4. TITLE AND SUBTITLE
Updating Beliefs in Incompletely Specified Situations

6. AUTHOR(S)
Prof. Halpern

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cornell University
Dept of Computer Science
4130 Upson Hall
Ithaca, NY 14853

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR
801 N. Randolph Street, Room 732
Arlington, VA 22203-1977

13. ABSTRACT (Maximum 200 words)
This project focused on a number of issues related to updating beliefs, both qualitative and quantitative, incompletely specified settings.
1 Summary of research in 1996-97

This project focused on a number of issues related to updating beliefs, both qualitative and quantitative, in incompletely specified settings. In addition, work was initiated on the topic of explanation.

1.1 Qualitative Belief Revision

Nir Friedman and the PI provided a model for belief revision using plausibility measures. During the past year, a great deal of time was spent polishing the results that appeared in conferences in previous years (and at the beginning of this year), both for inclusion in Nir Friedman’s thesis and for submission for publication. In addition, new results were obtained. Here is a brief overview:

Belief revision, introduced by Alchourrón, Gärdenfors, and Makinson, focuses on how an agent revises his beliefs when he acquires new information. Katsuno and Mendelzon’s belief update, on the other hand, focuses on how an agent should change his beliefs when he realizes that the world has changed. Both approaches attempt to capture the intuition that to accommodate the new belief the agent should make minimal changes to his beliefs. The difference between the two approaches comes out most clearly when we consider what happens when the agent observes something that is inconsistent with his previous beliefs. Revision treats the new observation as an indication that some of the previous beliefs are wrong and should be discarded. It tries to choose the most plausible beliefs that can accommodate the observation. Update, on the other hand, assumes that previous beliefs were correct and that the observation is an indication that a change occurred in the world. It tries to find the most plausible change that accounts for the observation.

Belief revision and belief update are just two points on a spectrum of possible belief change methods. There are situations where neither is appropriate. To investigate the problem of belief change more generally, it is useful to have a good formal model. Such a model is provided in [4]. We start with the model of knowledge in multi-agent systems introduced by Halpern and Fagin and add to it (qualitative) plausibility to capture beliefs (where p is believed if its plausibility is greater than that of ¬p). Knowledge captures in a precise sense the non-defeasible information the agent has about the world he is in, while beliefs capture defeasible information. In [3], one point on the spectrum is examined, that can be viewed as combining the best features of revision and update. This approach assumes that the prior satisfies a (plausibilistic) Markovian assumption: that is, successive transitions are assumed to be independent, and the plausibility of a transition at time m depends only on the current global state, and not on what has happened up to time m.

Guided by these insights, we also re-examined the rationale behind standard approaches to belief revision, and found it wanting. In [2], we provided a critique of the literature on belief revision, stressing the importance of being explicit about the “ontology” or scenario underlying belief change.

1.2 Explanation

As probabilistic systems gain popularity and are coming into wider use, the need for a mechanism that explains the system’s findings and recommendations becomes more critical. The system will also need a mechanism for ordering competing explanations. We examined two representative approaches to explanation in the literature—one due to Gärdenfors and one due to Pearl. An explanation for Gärdenfors is something that raises the probability of the explanandum (that which we are trying to explain). For Pearl, an explanation is the world description that has the highest
probability, given the explanandum. In [1], we show that both approaches suffer from significant problems. We proposed an approach to defining a notion of “better explanation” that combines some of the features of both together with more recent work by Pearl and others on causality.

1.3 Updating probabilistic information

Conditioning is the generally agreed-upon method for updating probability distributions when one learns that an event is certainly true. But it has been argued that we need other rules, in particular the rule of cross-entropy minimization, to handle updates that involve uncertain information [6]. We consider a well-known example of where cross-entropy might be used: van Fraassen’s Judy Benjamin problem [7], which in essence asks how one might update given the value of a conditional probability. In [5], we argue that—contrary to the suggestions in the literature—it is possible to use simple conditionalization and thereby obtain answers that agree fully with intuition. This contrasts with proposals such as cross-entropy, which are easier to apply but can give unsatisfactory answers. This example again stresses the importance of providing an “ontology”.

References

Joseph Y. Halpern's Activities: 1996-97

1 Honors
 • Received 1997 Gödel Prize jointly with Yoram Moses for outstanding journal articles in the area of theoretical computer science over the past six years for paper "Knowledge and Common Knowledge in a Distributed Environment."
 • Appointed editor-in-chief of Journal of the ACM
 • Paper "Plausibility measures and default reasoning" commended for its excellence by the Committee on the "IGPL/FoLLI Prize for the Best Idea of the Year 1996."

2 University Activities
 Co-director, Cognitive Studies Program

3 Professional Activities
 • Fellow, American Association of Artificial Intelligence
 • Editorial positions:
 - Editor-in-chief: Journal of the ACM (as of May, 1997)
 - Consulting Editor: Chicago Journal of Computer Science
 • Member, ACM Publications Board (as of May, 1997)
 • Chairman, ACM Preprint Repository Project (as of May, 1997)
 • Program Committee Member: AAAI '97, UAI '97 2nd International Conference on Temporal Logic, Fourteenth National Conference on AI (AAAI '97)
 • Conference Chair: 7th Conference on Theoretical Aspects of Rationality and Knowledge
 • President of Board of Directors: Corporation for Theoretical Aspects of Reasoning About Knowledge
 • Member, NSF Review Panel

4 Lectures
 • Using multi-agent systems to represent uncertainty. Invited talk. AAAI '96 (Thirteenth National Conference on Artificial Intelligence), Portland, August, 1996.
 • ——. IRCS, University of Pennsylvania, Philadelphia, PA, March, 1997
 • ——. Invited talk, SCAI '97 (Sixth Scandinavian Conference on AI), Helsinki, August, 1997.
 • Reasoning about knowledge in multi-agent systems. Economics Department, Cornell University, Ithaca, NY, September, 1996.

• ---. C.S. Department, Indiana University, Bloomington, IN. May, 1997.

• ---. C.S. Department, Washington University, St. Louis, MI. May, 1997.

• On ambiguities in the interpretation of game trees. SITE 96 Workshop on Game Theory, Stanford University, Palo Alto, CA, 1996.

• ---. Economics Department, Cornell University, Ithaca, NY, May, 1997.

• Representation Independence in Probabilistic Reasoning. ISP, Pittsburgh University, Pittsburgh, PA, May, 1997.

• A counterexample to theorems of Cox and Fine, AAAI '96 (Thirteenth National Conference on Artificial Intelligence), Portland, Pittsburgh, PA, August, 1996

• Defining relative likelihood in partially-ordered preferential structures, Twelfth Conference on Uncertainty in AI, Portland, OR. August, 1996.

• Belief revision: a critique, 5th International Conference on Principles of Knowledge Representation and Reasoning (KR '96), Boston, MA. November, 1996.

5 Publications

4 A critical reexamination of autoepistemic logic, default logic, and only knowing. Computational Intelligence 13:1, February, 1997, pp. 144-163.

6 Students

- Nir Friedman, Stanford (completed Ph.D., December, 1996)
- Urszula Chajewska, Stanford
- Francis Chu, Cornell