measure Along the Margin

Spiculated 5 240 513
III defined/obscured 3 118 318
Partially ill defined/obscured 3 111 962
Well defined 2 111 1,315

Maximum value in the database 5 242 1,315
Minimum value in the database 1 88 127

margin of the mass. A well-defined margin has a large radiologist of 2 or 3, had similar spiculation measures that
value for the average margin sharpness measure, whereas ranged from 111 to 1180. They were classified as non-
an ill-defined margin has a small value. spiculated masses (FWHM < 160') and were further evalu-

Figure 5 shows the relationship between the two margin ated with the margin-sharpness measure. The margin-
measures for the 95 mass images. The horizontally drawn sharpness measures of the three masses were well sepa-
line indicates a cutoff on the FWHM measure used to cat- rated, with the well-defined margin having the highest
egorize spiculated masses and nonspiculated masses. It value (sharpness of 1,315), the partially ill-defined margin
should be noted that there is much more overlap between having the second highest value (sharpness of 962), and the
benign and malignant masses in terms of margin sharpness ill-defined margin having the lowest value (sharpness of
than in terms of margin spiculation. With the threshold of 318) in a database with margin-sharpness measures that
160' for the spiculation measure, most of the malignant ranged from 127 to 1,315. This illustrates the usefulness of
masses were in the spiculated category (FWHM > 160'). the margin-sharpness measure in further discriminating be-
At this threshold, five of 39 malignant masses and 22 of 26 tween masses in the nonspiculated category.
benign masses were classified as nonspiculated. In addi- Density.-Although the radiographic density of a mass
tion, in the nonspiculated category, masses with a higher may not by itself be as powerful a predictor as the margin
value for the margin-sharpness measure tended to be be- features in distinguishing between benign and malignant
nign. This finding is in agreement with radiologists' visual masses, taken with these features density assessment can
perception in determining the benign versus malignant na- be extremely useful (4). The evaluation of the density of
ture of masses. Thus, to determine the likelihood of malig- a mass is of particular importance in diagnosing circum-
nancy of a mass based on the two margin characteristics scribed, lobulated, indistinct, or obscured masses (4) that
described, it is more effective to use first the spiculation are not spiculated.
measure to identify spiculated masses (which are very To assess the density of a mass radiographically, we
likely to be malignant) and to determine their likelihood of introduced three density-related measures (average gray
malignancy based on their degree of spiculation. The mar- level, contrast, texture) that characterize different aspects
gin-sharpness measure can then be used further to deter- of the density of a mass. These measures are similar to
mine the likelihood of malignancy of the remaining (ie, those used intuitively by radiologists. Average gray level
nonspiculated) masses. is obtained by averaging the gray-level values of each

Figure 6 shows examples of masses with spiculated, ill- point within the grown region of a mass. Contrast is the
defined, partially ill-defined, and well-defined margins, difference between the average gray level of the grown
The calculated spiculation and margin-sharpness measures mass and the average gray level of the surrounding fatty
for these four masses are listed in Table 1. The spiculated areas (areas with gray-level values in the lower 20% of
mass (radiologist's spiculation rating of 5) had a FWHM the histogram for the total surrounding area). Texture is
measure of 240' in a database with a maximum degree of defined here as the standard deviation of the average gra-
spiculation of 242' and a minimum of 880. This mass was dient within a mass, and it is used to quantify patterns
correctly identified as highly spiculated and thus was not that arise from veins, trabeculae, and other structures that
further analyzed with the margin-sharpness measure. The may be visible through a low-density mass but not
three smoother masses, each with spiculation ratings by the through a high-density mass. A mass of low radiographic
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spiculation measure for the 95 mass images are shown in c.
Figure 7. The drawn line indicates a cutoff, based on the

spiculation measure (FWHM of 160'), that categorizes
spiculated and nonspiculated masses. As can be seen between benign and malignant masses; the Az value was
from these cluster plots, the distribution of benign and 0.88 for spiculation compared with 0.54-0.65 for the

malignant nonspiculated masses in terms of the density other four features. We have therefore found that margin
agrees with radiologists' general perception; namely, the spiculation is as important a feature for the computerized
benign masses in the nonspiculated category tend to have method as it is for radiologists.
low image density, whereas the malignant masses in the After the rule based on the spiculation measure

nonspiculated category tend to have high image density (FWHM of 1600) was applied, the ability of these fea-
for all three density measures. The ability to separate tures to further distinguish between benign and malignant
low-density benign masses from high-density malignant mass images in the remaining database (nonspiculated)
masses only in the nonspiculated category stresses the was also studied with ROC analysis. The calculated Az

importance of using the density measures to differentiate values for these features are listed in Table 2. As can be

between benign and malignant masses only after having seen in Table 2, the spiculation measure is no longer a
excluded the spiculated masses. dominant feature in discriminating between benign and

malignant masses in the nonspiculated category. The
Classification of Masses other four features perform better, however, in differenti-

The ability of each individual computer-extracted fea- ating malignant from benign masses in the nonspiculated

ture to aid in the differentiation between benign and ma- category than in the complete database (ie, both spicu-
lignant mass images was evaluated for the entire database lated and nonspiculated). This finding indicates the im-
with ROC analysis. The calculated A values are listed in portance of using these features to differentiate between

Table 2. The ROC analysis shows that the spiculation benign and malignant masses only after the spiculated
measure outperformed the other features in distinguishing masses have been excluded.
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Table 2 sure and the three density measures-after the spiculation
Performances of the Five Computer-extracted Features in
Distinguishing between Benign and Malignant Mass Images m T threshdothe siuaon measure(FWHM = 1600) was determined based on the entire da-

A, for 36 Mass tabase. The thresholds of the other four features were de-
Images in theImal 95 N athed termined based on the remaining database only.A. for All 95 Nonspiculated

Feature Mass Images Category ANN.-The ANN approach is very different from the
rule-based method. Instead of using predetermined em-

Margin pirical algorithms based on prior knowledge, ANNs are
Spiculation (FWHM)* 0.88 0.53 al algom bas on prirekow e an are
Sharpness* 0.56 0.68 able to learn from examples and therefore can acquire

Density their own knowledge through learning. Also, neural net-
Average gray level* 0.65 0.66 works are capable of processing large amounts of infor-
Contrast 0.59 0.70 mation simultaneously. Neural networks do not, however,
Texture measure* 0.54 0.71 provide the user with explanations for their decisions and

*These features were used as inputs in the ANN and the may not be able to bring preexisting knowledge into the

combined rule-based ANN classifiers, network.

Here we used a conventional three-layer, feed-forward
neural network with a back-propagation algorithm, which

Three automated classifiers were investigated for the has been used in medical imaging and medical decision
task of merging the computer-extracted features into an making (33,34). The structure of the neural network in-
estimate of the likelihood of malignancy: a rule-based cluded four input units (each of which corresponded to a
method, an ANN, and a hybrid system. In determining computer-extracted feature), two hidden units, and one

the likelihood of malignancy for the cases that had both output unit. The four features used as inputs to the ANN
the mediolateral oblique and the craniocaudal views, the were the FWHM measure, the margin-sharpness measure,
measurements obtained from both views were considered, and two density measures (indicated by asterisks in Table
and the view that the computer estimated had a higher 2). Similar performances were obtained when all three
likelihood of malignancy was used in the evaluation. For density measures were used. Because limiting the number
example, a mass would be classified as malignant if ei- of input features is critical in reducing the number of

ther one of the two views showed suspect signs (ie, either training samples needed, we kept the number of inputs to
one of the FWHM measures from its two views satisfied the ANN to a minimum; thus, only two density measures
the cutoff on the FWHM measure). were used.

Rule-based method.-A rule-based method adapts To determine the ability of our neural network to gen-
knowledge from experts into a set of simple rules. Certain eralize from the training cases and make diagnoses for
criteria for differentiating between benign and malignant cases that had not been included in the database, we used
masses have been established by expert mammographers a round-robin method, also known as the leave-one-out

(4,6,32). The rules used in our approach for measures of method. In this method, all but one of the cases were used
spiculation, margin sharpness, and density were based on to train the neural network. The single case that was left
these criteria, out was used to test the neural network. For the cases that

A two-step rule-based method was studied for this da- had both mediolateral oblique and craniocaudal views,

tabase. Because of its clinical diagnostic importance, the both images were left out in the round-robin training. The
spiculation measure was applied first in our rule-based higher value of the two from the round-robin test was re-
method. After the spiculation measure (FWHM) was ap- ported as the estimated likelihood of malignancy. This
plied to identify spiculated masses (including some ir- procedure was repeated for all the cases.
regular masses) and categorize them as malignant first, a Hybrid system.-Each classifier has its advantages and

second feature was applied to characterize further the limitations. With rule-based methods, one could adopt
masses in the nonspiculated category as discussed in the preexisting knowledge as rules. There are limitations,
previous section. To investigate the potential discriminant however, in the availability of knowledge and knowledge
ability of the spiculation measure along with all the pos- translation. Even the experts find it difficult to articulate
sible secondary features, we applied separately each of particular types of "intuitive" knowledge, and the process
the remaining four features-the margin-sharpness mea- of translating particular knowledge into rules is limited
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by this expressive power. ANNs are capable of learning 1.0
from examples and therefore can acquire their own
knowledge. It may be most advantageous to use ANNs Hybrid system

when intuitive knowledge cannot be explicitly expressed (A..O9.4)
.•- Expert mammographer

or is difficult to translate. The ANN needs a sufficiently I (Az=O.1)

large database, however, to learn effectively. Also, with ." 0.5.2-(Ao.9o)
an ANN there may be uncertainty as to whether the final e f

learning goal is achieved in some situations. .rdiolsts (A==.81)

To take advantage of both rule-based systems and
ANNs in the task of classifying masses, we integrated a
rule-based method and an ANN into a hybrid system. In
the hybrid system, we initially applied a rule on the spic- 0.5 .. . 1.0

ulation measure because both spiculated and irregular False-Positive Fraction

masses are highly suspect for malignancy. We then ap- Figure 8. ROC curves for the performance
plied an ANN to the remaining masses. Basically, this of an experienced mammographer, five ra-

diologists, the computerized scheme withmethod frees the ANN from having to "learn" the impor- ANN alone, and the computerized scheme
tance of spiculation to the detriment of learning the im- with the hybrid system, ANN4-2-1 = ANN with
portance of the other features. four input units, two hidden units, and one

output unit.
The threshold of the spiculation measure for the hybrid

system was the same as the one used in the rule-based
method. The ANN applied in the hybrid system was a evaluated by using ROC analysis. An ROC curve was gen-
three-layer, feed-forward neural network with a back- erated for the five less experienced radiologists as a group
propagation algorithm that had a structure of three input by averaging the two binormal parameters of their indi-
units (corresponding to the three remaining features used vidual ROC curves (27,28).
in the ANN method), two hidden units, and one output
unit. The same round-robin method was applied to test

the generalization ability of this neural network to differ-
entiate between benign and malignant masses in the Because the computer outputs from each individual
nonspiculated category. classifier were monotonically correlated with the esti-

mated probabilities of malignancy, we were able to eval-
Observer Study uate the ability of each classifier to merge computer-ex-

One experienced radiologist who specializes in mam- tracted features into a correct estimated probability of
mography (D.E.W.) and five other radiologists with some malignancy based on the computer output with ROC
experience in mammography participated in the observer analysis. The ROC curves of the ANN and hybrid system
study. The experienced radiologist characterized some are shown in Figure 8. The Az and the partial area index
features of the database after the observer study was com- 0.90Az' values of the three classifiers are listed in Table 3.
pleted. Three of the five other radiologists were general Among the three classifiers, the hybrid system yielded
radiologists from Europe participating in visiting fellow- the highest A, and 0.90Az' values. The specificities and
ships. At the time of the observer study, they had a total positive predictive values of the three classifiers at 100%
of 6 months to 2 years of experience in mammography. sensitivity were calculated. As shown in Table 3, the hy-
One of the remaining two was a fellow in mammography brid system yielded the highest specificity (69.2%), the
in his 3rd month of training. The fifth radiologist had 3 two-step rule-based method the second highest (42.3%,
months of training in mammography (beyond the stan- 34.6%, 30.8%, 30.8%), and the ANN the third highest
dard 2 months of training in residency) in a combination (19.2%).
fellowship. In the study, each observer was asked to esti- The performance of the hybrid system was compared
mate the probability of malignancy for each of the 65 with that of the other two types of classifiers. No statisti-
cases by using a 100-point scale based on the mammo- cally significant difference (P > .05) was found for the A.
grams available. The performance of each observer in values based on the evaluation from the CLABROC pro-
distinguishing between benign and malignant masses was gram (35,36). Statistically significant differences for the
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Table 3
Performances of the Three Classifiers in Distinguishing between the 26 Benign and the 39 Malignant Masses

Positive Full Curve Partial Area Index
Classifier Specificity* Predictive Value* A, 0. 90A,' Pt

Twa-step rule-based system
(1 st rule on FWHM)

Margin sharpness 34.6% 69.6% 0.92 0.59 0.014
Average gray level 30,8% 68.4% 0.90 0.45 0.001
Contrast 30.8% 68.4% 0.92 0.58 0.021
Texture measure 42.3% 72.2% 0.92 0.63 0.015

ANN (4-2-1) 19.2% 65.0% 0.90 0,40 0.008
Hybrid system (rule-based

and ANN 3-2-1) 69.2% 83.0% 0.94 0.73..

Note.-ANN 4-2-1 = ANN with four input units, two hidden units, and one output unit, ANN 3-2-1 =ANN with three input units,
two hidden units, and one output unit.

*Sens~itivity was 100%.
tThe P values were calculated for the difference in the 0. 90 A, between the hybrid system and the other two classifiers.

Table 4
Performances of the Human Observers in Distinguishing between the 26 Benign and the 39 Malignant Masses

Positive Full Curve Partial Area Index
Observer Specificity* Predictive Value* Az o9oAz'

A 3.8% 60.9% 0.85 0.29
B 11.5% 62.9% 0.86 0.37
C 11.5% 62.9% 0.85 0.40
D 0% 60.0% 0.70 0.07
E 3.8% 60.9% 0.80 0.27
Average performance of A-E 6.1% 61.5% 0.81 0.28
Experienced mammographer 38.5% 70.9% 0.91 0.58

*Sensitivity was 100%

0.0A'values were found, however, at the levels of the two- mographer had an A. of 0.91, whereas the average of the
tailed P values as listed in Table 3. Differences in positive five radiologists yielded an A. of 0.81. The partial area
predictive value and specificity at 100% sensitivity be- index 0.0A'for the experienced mammographer was 0.58,
tween the hybrid system and the two-step rule-based whereas the partial area index 0.90 A' for the five radiolo-
method on average were 13% and 34%, respectively. Dif- gists was 0.28. Student t test for paired data was employ-
ferences in positive predictive value and specificity at ed to evaluate the statistical significance of these differ-
100% sensitivity between the hybrid system and the ANN ences (16). Results showed the differences in A zand
were 18% and 50%, respectively. 0.0A'to be statistically significant (two-tailed P values of

The ability of each radiologist to distinguish between .032 and .006).
benign and malignant masses was determined based on The ability of the observers to distinguish malignant
the radiologist's subjective ratings of the probability of from benign masses was compared with that of the com-
malignancy for the 65 cases. The ROC curves of the ex- puterized method using the hybrid system. The differ-
perienced mammographer and of the average perfor- ences in AZ and 0.0A'between the experienced mammog-
mance of the five radiologists are shown in Figure 8. rapher and the computerized method were found to be not
Table 4 lists their individual performances in terms of A. statistically significant (two-tailed P values of 0.38 and

0.90 A,', positive predictive value, and specificity at 100% 0.30) based on the evaluation from the CLABROC pro-
sensitivity. The average performance for the five radiolo- gram (35,36) and the modified version of the CLABROC
gists was calculated (Table 4). The experienced main- program (30). Results of the Student t test for paired data
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showed that the differences in A. and 0.90A,' between the along the margin of a lobulated mass varies more than
average performance of the five radiologists and the corn- that along the margin of a smooth mass. Thus, a smooth
puterized method were both statistically significant (two- lobulated mass will be ranked as more suspect for malig-
tailed P values of .0131 and .0015). Furthermore, statisti- nancy than a smooth circular or ovoid mass, similar to the
cally significant differences were found between the two rank ordering radiologists would give. Some lobulated
in terms of the positive predictive value and the specific- masses might be classified into the spiculated category if
ity at the 100% sensitivity level (two-tailed P values < they were very highly lobulated.
.0001). We have studied three types of classifiers with which

The differences in positive predictive value and speci- to merge the computer-extracted features. The three clas-
ficity at 100% sensitivity between the average perfor- sifiers mimic three possible ways that radiologists might
mance of the five radiologists and the performance of the merge the information that they perceive in the task of
experienced mammographer were 9% and 32%, respec- classification of masses. The combination of the rule-
tively; these differences were also found to be statisti- based method by using the spiculation measure with the
cally significant. The differences in positive predictive ANN is probably the one that serves this task best for
value and specificity at 100% sensitivity between the av- several reasons. First, introduction of the well-known im-
erage performance of the five radiologists and that of the portance of spiculation, which was also shown here, into
computerized scheme were even larger, 21% (P < .0001) our system with a one-step rule-based method allows the
and 63% (P = .0001), respectively. In other words, with ANN to "concentrate" on acquiring its own knowledge

the database we used, at a 100% sensitivity level (ie, no for the more difficult features for which considerable
loss of malignant cases), the average radiologists misclas- overlap in the appearance of benign and malignant mas-
sified or essentially overcalled 24 of the 26 benign cases, ses occurs. Second, the good correlation between the
whereas the computer scheme misclassified only eight of computer spiculation measure and an expert mammog-
the 26 benign cases. rapher's spiculation ratings, as well as the similar perfor-

mance of the two in distinguishing between benign and

DI S malignant masses, allows a reliable translation of the "in-
tuitive" knowledge into a simple rule in the hybrid sys-

We have developed a computer scheme that automati- tem. Third, in clinical practice, radiologists are more
cally extracts features of masses that are similar to those likely to process the information they perceive in the
perceived by radiologists. Feature analysis has indicated same way that is used in our hybrid system, namely, ex-
that our computer-extracted features correlate well with amining for spiculation, the only truly diagnostic fea-
the major features perceived by radiologists, as shown in ture for malignancy, first and then analyzing all the pos-
Figures 4, 5, and 7. We have shown that spiculation sible secondary features to determine the likelihood of
(FWHM measure) is a dominant feature for analysis by malignancy.
both radiologists and computerized methods. We evaluated the classifiers by using self-consistency

The shape of a mass can be described as regular or ir- and round-robin methods. The consistency method
regular, lobulated or not lobulated, circular or ovoid, yielded A. values of 0.92, 0.93, and 0.98 for the two-step
Generally, shape is not as important as margin character- rule-based method, the four-input ANN, and the hybrid
istics in the determination of the benign versus malignant system, respectively. The round-robin evaluation was per-
status of a mass. An irregular shape can, however, be a formed to test the generalization ability of the classifiers.
useful sign of malignancy. We did not use a single mea- The two-step rule-based method was investigated only to
sure to directly characterize the shape of a mass in our understand the features, and so we did not proceed with
scheme. However, one can correctly identify irregular round-robin testing of this method. The round-robin
masses as suspicious for malignancy based on the spicu- evaluation of the four-input ANN yielded an A, value of
lation measure, because the direction of the maximum 0.90. The evaluation of the hybrid system with round-
gradient along the margin of an irregularly shaped mass robin analysis on the three-input ANN yielded an A of
can vary as greatly as that of a spiculated mass. A lobu- 0.94. The rule was set on the spiculation measure in the
lated mass also has a higher spiculation value than a hybrid system because spiculation is the major feature
smooth circular or ovoid mass because the direction of used intuitively by radiologists in predicting malignancy,
the maximum gradient relative to the radial direction and this rule did not undergo round-robin analysis. In ad-
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dition, the aim of the spiculation measure was not to less mammographic experience, and this difference was

separate malignant masses completely from benign mas- even greater at the high sensitivity levels (P values rang-
ses but to identify only those masses that were very likely ing from .013 to <.001). Variability in radiologists' inter-

to be malignant. pretations of mammograms is due to the differences in

Generalization of a trained network is influenced by their knowledge and experience and has been demon-
three factors: the size and efficiency of the training set, strated in our observer study and in other's work (39).

the architecture of the network, and the physical com- The superior performance of the computerized classifica-
plexity of the problem. Round-robin method is one of the tion scheme in distinguishing malignant masses from be-

ways to validate a trained network on a data set different nign masses, especially at high sensitivity levels, emu-

from the one used in the training. A valid generalization, lates the performance of an expert mammographer. This

however, can be guaranteed only when the training set finding underscores the potential usefulness of a com-
size is sufficiently large relative to the architecture of the puter-aided diagnosis classification scheme as an aid to

network (37). We are aware of the inadequacies of using improving the performance of less experienced mammog-

a finite database, which is usually what is available in the raphers and thus reducing the variability among radiolo-
medical field, and thus we provided details about the gists in their mammographic interpretation and reducing

characteristics of the clinical database (Fig 1) used in the the number of biopsies performed for benign masses.

study.
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Automated Seeded Lesion Segmentation
on Digital Mammograms

Matthew A. Kupinski* and Maryellen L. Giger, Member, IEEE

Abstract- Segmenting lesions is a vital step in many comput- potential lesions from their surrounding tissues. Comer et al.
erized mass-detection schemes for digital (or digitized) mami- [6] and Li et al. [7] used Markov random fields to classify the
mograms. We have developed two novel lesion segmentation different regions in a mammogram based on texture. A lesion
techniques-one based on a single feature called the radial gra-
dient index (RGI) and one based on simple probabilistic models segmentation algorithm was developed by Sameti et al. [8]
to segment mass lesions, or other similar nodular structures, used fuzzy sets to partition the mammographic image data.
from surrounding background. In both methods a series of image Despite the difficulty and importance of this step in many
partitions is created using gray-level information as well as prior computerized mass-detection schemes, few have attempted
knowledge of the shape of typical mass lesions. With the former to analyze the performance of these segmentation algorithms
method the partition that maximizes the RGI is selected. In the to ph
latter method, probability distributions for gray-levels inside and alone, choosing instead to collectively analyze all components
outside the partitions are estimated, and subsequently used to of a scheme.
determine the probability that the image occurred for each given In this paper, we present two methods for segmenting
partition. The partition that maximizes this probability is selected lesions in digital or digitized mammograms: a radial gradient
as the final lesion partition (contour). We tested these methods inaeZ orRdigitizeda mammograms: a radialgoraieth

against a conventional region growing algorithm using a database id Ca
of biopsy-proven, malignant lesions and found that the new lesion These techniques are seeded segmentation algorithms; they
segmentation algorithms more closely match radiologists' outlines begin with a point, called the seed point, which is defined to
of these lesions. At an overlap threshold of 0.30, gray level be within the suspect lesion. Many current computerized mass-
region growing correctly delineates 62% of the lesions in our detection schemes first employ an initial detection algorithm
database while the RGl and probabilistic segmentation algorithms which returns locations that are used as seed points for
correctly segment 92% and 96% of the lesions, respectively, the segmentation algorithm. In our previous research [4], a

Index Terms--Computer-aided diagnosis, digital mammogra- region growing algorithm [9], [10] was performed to extract
phy, lesion segmentation, mass detection. the lesion from its surrounding tissues. Region-growing is

a local thresholding process which utilizes only the gray-
I. INTRODUCTION level information around the seed point. A series of partitions

T HE University of Chicago is currently developing corn- containing the seed point is created by thresholding, and
puterized schemes to detect mass lesions in digital (or rules (relating to size and circularity, for example) determine

d i awhich partition best segments the suspect lesion. Potential
digitized) mammograms [1 ]-[3]. Many computerized schemes
initially return a number of locations called "potential lesion" problems with such methods are that the rules devised to
sites.choose the suspect lesion's partition are heuristic and often

Csuspicious based on the first or second derivatives of noisy data. The
and require a closer examination. A lesion segmentation algo-rithm ~ ~ ~ ~ ~ ~ ~ C iste1mlydt xrc helso rptnillso new methods discussed in this paper attempt to solve the
rithm is then employed to extract the lesion or potential lesion problems associated with conventional region growing by
from its surrounding tissues. Features can then be calculated utilzn shape consenthenareiion analyusn hesgenain nomtinad lsifctoncnb utilizing shape constraints to regularize the partitions analyzed,
using the segmentation information and classification can be and sipiynZh atto eecinpoesb sn tltand simplifying the partition selection process by using utility
accomplished using these features [4]. functions based either on a single feature or probabilities.

Numerous techniques have been developed to segment The performance of the two methods is compared against
lesions from surrounding tissues in digital mammograms, radiologists' outlines on a screening database of malignant
Petrick et al. [5] employed density-weighted contrast enhance- lesions.

ment (DWCE) segmentation algorithm to extract lesions and
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(a) (b) (c)

Fig. 1. Partitions that can arise (b) when only gray-level information, f(x, y) is utilized in segmenting lesions and (c) when the gray-level image is
multiplied by a constraint function to control the shape of the partitions, h(x, y), The original image is shown in (a).

(a) (b) (c)

Fig. 2. The image (a) f(x. y) of the lesion is multiplied by the Gaussian function (b) N(x. y: ,. py, ,u. 2) to constrain the partitions to have "lesion-like"
shapes, which results in (c) the function h(x. y). The value of o- was set to 12.5-2 mm2 for these images.

for this work, are bound between zero and one, with a zero partition to represent the segmented lesion [10], [11]. Fig. 1(b)
representing black and a one representing white. The pixel val- shows an example of some of the irregular partitions that
ues for all images were normalized to be within this range by can arise in conventional region growing. The partitions are
dividing by the maximum pixel value possible for the digitizer lesion-shaped at high thresholds, but tend to effuse into the
used. The task of a lesion segmentation algorithm is to partition background at lower thresholds, and are not representative of
the set _ into two sets: L which contains the coordinates of the lesion.
lesion pixels, and -,L which contains surrounding background Conventional region growing defined the lesion partitions
pixels. The lesion segmentation algorithms described in this £ýrg) based solely on gray-level information in the image. The
paper are seeded segmentation algorithms; an initial point is new algorithms proposed in this paper add additional a priori
used to start the segmentation. The seed point (/i, p.) is information into the creation of the lesion partitions. Lesions
defined to be within the lesion, i.e., (/t, iv) E £ for all L. In tend to be compact, meaning that their shapes are typically
addition, the perimeter of the set L must be one continuous convex. To incorporate this knowledge into the creation of
closed contour. the partitions, the original image is multiplied by a function,

In order to segment the potential lesion, the "validity" of called the constraint function, that suppresses distant pixel
various image partitions LE; i = 1,- .-, T is evaluated. For values. For this study we chose to use an isotropic Gaussian
conventional region growing segmentation, the partitions are function centered on the seed point location (p.m, py) with
typically defined as a fixed variance u2 as the constraint function. The function

h(x, y) resulting from the multiplication of the original ROI
rg) {(X, y) : f(x, y) > tj} (2) with the constraint function is given by

where tj is a gray-level threshold. This makes use of the h(x,y) = f(x,y)N(x,y;i Ax , Ay a) (3)
fact that lesions tend to be brighter than the surrounding
tissue but it does not directly take shape into account, i.e., where N(x, y;UAxL, U1) is a circular normal distribution
irregular shapes can be evaluated. Shape is, however, typically [see Fig. 2(b)] centered at (It, tty) with a variance co,. Other
indirectly analyzed in these methods when searching for the constraint functions may be more appropriate for different
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Fig. 3. Features employed in determining the final partition for conventional
region growing. Here, i corresponds to the different gray-level intervals. Fig. 4. The geometry used in calculating the RGL. The squares represent

margin pixels Mi of the partition £L being evaluated.

segmentation tasks. We have found, however, that a Gaussian
works well for mammographic lesions. Fig. 2(c) shows an 0.9

example of the function h(x, y). At a given threshold, the 0.8

partitions returned by thresholding are more compact than
Zý 0.7-before because distant pixels are suppressed, i.e., a geometric

constraint has been applied. The new partitions are defined as 0.u

Li = (x, y) : h (x, y) > ti . (4) 0.5-
(4• 0.4

An example is shown in Fig. 1 (c). Note that all of the partitions 0.3

are now "lesion-like;" they are influenced by both the gray-
0.2-level information and the geometric constraint. The value of

the parameter oc2 will be discussed later. 0.1
0

A. Region-Growing Segmentation - 0 o.1
0 5 10 15 2 0 25 30 35 40 45

In conventional region growing, a feature or multiple fea- i
tures may be calculated for the partitions described in (2). For Fi& 5 The RGI as a function of the different partition L for the image
example, circularity Circ( ) and size Size( ) can be calculated shown in Fig. l(a). The partition with the largest RGI value is returned as the
for every (ýrg) as demonstrated in Fig. 3. The final partition is final lesion partition. Here, i corresponds to the different gray-level intervals.
chosen by analyzing these functions and determining transition
points or jumps in the features [4], [10], [11]. As Fig. 3 shows, The RGI is computed as follows. Given a partition 4i (4)
the data can exhibit multiple transition points, and determining we can define the margin as
a jump by analyzing the first derivative of noisy data is
difficult. If a transition point cannot be found, the segmentation MA42 ={ (x, y) : (x, y) E Li and either (x - 1, y),
algorithm fails to return a final partition. (x + 1, y), (x, y + 1), or (x, y - 1) 0 Li}. (5)

B. Radial Gradient Segmentation This states that a point is on the margin if it has at least one

Given a series of partitions 4i from (4), one must determine neighbor that is not in the lesion. The RGI is given by
which of these partitions best delineates the lesion. One ( -- 1 G(xy)
method is to apply a utility function. Bick et al. [12] employed RGI = S xy)V 11 E
a RGI utility function in his lesion segmentation algorithm that P((,) I (),1)MI ,)
utilized Fourier descriptors to describe the shapes of lesions. (6)
We have employed the RGI measure on the image f(x, y)
around the margin of each partition Li as a utility function, where G(x, y) is the gradient vector of f(x, y) at position
For every partition Li the RGI is calculated (see Fig. 5), and (x, y) and ( (x, y))/([I (x, )II) is the normalized radial vector

the partition with the maximum RGI is returned as the final at the position (x, y) (Fig. 4). The RGI is a measure of the
lesion partition. It is important to note that the partitions 4i average proportion of the gradients directed radially outward.
are generated using the processed image h(x, y) while the RGI An RGI of one signifies that all the gradients around the margin
measure is computed on the original image f(x, y). are pointing directly outward along the radius vector and a -1
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an optimization problem choosing instead to evaluate all Li
.2 and determine the maximum.

The probability distribution for the gray levels when the
pixels are outside the set 4i is given by the function z(f(x, y))

-8.4 [see (7)], which is estimated from all gray levels within

'-8.5 -the ROI. Kernel density estimation using an Epanechnikov
kernel was employed to estimate this distribution [13]. The
width of the kernel was optimally determined through cross

. validation [13]. Kernel density estimation is a method similar
to histogram analysis except that a nonrectangular kernel is

-8.8 used to bin data and this kernel is swept across the function

-8.9 axis continuously. Histogram analysis, on the other hand, uses
a box-function that is moved in increments of the box width.

0 5 10 is 20 25 30 35 40 45 Figs. 9 and 10 show the calculated probability distributions
for gray levels inside and outside £i for the ROI's shown in

Fig. 6. A plot of the probability that the image occurred at different £i Figs. 7 and 8, respectively.
for the image shown in Fig. 1(a). The maximum-likelihood estimate of the
partition is given by the partition which maximizes this function. Here, i III. RESULTS
corresponds to the different gray-level intervals.

A. Parameter Estimation
indicates that all the gradients around the margin are pointing TThe width o',2 of the constraint function in (3) was deter-
directly inward toward the center of the partition. The RGI mined based on knowledge of lesions and was not statistically
value around the margin of a circular lesion, for example, is

determined. A value of 12.52 mm 2 was empirically determinedone. If, however, f (,r Iy) is a uniform image, then the RGI
to work well for our purposes. Larger lesions were also seg-value will be zero even if the margin ./Mi is a circle. ý

mented with this value but spiculations and small deviations
C. Probabilistic Segmentation around the edge of the lesion were usually not delineated.

The parameter at in (7) is an unknown quantity and must be
The segmentation method based on probabilistic models is determined. The average variation of the gray levels within the

somewhat similar to the RGI method, except that the utility radiologist's outlined truth for a screening, malignant database
function is now a probability. The probability of pixel gray of 118 visible lesions was estimated. Fig. 11 shows the density
levels given a partition Li (4) is modeled as distribution for these variations as measured by the standard

p(f(x,y) Y .Co0-2) deviation of the gray levels within the radiologist's outlines.

N A value of 0.038 was determined to be the most common
SNz(f(x, y)) : (x, y) ý i (7) standard deviation of pixel values within the radiologist's

outlines. It is important to note that problems may arise when

where N(f(x, y); f(px, g11), o ) is a normal distribution cen- the radiographic presentation of lesions in other databases are

tered at the seed point gray level f(A., ILy), with a variance -2, substantially different from those in the database employed in

and z(f(x, y)) is a function to be described later. Lesions will this study. We, however, employed a database of 60 malignant,

not exhibit a large variation in pixel values, while the tissues nonpalpable lesions obtained from roughly 700 needle biopsies

surrounding the lesion may show large variation because they performed during the years 1987 to 1993 and, thus, should be

may consist of both fatty and dense regions. The uniformity of representative of the actual distribution.
lesions is accounted for by a small-variance Gaussian function The value of a-2 can also be determined for each lesion

centered around the seed pixel value. The term z(f(x, y)) individually. Instead of just using the most probable a priori

is a function that is estimated for each ROI using the gray value of o-2 (as discussed above) one can apply Bayes' theorem

levels from all of the pixels within the ROI although it is only to find that
employed in calculating p(f(x,y) I £i,o-') for (x,y) 0 4i
[see (7)]. Finally, the probability of the image (or ROI) I p(I I £ir2I)p(o.2 (10)
given a partition 4i is p(-iI)= - p(iILi)

(I1,0-) = 1- p(f(x,y) I Li,-). (8)

(x,Y)EI where p(I I Li, al) is given by (8). If we assume that C2 and

The partition 4i that is chosen is the one that maximizes the £i are independent, then p(or', I £) = p(ol). The distribution

probability p(I I Li, a2), i.e., of P(0-l) can be obtained from Fig. 11. Finally, we know that

p(I Li) = f da-p(I I Li,-)p() which results in
p(I I £nal,0-~) = argmnax {p(I I 4i,, U) }. (9)

An example plot of p(I Li,o-) is shown in Fig. 6. Because p(0-2I,2.) = -p(.I,(11)

there are a finite number of Li, we avoid the complexity of
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(a) (

(c) (d)

Fig. 7. Segmentation results for (a) a high-contrast lesion using (b) region growing, (c) RGI-based segmentation, and (d) probabilistic segmentation.

The probability of various values of ar could be compared pectoralis muscle, region growing effuses into the background
against each other and the optimal or estimated. Unfortu- too soon and thus, the transition point found results in a
nately, to estimate p(02 I I, 4j) one must compute grossly undergrown lesion. There are also vessels that can be

radiographically seen passing through the center of this lesion.
o The RGI-based segmentation algorithm chooses the boundary

fdu p(I I Li,o?)p(or) (12) of a vessel as the best partition because the RGI value around
the vessel is larger than that around the actual lesion. The
probabilistic segmentation algorithm, however, does not get

which involves integrating over all possible values of a, and confused by the vessel inside the lesion and correctly segments

is very time consuming. Not only do we have the problem this difficult lesion.
of integrating over all al values but the value computed is In order to quantify the performance differences between
the probability given a partition 4i. This leaves us with a dual the three different segmentation methods, the segmentation
optimization task. For a given at the optimal partition Lfinal is results were compared against radiologists' outlines of the
determined. This partition is then employed to determine a new lesions. The screening database of nonpalpable, biopsy-proven,
optimal or,2. This process continues until there is convergence, malignant cancers with a total of 118 visible lesion ROI's was
For this research, we instead employed a constant value, i.e., employed. For each lesion the seed point was calculated from
the most probable a priori value of LY?. the center of mass of the radiologist's outline. Once the lesion

was segmented, an overlap measure 0 was calculated using
B. Segmentation Performance the set returned from the segmentation algorithm L and the

Segmentation results for a relatively simple (high contrast) radiologist's hand-drawn segmentation set T. The overlap 0
lesion are shown in Fig. 7. All three methods, region grow- is defined as the intersection over the union, L.e,
ing, RGI-based segmentation, and probabilistic segmentation,
perform well on this lesion. Region growing has somewhat 0 Area(L n -)
undergrown the lesion and has a long tail. The RGI-based Area (L u T)' (13)

method and the probabilistic method segment the lesion better
than region growing. Similar images are shown for a more The value of 0 is bound between zero (no overlap) and one
difficult lesion on a border between a fatty region and the (exact overlap). A threshold needs to be set in order to classify
pectoralis muscle (Fig. 8). Because of the brightness of the a result as an "adequate" segmentation, i.e., if 0 is greater than
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(a) (b)

(c) (d)

Fig. 8. (a) Segmentation results for a lesion on the boundary between a fatty area and the pectoralis muscle using (b) region growing segmentation,
(c) RGJ-based segmentation, and (d) probabilistic segmentation.
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Fig. 10. Probability distributions employed when a pixel is inside or outside
Fig. 9. Probability distributions employed when a pixel is inside or outsideothe image shown in Fig. 7. The distribution employed of the set in question for the ROI shown in Fig. 8. The distribution employedof the set in question for when (.r. y) G £ i is a Gaussian centered at the seed point gray level with a
when (,. y) E Li Gaussian centered at the seed point gray level with a 7.T
variance of o7l. The distribution :(f(.r. y)) is employed when (.r. y) 5 4 ce of a i . The distribution :(f(.r. v)) is employed when (.O. y) 4
and is estimated from all gray values within the ROI. and is estimated from all gray values within the ROI.

in extracting the lesions as compared with the first radiologist.
a certain value then the lesion is considered to be correctly It is interesting to note that the performances of the RGI-
segmented. based and probabilistic methods are not too dissimilar from the

Fig. 12 shows a plot of the fraction of lesions correctly seg- human performance. Region growing never yielded all lesions

mented at various overlap threshold levels. The probabilistic correctly segmented even when the overlap threshold was zero
segmentation algorithm outperformed the other methods. Also because the method failed to find a transition point in many
shown in Fig. 12 is the performance of a different radiologist of the images.
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0... .. lesions. There are, however, cases where thresholding h(x., y)
does not generate adequate partitions for a given lesion. In

0.035 -some cases, oddly shaped lesions may be surrounded by
0.03. aglandular structures which may confuse the algorithm into

calling those normal structures part of the lesion. Spiculations,
i:O.o25" which are common in malignant lesions, are, in general, not

included in the final lesion partition because of the application
.P of the constraint function. The purpose of the segmentation
Z0.01 algorithms described in this paper, however, is to determine

0.01- the general shape of the lesions and not necessarily the detailed
shape in which all spiculations are demarcated.

0.00. There is an implicit model that arises from the density
0 functions employed in the probabilistic segmentation algo-

-0.02 0 0.02 0.t4 0.06 0.08 0.1 0.12

Standard Deviation of Normalized Gray Levels rithm. Equation (7) assumes that all pixels within the lesion
come from a Gaussian distribution centered at the seed point

Fig. 11. The distribution of standard deviations of the gray levels within pixel value. The lesion model from which this distribution
the radiologist's outlined lesions for a database of 60 malignant lesions (118 a is a very
ROI's). The pixel values of the images were normalized to be between zero arse simple one: a lesion has uniform gray levels
and one. with fluctuations arising from both noise and structure. In the

future, more complex models, such as modeling a lesion as a

projection of a sphere, can be implemented. The distributions,
....... however, become more difficult with which to work and the

-0.9 -0.8 " .assumption of independence in (8) and (10) is no longer valid.
Cý0.8 ... ""- Different initial seed points will result in different seg-

S- -mentation results. For both the RGI-based and probabilistic
c segmentation algorithms, the results are very similar given

small changes in the seed point location. If, however, the
%0.5 seed point is selected to be at the very edge of the lesion,

0.4 then the final partitions returned by both the RGI-based and
=0.3 *probabilistic algorithms will be poor.

*0.2 - Probabilistic Segmentation '. ' We comparatively evaluated the three segmentation meth-
0.Q --- RGI-based Segmentation Z.

------. Region ~ing Segmentation • -ods at various overlap criteria (Fig. 12) because different1r.10.1 ........ Another Radiologist investigators may use different evaluation criteria as well

01 0 08 " as different databases. Previously, we have shown that the
0 0!2 0.4 0.6 0.8

Overlap Threshold reported performance of a computer detection method can
greatly vary depending on the criteria used in tabulating

Fig. 12. The performance of the different segmentation methods on a sensitivity and specificity [14].
database of malignant lesions as compared with a radiologist's outlines. Also Th
shown is the agreement of another radiologist's outlines of the lesions in the e performance differences between the probabilistic al-
databases with the outlines of the first radiologist. gorithm and the RGI-based method are small. Both, however,

substantially outperform conventional region growing. It is
IV. DISCUSSION expected that this better segmentation performance will, in the

future, result in more meaningful features being extracted from
Bayesian analysis could be applied to the probabilistic potential lesion regions, and, ultimately, in better classification

segmentation algorithm resulting in of malignant lesions from normal tissue regions.

p(IZ 102) = p(IILi,oU2)p(L4)
p(l)

By analyzing (14) one finds that the p(L4) is a term that V. CONCLUSION

penalizes partitions which are not "lesion" shaped. The par- We have developed two new methods of seeded lesion
titions in our study, however, are obtained after the shape segmentation for use in digital mammography. These new
constraint function (4) has been applied so every partition methods substantially outperform conventional region growing
analyzed is "lesion" shaped and thus, a Bayesian analysis is segmentation. At an overlap threshold of 0.3, region growing
not necessary. If deformable contours are employed instead correctly identified 62% of the lesions in our database, while
of a series of lesion-shaped partitions, then Bayes' rule (14) the RGI-based and probabilistic segmentation methods cor-
should be applied. rectly segmented 92% and 96% of the lesions, respectively.

The assumption throughout this paper has been that appro- With these new segmentation results we hope to find and
priate partitions can be generated by gray-level thresholding extract new features that will help differentiate between ac-
the function h(x, y) (3). This assumption, as is shown by tual lesions and false detections, thus improving the overall
the results of this paper, is generally appropriate for most performance of computerized mass detection.
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1. Introduction

For a computer-aided detection (CAD) scheme to be an effective aid to radiologists, two

conditions must be met. First, the computerized detection scheme must be able to detect cancers

that a radiologist would overlook. Second, the radiologist when using the aid must act

appropriately (i.e., correctly dismiss computer false positives and call back women with cancer).

While at least three studies have indicated that automated detection schemes can find cancers

missed on mammograms (Schmidt et al., 1996; te Brake et aL, 1998; Warren-Burhenne et al.,

2000), these were all done using cases selected retrospectively. In this paper, we expand our

study of the first requirement - that the computer can detect cancers overlooked on a screening

mammogram - in a prospective study.

We previously reported on our prospective study of computerized detection of cancers on

screening mammograms. We found that approximately 50% of cancers missed on a screening

mammogram that are apparent in retrospect can be detected by one of our automated detection

schemes (Nishikawa et aL, 1999). Visually, some of the overlooked cancers were very subtle and

did not appear very different from normal breast tissue. In this study, we determined what

fraction of these cancers are detectable in a screening-type environment.



2. Materials and Method

Cases and computer outputs used in this study were collected from a prospective study of CAD

for screening mammography. At the University of Chicago Hospitals, we have been digitizing all

screening mammograms since November 10, 1994. To identify which women in our study cohort

have developed breast cancer, we compared the list of all patients included in our study against

all breast pathology reports from our Hospital. For all women who had breast cancer, we

examined all of their screening mammograms that were included in our study, along with

diagnostic exams and, in some cases, needle localization exams. In this way, we were able to

identify all cases where a cancer was visible on a screening mammogram. In some cases, these

screening mammograms were read as abnormal and the women were called back, and in others, the

cancer was overlooked and the mammogram was called normal. Here, we refer to the latter as a

missed cancer.

To determine what fraction of these missed cancers can be detected in a screening environment,

we conducted an observer study. We asked three radiologists to read 75 screening cases in which

the cases containing missed cancers (n=2 1) were mixed with exams that contained a screen-

detected cancer (n=3) and cases without cancer (n=5 1). The cases were presented in random

order on a mammography motorized viewer. Magnifying glasses were available. No time limit

was imposed.

The three radiologists were all specialists in breast imaging. Two had over 15 years experience

and are MQSA qualified. The third, a European radiologist, with over 10 years of experience,

had extensive experience in breast imaging, including digital mammography and breast MRI.

2



For each case, we included previous exams, when they were available. For each case, we asked

the radiologist to give their BI-RADS assessment. Based on this assessment, we determined

what fraction of radiologists would call back the cases containing a missed cancer. We also asked

the radiologists to give their level of confidence that the patient should be called back for further

imaging or for a biopsy. This was done using a visual analog scale with the left end marked as

"definitely do not call back" and the right end marked as "definitely call back". The observers

were instructed that if they were equivocal about calling the patient back, then they should mark

the center of the scale. Short-term follow-up did not count as call back.

Two different detection schemes were used in this study: one for the detection of masses and the

other for the detection of clustered microcalcifications. Details of these schemes have been

described previously (Bick et al., 1995; Nishikawa et al., 1995; Yin et al., 1993; Zhang et al.,

1996). Our prospective study began in November, 1994. The algorithms used throughout the

study were kept constant, so those 1994 versions were used. Since then, the false-positive rate

has been reduced, but these newer techniques have not been incorporated into the system yet

(Anastasio et al., 1998; Kupinski and Giger, 1998; Yoshida et al., 1996).

3. Results

In the first three years of our study, 12,670 exams, which were obtained from 9195 women, were

analyzed on our CAD workstation. Of these women, 79 developed breast cancer (minimum two

years of follow-up). Sixty-one of the cancers were detected on a screening mammogram. The

rest were detected on a diagnostic mammogram, or were palpable or both. Sixty-five cancers

were visible mammographically. In the 79 cancer cases, 42 cases had a negative screening

3



mammogram that was included in our study. Of the 42, 19 were mammographically occult in

retrospect and 23 had a lesion that was visible at the site where the cancer developed. Examining

the prospective computer results for those 23 cases showed that 12 of these cancers were

detected by the computer.

All 12 of the computer-detected, radiologist-missed cancers and 9 of the 11I computer-missed,

radiologist-missed cancers were used in the observer study. Two computer-missed, radiologist-

missed cancer cases were not available for the study. Added to these 21 cases were 3 randomly

selected screen-detected cases and 51 normal cases (based on at least two-year follow up) for a

total of 75 cases. The normal cases were selected randomly from patients who had a screening

mammogramn in 1995 and at least one additional exam at least a two years later. Computer

sensitivity on. the cancer cases used in this study was 62.5% (15/24) and the false positive-rate

on all 75 cases was 0.9 per image for calcifications and 2.1 per image for masses.

From the rating data, ROC curves were plotted (see Figure 1). In addition, using the BI-RADS

assessment, we determined the sensitivity and specificity for each reader. These are shown as

letters in Figure 1 and are reported in Table 1. Also listed in Table 1 are the sensitivity and

specificity for the computer schemes and for the clinical interpretation of the screening case. The

computer had at least one detection in each case and thus had a specificity of zero. The clinical

readings had 100% specificity since the normal cases were found based on a normal screening

mammogram. Similarly, the sensitivity of the clinical readings was low since we intentionally

included exams where a cancer was overlooked. Note, however, that one of the cases detected

clinically was missed by one of the three radiologists.
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Figure 1. ROC curves for the 3 readers. The lower case letters indicate the operating points

(sensitivity and specificity) as determined by their BI-RADS assessment. The areas under the

ROC curves, A, + one standard deviation were 0.73+0.06, 0.64+0.07, and 0.73±0.06 for

radiologists A, B, and C respectively.

Based on the BI-RADS assessment, we determined the number of times a case was given a 0, 4,

or 5 score (call back or biopsy). We then compared the computer performance of sub categories

of the data based on the number of times the cases were called abnormnal. We included the clinical

reading in this analysis, so that there were four assessments made per case (see Table 2). Of the

12 cancer cases that were missed clinically and detected by the computer, 7 were detected by 2 of

the 3 readers in this study and 11I were detected by at least one of the readers. One the other

hand, some of the computer-detected cancers are below the detection threshold of experienced

radiologists - 4 of the 12 cancers were not detected by any of the radiologists.
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Table 1. Sensitivity and specificity for the three readers, the clinical reading and the computer.

Reader Sensitivity Specificity

A 63% 76%

B 58% 67%

C 38% 82%

Clinical 13% 100%

Computer 63% 0%

4. Discussion and Conclusions

The data in Table 2 show that the computer can detect cancers that are missed by a radiologist

and the majority of those computer-detected missed cancers are detectable by a radiologist.

When either 2 or 3 of 4 radiologists detected the cancer, the computer had high sensitivity, 89%

(8/9). This is in spite of the fact that the overall sensitivity of our two computer schemes is

approximately 70% for all cancer cases in our prospective study [Nishikawa, 1999 #5].

A possible drawback of CAD is that computer could increase the call-back rate. Approximately

80% of lesions identified by a radiologist in a normal mammogram. were also identified by the

computer as a potential lesion. In the same way that we infer that radiologists detecting missed
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Table 2. Number of radiologists recommending call back or biopsy for the normal and cancer

cases. Also include is the computer performance on those cases.

# of Radiologists Normal Cases Cancer Cases # of Cancer Computer

Recommending Cases Detected Sensitivity

Call Back by Computer

0/4 24 4 1 25%

1/4 17 9 4 44%

2/4 9 3 3 100%

3/4 1 6 5 83%

4/4 0 2 2 100%

Total 51 24 15 62%

cancers can lead to improved sensitivity, the high correlation of false-positive lesions between

radiologists and the computer would indicate that the call-back rate may increase with

implementation of CAD. This needs to be confirmed in clinical evaluations. One initial study

found no increase in call-back rate when CAD was introduced (Warren-Burhenne et al., 2000).

However, the study did not report on whether sensitivity increased with CAD.
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Increased call-back rate with CAD must be kept in context. Currently between 5-15% of all

screening exams are considered abnormal and the patient is called back for further imaging studies.

Since the cancer prevalence rate in a screening population is only 0.5%, approximately 10 to 30

women are called back for every cancer detected. If CAD can detect what would have been

otherwise a missed cancer for every 10-30 extra women called back because of CAD, then the

"cost/benefit ratio" remains unchanged, but a cancer would have been detected at an earlier stage.

Because it is difficult to differentiate benign from malignant lesions mamnmographically, it is not

reasonable to expect CAD to increase sensitivity, without increasing the number of call backs.

The data presented in this paper provide some evidence that computer-detected cancers can help

radiologists avoid overlooking cancers. We plan to conduct an observer study to determine the

number of cancers initially missed by a reader that are detected when the computer results are

available. To determine the actual benefits and costs of using CAD, clinical trials need to be

performed. As more systems become commercially available and more widely disseminated,

these questions can readily be answered.
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