An Analytic Description of a Harmonic Decomposition Technique for Correcting Signal Errors Due to Wideband Radar Phase Detector

Thomas J. Pizzillo and Jerry Silvious

ARL-TR-2306

November 2000

Approved for public release; distribution unlimited.
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
An Analytic Description of a Harmonic Decomposition Technique for Correcting Signal Errors Due to Wideband Radar Phase Detector

Thomas J. Pizzillo and Jerry Silvious
Sensors and Electron Devices Directorate

Approved for public release; distribution unlimited.
Abstract

A signal processing technique is presented for correcting imbalances and distortions introduced to the signals by the phase detectors of a coherent wideband radar. The signal model and sources of signal errors are described, an analytic description of how the corrections are derived is provided, and a sample application is presented with the use of simulated data. This report has been prepared in anticipation of a subsequent report in which the performance of this signal processing technique will be compared with the performances of several other techniques developed for similar purposes with actual data measured in the field.
Contents

1 Introduction .. 1
2 Derivation of Correction Terms 2
3 Technique Application ... 5
4 Conclusion .. 7

Distribution

Report Documentation Page 13

Figures

1 Simplified block diagram of a monopulse radar 2
2 Simplified block diagram of IF section of a monopulse radar . 3
3 Simplified block diagram of rf section of a monopulse radar . 5
4 Simulated I/Q data: Squares indicate measured data and circles indicate corrected data 6
1. Introduction

The U.S. Army Research Laboratory (ARL) has a variety of instrumentation radars for research related to sensor technologies, to include modeling, simulation, analysis, and signal processing of radar signatures. Before any of these research objectives are met, the data collected by the instrumentation radars must be calibrated to relate the returned signal to the transmitted signal. This calibration removes errors introduced by components of the radar and scales the data. In particular, ARL's Millimeter-Wave Branch of the Radio Frequency (rf) and Electronics Division has several inverse synthetic aperture radars containing phase detectors that require error correction. As these new radars are developed and introduced, new calibration techniques have been developed so that three distinct techniques are now being used. Two of these techniques, the method of Wallace and Pizzillo1 and a phase modulation and demodulation technique,2 have been documented as ARL technical reports. The third, a harmonic decomposition technique, has only been documented as an algorithm in software.

This report provides an analytic description of the third algorithm in anticipation of publishing a report detailing a comparison of the three techniques with the use of data collected by the state-of-the-art 35-GHz monopulse instrumentation radar. This instrument uses the phase modulation and demodulation technique, an architecture-based calibration, and the only one of the various radars that can collect data that may be corrected by all three techniques, thereby allowing a direct comparison of the efficiency and accuracy of each scheme.

1H. Bruce Wallace and Thomas J. Pizzillo, \textit{A Technique for Calibrating the Phase Detector of a Wideband Radar Using an External Target}, U.S. Army Research Laboratory, ARL-TR-1521 (March 1998).

2Thomas J. Pizzillo and H. Bruce Wallace, \textit{A Technique for Calibrating the Phase Detector of Wideband Radars Using a Phase Modulation and Demodulation Scheme}, U.S. Army Research Laboratory, ARL-TR-1567 (May 1998).
2. derivation of correction terms

Figure 1 is a simplified block diagram of a polarimetric, two-coordinate, amplitude-comparison monopulse system operating at 94 GHz, with a 640-MHz bandwidth. Either linearly or circularly polarized radiation is transmitted and both components are received, i.e., left-circular transmit and right- and left-circular receive or vertical transmit and vertical and horizontal receive. Transmit polarization may be changed to pulse to pulse or ramp to ramp.

The rf local oscillator (LO) is frequency-stepped synchronously with the transmitter and maintains a constant 3-GHz offset. This source is mixed with the received signal to provide the 3-GHz intermediate frequency (IF) to the in-phase/quadrature (I/Q) detectors. The IF is mixed with the 3-GHz LO to provide the final direct current (DC) signal to the analog-to-digital converter (ADC). The 3-GHz LO is also the source of the injected test signal used for correcting the phase and gain imbalances introduced by the I/Q detectors. A simplified block diagram of the IF section is shown in figure 2. This test signal is

\[S = A \cos 2\pi f, \]

where \(f \) represents the test signal's constant frequency and \(A \) is the amplitude of the test signal. However, this only provides a single DC output

![Figure 1. Simplified block diagram of a monopulse radar.](image-url)
value for a given frequency from the I/Q detectors, and correcting the output of the detectors over a range of frequencies is necessary. To accomplish this, one must phase-modulate the test signal to provide an input to the I/Q detectors as

\[S(m) = A \cos \left(2\pi f + 2\pi \frac{m}{M} \right) , \]

(2)

where \(M \) is an even integer representing the number of phase modulation steps. Shifting the phase creates a pseudo-time-sampled signal with frequency of 1 Hz and a period of \(1/M \). This signal is injected at the IF section and then propagates through the phase detector, where a second signal, shifted 90\(^\circ\) relative to the test signal, is generated. These signals are referred to as the I and Q channels of the detector:

\[I(m) = A \cos \left(2\pi \frac{m}{M} \right) + V_i \quad \text{and} \]

\[Q(m) = GA \sin \left(2\pi \frac{m}{M} + \delta \right) + V_q , \]

(3)

where \(V_i \) and \(V_q \) are DC-offsets and \(G \) and \(\delta \) represent the relative gain and phase imbalances between the outputs of I and Q channels, all introduced by the imperfect detector. The \(2\pi f \) term has been eliminated because the detection is a mixing process with \(f \) as the baseband. At this juncture, these
errors could be corrected by the method described in Wallace and Pizzillo. However, in addition to the errors introduced by the phase detector, the components that compose the IF section cause nonlinear distortion of the signal so that the signals may be better modeled by a set of trigonometric polynomials,

\[
\begin{align*}
I(M) &= \sum_{n=0}^{N} A_n \cos \left(2n\pi \frac{m}{M} \right) + V_i \quad N = 0, 2, 4 \ldots \frac{M}{2} \\
Q(M) &= \sum_{n=0}^{N} B_n \sin \left(2n\pi \frac{m}{M} \right) + V_q \quad N = 1, 3, 5 \ldots \left(\frac{M}{2} - 1\right)
\end{align*}
\] (4)

Although the phase and gain imbalance of the phase detector creates a response at the image range bin, this error is subsumed by the appropriate terms and coefficients of the polynomial and needs not be explicitly enumerated. Equation (4) represents a set of functions orthogonal on the complex plane over the range \([-\pi, \pi]\). Hence, the coefficients \(A_n\) and \(B_n\) may be determined via the complex fast Fourier transform (CFFT) of the measured I/Q detector outputs by

\[
F[I(M), Q(M)] = \sum_{n=0}^{N} \left\{ A_n \cos \left(2n\pi \frac{m}{M} \right) + iB_n \sin \left(2n\pi \frac{m}{M} \right) + V \right\} \exp \left(2\pi j \frac{k}{M}\right)
\]

\[
= I(K) + iQ(K)
\] (5)

where \(V = V_i + V_q\) and \(I(K)\) and \(Q(K)\) are the \(M\) outputs of the CFFT that represent the harmonic coefficients of the transformed signal. That is, for each \(k\), only the trigonometric component \(k = n\) contributes

\[
I(K) = A_0 + A_2 \cos \left(2\pi \frac{2}{M}\right) + \ldots + A_{M-2} \cos \left(2\pi \frac{M-2}{M}\right), \quad \text{and}
\]

\[
Q(K) = B_1 \sin \left(2\pi \frac{1}{M}\right) + B_3 \sin \left(2\pi \frac{3}{M}\right) + \ldots + B_{M-2} \sin \left(2\pi \frac{M-2}{2M}\right).
\] (6)

The maximum number of contributing harmonics is determined by the Nyquist rate or \(M/2\) distributed symmetrically about the fundamental:

\[
I(K) = A_0 + A_{-\frac{M}{2}} \cos \left(-\pi\right) + \ldots + A_{\frac{M}{2}} \cos \left(\pi\right), \quad \text{and}
\]

\[
Q(K) = B_{-\frac{M}{2}} \sin \left(2\pi \frac{2-M}{2M}\right) + \ldots + B_{\frac{M-2}{2}} \sin \left(2\pi \frac{M-2}{2M}\right).
\] (7)

By repeating this procedure for several amplitudes and storing the values in a lookup table, one may correct any measured amplitude on the complex plane defined by \(I\) and \(Q\) up to the maximum calibration amplitude.

3. Technique Application

The correction noted in section 2 is applied in the following procedure: A constant amplitude signal is injected into the IF section of the radar via the toggle switches (see fig. 2). This provides a DC signal to the ADC. Data are collected at 16 phase angles, $22.5^\circ m$, where $m = 0, 1 \ldots 15$, controlled by the phase-shifter shown in figure 3 for both the I and Q channels. Six thousand four hundred samples are averaged for each phase setting to minimize noise. The data are converted to signed integer values by subtracting half the dynamic range of the ADC from each set, i.e., 2048. A complex value is generated from the I and Q data and then sorted from the minimum to maximum phase. This process is repeated for four attenuation levels: 98, 78, 58, and 39 percent of the A/D dynamic range, i.e., 4095. The final results are four sets of complex data of 16 values each from which the correction coefficients are derived.

The correction coefficients are used to correct measured data in both phase and amplitude by subtracting the unwanted harmonic components from each measured data point, I_m and Q_m. Measured amplitudes are corrected with the correction amplitudes above and below the measured value, with
an appropriate weighting factor. This weighting factor is calculated with

\[W_u = \frac{(A_u - A_m)}{(A_u - A_l)} \quad W_l = \frac{(A_m - A_l)}{(A_u - A_l)} \quad (W_u + W_l = 1) \]

(8)

where \(A_u \) is the correction amplitude greater than the measured value, \(A_l \) is the correction amplitude less than the measured value, and \(A_m = \sqrt{A^2_m + A^2_l} \) is the amplitude of the measured \(I \) and \(Q \) data points.

Consider the simulated data in figure 4 created for \(M = 16 \). The set of measured \(I/Q \) pairs is indicated with squares and falls between the calibration amplitudes, \(A_u = 1500 \) and \(A_l = 1200 \). The corrected \(I \) and \(Q \) values are determined by

\[
I_c = I_m - W_u [A_{0u} + A_{-8u} \cos (-8\theta_m) + \ldots + A_{8u} \cos (8\theta_m)] \\
- W_l [A_{0l} + A_{-8l} \cos (-8\theta_m) + \ldots + A_{8l} \cos (8\theta_m)] \quad \text{and}
\]

\[
Q_c = Q_m - W_u [A_{-7u} \sin (-7\theta_m) + \ldots + A_{7u} \sin (7\theta_m)] \\
- W_l [A_{-7l} \sin (-7\theta_m) + \ldots + A_{7l} \sin (7\theta_m)]
\]

(9)

where \(I_c \) and \(Q_c \) are the corrected \(I \) and \(Q \) data points. \(\theta_m = \arctan 2 \left(\frac{Q_m}{I_m} \right) \) is the measured relative phase between \(I_m \) and \(Q_m \). \(A_{nu} \) and \(A_{nl} \) are the \(n \)th harmonic coefficient for the upper and lower calibration bounds, respectively. These expressions are applied to each of the 16 \(I/Q \) pairs indicated with circles in figure 4. This example is for demonstration only and for clarifying the application of this technique. A subsequent report will compare the application of this technique to measured data, and its performance will be compared with two other techniques developed for the same data correction problem.

Figure 4. Simulated I/Q data: Squares indicate measured data and circles indicate corrected data.
4. Conclusion

An algorithm currently used by ARL (Millimeter-Wave Branch) for correcting the I and Q errors introduced by the phase detectors of a wideband radar has been presented. The signals with errors have been modeled as trigonometric polynomials and the correction described as a harmonic decomposition based upon the CFFT. An analysis of the performance of this technique is left for a subsequent publication in which the performance of the two other techniques (see sect. 1) will be compared along with the results of this harmonic decomposition as applied to actual measured data from a state-of-the-art 35-GHz monopulse instrumentation radar.
Distribution

Adminstr
Defns Techl Info Ctr
Attn DTIC-OC
8725 John J Kingman Rd Ste 0944
FT Belvoir VA 22060-6218

DARPA
Attn S Welby
Attn Techl Lib
3701 N Fairfax Dr
Arlington VA 22203-1714

Ofc of the Secy of Defns
Attn ODDRE (R&AT)
The Pentagon
Washington DC 20301-3080

Ofc of the Secy of Defns
Attn OUSD(A&T)/ODDR&E(R) R J Trew
3080 Defense Pentagon
Washington DC 20301-7100

Under Secy of Defns for Rsrch & Engrg
Attn Rsrch & Advncd Techlgy
Dept of Defns
Washington DC 20301

AMCOM MRDEC
Attn AMSMI-RD W C McCorkle
Redstone Arsenal AL 35898-5240

CECOM NVESD
Attn AMSEL-RD-NV-ASD M Kelley
Attn AMSEL-RD-NV-TISD F Petito
FT Belvoir VA 22060

Dir for MANPRINT
Ofc of the Deputy Chief of Staff for Prsnnl
Attn J Hiller
The Pentagon Rm 2C733
Washington DC 20301-0300

NGIC
Attn IANG RSC S Carter
220 7th Stret NE
Charlottesville VA 22902-5396

SMC/CZA
2435 Vela Way Ste 1613
El Segundo CA 90245-5500

US Army ARDEC
Attn AMSTA-AR-TD M Fisette
Attn SMCR-FSP-A1 M Rosenbluth
Attn SMCR-FSP-A1 R Collett
Bldg 1
Picatinny Arsenal NJ 07806-5000

US Army CECOM NVESD
Attn AMSEL-RD-NV-RSPO A Tarbell
Mailstop 1112
FT Monmouth NJ 07703-5000

US Army CECOM RDEC
Night Vsn & Elect Sensors Dirctr
Attn AMSEL-RD-NV-OD F Milton
10221 Burbeck Rd Ste 430
FT Belvoir VA 22060-5806

US Army CRREL
Attn G D Ashton
Attn SWOE G Koenig
Attn SWOE P Welsh
72 Lyme Rd
Hanover NH 03755-1290

US Army Info Sys Engrg Cmd
Attn AMSEL-IE-TD F Jenia
FT Huachuca AZ 85613-5300

US Army Missile Lab
Attn AMSMI-RD Advanced Sensors Dir
Attn AMSMI-RD Sys Simulation & Dev Dir
Attn AMSMI-RD-AS-MM H Green
Attn AMSMI-RD-AS-MM M Christian
Attn AMSMI-RD-AS-MM M Mullins
Attn AMSMI-RD-AS-MM W Garner
Attn AMSMI-RD-AS-RPR Redstone Sci Info Ctr
Attn AMSMI-RD-AS-RPT Techl Info Div
Attn AMSMI-RD-SS-HW S Mobley
Attn AMSMI-RD-MG-RF G Emmons
Redstone Arsenal AL 35809

US Army Natick RDEC Acting Techl Dir
Attn SBCN-T P Brandler
Natick MA 01760-5002
Distribution (cont’d)

US Army Simulation, Train, & Instrmntn Cmd
Attn AMSTI-CG M Macedonia
Attn J Stahl
12350 Research Parkway
Orlando FL 32826-3726

US Army Soldier & Biol Chem Cmd
Dir of Rsrch & Techlgy Dirctr
Attn SMCCR-RS 1 G Resnick
Aberdeen Proving Ground MD 21010-5423

US Army Tank-Automtvc Cmd Rsrch, Dev, & Engrg Ctr
Attn AMSTA-TR J Chapin
Warren MI 48397-5000

US Army Test & Eval Cmd
Attn STEWS-TE-AF F Moreno
Attn STEWS-TE-LG S Dickerson
White Sands Missile Range NM 88002

US Army Train & Doctrine Cmd
Battle Lab Integration & Techlgy Dirctr
Attn ATCD-B
Attn ATCD-B J A Klevecz
FT Monroe VA 23651-5850

US Military Academy
Mathematical Sci Ctr of Excellence
Attn MADN-MATH MAJ R Huber
Thayer Hall
West Point NY 10996-1786

USAE Waterways Exprmnt Sta
Attn CEWES-EE-S J Curtis
Attn CEWES-EN-C W West
3909 Halls Ferry Rd
Vicksburg MS 39180-6199

USATEC
Attn J N Rinker
Attn P Johnson
7701 Telegraph Rd
Alexandria VA 22315-3864

Nav Rsrch Lab
Attn 2600 Techl Info Div
4555 Overlook Ave SW
Washington DC 20375

Nav Surface Warfare Ctr
Attn Code B07 J Pennella
17320 Dahlgren Rd Bldg 1470 Rm 1101
Dahlgren VA 22448-5100

Nav Weapons Ctr
Attn 38 Rsrch Dept
Attn 381 Physics Div
China Lake CA 93555

AFMC Rome LAB/OC 1
Attn J Bruder
Griffiss AFB NY 13441-4314

Eglin Air Force Base
Attn 46 TW/TSWM B Parnell
211 W Eglin Blvd Ste 128
Eglin AFB FL 32542-5000

USAF Wright Lab
Attn WL/MMGS B Sundstrum
Attn WL/MMGS R Smith
101 W Eglin Blvd Ste 287A
Eglin AFB FL 32542-6810

Sandia Natl Lab
PO Box 5800
Albuquerque NM 87185

Eviron Rsrch Inst of MI
Attn C L Arnold
PO Box 134001
Ann Arbor MI 48113-4001

Georgia Inst of Techlgy
Georgia Tech Rsrch Inst
Attn Radar & Instrmntn Lab N C Currie
Attn Radar & Instrmntn Lab R McMillan
Attn Radar & Instrmntn Lab T L Lane
Atlanta GA 30332

Ohio State Univ
Elect Sci Lab
Attn R J Marhefka
Columbus OH 43212

Univ of Michigan
Radiation Lab
Attn F Ulaby
Distribution (cont’d)

Univ of Michigan (cont’d)
Attn K Sarabandi
3228 EECS Bldg 1301 Beal Ave
Ann Arbor MI 48109-2122

VA Polytechnic Inst & State Univ
Elect Interaction Lab
Attn G S Brown
Bradley Dept of Elect Engrg
Blacksburg VA 24061-0111

Hicks & Associates Inc
Attn G Singley III
1710 Goodrich Dr Ste 1300
McLean VA 22102

Lockheed Martin Corp Elect & Missile Div
Attn E Weatherwax
5600 Sand Lake Rd Mail Stop 450
Orlando FL 32819

Minister of Defense
Attn A Priou
Paris 22333
France

MIT Lincoln Lab
Attn E Austin
Attn W Keicher
PO Box 73
Lexington MA 02173-9108

Palisades Inst for Rsrch Svc Inc
Attn E Carr
1745 Jefferson Davis Hwy Ste 500
Arlington VA 22202-3402

Simulation Techl
Attn A V Saylor
Attn D P Barr
3307 Bob Wallace Ave SW 4
Huntsville AL 35805-4066

US Army Rsrch Lab
Attn AMSRL-SE-RM R Bender
Attn AMSRL-SE-RM R Tan
Attn AMSRL-SE-RM S Stratton
Attn AMSRL-WM-BA R A McGee
Aberdeen Proving Ground MD 21005

Director
US Army Rsrch Ofc
Attn AMSRL-RO-D JCI Chang
Attn B D Guenther
Attn C Church
PO Box 12211
Research Triangle Park NC 27709

US Army Rsrch Lab
Attn AMSRL-DD J M Miller
Attn AMSRL-CI-AI-R Mail & Records Mgmt
Attn AMSRL-CI-AP Techl Pub (3 copies)
Attn AMSRL-CI-LL Techl Lib (3 copies)
Attn AMSRL-SE J Pellegrino
Attn AMSRL-SE-D E Scannell
Attn AMSRL-SE-E D Wilmot
Attn AMSRL-SE-EE Z G Sztankay
Attn AMSRL-SE-R B Wallace
Attn AMSRL-SE-RM C Ly
Attn AMSRL-SE-RM D Hutchins
Attn AMSRL-SE-RM D W Vance
Attn AMSRL-SE-RM D Wikner
Attn AMSRL-SE-RM E Adler
Attn AMSRL-SE-RM E Burke
Attn AMSRL-SE-RM G Goldman
Attn AMSRL-SE-RM H Dropkin
Attn AMSRL-SE-RM J Clark
Attn AMSRL-SE-RM J Nemarich
Attn AMSRL-SE-RM J Silverstein
Attn AMSRL-SE-RM J Silvious
Attn AMSRL-SE-RM J Speulstra
Attn AMSRL-SE-RM K Tom
Attn AMSRL-SE-RM R Dahlstrom
Attn AMSRL-SE-RM R Harris
Attn AMSRL-SE-RM R Wellman
Attn AMSRL-SE-RM T Pizzillo (10 copies)
Attn AMSRL-SE-RM W Wiebach
Attn AMSRL-SE-RU B Scheiner
Attn AMSRL-SE-RU J Sichina
Adelphi MD 20783-1197
REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 November 2000

3. REPORT TYPE AND DATES COVERED
 Final, April–June 2000

4. TITLE AND SUBTITLE
 An Analytic Description of a Harmonic Decomposition Technique for Correcting Signal Errors Due to Wideband Radar Phase Detector

5. FUNDING NUMBERS
 DA PR: AH16
 PE: 62120A

6. AUTHOR(S)
 Thomas J. Pizzillo and Jerry Silvious

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 U.S. Army Research Laboratory
 Attn: AMSRL-SE-RM
 2800 Powder Mill Road
 Adelphi, MD 20783-1197
 email: pizzillo@arl.army.mil

8. PERFORMING ORGANIZATION REPORT NUMBER
 ARL-TR-2306

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 U.S. Army Research Laboratory
 2800 Powder Mill Road
 Adelphi, MD 20783-1197

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
 ARL PR: 01441H1
 AMS code: 622120.H16

12a. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release;
 distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
 A signal processing technique is presented for correcting imbalances and distortions introduced to the signals by the phase detectors of a coherent wideband radar. The signal model and sources of signal errors are described, an analytic description of how the corrections are derived is provided, and a sample application is presented with the use of simulated data. This report has been prepared in anticipation of a subsequent report in which the performance of this signal processing technique will be compared with the performances of several other techniques developed for similar purposes with actual data measured in the field.

14. SUBJECT TERMS
 Error correction, imbalance

15. NUMBER OF PAGES
 16

16. PRICE CODE
 UL

17. SECURITY CLASSIFICATION OF REPORT
 Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE
 Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT
 Unclassified

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
206-102

NSN 7540-01-290-5500

13