Adaptation of Flux-Corrected Transport Algorithms for Modelling Blast Waves

Laboratory for Computational Physics

*Science Applications Inc.
McLean, VA

**JAYCOR
Alexandria, VA

†R&D Associates
Marina del Rey, CA

October 12, 1982

This work was supported by the Defense Nuclear Agency under Subtask Y99QAXSG, work unit 00027, and work unit title "Flux Corrected Transport Code."

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>2. GOVT ACCESSION NO.</th>
<th>3. RECIPIENT'S CATALOG NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRL Memorandum Report 4914</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE (and Subtitle)</th>
<th>5. TYPE OF REPORT & PERIOD COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAPTATION OF FLUX-CORRECTED TRANSPORT ALGORITHMS FOR MODELLING BLAST WAVES</td>
<td>Interim report on a continuing NRL problem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. AUTHOR(s)</th>
<th>8. CONTRACT OR GRANT NUMBER(s)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. PERFORMING ORGANIZATION NAME AND ADDRESS</th>
<th>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Research Laboratory</td>
<td>62715H; 44-0578-0-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. CONTROLLING OFFICE NAME AND ADDRESS</th>
<th>12. REPORT DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense Nuclear Agency</td>
<td>October 12, 1982</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. NUMBER OF PAGES</th>
<th>15. SECURITY CLASS. (of this report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>UNCLASSIFIED</td>
</tr>
</tbody>
</table>

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office): 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

This work was supported by the Defense Nuclear Agency under Subtask Y99QAXSG, work unit 00027, and work unit title "Flux Corrected Transport Code."

(Continues)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Blast waves Mach reflection
Explosions Adaptive gridding

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Flux-corrected transport represents an accurate and flexible class of methods for solving nonsteady compressible flow problems. In models which treat all the physical effects required for blast wave simulation, truncation errors inherent in the underlying finite-difference scheme are exacerbated by nonlinear coupling between the fluid equations and by the greater complexity of the phenomena being simulated. In order to improve the properties of the basic difference scheme, we propose a new algorithm for integrating generalized continuity equations over a timestep δt.

DD FORM 1 JAN 73 EDITION OF 1 NOV 65 IS OBSOLETE

S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
18. Supplementary Notes (Continued)

*Present address: Science Applications Inc., McLean, VA.
**Present address: JAYCOR, Alexandria, VA.
†Present address: R&D Associates, Marina del Rey, CA.
ADAPTATION OF FLUX-CORRECTED TRANSPORT ALGORITHMS
FOR MODELLING BLAST WAVES

Blast wave phenomena include reactive and two-phase flows associated with the motion of chemical explosion products; the propagation of shocks, rarefaction waves, and contact discontinuities through a nonideal medium (real air, possibly thermally stratified and containing dust and water vapor); and the interaction of the blast waves (including boundary layer effects) with structural surfaces. Flux-Corrected Transport (FCT) represents an accurate and flexible class of methods for solving such nonsteady compressible flow problems (Boris and Book, 1976). Coupled with a nondiffusive adaptive gridding scheme (Book et al., 1980; Fry et al., 1981), it enables complex time-dependent shocks to be efficiently "captured."

In models which treat all the physical effects required for blast wave simulation, truncation errors inherent in the underlying finite-difference scheme are exacerbated by nonlinear coupling between the fluid equations and by the greater complexity of the phenomena being simulated. Typical of these errors are the "terraces" which develop under some circumstances on the flanks of sloping profiles when the growth of ripples due to phase errors at short length scales is terminated by the action of the flux limiter. Two approaches are possible toward eliminating them: improving the short-wavelength phase and amplitude properties of the underlying algorithm, and switching on additional diffusion locally. The latter approach folds information about the shape of the profile and the nature of the physical process taking place (e.g., rarefaction) into the switch criterion, thus changing the FCT technique from a "convective equation solver" to a "fluid system solver." In doing this, care must be taken to avoid losing the accuracy, robustness and problem-independence which constitute valuable attributes of FCT algorithms (Book et al., 1981).

Tests carried out on scalar advection of simple density profiles by a uniform flow field show that terracing does not require either diverging velocities or discontinuities in the profile, but appears typically (for \(v > 0 \)) where the first and second derivatives of density have the same sign (Fig. 1). In order to improve the properties of the basic difference scheme, we propose a new algorithm for integrating generalized continuity equations over a timestep \(\Delta t \). Consider the following three-point transport scheme:

\[
\hat{\rho}_j = \rho_j^0 - \eta (\rho_{j+1}^0 - \rho_{j-1}^0) + \kappa (\rho_{j+1}^0 - 2\rho_j^0 + \rho_{j-1}^0);
\]

\[
\bar{\rho}_j = \hat{\rho}_j - \theta (\rho_{j+1}^0 - \rho_{j-1}^0) + \lambda (\rho_{j+1}^0 - 2\rho_j^0 + \rho_{j-1}^0);
\]

\[
\rho_j^n = \bar{\rho}_j - \nu (\phi_{j+1/2} - \phi_{j-1/2}),
\]

where

\[
\phi_{j+1/2} = \hat{\rho}_{j+1} - \hat{\rho}_j.
\]

Manuscript submitted July 26, 1982.

1
The arrays \(\{ \rho_j^O \} \) and \(\{ \rho_j^N \} \) are the old and new densities, \(\hat{\rho}_j \) and \(\tilde{\rho}_j \) are temporary intermediate densities, and \(\eta \), \(\theta \), \(k \), \(\lambda \), and \(\mu \) are velocity-dependent coefficients. Here \(\kappa \) and \(\lambda \) are diffusion coefficients, and \(\mu \) is the antidiffusion coefficient. In the actual algorithm, \(\phi_j^{c+1/2} \) is corrected (hence the name FCT) to a value \(\phi_j^{c+1/2} \) chosen so no extrema in \(\rho_j \) can be enhanced or new ones introduced in \(\rho_j \). Previous FCT algorithms had \(\theta = 0 \); the widely used EBFCT and related algorithms (Boris, 1976) have in addition \(\kappa = 0 \). If we define \(\rho_j \) to be sinusoidal with wave number \(k \) on a mesh with uniform spacing \(\delta x \), so that \(\rho_j^O = \exp (i j \beta) \) where \(\beta = k \delta x \), then the new density array satisfies
\[
\frac{\rho_j^N}{\rho_j^O} = A = 1 - 2i(\eta + \theta) \sin \beta + 2(\kappa + \lambda)(\cos \beta - 1) - 2\mu(\cos \beta - 1)[1 - 2i\eta \sin \beta + 2\kappa(\cos \beta - 1)].
\]

From \(A \) we can determine the amplification \(\alpha = A \) and relative phase error \(R = (1/\epsilon^2\tan^{-1}(-\Im A/\Re A)) - 1 \), where \(\epsilon = \nu \delta t / \delta x \) is the Courant number. Expanding in powers of \(\beta \) we find
\[
\alpha = 1 + \alpha_2 \beta^2 + \alpha_4 \beta^4 + \alpha_6 \beta^6 + \ldots;
\]
\[
R = R_0 + R_2 \beta^2 + R_4 \beta^4 + R_6 \beta^6 + \ldots.
\]
First-order accuracy entails making \(R_0 \) vanish, which requires that \(\eta + \theta = \epsilon/2 \). Second-order accuracy (\(\alpha_2 = 0 \)) implies that \(\mu = \kappa + \lambda - \epsilon^2/2 \). Analogously, the "reduced-phase-error" property \(R_2 = 0 \) (Boris and Book, 1976) determines \(\mu = (1-\epsilon^2)/6 \), thus leaving two free parameters. One of these can be used to make \(R_4 \) vanish also. The resulting phase error \(R(\beta) \) is small not only as \(\beta \to 0 \), but also for larger values of \(\beta \), corresponding to the short wavelengths responsible for terraces (Fig. 2). The remaining parameter \(\eta \) can be chosen to relax the Courant number restriction needed to ensure positivity from \(\epsilon < 1/2 \) to \(\epsilon < 1 \). When coded, these changes necessitate a small increase in the operation count of EBFCT along with a small increase in overhead to precalculate the two new arrays of velocity-dependent transport coefficients. On advection tests, the new algorithm completely eliminated terraces (Fig. 3). When applied to the coupled systems of gas dynamic equations, it produced profiles which closely approximate the Riemann solution of the exploding diaphragm problem (Fig. 4).

The second approach uses a rarefaction flux limiter (RFL) to eliminate numerical ripples in strong rarefaction waves. This approach is physically motivated. Raw anti-diffusive fluxes \(\phi_j^{c+1/2} \) are limited so that the slope of local flow field profiles decays with time in a rarefaction wave. In effect, additional diffusion is left in the field to maintain monotonicity of local slopes. For multi-material calculations a "contact surface sensor" is needed to detect physical discontinuities and shut off the RFL locally.

In addition we found that some care was required when applying generalized continuity equation solvers to a system of equations. Truncation errors of the various equations can interact, causing undershoots or overshoots in nonconvective quantities such as pressure. We found that it was necessary to monotize derived quantities (pressure, velocity) before using them in minimal-diffusion transport algorithms.
The above methodology has been applied to a series of test problems initiated by a spherical high-explosive (HE) detonation in air. An ideal Chapman-Jouguet detonation was used to specify the initial conditions; afterburning was neglected. In the absence of reflecting surfaces, spherical symmetry is maintained and the calculation remains one-dimensional. A nonuniform radial grid was used with extremely fine zoning near the shock front. The grid was moved so that the shock remained approximately fixed with respect to the mesh. The original version of the FCT algorithm gave rise to pronounced terraces in the rarefaction region. This would have rendered any two-dimensional calculation involving shock diffraction or nonideal effects dubious. The techniques described here improved the blast wave results considerably. The decrease in phase error reduced terracing dramatically.

Next, a two-dimensional (2D) numerical calculation was performed to simulate one of Carpenter's (1974) height-of-burst experiments which used spherical 8-lb. charges of PBX 9404 at 51.6 cm. The previous fine-zoned 1D calculation was used to initialize the problem. It was mapped onto the 2D grid just prior to the onset of reflection. The solution was then advanced in time, with pressure being calculated from a real-air equation of state and a JW equation of state for the combustion products. The front of the blast wave was captured in a finely gridded region which moved outward horizontally. Special care was taken to ensure that the grid moved smoothly. The resulting solution, particularly the curve of peak overpressure vs. range, was consistent with Carpenter's experimental data (Fig. 8). Although this calculation represents a reasonable accurate simulation of the double-Mach-stem region, no doubt improvements can and will be made to numerically model such phenomena.

References

Fig. 1 — Rounded half circle used in passive scalar advection tests (a) initially, and (b) after propagation for 14 cycles using JPBFC. Note that terraces form even, as here, in the absence of corners in the profile. Tick marks indicate computational zones (N = 100).
Fig. 2 — Contour plot of $R(\beta, \epsilon)$ for new multicoefficient FCT algorithm. Note $R \approx 0$ except for $\beta \geq 3 \pi/2$. The relative phase error vanishes exactly for $\epsilon = 1/2$ and $\epsilon = 1$.
Fig. 3 — (a) Blowup of Fig. 1(a) (dashed line) compared with (b) same profile as computed using new sixth order-phase-accurate FCT algorithm. Solid traces are exact solutions.
Fig. 4 — (a) Exact and (b) computed solution of exploding diaphragm problem (10-to-1 initial density jump, 100-to-1 initial pressure jump)
Fig. 5 — One-dimensional solution of expanding HE products and air calculated with the new algorithm using 500 equally spaced zones. Note contact surface separating HE products from air.
Fig. 6 — Adaptive grid for height-of-burst problem shown (a) initially and (b) at time when transition to Mach reflection occurs.
Fig. 7 — Pressure-time histories directly beneath burst site. Note second peak, associated with interaction between shock reflected from ground and following contact surface.
Fig. 8 — Computed peak overpressure vs distance along ground surface.
Broken curve represents Carpenter's (1974) data.
DISTRIBUTION LIST

ASSISTANT TO THE SECRETARY OF DEFENSE
(NUCLEAR ENERGY)
WASHINGTON, DC 20301
OICY ATTN EXECUTIVE ASSISTANT

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
WASHINGTON, DC 20305
(ADR CNWDI: ATTN CODE 240 FCR)
OICY ATTN CODE 570 R LIPP

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
WASHINGTON, DC 20301
OICY ATTN PDS-3A (TECH LIB)
OICY ATTN DB-4N
OICY ATTN DT-1C
OICY ATTN DT-2
OICY ATTN DB-4C E CEARRELL

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
O2CY ATTN SPSS
O1CY ATTN SPSS G ULLRICH
O1CY ATTN SPSS T CEEVY
O4CY ATTN TITL

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA 22314
(12 IF OPEN PUB, OTHERWISE 2 - NO WNINTEL)
O2CY ATTN O7

CHAIRMAN
DEPARTMENT OF DEFENSE EXPLO SAFETY BOARD
HOFFMAN BLDG 1, RM E56-C
2461 EISENHOWER AVE
ALEXANDRIA, VA 22331
O1CY ATTN CHAIRMAN
COMMANDER
BMD SYSTEMS COMMAND
DEPARTMENT OF THE ARMY
P O BOX 1500
HUNTSVILLE, AL 35897
01CY ATTN BMDSC-HW
01CY ATTN BMDSC-HA R DEKALB
01CY ATTN BMDSC-HN HURST
01CY ATTN BMDSC-RC WEBB

CHIEF OF ENGINEERS
DEPARTMENT OF THE ARMY
FORRESTAL BUILDING
WASHINGTON, DC 20314
01CY ATTN DAEN-MCE-D
01CY ATTN DAEN-RLD
01CY ATTN DAEN-MPE-T D REYNOLDS

DEP CH OF STAFF FOR GPS & PLANS
DEPARTMENT OF THE ARMY
WASHINGTON, DC 20310
01CY ATTN DAMC-NC

COMMANDER
HARRY DIAMOND LABORATORIES
DEPARTMENT OF THE ARMY
2300 POWDER MILL ROAD
ADELPHI, Md 20783
(CIWMD-I-INER ENVELOP; ATTN: DELHO-DBH FOR)
01CY ATTN DELHO-I-TL (TFCH LIB)
01CY ATTN CHIEF DIV 20000

COMMANDER
U S ARMY ARMAMENT MATERIAL READINESS COMMAND
ROCK ISLAND, IL 61202
01CY ATTN MA LIBRARY

DIRECTOR
U S ARMY BALLISTIC RESEARCH LABS
ABERDEEN PROVING GROUND, MD 21005
01CY ATTN DPDA-BLV
01CY ATTN DRDA-BLT J KEEFEF
01CY ATTN DRDAP-TEP-S (TFCH LIB)

COMMANDER AND DIRECTOR
U S ARMY COLD REGION FES ENGR LAB
P O BOX 282
HANOVER, NH 03755
01CY ATTN LIBRARY
COMMANDER
U S ARMY MISSILE COMMAND
REDSTONE ARSENAL, AL 35898
OICY ATTN PSIC
OICY ATTN DRMD-EXS

COMMANDER
U S ARMY MOBILITY EQUIP R & D CMD
FORT BELVOIR, VA 22060
(CNWDI TO ARMY MAT DEV & READINESSS COMMAND)
OICY ATTN DRME-WC (TECH LIB)

COMMANDER
U S ARMY NUCLEAR & CHEMICAL AGENCY
7500 BACKLICK ROAD
BUILDING 2073
SPRINGFIELD, VA 22150
(DESIRE ONLY 1 COPY TO LIBRARY)
OICY ATTN J SIMMS
OICY ATTN LIBRARY

COMMANDANT
U S ARMY WAR COLLEGE
CARLISLE BARRACKS, PA 17013
OICY ATTN LIBRARY

COMMANDER
DAVID TAYLOR NAVAL SHIP R & D CTR
BETHESDA, MD 20034
(CNWDI ONLY ATTN MR. W. BIRKHEAD CODE 5815.6)
OICY ATTN CODE L42-3 (LIBRARY)

OFFICER-IN-CHARGE
NAVAL CIVIL ENGINEERING LABORATORY
PORT HUENEME, CA 93041
OICY ATTN CODE L52 J. FORREST
OICY ATTN CODE LC8A (LIBRARY)
OICY ATTN CODE L51 J. CRAWFORD
OICY ATTN L51 P. MURTHA

COMMANDER
NAVAL ELECTRONIC SYSTEMS COMMAND
WASHINGTON, DC 20360
OICY ATTN PWE 117-21
DEPUTY CHIEF OF STAFF
RESEARCH, DEVELOPMENT, & ACCO
DEPARTMENT OF THE AIR FORCE
WASHINGTON, DC 20330
OICY ATTN AFRODI N ALEXANDROW
OICY ATTN AFRODPN
OICY ATTN AFRODI

DEPUTY CHIEF OF STAFF
LOGISTICS & ENGINEERING
DEPARTMENT OF THE AIR FORCE
WASHINGTON, DC 20330
OICY ATTN LEFF

COMMANDER
FOREIGN TECHNOLOGY DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
OICY ATTN NII'S LIBRARY

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFIGS AFB, NY 13441
(CES/IFS NO CMWDI)
OICY ATTN TSO

STRATEGIC AIR COMMANDE
DEPARTMENT OF THE AIR FORCE
OFFUTT AFB, NE 68113
OICY ATTN NRI-STINFO LIBRARY
OICY ATTN XPFS
OICY ATTN INT J MCKINNEY

VELA SEISMOLOGICAL CENTER
312 MONTGOMERY STREET
ALEXANDRIA, VA 22314
OICY ATTN G ULLPICH

DEPARTMENT OF ENERGY
ALBUQUERQUE OPERATIONS OFFICE
P.O. BOX 5400
ALBUQUERQUE, NM 87115
OICY ATTN CTID

DEPARTMENT OF ENERGY
WASHINGTON, DC 20545
OICY ATTN CHA/RDEI

DEPARTMENT OF ENERGY
NEVADA OPERATIONS OFFICE
P.O. BOX 14100
LAS VEGAS, NV 89114
OICY ATTN MAIL & RECORDS FOR TECHNICAL LIBRARY
LAWRENCE LIVERMORE NATIONAL LAB
P O BOX 208
LIVERMORE, CA 94550
01CY ATTN L-90 R O'GORS
01CY ATTN L-205 J HEARST (CLASS L-203)
01CY ATTN L-90 D MCPRIS (CLASS L-504)
01CY ATTN L-7 J KAHN
01CY ATTN D GLENN
01CY ATTN L 437 R SCHICK
01CY ATTN TECHNICAL INFO DEPT. LIBRARY
01CY ATTN L-200 T BUTKOVICH

LOS ALAMOS NATIONAL SCIENTIFIC LAB
MAIL STATION 5000
P O BOX 1663
LOS ALAMOS, NM 87545
(CLASSIFIED ONLY TO MAIL STATION 5000)
01CY ATTN R WHITTAKER
01CY ATTN C KELLER
01CY ATTN MTSANFORD
01CY ATTN MS 364 (CLASS REPORTS LIB)
01CY ATTN E JONES

LOVELACE BIOMEDICAL &
ENVIRONMENTAL PSCH INSTITUTE, INC.
P O BOX 5890
ALBUQUERQUE, NM 87115
01CY ATTN P JONES (UNCL ONLY)

OAK RIDGE NATIONAL LABORATORY
NUCLEAR DIVISION
X-10 LAB RECORDS DIVISION
P O BOX X
OAK RIDGE, TN 37830
01CY ATTN CIVIL DEF RES PROJ
01CY ATTN CENTRAL PSCH LIBRARY

SANDIA LABORATORIES
LIVERMORE LABORATORY
P O BOX 969
LIVERMORE, CA 94550
01CY ATTN LIBRARY & SECURITY CLASSIFICATION DIV.