Award Number: DAMD17-98-1-8603

TITLE: Radiation and Angiostatin Target the Tumor Vasculature: A New Paradigm for Prostate Cancer Treatment

PRINCIPAL INVESTIGATOR: Ralph Weichselbaum, M.D.

CONTRACTING ORGANIZATION: The University of Chicago
Chicago, Illinois 60637

REPORT DATE: October 1999

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
4. TITLE AND SUBTITLE
Radiation and Angiostatin Target the Tumor Vasculature: A New Paradigm for Prostate Cancer Treatment

6. AUTHOR(S)
Ralph Weichselbaum, M.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The University of Chicago
Chicago, Illinois 60637
e-mail: rrw@rover.gad.uchicago.edu

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

13. ABSTRACT (Maximum 200 Words)
Angiogenesis, the formation of new capillaries from pre-existing vessels, is essential for tumor progression. This tumor endothelium is derived from normal host tissue and is genetically stable. One tumor vessel may supply as many as 10^6 tumor cells. Angiostatin, a proteolytic fragment of plasminogen, inhibits angiogenesis and thereby growth of primary and metastatic tumors. Radiotherapy is important in the treatment of human cancers, but is often unsuccessful due to tumor cell radioresistance. We are investigating the effects of combined treatment of angiostatin and ionizing radiation (IR) in human prostate cancer xenografts. We increase in tumor regression and delayed regrowth in PC-3 prostate cancer cell xenografts. We also show that effect of this combined treatment is directed to the endothelial cells and not to the PC-3 cancer cells. As a beginning to understanding the mechanism of this interaction, we investigated whether the effect of angiostatin, IR, and angiostatin+IR in vitro. We conclude, therefore, that the interaction of angiostatin and IR is not mediated by apoptosis.
FOREWORD

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, national Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

[Signature]

PI - Signature Date
TABLE OF CONTENTS

Front Cover

Report Documentation Page

Foreword

Table of Contents

Introduction 5

Body 6

Key Research Accomplishments 10

Reportable Outcomes 10

Conclusions 10

References 11

Appendices
Introduction

Angiogenesis, the formation of new capillaries from pre-existing vessels, is essential for tumor progression[1-5]. This tumor endothelium is derived from normal host tissue and is genetically stable. One tumor vessel may supply as many as 10^6 tumor cells. Angiostatin, a proteolytic fragment of plasminogen[6], inhibits angiogenesis and thereby growth of primary[7] and metastatic tumors[8-10]. Radiotherapy is important in the treatment of human cancers, but is often unsuccessful due to tumor cell radioresistance[11, 12]. We are investigating the effects of combined treatment of angiostatin and ionizing radiation (IR) in human prostate cancer xenografts. We demonstrate that the combined treatment with angiostatin and IR produces a significant increase in tumor regression and delayed regrowth in PC-3 prostate cancer cell xenografts. We also show that effect of this combined treatment is directed to the endothelial cells and not to the PC-3 cancer cells. As a beginning to understanding the mechanism of this interaction, we investigated whether the effect of angiostatin, IR, and angiostatin+IR was mediated by apoptosis. Our data demonstrate that the percentage of apoptotic endothelial cells does not increase when treated with angiostatin, IR, and angiostatin+IR in vitro. We conclude, therefore, that the interaction of angiostatin and IR is not mediated by apoptosis.
Body

For the first twelve months of the proposal we proposed to use purified angiostatin and ionizing radiation (IR) to assess the anti-tumor effect of combined treatment in prostate cancer. PC-3 cells (2x10^7 in 100 µl PBS) were injected into the flank of nude mice and tumors grown to a mean size of 770 mm³. The animals were divided into four treatment groups: control (n=8), IR (n=10), angiostatin (n=10), combined angiostatin + IR (n=10). Angiostatin was injected intraperitoneally (IP) at a dose of 25 mg/kg/day. IR was delivered over two weeks at a fraction of 500 cGy per day to a total dose of 4000 cGy. Animals receiving combined treatment were injected with angiostatin four hours prior to IR. The tumors were measured twice weekly with calipers. Figure 1 demonstrates the results of this experiment (mean volume ± SEM). The animals treated with angiostatin alone grew at the same rate as the controls. The animals in the control and angiostatin treated groups were euthanized at day 21 when the tumor burden became
excessive. The animals treated with IR and angiostatin+IR showed similar tumor regression through day 24. From day 24 to day 42 the IR treated tumors began regrowth while the angiostatin+IR treated tumors continued regressing. At day 42 the difference in the means is statistically significant ($P<0.001$).

We also used the Lewis lung carcinoma (LLC) model to study the interaction of angiostatin and IR. LLC cells were injected (5×10^5) into C57BL/6 mice. The tumors grew to a mean volume of 1104 mm3 in 17 days. Twenty-eight mice were divided into four groups of seven. The treatment groups were: untreated control, 40 Gy, angiostatin, and angiostatin + 40 Gy. The 40 Gy exposure was divided into two 20 Gy fractions delivered on day 0 and day 1 of the experiment. Angiostatin was injected IP beginning at day 0 at a dose of 25 mg/kg/day divided into two daily injections and continued for fourteen days. Figure 2 illustrates the results of this experiment. The untreated control animals and the animals treated with angiostatin alone were euthanized on day 9 when the tumor burden became excessive. The time to tumor regrowth is extended in the angiostatin + IR treatment group compared to the IR alone. At day nine the difference in the mean tumor volumes is statistically significant ($P<0.05$). To determine the effects of treatment on tumor neovascularization, representative tissue sections from LLC tumors were stained using anti-CD-31 antibody and standard immunohistochemical techniques. The number of tumor vessels per high power field was reduced following to treatment with angiostatin+IR compared with all other treatments. These data are indicative of endothelial cells being the target of angiostatin+IR.

To demonstrate that the PC-3 tumor cells are not the target of the angiostatin/IR interaction, PC-3 cells were treated with angiostatin and IR in vitro employing the clonogenic assay. Figure 3 shows the results of these experiments (mean ± SEM of three experiments). As can be seen the cells treated with angiostatin have identical surviving fractions to those cells treated with IR alone. This demonstrates that the in vivo interaction of angiostatin and IR is not attributable to the direct killing of the PC-3 cells.

![PC-3 X-ray Survival + Angiostatin](image)

My laboratory has demonstrated that the angiostatin/IR response is directed at the endothelial cells. Figure 4 shows the dose response for human umbilical vein endothelial cells (HUVEC) when treated with angiostatin (1-1000 ng/ml) in vitro (mean ± SEM of three experiments). There is an initial rapid decrease in surviving fraction which levels off at 100 ng/ml and remains comparable when HUVEC are treated with concentrations of angiostatin as high as 1000 ng/ml. In order to ascertain the effects of treatment with angiostatin followed by IR, we utilized the clonogenic assay and HUVEC. In order to conserve the limited angiostatin supply, we chose to use
an angiostatin concentration of 100 ng/ml (since the surviving fraction was the same as 1000 ng/ml) added to the cultures 18 hours after plating. IR was delivered four hours after addition of angiostatin. Figure 5 shows the results (mean ± SEM of three experiments) of these experiments demonstrating the additive nature of the interaction of angiostatin and IR in HUVEC. In order to elucidate whether the mechanism of this killing by angiostatin was due in part to increased apoptosis in angiostatin treated cells, we determined the percentage of apoptotic cells using HUVEC after treatment with 1000 ng/ml angiostatin, 10Gy, or the combination when compared to controls. We chose to use the 7-AAD staining method as it stained both early and late apoptotic cells. HUVEC were treated with angiostatin, IR, or the combination while attached to a tissue culture dish. At the appropriate times (0, 12, 24, and 48 hours), the cells were disaggregated with trypsin/EDTA, washed, and incubated with 7-AAD (20 μg/ml) for thirty minutes. The samples were then analyzed on a Beckman FACS machine. Figure 6 illustrates the results of these experiments. There is no increase in apoptosis in HUVEC treated with angiostatin when compared with control. Also, the cells treated with angiostatin prior to 10 Gy had the same percentage of apoptotic cells as the cells treated with 10 Gy alone. This leads us to conclude that angiostatin does not kill cells through apoptosis, and that the interaction of angiostatin and IR is not mediated by apoptosis.
Figure 6

% Early/Late Apoptosis in Huvec Treated with Angiostatin & IR 0 hr

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angio 0Gy</td>
<td>6.3</td>
</tr>
<tr>
<td>Angio 40Gy</td>
<td>6.5</td>
</tr>
<tr>
<td>Angio 100Gy</td>
<td>6.9</td>
</tr>
<tr>
<td>Angio 150Gy</td>
<td></td>
</tr>
<tr>
<td>Angio 200Gy</td>
<td></td>
</tr>
<tr>
<td>Angio 300Gy</td>
<td></td>
</tr>
<tr>
<td>Angio 500Gy</td>
<td></td>
</tr>
<tr>
<td>20Gy</td>
<td>9.2</td>
</tr>
</tbody>
</table>

% Early/Late Apoptosis in Huvec Treated with Angio & IR 12hr

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angio 0Gy</td>
<td>11.9</td>
</tr>
<tr>
<td>Angio 40Gy</td>
<td>9.1</td>
</tr>
<tr>
<td>Angio 100Gy</td>
<td>11.8</td>
</tr>
<tr>
<td>Angio 150Gy</td>
<td>8.2</td>
</tr>
<tr>
<td>Angio 200Gy</td>
<td></td>
</tr>
<tr>
<td>Angio 300Gy</td>
<td></td>
</tr>
<tr>
<td>Angio 500Gy</td>
<td></td>
</tr>
</tbody>
</table>

% Early/Late Apoptosis in Huvec Treated with Angiostatin & IR 24hr

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angio 0Gy</td>
<td>5.5</td>
</tr>
<tr>
<td>Angio 40Gy</td>
<td>3.6</td>
</tr>
<tr>
<td>Angio 100Gy</td>
<td>4.7</td>
</tr>
<tr>
<td>Angio 150Gy</td>
<td>3.7</td>
</tr>
<tr>
<td>Angio 200Gy</td>
<td></td>
</tr>
<tr>
<td>Angio 300Gy</td>
<td></td>
</tr>
<tr>
<td>Angio 500Gy</td>
<td></td>
</tr>
</tbody>
</table>

% Early/Late Apoptosis in Huvec Treated with Angiostatin & IR 48hr

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angio 0Gy</td>
<td>16.7</td>
</tr>
<tr>
<td>Angio 40Gy</td>
<td>15.4</td>
</tr>
<tr>
<td>Angio 100Gy</td>
<td>18.5</td>
</tr>
<tr>
<td>Angio 150Gy</td>
<td>16.2</td>
</tr>
</tbody>
</table>
Key Research Accomplishments

- PC-3 prostate cancer cell xenografts treated with angiostatin + IR produce a significant increase in tumor regression and delayed tumor regrowth than xenografts treated with angiostatin or IR alone.
- The effects of treatment with angiostatin + IR is directed to the tumor endothelium and not the PC-3 cancer cells
- The interaction of angiostatin + IR is additive.
- The interaction of angiostatin + IR is not mediated by apoptosis.

Reportable Outcomes

1. A manuscript reporting results of effect of treatment with angiostatin and IR and the mechanism underlying this interaction, specifically pertaining to prostate cancer is in preparation.

Conclusions

We demonstrate that the combined treatment with angiostatin + IR produces a significant increase in tumor regression and delayed regrowth in PC-3 prostate cancer cell xenografts. We also show that effect of this combined treatment is directed to the endothelial cells and not to the PC-3 cancer cells. Our data demonstrate that the percentage of apoptotic endothelial cells does not increase when treated with angiostatin, IR, and angiostatin+IR in vitro. We conclude, therefore, that the interaction of angiostatin and IR is not mediated by apoptosis. We continue to investigate the mechanism by which the angiostatin/IR interaction is mediated in order to develop new therapies based on this mechanism.
References

Appendices

None