NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

_ THE SHARP EVOLUTION:
DEVELOPMENT OF THE SIERRA HOTEL AVIATION
REPORTING PROGRAM FROM THE DECK PLATES
by
Christopher L. Williamson
September 2000

Thesis Advisor: Lugqi
Second Reader: " Oleg Kiselyov

Approved for public release; distribution is unlimited.

s 20001205 02

— — e

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 2000 » Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

The Sharp Evolution: Development Of The Sierra Hotel Aviation Reporting Program From The JBC
Deck Plates

6. AUTHOR(S) ' | AROMA
Williamson, Christopher L.

8. PERFORMING

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ORGANIZATION REPORT
Naval Postgraduate School NUMBER
Monterey, CA 93943-5000
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /
’ MONITORING '

JBC, NRC, ARO & NPS AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release, distribution is unlimited.
13. ABSTRACT

Due to constant changes in the military environment, operations tempo, resource limitations, and leadership directives, the
fashion in which the military computes its training and readiness is constantly in flux. Previous readiness calculations were
accomplished from simple two-dimensional models of qualifications by dates. With the increase of more sophisticated
requirements, a new six-dimensional model of training and readiness was invented to compute and even predict future readiness
levels, for aviation as outlined in the Training and Readiness Manuel CNAP INST/CNAL INST 3500 Series.

Due to the complex requirements of the new T & R Manual, a software tool was required to track post-flight data and
compute aviation combat readiness. The T & R Manual is revised at irregular intervals by independent type wings, resulting in a
constant requirement to re-develop existing readiness models and tracking programs. To fulfill this requirement, a team of Naval
Aviators with a combination of software engineering expertise, military operations, and project management experience was
created to develop a modular based rapid prototype application.

This thesis will review the unique software development models utilized in rapid military application development,
contrasting with existing application development models, and the utilization of non-traditional techniques to meet defense
readiness requirements. This thesis will also review other readiness tracking systems to compare and contrast the ability to meet
the diverse needs of fleet readiness models through efficient software development.

14, SUBJECT TERMS 15. NUMBER OF
Software Engineering, Combat Readiness, Software Management, COTS, Software Evolution Model PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF | 18: SECURITY CLASSIFICATION OF | o orcURITY CLASSIFICATION OF | 20: LIMITATION
. THIS PAGE OF ABSTRACT
REPORT A 4 ABSTRACT
Unclassified nclassilie Unclassified UL
NSN 7540-01-280-5500 : Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

THE SHARP EVOLUTION.

DEVELOPMENT OF THE SIERRA HOTEL AVIATION REPORTING PROGRAM

FROM THE DECK PLATES

Christopher L. Williamson
Lieutenant, U. S. Navy
B.S., United States Naval Academy, 1991

Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN SOFTWARE ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
September 2000

) /A

Author:

Christopher L. Williamson

Approved by: f\/\

Mvisor: Luqi

Dy el
J

Read7/ Oleg Kiselyov

\’A

Lugqi, Academic Associate
Software Engineering Curriculum

(C By —

“Dan Boger, Chafrhan
Dean IS

11

ABSTRACT

Due to constant changes in the military environment, operations tempo, resource ‘
limitations, and leadership directives, the fashion in which the military computes its training and
readiness is constantly in flux. Previous readiness calculations were accomplished from simple
two-dimensional models of qualifications by dates. With the increase of more sophisticated
requirements, a new six-dimensional model of training and readiness was invented to compute
and even predict future readines‘s levels for aviation, as outlined in the Training and Readiness
Manuel CNAP INST/CNAL INST (Commander, Naval Air Force, United States Pacific Fleet,
Instruction / Commander, Naval Air Force, United States Atlantic F leet, Instruction) 3500 Series.

Due to the complex requirements of the new T & R Manual, a software tool was required
to track post-flight data and compute aviation combat readiness. The T & R Manual is revised at
irregular intervals by independent type wings, resulting in a constant requiremeﬁt to re-develop
existing readiness models and tracking programs. To fulfill this requirement, a team of Naval
Aviators with a combination of software engineering expertise, military operations, and project
management experience was created to develop a modular based rapid prototype application -
SHARP.

This thesis will review the unique software development models utilized in SHARP rapid
military application development, contrasting with. existing development models, and the
utilization of non-traditional techniques to meet defense readiness requirements. This thesis will
also review other readiness tracking systems to compare and contrast the ability to meet the

diverse needs of fleet readiness models through efficient software development.

vi

I INTRODUCTION
A. BACKGROUND
1. Legacy and Past Systems

2. Resulting System

3. History of Readiness Measures

4. T & R Transition

5. Tasking

6. Rapid Application Development

B. OBJECTIVES A
C. RESEARCH QUESTIONS
1. Primary Question

2. Subsidiary Questions

a.

b.

D. SCOPE, LIMITATIONS, AND ASSUMPTIONS

TABLE OF CONTENTS

COTS to the Fleet

Is modified COTS still COTS?

RAD Models

Reusable Code

Subject Matter Experts
Streamlining DoD Software Development

Uniform Service Development

Uniform Service Education

vii

10
11
12
13
13
14
14
15
16
17
17
18
19
20

20

E. LITERATURE REVIEW, METHODOLOGY, AND ORGANIZATION OF

STUDY 21

1. Literature Review 21

2. Methodology and Organization of Study 21

F. DEFINITIONS AND ABBREVIATIONS 22
G. CHAPTER SUMMARY 23

II. LITERATURE REVIEW, THEORETICAL F RAMEWORK, AND

BACKGROUND 25

A, REVIEW OF TRADITIONAL SOFTWARE ENGINEERING

TECHNIQUES. 25
1. Rapid Application Development 26
2. Visual Languages 29
3. Extreme Programming 31

B. REVIEW OF DOD SOFTWARE ENGINEERING REQUIREMENTS...... 34

C. REVIEW OF DOD READINESS REQUIREMENTS, SPECIFICALLY

NAVAL AVIATION. ‘ 35

1. OPNAVINST 3500.38 36

2. COMNAVAIRPACINST 3500.63 / COMNAVAIRLANTINST

3500.67 38
3. OPNAVINST 3710.7 42
4, OPNAYVINST 3500.39 43
5. NWP 1-03.3 45
6. SMART-R and the SMART Squadron 46

viii

L

REVIEW OF THE SHARP SYSTEM SOFTWARE-ENGINEERING

MODEL
SHARP Requirements
a. Training and Readiness Requirements
b. Requirement Type Effect Factors
c. The Requirement Shift
d. External Requirement Factors
SHARP Engineering and Development Model
a. Initial Requirements Gathering Stage
b. Module Breakdown and Task Assignment Stageccceeu..
S C. Solution Search Stage
d. Risk Analysis Stage
e. Prototype Development and Engineering Stage
f.. Evaluation Stage
g Requirement Certification and Requirement Search Stage ...
h. Second Module Breakdown and Task Assignment Stage......
i The Solar System
CHAPTER SUMMARY
METHODOLOGY

REVIEW OF PROCEDURES FOR SEARCH AND DISCOVERY OF

EXISTING MODELS

Search for Existing Models

a. NPS Education

ix

49

49

49

52

55

56

59

64

64

66

66

67

67

68

69

69

71

81

81

81

82

b. Subject Matter Expertise 83

C. Literature 84

2. Search for DoD Software Engineering Requirements 85

B. REVIEW OF PROCEDURES FOR DEVELOPMENT OF THE SHARP

MODEL 86
1. Requirements Search 86
a. T_& R Matrix Requirements 86
b. T & R Message Requirements 89
c. Support Requirements 93
d. ATTRIS Meetings 94
e. SMART-R Requirements 95
2. Product Environment ‘ 97
a. Visual Basic o 97
b. Hardware Requirement 100
c. MDB vs. SQL 101
d. Dissemination to the Fleet 102
3. Leapfrogging Technique and the Three-Year Rule 104
4. Development Technique 109
a. Applied Wedding Method 109
b. Motivations and Theory 116
5. Commercial Sector Motivations 118
a. From the Trowel to the Electron 118

b. Software Shopping in the Bazaar 120

X

IV.

C. CHAPTER SUMMARY 124
COMPARISON AND CONTRAST OF DATA COLLECTED 131
A. REVIEW OF THE REQUIREMENTS OF NAVAL AVIATION

READINESS 131
B. REVIEW OF THE REQUIREMENTS OF THE SHARP SYSTEM.......... 131
C. PRESENTATION OF COMPARISON OF STANDARD SOFTWARE

ENGINEERING MODELS AGAINST THE SHARP MODEL AND

COMPARABLE AVIATION OPERATIONS SYSTEMS.......u....... 131
1. SARA 131
a. Background 131
b. Specifications 132
c. Requirements Search 132
d. Development Model ' 133
e. Dissemination 133
f. Future 134
2. SQOM 134
a. Background 134
b. Specifications 135
c. Requirements Search 135
d. Development Model 135
e. Dissemination 136
f. Future 136

3. NALCOMIS 136

xi

g.

4. Patriot-Excalibur

Background

Y2K

Specifications
Requirements Search

Development Model

Dissemination

Future

a. Background
b. Specifications
c. Requirements Search
d. Development Model
e. Dissemination
f. Future

5. SHARP
a. Background
b. Specifications
c. Requirements Search
d. Development Model
e. Dissemination
f. Future

6. COTS Debate

D. CHAPTER SUMMARY

xii

136

137

137

138

138

139

139

140

140

140

140

141

141

141

142

142

142

142

143

143

144

144

147

V. CONCLUSIONS AND RECOMMENDATIONS
A. CONCLUSIONS

B. ANSWERS TO RESEARCH QUESTIONS

1.

2.

C. RECOMMENDATIONS
APPENDIX A - QUOTES
A. 1996 Naval Audit Service Report on Naval Aviation
APPENDIX B - LOOK UP LISTS
A. PMA List
APPENDIX C - SOFTWARE ENGINEERING TECHNIQUES
1.

2.

Primary Question

Subsidiary Questions

a. COTS to the Fleet

b. Is modified COTS still COTS?

c. RAD Models

d. Reusable Code

e. Subject Matter Experts

f. Streamlining DoD Software Development

g. Uniform Service Development

h. Uniform Service Education

Build and Fix Approach

Stagewise Development

Waterfall Model

Test Development

Xiil

151

151

153

153

155

155

155

156

157

158

158

159

160

161

165

165

167

167

169

169

171

173

176

5. Exploratory Programming

6. Prototyping Model
7. Incremental Model
8. Spiral Model
9. Legacy and Reuse Software Life Cycle
APPENDIX D - DOD SOFTWARE ENGINEERING REQUIREMENTS «.oouoovieoson,
1. DOD-STD-2167A
2. DOD-STD-7935A
3. MIL-STD-498
4. IEEE/EIA or ISO/IEC 12207
5. DII COE
6. DoD Regulation 5000.2-R
7. DoD Directive 5200.40
LIST OF REFERENCES
ABBREVIATIONS
DEFINITIONS
INITIAL DISTRIBUTION LIST

Xiv

178
179
180
181
184
187
187
188
190
191
193
196
198
201
203
209

213

Figure I.1
Figure I1.1
Figure I1.2
Figure I1.3
Figure 11.4
Figure IL5
Figure 11.6
Figure I11.1
Figure I11.2
Figure I11.3
Figure C.1
Figure C.2
Figure C.3
Figure C.4
Figure C.5
Figure C.6
Figure C.7

Figure C.8

TABLE OF FIGURES

Object Diagram of the Readiness Model

Training and Readiness Qualification Circle - Perfect

Cause and Effect Reliance

41

53

Trickledown Reliance

54

65

Wedding Model with diverging Cycles

Wedding Model with Spokes

69

70

Wedding Model as a Solar System

Leapfrogging Development Technique

Lifecycle Development of the SHARP System

Failure Rate vs. Time to Deploy

Build and Fix Approach Diagram

Stagewise Development Diagram

The Waterfall Model Diagram

Test Development Diagram

Exploratory Programming Diagram

Incremental Model Diagram

Spiral Model Diagram

Legacy and Reuse Software Life Cycle

XV

106

111

118

169

172

174

177

179

181

182

185

XVi

ACKNOWLEDGEMENT
I would like to thank my wife Donna for her unselfish support during the pursuit of this
education, as well as her support throughout my military career. She has sacrificed her time and
held our home together during the mény long deployments and travel required in the service of
this country. I would also like to thank Dr. Lugi and Dr. Oleg for their patients and
encouragement to press on with this study.

Never give up, and never forget where you came from.

xvii

I INTRODUCTION

A. BACKGROUND

The Old-Irish quote, “Necgssity is the mother of invention,”! has épitomized the
military’s efforts to develop and build hundreds of tools and solutions to meet the needs
of the armed services. Naval Aviatidn has constantly sought after a uniﬁed readiness tool
to track all aspects of flight operations. For the last twenty years, this effort has been
exemplified by s.eries of legacy systems.%f

1. Legacy and Past Sysfems

Over the past two decades, a number of attempts were made in creating software
systems capable of archiving post-flight data and then détermim'ng aviation readiness
based on cumulative operations data. Previous development attempts included systems
formally engineered by naval system centers, and those informally developed by
squadron operations users. One of the early systems, TRAX, was a PC-based computer
tool designed to store, retain, and calculate training and readiness data for aviation units.
It facilitated readiness calculations by permitting users to enter qualification data directly
into the system as well as download data from the NALCOMIS System. TRAX was
designed to work in conjuriction with the Squadron T & R Matrices as it was established
at the time of system design.? TRAX was only capable of managing a limited amount of
operations data, based on the interface and inputs from the NALCOMIS System. Data

was difficult to extract from the system due to its format, incompatibility to communicate

! Attributed to Jonathan Swift, circa 1667-1745.
2 TRAX Interface, NALCOMIS OMA Legacy System Description Presentation, SPAWAR.

1

with standard presentation tools, data conversion errors, and most significantly its
inability to expand to support the new T & R Matrix.

NALCOMIS, the Naval Aviation Logistics Command Management Information
System, was designed to provide an automated Management Information System that
provided maintenance, material, and operation managers with data for assignment and
management of aircraft and equipment.’> The NALCOMIS System used the NAVFLIRS
(Naval Aircraft Flight Record) format for data entry. The NAVFLIRS format was based
on an 80-column card data format for recording post-flight data. NATOPS required that
a NAVFLIRS report be recorded for each attempt at a flight of Naval Aircraft.*

A second system, CANDE — Computer Aided NAVFLIRS Data Entry, was a
software tool designed to allow flight crew to enter and record aviation post-flight data in
the NAVFLIRS format, utilizing existing squadron computers. Once entered into a
squadron computer, NAVFLIRS data could then be saved to a floppy disk, then
t'ransported to an assigned data service facility (DSF) for transmission up-line to an
archive for analysis.’

A third system, GEEK, was designed by a fellow aviator from the F/A-18 Wing to
manage Homnet Operations. GEEK was a Microsoft Access 2.0 based application
developed to support the current version of the T & R Matrix. GEEK was designed

around the single seat concept of operations, and was inflexible to support wide platform

Introduction, Naval Aviation Logistics Command Management Information System Manual,
SPAWAR.

4 OPNAVINST 3710.7R, “Naval dir T raining And Operating Procedures Standardization
(NATOPS) Manual”, Interim Change 27, 09 Sep 1999, Para 10.3.

5 OPNAVINST 4790.2, Aviation Maintenance Manager’s Guide, Section 3.4.5.

needs of Naval Aviation in general. Due to its complexity and development format,
when the service member was transferred out of his parent command, GEEK became a
stagnate product.

These systems all failed to provide any long-term benefit to Naval Flight
Operations due to their inflexible format, lack of complete requirements to support all
potential customers, and their basis on antiquated methodologies. None of these systems
were easy to use, provided all of the operations data required by aviation operations, or
were customizable to meet the needs of various type wings. As the T & R Matrices were
edited, the existing programs became obsolete and squadrons were required to revert to
manual computation of command readiness. As each system would become unusable,
squadrons would initiate private efforts to build their own aviation automation systems.
Naval Aviation recognized that a single effort had to be made to geﬁerate a unified
system to support flight operations or else all flight data would be lost.

2. Resulting System |

Taking lessons learned from legacy systems, blending cufrent requirements and
implementing more efﬁcient development practices, a team of Naval Aviators combined
to build a new aviation automation support tool. This automation tool was to be
developed to support the flight operations of all seventeen type médel series aircraft. The
resulting system would include over 750,000 lines of code in a relational database, with
over 25 independent modules, in over 800 code and support files, with tens of thousands
of unique procedures, functions, and classes. The system was to be deployed to over 330
operationally deployed aviation squadrons and detachments in the support of thousands

of naval aircraft through electronic dissemination methods.

3. History of Readiness Measures

In the days of ancient Rome, Julius Caesar measured the readiness of his empire
by the wealth of his soldiers, the number and variety of his weapons, and the mass and
speed of his armies that could be mustered to the front lines of combat.® Combat
readiness of the Roman Empire was rated by the number of legiéns that Caesar could
parse throughout the various states, while still maintaining sufficient reserves to protect
the central state of Rome. This simple measure of readiness had been used for centuries -
simplistically rating combat readiness by inventory and troop strength.

Since its inception during the American Revolution, and then through its
relatively brief history, the United States Navy and, primarily, those of Naval Aviation
have followed this same methodology, with the exception of the last thirty years. Shortly
after the end of the Vietnam War, lessons learned from that conflict taught us that a more
efficient and accurate method for computing readiness was required to maintain Cold
War Combat Readiness.’ During the next twenty years, Naval Aviators computed their
readiness by totaling readiness points from a standardizing list of qualifications flown by
crewmembers assigned to each cofnmand. This concept waé modeled and referenced in
the Aviation Squadron Training and Readiness Manual. In the Summer of 1995, with the
introduction of the newest edition of the Training and Readiness Manual

COMNAVAIRPACINST / COMNAVAIRLANTINST 3500 Series Instruction®, Naval

6 Julius Caesar, translated by W. A. McDevitte and W. S. Bohn, “The Civil Wars”, Internet Classics
Archive http:/classics.mit.edu//Caesar/civil. html, 1994. '

Robert S. McNamara, with Brian Vandemark, “In Retrospect: The Tragedy And Lessons Of
Vietnam”, Random House, Inc, 1995.

8 COMNAVAIRLANTINST 3500.63C, COMNAVAIRPACINST 3500.67C - “Squadron Training
and Readinéss”, 24 Jul 1995.

Aviation took a turn towards modernizing and rating its readiness on the weighted values
of received qualifications against expiration periods. For years, this two-dimensional
readiness matrix was tracked by i'xand using simplistic graphics, charts, or “grease
boards” %, While inefficient, these tracking methods sufficed the need of computing
readiness based on qualification points. One year later, the Naval Audit Service
recommended further changes to the matrices to justify operations expenditures (See V.A
1996 Naval Audit Service Report on Naval Aviation). The Training and Readiness
model] shifted from a simple two-dimensional matrix to a more complex six-dimensional

matrix as depicted in Figure I.1.

Readiness
Summed Points Levels by PMA
PMA Qualifications Crewstations
PMA Types: AAW, AMW, Crewstations Airframe Type
ASU, ASW, C2w, CCC, Currency Periods by ACTC Crewmembers
FAC, FSO, INT, LOG, Point Levels by PMA
Miw, MOB, MOS, NCO,
NSW, STW, and WAT
Airframe Type Crewmembers
Valid PMA List Crewstations
Crewstations ACTC Levels
Configuration : . Non-Expired Quals

Figure I.1 Object Diagram of the Readiness Model
The newest Readiness Model depicted readiness as a function of the readiness

points accumulated across valid Primary Mission Areas (PMA) (PMAs dependent by
5

Airframe Type). PMAs, as their name states, are the primary mission areas that a
particular Type Model Series of aircraft would emphasize in its mission, tasks, and
qualifications. There are seventeen unique PMAs accounted for and tracked by Naval
Aviation (See V.A PMA List).

A particular Type Model Series might execute anywhere from four to eight
different PMAs, based on its missions and aircraft configurations. Each mission is
related to only one PMA designation. Each qualification is also related to only one PMA,
but can receive qﬁaliﬁcation points spanned across all of its PMAs. Examples of this
relationship can be viewed in the referencing 3500 Series Instruction:s. Crewmembers
gain points by recéiving qualifications, valid for their particular crewstation, assigned
across PMA categories. The objective of each squadron crewmember is to gain as many
points as possible in as many mission areas. The ratio of received points weighted
against potential points denoted the crewmember’s personal readiness. The combination
of crewmember readiness and type wing configuration determined the overall readiness
of the command or “T-Level”. While this deﬁm'tion may be simplistically stated, the
complete model for determining aviation combat readiness would eventually encompass
an instruction of over 150 pages. This instruction would be required to reference over
seventeen unique type wing ¢ training manuals from the single seat F/A-18 Hornet, to
the multi-seat P-3C Orion, even including the uniquely designed UAV Unmanned Aerial
Vehicle. Each of these .type wings reference dozens of squadron’s Standard Operating
Procedures (SOP), Carrier Air Group Cofnmander (CAG) instructions, and other
governing documents. Through this brief description, it is intended to illustrate that the

aviation combat readiness model is in no way a bedrock standard, but rather a fluid model

that is affected by countless external forces and modified, and edited at irregular
intervals. This thesis will attempt to model some of these external forces.

A collection of nine of these external forces were to be briefed in the summer of
1998 at a readiness briefing for then Commander in Chief, United States Pacific Fleet,
Admiral Archie Clemins in Pearl Hafbor, Hawaii. From these nine external forces, the
concept of “P4 + WARTS” was introduced. Captain Phil Mills, AIRPAC N-8 Force
Readiness and Operations, and Commander Peter Hunt, AIRPAC N-8 S-3 Readiness
Officer, desired to create an acronym of the exfernal forces that combined to drive
aviation readiness. After reviewing several potential combinations, the two officers
coined the phrase “P4 + WARTS”, to mean “People, Planes, Parts, and Petrol, plus
Weapons, Adversaries, Ranges, Temporary Assigned Duty (TAD), and Simulators”.%¢
Admiral Clemins found this model to so soundly and accurately depict the factors
effecting readiness that he immediately incorporated it into his briefings, later to become
a common term throughout aviation readiness circles. |

These nine factors have become so intertwined in the readiness model that it

‘would be nearly impossible to compute or predict a command’s readiness without

looking at the effect of one factor against the next. This concept directly coincides with
the “causality principle”,” % in that cause must always precede effect. For example,
without sufficient fuel, a flight could not be flown, regardless of the availability of ranges

or weapons, thereby reducing readiness. Without maintenance parts, planes could not be

flown, regardless of the availability of adversary forces or personnel to repair the craft.

? Eric Max Francis, “The Law List - Laws, rules, principles, effects, paradoxes, limits, constants,
experiments, & thought-experiments in physics”, Seven Sisters Production,
http://www.alcyone.com/max/physics/laws/index.html, 01 Jun 2000.

7

The cause of exterﬁal forces and “P4 + WARTS” will resultantly affect readiness. While
these components have added to the accurate depiction and prediction of a command’s
readiness, they have also dramatically added to the complexity of the readiness prediction
model.

4. T & R Transition

In the summer of 1995, the last edition of the two-dimensional Squadron Training
and Readiness Manual was released as a joint COMNAVAIRLANTINST 3500.63C,
COMNAVAIRPACINST 3500.67C instruction. ‘This instruction remained in effect for
only three years before it was cancelled by the release of the newly-refined, .six-
dimensional model depicted in the Squadron Training and Readiness Manual
COMNAVAIRLANTINST 3500.63D, COMNAVAIRPACINST 3500.67D instruction
on July 13, 1998. Less then fifteen months later, in the fall of 1999, due to changes in the
operational tempo and mission requirements of the fleet, some type wing commands were
required to once again execute a new version of their own Traininé and Readiness
Instructions. This new model was later released to all aviation units in the spring of 2000
as COMNAVAIRLANTINST 3500.63E, COMNAVAIRPACINST 3500.67E, on 24 Mar
2000"

Naval Aviation Units are required to report Aviation Combat Readiness by the
fifth of each month, from all aviation squadrons and their detached units, worldwide, to

their parent commands, type wing commanders, and type commanders'! via a classified

10 COMNAVAIRLANTINST 3500.63E, COMNAVAIRPACINST 3500.67E — “Squadron Training
and Readiness”, 24 Mar 2000.

1 COMNAVAIRLANTINST 3500.63E, COMNAVAIRPACINST 3500.67E — “Squadron Training
and Readiness”, 24 Mar 2000, p. 7.

message. This message also includes information aboﬁt a command’s manning levels,
flight-hour utilization, type mission accomplishments, and other important Squadron
actions and exercises. Using the latest in Message Text Format (MTF) technology, this
document and its priority contents are potentially visible to the highest levels of Chief of
Naval Operations’ (CNO) office moments after its dispatch from the issuing squadron.
This readiness message and its corresponding “T-Level”, in conjunction with other
readiness indicators, is used to determine which squadrons to send into combat, whiéh
squadrons to allocate assets to, and which squadrons to return to homeguard d4f for further
training. It should be understood that this message holds the highest visibility and
exposure of the fleet’s aviation readiness for combat.

Within the last decade, naval aviation readiness models have gone through
signiﬁcant modifications from a simple two-dimensional model to the complex six-
dimensional model. These models had to be accurate, complete, and workable, but
flexible enough to meet the needs of all seventeen operational type wings. The concept
of “P4 + WARTS” had to be considered, as well as the requirement to meet timely
reporting deadlines. Due to the complexity of this new model, it soon became evident
that .it would be impossible for aviation personnel to meet the demanding report
requirements usihg traditional tracking devices. It was determined that a software
automation tool would be required to meet the needs‘of naval aviation readiness, or the
newest readiness models could not be implemented. Failure to implement the newesf
readiness model would result in an immediate decline in the Navy’s ability to accurately
predict the combat readiness of the fleet and track its resources and personnel in

performing the mission of national defense.

5. Tasking

In August, 1997 the Human Factors Quality Management Board (HFQMB)
directed the Operational Risk Management (ORM) Process Action Team to evaluate a
software product called SARA, short for Squadron Assistance Risk Assessment,'?
developed by the Boeing Aircraft Company of St. Louis, I11..1* SARA was Initially
designed to support the AV-8B Harrier community and later, U. S. Marine Corps
Aviation. Commander Ken Ireland, CNAP N8OA was tasked with leading the evaluation
of the system. He initiated the evaluation by assigning ten squadrons as test and
evaluation sites. In the early spring of 1998 while I was assigned as a pilot at one of the
test and evaluation sites, HELANTISUBRON SIX (HS-6), I was called upon to review
the proposed software tool. I was selected due to my knowledge of software
development and my expertise in squadron operations. Due to SARA’s inability to
accurately depict the a.viation operations model, my evaluation'* was highly negative
towards the product. These findings will be noted later in the thesis. Due to the large
number of negative evaluations of the SARA product from all of the test sites, AIRPAC
elected not to pursue acquisition of the product, but rather solicit the development of a
new aviation operatibns tool designed for the U. S. Navy. After forwarding my review of
the SARA product to AIRPAC, it came to the attention of another officer at AIRPAC,
Lieutenant Commander (LCDR) Steve Ruth, an officer that I once served with at HS-6.

LCDR Ruth recommended to AIRPAC that I be consulted on the development of any

12 SARA Times, Volume 1, Issue 1, The Boeing Company, St. Louis, Missouri, July 1999.

B CDR Ken Ireland, “Evaluation of ‘SARA’ ORM Sofiware”, April 1998, Letter Drafted to Chain-
of-Command.
1 SARA Evaluation Results Folder, on file, AIRPAC N845 Office.

10

new readiness automation tool. A few days later, I was ordered out of my command at
HS-6 and was tasked with the development of a new aviation automation tool — and the
system now referred to as SHARP was born.

For the next two years, the SHARP devélopment teém w'ould develop a new
software automation tool, under the strictest of deadlines, against traditional development
methods, despite interference and obstacles from various members of the military chain-
of-command, and with competition from numerous commercial contractors and memberé
of the Foreign Service. For the first time in recent history, a fleet-wide aviation readiness
tool was to be developed by aviators, for aviators. This development team was tasked
with designing a system that could be rapidly deployed to the fleet, be flexible enough to
satisfy the changing needs of the aviation readiness model, and cost effective enough to
meet the restrictive budget of operational forces.

6. Rapid Application Development

Rapid Application Development or RAD is the methodology of developing .a
software system through a highly efficient process of analysis, planning, design,
prototyping, system development, change control, testing, and deployment in a cyclic
environment.”> Kent Beck, software engineer a;ﬁd developer, has been credited with
keying the title “Extreme Programming” or “XP” to define a formal methodology of
RAD. XP is based on the concept of breaking a system up into small projects or stories

to be conquered as independent modules vice the development of a project as a complete

1 RADD Methodology, Analysts International, 2000.

11

unit.'® This thesis will compare and contrast the development of the SHARP Project with
the methods of Extreme Programming.
B. OBJECTIVES

For decades, Naval Aviators have attempted to compute operational readiness
through a variety of primitive and advanced automated tracking tools. Despite all well-
intended efforts to develop a successfﬁl automation tool, Naval Aviation was left with a
myriad of fragmented systems that failed to meet the needs of flight operations. To
resolve this dilemma, a team of software developers and naval aviators were brought
together to design a single automated tool to meet the needs of all seventeen type wings
in a system later titled SHARP. Throughout the development process, the SHARP team
was required to re-subscribe té the methods of rapid prototype development to design a
system for the fleet despite numerous obstacles. This thesis will outline the development
and design of the Sierra Hotel Aviation Reporting Program or SHARP. Specifically, this
thesis will compare and contrast the traditional models of software development,
prototype development, rapid prototype development, and military system development
using the SHARP system as a prototype example. This evaluation will emphasize
strategic benefits within the military rapid prototype development enviromnent, as well as
catalog weaknesses in the design methodology. A review of Extreme Programming
techniques, as defined by Mr. Kent Beck, will be compared and contrasted with the
development of the SHARP Project. Aviation subject matter experts were intimately
involved with every phase of design and engineering, ensuring the development of a

quality project to the fleet. This thesis will emphasize the importance of true subject

16 " Kent Beck, “Extreme Programming Explained ’ ", Addison-Wesley, 15 Oct 1999.

12

matter experts in the requirements search, design, development, testing, and
implementation of DoD based products. These benefits will then be suggested for direct
modeling into existing and future projects. It is the opinion of many software engineers
that the military environment is a unique field of development due to its real time
development needs, high level of mission critical systems, and reliance on competitive
technology to satisfy governmental standards and requirements.
C. RESEARCH QUESTIONS

1. Primary Question

The primary question for research and discussion within this thesis is to determine
if traditional software evolution models are acceptable in the rapidly _growing
environment of Military Rapid Application Development (RAD). Uniform members éf
the armed service demand that theéir weapons perform flawlessly. The consequences of a
féulty weapon can result in nothing less than defeat or even death. While the job of
national defense is fraught with danger, it is not a requirement that we sacrifice safety for
the purpose of product distribution. With recent advances of software technology, logic-
based systems have become more of a weapon for and against the military members. The
SHARP software tool has been deployed on all of the Navy’s aircraft carriers, helicopter
detachment-assigned vessels, squadron operations offices, and various other support
aviation units for determining combat readiness. SHARP is the ONLY United States
based software tool that has determined combat readiness of aviation units actually
engaged in combat operations, most recently in the Balkan and Yugoslavian conflicts.!”

Can traditional software engineering methods meet the needs of the military for small

13

development projects or »should the military examine a return to Rapid Prototype
Development?
2, Subsidiary Questions

a. COTS to the Fleet

In an attempt to meet the strict timelines for software deliverables in the
military, some units have turned towards “commercial off the shelf’ (COTS) products.
Many of these products have been designed to meet commercial or industrial
requirements and have not been developed with the military in mind. Some COTS
products have been based on existing military technology and then modified for
commercial users, actually increasing usability. These COTS products are then
reintroduced béck to the military as remanufactured technology, as in the example of the
issue of commercial hand-held Global Position System (GPS) units for aviation
commands to compensate the for the inability to rapidly modify airframes to accept
internal GPS systems.'® This thesis will attempt to answer the question if COTS
products can be modified and customized to meet the rapidly changing needs of the

military, namely, aviation readiness reporting.

17 MSGID/GENADMIN/VAQ-134/SHARP (¢), Subj: Monthly Training and Readiness Report (
MTRR), NOV 1998 Data.

18 MSGID/GENADMIN/COMNAVAIRPAC (u), Subj: Distribution of Trimble Ensign GPR
Receivers, DTG 162053Z Jul 1993,

14

b. Is modified COTS still COTS 9

Changes in military acquisition policy have dictated that greater efforts be
made to incorporate COTS products into the military inventory, either as modules to
systems under development or as stand alone systems.'* COTS systems are defined as:

. Commercial items customarily used for non-governmental
purposes and offered for sale, lease, or license to the general
public.

. An item evolved from such an item, as previously stated, that will
be available within sufficient time.

. Items that are standard modifications available in the commercial
marketplace or are minor modifications.

J Any non-developmental item developed exclﬁsively at private
expense and competitively sold in substantial quantities to non-
federal government agencies.”

A number of contractors have attempted to market aviation tracking

systems to the Navy under the guise of COTS, in an attempt to gain favorable acceptance
and acquisition. These models were marketed despite the fact that their systems would

require significant changes and modifications to meet the current aviation readiness

1 Department of Defense Regulation 5000.2-R, “Mandatory Procedures for Major Defense
Acquisition Programs (MDAPs) and Major Automated Information System (MAIS) Acquisition
Programs”, 15 March 1996.

2 John Foreman, “On the Front Lines of COTS - Lessons Learned, Speculation for the Future”,

Briefing slides courtesy of the Software Engineering Institute, Carnegie Mellon University, May
8, 1998. http://www.sei.cmu.edu/cbs/cbs_slides/stc98/frontlines/index.htm, Slide 12.

15

model. This thesis will attempt to answer to what extent one can modify a COTS product
to the point that it is no longer considered COTS.

c RAD Models

Due to a fixed deployment deadline, the SHARP team had to divert from
traditional development models and revert to the concept of RAD. The RAD model has
potentially gained as many detractors as it has gained in supporters. John Munson, a
software engineer and professor of computer science at the University of Idaho, refers to
software engineering models as “Cave Art”. He continues by stating that, “it’s primitive.
We supposedly teach computer science. There is no science here at all.”?! His
assumption that software engineering is in its Genesis is .supported by the gross number
of new vsoftware design models and requirements that exists today. The Department of
Defense (DoD) alone recognizes over one dozen new software engineering requirement
models in its pub]icatic.ms, including the DoD Information Technology Security
Certification and Accreditation Process (DITSCAP)* model, Configuration Management
(CM) Software and Documentation Delivery Requirements Document®?, and the Defense
Information Infrastructure Common Operating Environment (DII COE).** Each of these
specifications dictates unique reporting requirements, specification criteria, and

development models. The most frustrating point is that these models all fall under

A Charles Fishman, “They Write the Right Stuff”’, Fast Company, Issue 6, Page 95.
http://www fastcompeny.com/online/06/writestuff. html

2 Department of Defense Directive 5200.40 — “DoD Information Technology Security Certification
and Accreditation Process (DITSCAP)”, 07 Oct 1999.

3 CM-165-60-05, “Configuration Management Software and Documentation Delivery
Requirements”, Version 4.1 01 March 1999.

Defense Information Infrastructure Common Operating Environment (DII COE) Document Series,
http://diicoe.disa.mil/coe/, Defense Information System Agency. N

16

different umbrellas within the military chain-of-command, require an extensive amount
of documentation and reportin;g in unique formats, potentially add significant delays to
the development of software products, and increase the cost of development. None of
these DoD accrqdited models are conducive to the concept of RAD. Extreme
Programming could very well set the path for a revitalization of RAD. Is there actually a
viable model to RAD, and can RAD be certified as a valid development model in the
military environment? The SHARP system was able to distribute its first prototype copy
to the fleet just six months after the concept was introduced. How can lessons learned
from this prototype be expanded to other development teams?

d Reusable Code

In an attempt to speed up the production of the SHARP system, reusable
code was used to the maximum extent possible. This thesis will endeavor to answer to
what extent reusable code is beneficial in the development of RAD applications.

e Subject Matter Experts

Numerous contractors and developers have issued software products with
the sole intention of meeting system requirement specifications (SRS) without
understanding the driving factors behind them. One of the most contentious aviation
software products is the Naval Aviation Logistics Command Management Information

System (NALCOMIS).? 26 27 This system is continually under development by the

z Naval Aviation Logistics Command Management Information System - NALCOMIS Information
Hold Page http://www.massolant.navy.mil/nalcomis/nalcomis.htm, SPAWAR.

% MSGIG/GENADMIN/CNAL, Subj: “SHARP-NALCOMIS (FIST) INTERFACE APPROVAL FOR
CNAL AND CNAP SQUADRONS”, Jul 2000.

z Mark Burgunder, “Feedback on Naval Aviation Flight Data White Paper”, CNAP 15 Jun 2000 —
LT. Christopher L. Williamson, “NALCOMIS Requirements”’, Jun 2000.

17

Space and Naval Warfare System Center (SPAWAR) and contracted to ManTech
International Corpora’tion.‘_28 The requirements for this system are administered by
aviation maintenance personnel and then submitted to non-aviation personnel for
development. One of the greatest shortcomings in NALCOMIS is that aviation
crewmembers are the primary operational data entry members, but are not involved in the
requirement development. Aviation crewmembers are required to log all post-flight data
into NALCOMIS, but can not log all operations data due to limitations into the system.
Due to the fact that operational data is not collected in an efficient manner from post-
flight data, operational information is unusable if not inaccessible from NALCOMIS.
The SHARP system is the first aviation automation tool developed by aviators, for
aviators, to collect operations data. Without aviation subject matter experts (SME), the
SHARP system would be just another software tool, issued to service members without a
true understanding of the requirements. This thesis will answer to what extent subject
matter experts play in the requirements, developmental, and testing phases of software
engineering.
| FA Streamlining DoD Software Development

As part of the question to RAD Models, Reusable Code, and Subject
Matter Experts, this thesis will address the question as to how the Department of Defense
(DoD) can streamline its software development protocol to more efficiently produce a
product. The first hurdle to overcome is to know which development protocol to follow.
Due to the disjointed and complex list of instructions, it is difficult to know which

instruction to follow and which office has jurisdiction over the development of the

% ManTech NALCOMIS Information Page - http://www.mantech.com/defense/infodef. htm.

18

product. The current development protocol is very bulky and difficult to understand.
One SPAWAR software engineer, Mr. Don Johnson of the office of Horizontal
Integration,” informed me that each of the departments or units within SPAWAR have
their own autonomy to develop systems under whichever model they decide to follow,
even if that model is exclusive to that unit. This thesis will recommend possible
directions as to how the Department of Defense can streamline its software development
protocols into a unified format, as well as what efforts are being made to solve this
problem.

g Uniform Service Development

Since World War II, the Navy Construction Battalion or Seabees have
taken a can do attitude to build almost anything, under almost any environment and under
the most hazardous of Aconditions. Since their inception in 1941, the motto of the Seabees
has always been “we build, we fight™*°. Their history details sixty years of uniform
service members making countless efforts to build runways, buildirigs, and support
services for the Navy, at a great savings to lives and resources. Nearly sixty years later
the field of construction has moved from the dirt fields to the motherboard. With the
changes in technology, the greater educational;backgroun‘d of service members, and the
increased reliance on miiitary subject matter experts, it only makes common sense that
military members receive a greater tasking with the development of technology system.
What the Seabees did for over sixty years on the construction site can now be mirrored

today in the development laboratories by uniform service members. It is prime time for

» Phone Con, 30 Jun 2000, Don Johnson, Office of Horizontal Integration, 619-524-7243.

19

uniform service members to be recognized for their abilities to develop software to the
benefit of the Navy. This thesis will address to what extent uniform service personnel
can serve on development design teams and engineer a successful software tool.

h. Uniform Service Education |

Through the courtesy of the Naval Postgraduate School (NPS), I was
provided an education beyond that of normal uniform service personnel. I was permitted
to pursue my Masters Degree in Software Engineering through distance learning
channels, while still serving operational commitments. Most members of the uniform
service are required to take time off from operational commitments to attend postgraduate
school. Due to manning shortfalls, many service members have found it nearly
impossible to be assigned to such a touf. After pursuing my advance degree in the
evenings, I was able to utilize my knowledge the next moming on the SHARP Project.
This thesis will address questions regarding the assignment of uniform service personnel
to advance degree education concurrent to their operational commitment, as well as the
| direct benefits to uniform service member assignment to development teams.
D. SCOPE, LIMITATIONS, AND ASSUMPTION S

The primary scope of this thesis is concentrated around the evaluation,

comparison, and contrasting of the unique deveiopment of the SHARP Aviation Tracking
System with other like products, the uniform service members who developed it, with

lessons learned and recommendations to the development process.

30 ‘Chief Of Naval Infonﬁation, Seabees Home Page,
ht'tp://www.chinfo.navy.mil/navpalib/factﬁle/personnel/seabees/seabee 1.html, Department of the
Navy.

20

This thesis is limited to a brief evaluation of the benefits of COTS products over
the development of new systems, for the purpose of an energy—beneﬁts analysis. This
thesis is 1imited to a brief analysis of other military development teams for generating a
project baseline and for comparison anci contrasting development methods. This thesis is
ﬁmited to a brief analysis of the complex readiness predictive rﬁodel. Due to fche
complexity of the aviation readiness predictive model, further discussion of this topic will
be reserved for future work.

There are no assumptions made for this thesis.

E. LITERATURE REVIEW, METHODOLOGY, AND ORGANIZATION OF

STUDY

1. Literature Review

Due to the fluid and emerging nature of Software Engineering, its corresponding
documentation, methodologies, and literature, this thesis will review information from a

multitude of sources. Sources shall include traditional hard cover published literature,

* submitted thesis and doctoral works, lecture notes and handouts, and electronic media.

This thesis shall rely on Department of Defense Instructions, Requirements, and
Standards for establishing authorized and suggested standards of development in the
military environment. This thesis shall rely on Department of Defense and Department
of the Navy Instructions for establishing a historical background and requirement for
SHARP Development.

2. Methodology and Organization of Study

In order to objectively describe the events and significance of the development of

the SHARP System, this thesis shall take a methodical approach to describe the events

21

before, during, and after the engineering of the system, as well as the crucial influences
on the development of the system.

This thesis shall include a brief historical background of Naval Aviation
Readiness before the existence of the system, the requirement to build the SHARP
System, Research Questions, and Thesis Format. The thesis shall include a review of
traditional software engineering techniques, a review of DOD software " engineering
requirements, a review of readiness requirements, and a review of the SHARP
development model. This thesis shall include a review of search and discovery, a review
of the development of the SHARP System, a contrast with contemporary models, and a
review of interviews with DOD and Non-DOD contractors. This thesis shall include a
review and analysis of Naval Aviation requirements, the SHARP System Requirements, a
comparison and contrast with traditional development models, and a comparison and
contrast with comparable systems. This thesis shall conclude with summary of the
findings of the SHARP System Development Study, answers to the Thesis Questions, and
recommendations to improve the development of software systems in the rapid
application military environment.

For the purpose of this thesis, excessive abbreviations, quotations, and evaluations
shall be held in appendixes.

F. DEFINITIONS AND ABBREVIATIONS
For the purpose of consolidation, definitions and abbreviations can be reviewed in

the concluding chapters attached to this thesis.

22

G. CHAPTER SUMMARY

Historically, military combat readiness had been computed based on a factor of
force concentration and weapon inventory. Within the last three decades, military
readiness has made a progressive shift towards measuring its readiness through a more
complex metric of various factors, including personnel qualifications. In the last the
decade, from prompting of the HFQMB and the office of the CNO, a more demanding
model of readiness, including the factor of “P4 + WARTS” was initiated. This model
was far too complex to be managed using traditional tracking methods. To facilitate the
evolution and execution of this new model, various software products were developed
and distributed to aviation units. Déspite repeated development efforts, the distributed
software products failed to meet the needs of the customer squadrons and in some cases
actually added to the burden of flight data tracking.

The guiding readiness document, or Training and Readiness Manual, was written
with the concept of fluid operations in mind. This manual was constantly revised to
reflect the current concept of operations as well as emulate the directives set forth by
members of the chain-of-command. These revisions constantly changed the requirement
set that any supporting software was required to foilow. Due to the fashion and logic in
which previous systems were designed, testing -and evaluation made it evident that it
Woula be more efficient to develop a new system rather than attempt to revise the
existing sysiems.

During the efforts to determine a new system to support Aviation Readiness, I
was tasked with creating a team to develop an alternative software tool based on positive

points from existing systems, relevant requirements, and an outlook towards future

23

changes and requirements. The SHARP SRS listed over two thousand separate and
distinct requirements and criteria for the prodﬁct, including provisions for< Flight
Scheduling, Flight Logging, Electronic Log Books, Electronic Training Jackets,
Operational Risk Management, and the creation of an electronic and clas.siﬁed Training
and Readiness Message.’! |

The primary objective of this thesis shall be as a case study of the development of
the SHARP System in the unique military rapid application development environment.
The term RAD has received a great deal of negative connotations from traditional
developers due to its radical and fluid design methodology. This thesis shall detail some
of the benefits of the- RAD environment, as well as its applicability to the military
environment. For the purpose of this study, a comparison and contrast shall be made
with existing systems, development techniques, and the unique needs of the uniform
services. The secondary objective of this thesis shall be to aﬁswer research questions

regarding software engineering in the military environment.

3 SHARP SRS Document, on file with the SHARP Development Team, Commander, Naval Air
Force, U. S. Pacific Fleet. '

24

IL. LITERATURE REVIEW, THEORETICAL FRAMEWORK, AND
BACKGROUND
A. REVIEW OF TRADITIONAL SOFTWARE ENGINEERING

TECHNIQUES.
James Burke, philosopher, commentator, and author of many great works on the

human existence once wrote about the dynamic web of change and its balance of

knowledge from the past to the future, stating:

“If knowledge is an artifact, and innovation is the result of
interaction on the web, then the way for us to better manage change is to
become acquainted with the interactive process. So, in a future world
changing too fast for the old-fashioned, specialist approach to education, it
may benefit us to require young people to journey the web as a primitive
learning experience, much in the same way as we taught their ancestors to
read books after Gutenberg had invented the printing press. Schools might
train students to weave their way idiosyncratically through the web,
imagining their way to solutions, rather then learning by rote lists of data
that will be obsolete before they can use them.

We might even consider changing our definition of intelligence.
Instead of judging people by their ability to memorize, to think
sequentially and to write good prose, we might measure intelligence by the
ability to pinball around through knowledge and make imaginative
patterns on the web.”>? :
As Mr. Burke so well stated, we can not simply continue to base our future on the
concrete learning of the past, but need to be prepared to think with open minds toward to
future, using the knowledge from the past. Before any real development of the SHARP

Project could take place, the engineering team required a sufficient knowledge of

previous development techniques to determine the best course of SHARP development.

2 James Burke, “The Pinball Effect: How renaissance water gardens made the carburetor possible
—and other journeys through knowledge”, London Writers Ltd., London, England, 1996, p. 6.

25

As part of the review of potential deifelopment techniques, a search and discovery
of existing models was conducted from literature and lecture material available to the
development team. Some of the more popular models for software engineering include
the simple Build and Fix Approach, the Stagewise Development Model, the popular -
Waterfall Model, Test Development, Exploratory Programming, the Prototype Model, the
Incremental Model, the Boehm Spiral Model, the Win-Win Spiral Model, the Legacy and
Reuse Software Life Cycle, and the newly deﬁnéd Extreme Programming Technique.> 34
A brief overview of popular models and findings can be reviewed APPENDIX C -
SOFTWARE ENGINEERING TECHNIQUES.

1. Rapid Application Deveiopment

For the purpose of this thesis, it is necessary to give a brief explanétion of Rapid
Application Development (RAD). This explanation of RAD will be used as part of the
comparison and contrast of the development of the SHARP System.

“Rapid application development (RAD) has long promised to be a

boon to the computing community. The idea is to develop a method of

designing software so that the whole process is quick, painless, and nearly

effortless. The tools should be easy to learn, powerful, and allow the
design to interface his/her freshly minted application with other

applications, databases, and file types.”
Ted Brockwood>

For many years, software development purists have looked at RAD with great

disdain due to its radical practices and lack of formal methodology. These purists have

3 David F. Redmiles,. “ICS 121 Software Tools and Methods, Lifecycle Models, Class Notes”,
http://www.ics.uci.edu/~redmiles/ics121-FQ99, University of California, Irvine, 1999.

34 James A. DeBardelaben, Lecture Notes of “Cos? Modeling for Embedded Digital Systems Design
Module 57", Pennsylvania State University, Pittsburgh, Pennsylvania, 15 Sept 1998.

3 Ted Brockwood, “Rapid Application Development”, The Web Developer’s Journal, 10 Jul 1997.

26

focused their energy on traditional models of structure and procedure, while RAD
developers have utilized flexible methods of development based on the cyclic rapid
production of small pieces of a major system. As Ted Brockwood stated in his article,
development under the RAD methodology should be “quick, painless, and nearly
effortless.” The truth and fact of the matter is that RAD is quick, but is far from painless
and is fraught with great efforts.

RAD requires great efforts from management to ensure that the rapid progression
of the project is kept in check and controlled to prevent the cyclic development from
getting out of hand. Rapid Development is accomplished through a stagewise cyclic
development process that includes an/a:*®

e Requirements Analysis Stage to describe the hjgh level requirements of the
project, the system’s business use cases, and scenarios. The requirements are
edited into a System Requirements Specification or other proprietary
requirement document.

. Project Plan/Estimate Stage to develop and author a document covering
estimated costs, schedules, tasks, dependenéies, responsibilities, approaches,
communications, and goals. This document is constantly to be reviewed and
edited to fit the needs of the project.

e Design Stage to evaluate and assign requirements in a hierarchical level to
design the development process. The design stage includes assignment of the
data module, GUI, object, architecture, integration, data conversion, reports,

and business process rules.

3 “RADD Methodology”, Analysts International, 2000.

27

Prototype Stage to develop a working GUI model of the system’s
representation, interface navigation, and data incorporation. The prototype
permits client .review of the developer’s interpretation of the system’s
requirements.

Development Stage to expand the prototype into a working executable
system. The development‘ stage inclucies testing at the unit, system, and
integration level; and the adherence to established system standards and GUI
format.

Change Control Stage to manage any changes in requirements or design
standard.

User Testing Stage to apply the test cases established and defined in the
design stage and refined through the development process. User testing
includes the classification, risk acceptance, and documentation of observed
bugs/errors.

Deployment Stage to deploy, install, and implement the new system. The
deployment stage shall also include user training, technical training to ensure

proper system utilization.

It can in no way be taken that RAD is a simplistic approach to software

| development, but rather a more refined approach to make software development simpler

through fluid methods. Once each cycle of development has been completed, as with

traditional spiral development models; lessons learned, modified requirements, and

mitigated risk factors can be integrated into the next cycle to further increase the accuracy

of requirement accomplishments and efforts to meet the customer’s needs.

28

RAD permits developers to build a system more efficiently by the incorporating
incremental design, multiple reviews of the requirements, and the engineering and
presentation of a prototype early in the design. The cycle development method permits
rﬁultiple returns to each stage of design to ensure completeness. RAD requires a
development tool that is powerful, flexible, and easy to use, that can take a user from
design, through prototype, to development using the same code and logic structure.
Many prototype systems do not have code and logic structures that are easily transferable
into executable/compiled code, resulting in a breakdown of efficiency. Any effort and

energy to design a prototype is lost when it must be reengineered into a higher level logic

at the development stage.

In an effort to increase RAD efficiency and to promote product development in a
language that can create working prototypes convertible to executable/compiled code,
many software language developers have shifted to.“Visual” like languages. |

2. Visual Languages |

Visual Languages can be defined as any language, symbology, or architecture that
takes advantage of a graphical representation of logic or predefined functions and
procedures to be combined to create a working system. Many developers misinterpret the
concept of visual language by commercial products misleading labeled as “Visual”.
These products are often referred to as Pseudo-Visual Languages.

Visual Languages permit the development of a product by the graphical
placement of objects on a field. Each object has predefined propertied, functions,
procedures, and attributes that determine the action and interaction of the object to other

objects based on their physical representation on the field. The ultimate function of the

29

product is determined by the overall interaction of the combination of all objects and their
placement on the development field. %' Visual ’languages take advantage of program
development through the two- (or more) dimensional representation of object placement
and spatial orientation with other objects. Conventional textual languages are not
considered two-dimensional since the compiler processes the object as a one-dimensional
stream of code in text characters. Visual languages may be further classified, according
to the type and extent of visual expression used into icon-based languages, form-based
languages and diagram languages.

Pseudo-Visual Languages use a combination of object plécement in parallel with
textual code to represent the procedures and functiéns of the product. Users can
graphically develop the flow and design of a system, compose data structures with
associated references and links, and model logic and mathematical statements through the
drag-and-drop and textual environment. Through this environment, users can quickly
develop GUI level prototypes that directly relate to executable/compiling code. Object
code can be further refined and modified to complete required logic statements.

The commercial sector markets a number of true Visual Languages, including
Prograph, Logical Vision, Peri Producer, and Lab View to meet the needs of prototype
development. The commercial market has also introduced a wide variety of Pseudo-
Visual Languages to increase development efficiency. Languages and tools include
project design utensils such as Visio; to model databases through Eryn and SQL 7.0 DB
Tools; to model project timelines through Microsoft 4Project; and to assist with actual
projéct development through MS Visual Stadio (Visual Basic, C++, J, and Fox Pro),

and Symantec Visual Café, as well as a host of other visual products.

30

3. Extreme Programming

For the purpose of this thesis, it is necessary to give a brief explanation of the
concept of Extreme Programming (XP). This explzination of XP will be used as part of
the comparison and contrast of the development of the SHARP System.

Extreme Programming is a concept of system development that incorporates a
radical method of “speed-wise” design. ‘Traditional development methods have
incorporated the Waterfall Model fo depict a top down stagewise flow of system
engineering from the Requirement Stage to the Deployrneﬁt Stage in a non-returning
environment. Extreme Programming incorporates a form of the Spiral Model to permit
repetitive reviews of system stages in incremental design. The backbone of this
technique is based on the twelve practices of XP:3" 38

® The Planning Game where management and developers play out the rules,
scenarios, and timelines for developing the system.

. Frequenf Releases where customers are serviced with multiple releases of the
project to solicit requirement verification and validation through each cycle of
development.

e System Metaphor that establishes classes, patterns, anci objects that forms the
architecture of the system. |

e Simple Design to establish a simplistic design to a complex problem.
Simplicity is implied as the minimal solution. One principle .is to “do the

simplest thing that could possible work.”

Kent Beck, “Extreme Programming Explained”, Addison-Wesley, 15 Oct 1999.

38 “Extreme Programming”, Wiki, Cunningham and Cunningham, Inc, 30 Jul 2000.

31

® Unit Tests to test the independent modules of each of the system units and
Functional Tests to test the complete package.

* Refactor Mercilessly to consolidate and combine duplicate efforts into one
unified code package or module.

e Pair Programming to pair engineers to the same workstation under the
assumption that, not withstanding people skills, two programmers are more
than twice as efficient as one programmer given the same task.

¢ Collective Code Ownership to promote the sharing of code across
developing teams to ensure compliance with standards and reuse

¢ Continuous Integration to pool code together so that changes to one module
simultaneously effect changes across all of the corresponding modules of the
major system.

e Forty Hour Week rule to prevent overworking of programmers and
developers.

® Onsite Customer to provide real time feedback of development by adding a
subject matter expertise.

* Coding Standards to promote standardized conventions of semantics,
variable declarations, and logic schema to ensure compliance and
compatibility among all programmers.

After a review of the Extreme Programming Technique and its corresponding

literature, it became evident that it was simply a repackaging of existing RAD
methodologies into a disjointed schema of ideas. The concept of “playing” a “Planning

Game” to produce a system management document borders on the infantile. “Frequent

32

Releases”, “System Metaphors”, “Code Standards”, and “Continuous Integration” are
common spiral techniques. “Simple Design,” when defined as a minimal solution, is
referred to as meeting the requirements through the most efficient method possible.
Simplicity does not necessarily equate to reduced functionality or aesthetics but rather to
resourceful development. Function and aesthetic requirements would be determined as
part of the development “Planning Game.” “Testing” is nothing new and spiral
development models encourage unit and functional testing with each revolution of the
development. Mr. Beck encourages automated testing methods, which are a direct factor
of the development language chosen for the project. “Refactoring” and “Collective Code
Ownership” are simply alternative semantic to refer to code reuse. “Pair Programming”
is a novel concept, assuming that members have solid work ethics, like personalities, and
the task is conducive to being worked in pairs. While some tasks may serve well to be
developed in intimate pairs, it is very inefficient to have to justify a known principle to a
work partner before one can code it into the system. Mr. Beck suggests that development
teams should adhere to a “Forty Hour Week”, contrary to traditional SE practices of late
night “Pizza Sessions” where engineers prayed for midnight epiphanies. It should be
recognized that the potential for errors increases as the work day labors on. Mr. Beck’s
encouragement to developers to know when to call it quit and go home to ensure that
maximum performance is delivered during billable work hours, vice development
through desperation and exasperation. “Onsite Customers” are commonplace in complex
dévelopment scenarios and are almost a requirement to the success of a RAD or Spiral

Development.

33

B. REVIEW OF DOD SOFTWARE ENGINEERING REQUIREMENTS

In parallel with a review of potential engineering techniques, the SHARP
Development Team required a review of DoD Software Engineering Requirements and
Instructions, and Commercial Development Standards to determine the best approach for
development. Some of the more prominent development standards include the legacy
DOD-STD-2167A and DOD-STD-7935A Standards, the transition MIL-STD-498,

Commercial Standard ISO/IEC 12207, the Joint Instruction DII COE, DoD Regulation

5000.2-R, and the DITSCAP DoD Directive 5200.40. A brief overview of prominent

development standards and findings can be reviewed in APPENDIX D - DOD
SOFTWARE ENGINEERING REQUIREMENTS

Over the last two decades, the Department of Defense has attempted to direct the
development of software projects through a series of instructions, directives, and
standards. These standards were intended to support the development, design, and
acquisition of various software systems from mission-critical to office automation tools.
Legacy standards were progressively superseded by revised standards, some
strengthening the requirements, formats, and procedures, while other standards reversed
trends to loosen the reins of developers and granted more developer autonomy.

In an attempt to standardize DoD Software Development Efforts, a shift was
made to integrate future military standards with established commercial standards or even
go as far as to influence changes in commercial standards. MIL-STD-498 was

established as a stopgap measure while DoD attempted to shift its efforts to toward IEEE

‘accredited standards. Shortly after MIL-STD-498 was released to the fleet, efforts were

made to institute the DII COE Standard to manage and direct development through a

34

barrage of documents and instructions. The DII COE Chief Engineer, Mr. Kenneth
Wheeler, stated that the DII COE standard was not yet widely accepted in industry, but
that he was attempting to impose his influence on defense contractors through required
compliance with the standard. Each of the requirements and standards, as outlined in the
appendices of this thesis, are fraught with loopholes and exceptions. Compliance is
mandated but not entirely enforced. - Few if any of the DoD Standards ére accredited by
any civil or professional organizations. Mr. Wheeler informed me in a phone interview -
that his office has no intention to seek accreditation from any agency because the “the

return on investment is not there.”’

After a sufficient investigation of available and required development standards,
the SHARP Development Team realized that none of the prominent standards would fit
the design requirements of the project. The project would either fall outside of the scope
of existing standards or the ultimate burden of the standard would overshadow thg actual
project. It was elected to follow a logical process of development based on general
software development practices.

C. REVIEW OF DOD READINESS REQUIREMENTS, SPECIFICALLY

NAVAL AVIATION.

Naval Aviation, in itself, serves one of the most complex missions of the
Department of the Navy. This complexity involves the requirement to operate a sea-
going aviation unit. This marriage of sea and air combines instructions, directives, and

regulations from across many aspects of the Navy to develop the requirements for Naval

» Phone Con, 13 Jul 2000, Mr. Kenneth Wheeler, DIl COE Chief Engineer, DII COE Agency Joint
Office, Falls Church VA., 703-681-2304. '

35

Aviation Readiness. For the purpose of the thesis, it is necessary to discuss the
requirements that drive the development of the SHARP System.

1. OPNAVINST 3500.38

The OPNAVINST 3500.38 - Universal Naval Task List (UNTL), signed
September 27™, 1999, provides joint force and naval commanders an interoperability tool
for use in articulating their mission requirements under the sponsorship of the Navy
Warfare Development Command.”’ The UNTL is designed to provides the Naval
Services with a standardized tool for describing requirements for the planning,
conducting, assessing, and evaluating of joint training. The UNTL is a single source
document that combines the Universal Joint Task List (UJTL) strategic and operational
level war tasks with the Naval Tactical Task List (NTTL) into a requirement-based
“mission-to-task” matrix. -

In the joint-training arena, the task list provides a common language for
documenting war-fighting requirements and reporting procedures to the Joint Mission
Essential Task List JMETL). For standardization purposes, the UNTL uses the same
common language and task hierarchy of the UJTL. The list describes what needs to be
accomplished for a given task, the variables in the environment that can effect the
performance of a given task or mission, standards for measuring and evaluating
effectiveness, and measures of performance. The list does not specify how the task is to
be accomplished, nor does it specify who is to perform,the task.

Variables in the mission or task environment include, but are not limited to:

. Physical Environment - Sea state, terrain, or weather

40 OPNAVINST 3500.38, “Universal Naval Task List” Sep 27, 1999.

36

Military environment - Threat, command relationships, allies

Civil environment - Political, cultural, and economic factors

Theater of operations - Host-nation support, bordering assets, neutrality
Immediate operational area - Maritime superiority, air superiority,
logistics lines

Battlefield conditions - Littoral composition, open-ocean, overland

The UNTL is broken down into five sections and accompanying sub-sections,

encompassing both the Naval and Joint Tasks as:

Introduction

Mission Essential Task List Development
UNTL Organization

Naval Tasks

Conditions, Measures, Criteria, and Standards
Developing Mission Essential Task Lists
Universal Joint Naval Task List

Strategic Level - National Military Tasks
Strategic Level - Theater Tasks
Operational Level Tasks

Tactical Level Tasks

Conditions for Joint and Naval Tasks
Conditions of the Physical Environment
Conditions of the Military Environment
Conditions of the Civil Environment
Measures for Joint and Naval Tasks
National Strategic Level Tasks Measures
Theater Strategic Level Tasks Measures
Operational Level Task Measures
Tactical Level Task Measures

The UNTL applies to all Navy, Marine Corps, and Coast Guard (Department of

Defense related missions) assets, and includes the Strategic-National, Strategic-Theater,

and Operational levels of war tasks. For the purpose of this thesis, the UNTL provides a

listing of missions and tasks to be accomplished by naval air assets in the execution of

national defense objectives. Battle Group Corhmanders, Type Wing Commanders, and

37

the Joint Training Master Plan*' outline which airframe assets are to be assigned to which
task. Factors to be considered when assigning specific tasks include airframe
capabilities, support assets, training objectives, personnel manning, and readiness levels.

2. COMNAVAIRPACINST 3500.63 / COMNAVAIRLANTINST

3500.67

While the OPNAVINST 3500.38 (Universal Naval Task List) includes all of the
tasks to be performed by Navy, Marine Corps, and Coast Guard assets at large, the
COMNAVAIRPACINST 3500.63 / COMNAVAIRLANTINST 3500.67 lists all of the
tasks, missions, and qualifications to be performed by Naval Aviation Squadrons, based
on requirements from the UNTL. The most recent version of the 3500.63/3500.67 series
was authorized for release by joint authorization of the Commanders of both the U. S.
Naval Air Force Atlantic and Pacific Fleets on March 24‘}‘, 2000, as the Squadron
Training and Readiness (T & R) Manual.*> A brief explanation and history of the
3500.63/3500.67 instruction was included in Chapter 1 of this thesis.

The 3500.63/3500.67 series is broken down into subject matter enclosures as:

. General Guidance .
. Squadron Training Matrices Review and Validation Process
o Squadron Training Matrix Format
o Squadron Monthly Training and Readiness Message Format
o Status of Resources and Training System Report (SORTS)
o 17 Independent Type Model Series Training and Readiness Matrixes
. Authorized Aircrew Numbers
o Total Flight-Hour Requirements
“ Joint Training Master Plan (CJCSI 3500.02).
42 COMNAVAIRLANTINST 3500.63E, COMNAVAIRPACINST 3500.67E — “Squadron Training

and Readiness”, 24 Mar 2000.

38

The T & R outlines detailed guidance for naval aviation units to report monthly
 readiness levels to the chain-of-command via an MTF message format. This monthly
message includes, but is not limited to:

. Squadron Data

e Squadron identification
Months prior to next scheduled deployment
Manning levels by type of crewstation
. Readiness Levels
Target manning readiness levels by PMA
Actual readiness levels by PMA
Mathematical readiness values by manning and PMA
Qualification point by PMA '
Mission Flight-Hours by PMA
. Flight-Hours and Operational Data
Training, Operational, and Overhead Flight-Hours Totals
Training, Operational, and Overhead Flight-Mission Totals
o Special Interest Hours

Operational Detachment Data

Exercise Participation

Contingency Participation

Other Data as required by Type Wing

Commanding Officer Comments*’

While many of the values of the T & R Report are simple query totals from events
and hours completed, the readiness level calculation requires the cross referencing of
crewmember manning, crewmember qualifications and PMA point totals, crewstation
composition, and crewmember ACTC levels. To reach a targeted readiness level a
command must get a fixed number of crewrﬁembers above a predetermined threshold of
PMA percent points, as T1 > 85; T2 > 70; T3 > 55; and T4 < 55.

The actual T & R Matrixes for each TMS are the heart of the 3500.63/3500.67

instruction. Each matrix outlines the qualifications that a particular TMS can obtain to

@ COMNAVAIRLANTINST 3500.63E, COMNAVAIRPACINST 3500.67E — “Squadron Training
and Readiness ”, Enclosure (4), 24 Mar 2000.

39

gain readiness points. The matrix qualification list is based on tasks and missions as

assigned from the UNTL. Even though some of the qualification names listed on a

- particular T & R Matrix for one TMS may match the qualifications names of another T &

R Matrix of another TMS, one can not generally assume that the qualification has the
same level of importance, requirements, or resources. Each T & R Matrix is made up of
a minimum of:

. T & R Qualification Name
o T & R Qualification Title

o The Media in which the qualification can be accomplished in — Aircraft,
Simulator, or both

. Crewmembers who receive the qualification

o Valid currency periods of the qualification by ACTC Level, by
crewstation

. The number of hours required to receive the qualification, and the annual

flight-hours requirement for the qualification

The point value of the qualification by PMA

Notes

Ordinance required for the qualification

Resources required for the qualification :
Detailed qualification description and UNTL reference.

For the purpose of joint compatibility and mission accountability, each
qualification in a particular TMS shall be referenced to one or more UNTL tasks. The
goal of each squadron is to reach the highest level of readiness possible, taking into
consideration the oversight and assets required for the qualification, requirements
resources available, and the long-term mission objective of the command. The effects of
“P4 + WARTS?” pay considerable weight into the decision to execute some tasks or the
Aoption to wave specific qualification in favor of other tasks.

Due to the limited resources of most TMS, some commands will get into a
dilemma where they will be “chasing their tail;’ to maintain readiness as depicted by

FigureII.1.
40

Day 0365 Sym Qual Period
ASWO07 90 Days

ASWI12 60 Days
STWO05 30 Days
STWO07 45 Days
STWO07 45 Days
NSW03 120 Days

Day 182 »
FigureII.1 Training and Readiness Qualification Circle - Perfect

In the perfect model depicted by Figure II.1, each qualification is received on the
first day of the cycle, and then renewed on the last day of the applicable readiness period.
For example; ASWO7 is received on DAY-0, renewed on DAY 90, DAY 180, DAY 270,
and DAY 360, and so forth while NSW03 is received on DAY-0, renewed on DAY 120,
DAY 240, and DAY 360, until the cycle repeats. While this model is optimal for
squadron operations to maintain the highest level of readiness, it is highly impracticable.
Due to a lack of resources, increased emphasis of operations tempo in a particular arena
and a corresponding loss of emphasis in another, and the relationship driven factors of
“P4 + WARTS”, qualifications will slide. Some qualifications will be renewed before
their assigned expiration date, operations will elect to not renew some qualifications until
a later date, and others will be received on schedule, but to maintain some level of

readiness, operations dictate that expiring qualifications be renewed — “chasing their tail.”

41

No matter how hard a command flies, a qualifications will still expire and need to be
renewed, forming a cyclic pattern of readiness.

The COMNAVAIRPACINST 3500.63 / COMNAVAIRLANTINST 3500.67
instruction is constantly under review from inputs by all TMS and TYCOMs.

3. OPNAVINST 3710.7

OPNAVINST 3710.7, Series R, Interim Change 27 — commonly referred to as
NATOPS, or the Naval Air Training And Operating Procedures Standardization Manual,
serves as the “Bible” for Naval Aviation. The latest interim change was released for
issue by message on September 9™, 1999.4 NATOPS is not only a manual or instruction
for flight operations; NATOPS is a concept of operations. The background chapter of the
NATOPS Manual states:

“The Naval Air Training and Operating Procedures
Standardization (NATOPS) Program is a positive approach toward
improving combat readiness and achieving a substantial reduction in the
aircraft mishap rate. Standardization, based on professional knowledge
and experience, provides the basis for develop-merit of sound operating
procedures. The standardization program is not intended to stifle
individual initiative, but, rather to aid commanding officers in increasing
their unit’s combat potential without reducing command prestige or
responsibility.”*

The NATOPS Manual is broken up into eleven sections with additional

appendixes as:

. Introduction
o Naval Air Training and Operating Procedures
o Standardization Program
. Policy Guidance
“ OPNAVINST 3710.7R, “Naval Air Training And Operating Procedures Standardization

(NATOPS) Manual”, Interim Change 27, 09 Sep 1999.

45 OPNAVINST 3710.7R, “Naval Air Training And Operating Procedures Standardization
(NATOPS) Manual”, Cover Page, 15 Jan 1997.

42

Flight Authorization, Planning, and Approval

Flight Rules

Air Traffic Control

Safety

Aeromedical and Survival

Miscellaneous

Flight Records, Reports, and Forms

General Instructions On Duty Involving Flying and Annual Flight
Performance Requirements

Classification and Qualification Of Flight Personnel
Instrument Flight Requirements and Qualifications
NATOPS Flight Personnel Training and Qualification Jacket
Various abbreviations, codes, tables, and lists.

It outlines instructions, procedures, regulations, and limitations towards naval
aviation operation. It provides a guideline for flight requirements and certification, as
well as ﬂight planning and safety. Naval operation and the T & R Manual are limited by
the requirements of NATOPS. For example, NATOPS defines the minimum and
maximum number of flight-hours a crewmember can log during a given time period, as
well as minimum currency periods for some certifications.

Each TMS is required to publish an aircraft specific NATOPS manual to detail
specific procedures, instructions, doctrines, limitations, and restrictions explicit to the
particular type model. The type wing NATOPS is intended to be a more restrictive and
distinct to the particular TMS. |

4. OPNAVINST 3500.39

In an attempt to enhance naval operations safety, the Chief of Naval Operations
and the Commandant of the Marine Corps authorized the release of OPNAVINST

3500.39 / MCO 3500.27, Operational Risk Management (ORM), on April 3%, 1997,

43

addressed to all ships and stations. *® It recognized that uncertainty and risk are inherent
factors‘ in military operations, but that naval forces must take new efforts to “bélance risk
with opportunity” to minimize the levels of risk while still meeting the obligation of
assigned mission and tasks. In an effort to minimize risk, OPNAVINST 3500.39
establishes Operational Risk Management as an integral part of training, operétions, and
mission planning.

ORM is the management of risk by identifying potential risks and hazards,
assessing the levels of the risks, identifying potential consequences of the risks,
developing controls to mitigate the risks, and then implementing the controls during the
earliest possible stage of operation or planning. The supervision of risk controls is the
final and most important facet of ORM. Failure to manage risk and ensure compliance
will render the ORM concept hollow. Information available through existing safety,
training, and lessons learned data bases should be considered whenever practicable in
making risk decisions.

To ensure full compliance with ORM, forces are to make every effort possible to
train service members through leadership courses, General Military Training, safety
schools, warfare qualification schools, and other aﬁplicable training courses. ORM shall
be integrated into all aspects of tactical training, Personnel Qualification Standards,
(PQS), Naval and Occupational Standards, Individual Training Standards, and the Marine
Corps Combat Readiness Evaluation System.

By directive, Naval Aviation and the T & R need to fully comply with the concept

of ORM. Flight operations cannot be expected to overextend crewmembers to achieve

46 OPNAVINST 3500.39 / MCO 3500.27, “Operational Risk Management”, 03 April 1997.

44

qualifications beyond a safe level, nor can they expect crewmembers to achieve
qualiﬁéations that they have not been properly trained for_nor have assets to properly
support the achievement of. ORM risk mitigation is directly effected by the factors set
forth in the “P4 + WARTS” concept.

The OPNAVINST 3500.39 Manual requires a fleet review of the instruction no
later then every two years. As of this thesis, no changes have been made to the
instruction in the last forty months.

5. NWP 1-03.3

The NWP 1-03.3, the Status of Resources and Training System Joint Report-Navy
(SORTS or SORTSREPNAV), .is the principle report for Navy, Military Sealift
Command, and U. S. Coast Guard units to provide general status data to the National
Command Authority (NCA), the Joint Chiefs of Staff (JCS), the Chief of Naval
Operations (CNO), members of the chain-of-command, and other operational
commanders.*’

The SORTS Report is designed for designated units to report their operational
status and changes in their status directly do their chain-of-command. The SORTS report
is composed in a machine-readable format, permitting its contents to be parsed directly
into a centralized database, accessible by assets or echelons using the TRMS Afloat and
TRMS Aviation systems. SORTS data includes: |
Transfer Data |
Organization Location Data
Defense Condition (DEFCON) Data
Nuclear Capability

Deployment Status
Organization Personnel Strength

4 NWP 1-03.3, “Status of Resources and Training System Joint Report — Navy”, Under review.

45

Overall Status Ratings for Resources and Training
Status Rating for Equipment and Supplies
Status for Training
Resource Level Limitations
Major Equipment and Crew Locations
PMA Status
Mission Area Rating
Primary Resource, Secondary Resource, Tertiary Resource, and Projected
Status
- Special Capabilities
Adequate Wartime Resources Available
Shortages of Wartime Resources
PMA Exceptions

In a classified format.*®
6. SMART-R and the SMART Squadron
On February 9™ 1998, Acton Burnell released a High-Level Requirement
_ document highly critical of the current Naval Air Squadron T & R System and the
support infrastructure for managing the T & R.* The report outlined the growing
problem of a lack of software support due to the increasing number of independent T & R
software systems; the lack of solid requirements specifications and process models for T
& R support; and for the lack of a data warehousing to archive flight operations data.
This report was forwarded to OPNAV (N889) for evaluation and review. One of the
outcomes of this review served as a spark to the concept of SMART-R.

On March 4% 1998, the Naval Air System Command or NAVAIR released
Synopsis No. 20062-98, secking submissions for the development of the Aviation

Squadron Management System Software.® In response to the request for submissions,

48 NWP 1-03.3, “Status of Resources and T raining System Joint Report — Navy”, Chapters 5 and 6,
Under review.
49 “Naval Air Squadron T & R System: High —Level Requirements”, Acton Burnell, 09 Feb 1998.

46

SAIC in team with ISYS, an Israeli Defense Contractor, submitted ab proposed
Operational Management System based on the Israeli Air Force Concept of Operations.
In an attempt to evaluate the proposed Israeli system - SQOM, or the Squadron
Operations Management System - NAVAIRSYSCOM stood - up the Squadron
Management, Automated Risk Tolerance and Reporting System (SMART-R) evaluation
team.

NAVAIRSYSCOM was provided approximately $1.8 Million from the Secretary
of the Navy’s Quality of Life Fund to pay for the assessment and evaluation. In a recent
telephone' cqnversation with LCDR Darrell Lack, Program Manager for the SMART-R
Project, he stated that “it would be a ridiculous use of money to investigate one
project.””! The assessment and evaluation of SQOM soon turned into an Analysis of
Alternatives (AOA) of the four compatible sysfems: SQOM, the Boeing SARA Product,
SHARP, and the Air Force prototype Patriot Excalibur System.

During its brief history, the SMART-R board had derived a set of aviation
requirements for the design and development of an aviation operations management
system. The most recent requirements list was released after an intensive meeting with
members of both coast TYCOMs, 2™ and 4% MAW, members of the Naval Safety
Center, OPNAYV, N880, N881, and N889, using lessons learned from initial evaluations

of all of the perspective management tools and the ever changing environment of Naval

50 NAVAIRSYSCOM, “Request for Proposals: Synopsis: 20062-98: Aviation Squadron
Management System”, Commerce Business Daily, 04 Mar 1998.

3 Phone Con, 17 Jul 2000, LCDR Darrell D. Lack, SMARTR Project Manager, NAVAIRSYSCOM
PMA-233 Naval Mission Planning, 301-757-8008.

47

Aviation. This new requirements list, titted SMART-R Criteria Definitions, dated
February 23, 2000, included requirements for:

. Logistical / Life Cycle Support

. User Customizable
. Technical Support
. User Training
. Configuration management
J Documentation
. Resource Management
e Long Range Planning
. Support Elements
o Personnel
o Weapons
o Ranges
. Simulators
. Planes
. Adversaries
e Funding
. . Petrol
. TAD
. Parts
e Integrated Scheduler
o Provide Automated Flight Schedule Assistance
. Provide Automated Maintenance Scheduling Assistance
. Opverall unit requirements
. Interoperability
e Interfaces
e Compatibility
e Tailoring for Multiple Operation Modes
e Accessibility
. Risk Management
. Automated Risk Analysis
. Report Generating Capabilities
. Provide Standardized Reports
o Ad Hoc Queries
. Electronic Training Jacket
. Real Time Activity Tracking’>
%2 “SMARTR Critéria Definitions”, SMARTR, NAVSYSCOM PMA-233, 23 Feb 2000.

48

The intent of the AOA, as LCDR Lack put it, was to purchase something at the
end of the evaluation, but political pressure, no true funding line, and a lack of authority
would not allow for this kind of outcome. As of September 2000, the SMART-R Team
will have expended its funds for the evaluation and will make its final recommendation to
the ATIRBOARD for action. LCDR Lack estimates the value of such a product to be
worth little morel then five million dollars per year, far below the cost proposed for
existing products. With the exception of a Mission Needs Statement, the SMART-R
board has no driving authority to purchase any system.

D. REVIEW OF THE SHARP SYSTEM SOFTWARE-ENGINEERING

MODEL

1. SHARP Requirements

a Training and Readiness Requirements
Initially, the primary requirement for the SHARP system was to engineer a
product to support the newest release of COMNAVAIRPACINS’f 3500.63D /

COMNAVAIRLANTINST 3500.67D, specifically;

. The entry and archiving of a unique T & R Matrix representing a
particular TMS. :

o The entry and archiving of a command’s crewmembers and their
supporting data.

o The tracking of valid qualifications by crewmember.

. The computation of a command’s combat readiness.

While the initial scope of the requirements were limited to supporting and
returning a command’s readiness value, it quickly became evident that squadron users
desired something that would better reflect the complete scope of squadron operations in

49

the electronic environment. For decades, Flight Operations Offices have relied on
conventional practices to accomplish menial tracking and calculaﬁons. With the advent
of technology and the distribution of IT-21 compatible computer units, it was time for
flight operations to augment its efficiency by joining the information age and opening
Naval Operations to the “Clicks and Mortar” environment.
The commercial sector has long touted the concept of updating traditional
| business practices from the “Bricks and Mortar” conéept to the more technologically
advanced and reliant concept of “Clicks and Mortar”. “Bricks and Mortar” can be
defined as the traditional business practice of non-electronic data transfer, and non-
eiectronic commerce, housed in a conventional office space. “Clicks and Mortar” can be
defined as the information age driven business practice of electronic data transfer,
electronic mail, and electronic commerce, running in parallel to traditional business
practices, housed in a conventional office space. Based on the commercial success of the
“Clicks and Mortar” office concept, it would only seem a natural progression to adopt .
this practice into the military operations, specifically that of Naval Flight Operations.

In an attempt to better understand the requirements of Naval Aviation
from the fleet perspective, a team of over thirty Pilots, Naval Flight Officers (NF 0), and
Aircrewmen were brought together in North Island, CA to form the Aviation Training
Readiness and Requirements Information System (ATRRIS) Integrated Process Team
(IPT). This team of aviators pooled their combined knowledge of naval aviation,
operations, training, and readiness to author a complete list of requirements to model

squadron operations and revolutionize the operations office. The ATRRIS IPT attempted

50

FigureII.2 Cause and Effect Reliance

The second type of requirement change, the “Trickledown Reliance”

results when the actions, values, or theme of one requirement or its resulting values

directly effects the resulting values of another requirement through a set of logic

statements or calculations. While the “Cause and Effect Relationships™ can relate one

requirement to the next on the same level or on variable levels, the “Trickledown

Reliance” would relate a senior requirement down to one or more subservient

requirements. While the “Cause and Effect Relationships” directly relates values from

one requirement to the next, the “Trickledown Reliance” mandates subservient

requirements rely on the values and actions of senior requirements through logic, as

depicted in Figure II.3. An example of “Trickledown Reliance” would be the fact that:

Flight Night Vision Device Time must be less than or equal to a
flight’s Total Nighttime.

Flight Total Nighttime must be less than or equal to a flight’s Total
Flight Time. ‘

Astronomical conditions must be such that a flight occurred during
Nighttime.

A crewmember must be capable of logging Night Vision Device Time.

A crewmember’s individual Night Vision Device Time must be less
than or equal to his own Nighttime.

A crewmember’s individual Nighttime must be less than or equal to
his own Total Flight Time.

53

o [Ifthe flight’s Total Flight Time decreases it may affect an individual’s
Total Flight Time, depending on the initial Flight Time of the
individual, which would trickle down to affect the flight’s and
individual’s Nighttime and Night Vision Devise Time.

Figure II.3 Trickledown Reliance

Due to the great reliance or relationship of one requirement on the next,
changes to one requirement can quick dévelop into a ripple effect through the SRS.
Proper tracking and SRS docufnentation is required to monitor the changes and ripple
progression.

Mr. Chris J. Date’s recent book on Software Development refers to the
logic of Trickledown Reliance as a Business Rule.”®> Mr. Date simplifies that the
requirement and design of software systems should be based on what needs to be
accomplished, vice how it should be accomplished. These “What™ actions combine to
build a set of buéiness rules that outline the development lof a system. The Trickledown
Method relies on established business rules to define the methodology for the operation

of minor systems, based on the “What” requirement of major systems. The concept of

3 C.J. Date, “What Not How: The Business Rules Approach to Application Development”,
Addison-Wesley Publishing Co, 07 Apr 2000.

54

business rules is not new to the software engineering procesé, in that it has been a tool
regularly used by managers to ensure the business process of development was
accomplished in compliance with established function rules. The new application of
business rules to the software engineering process down to the actual development level
refines the methods that used to bind the creative process. While Mr. Date’s book is
based around the theme of databases and corresponding business rules, the concept and
methodology can be expanded and applied across all aspects of software engineering.

c. The Requirement Shift

One of the more recent changes in the UNTL and its support documents
was the reduction in ASW missions to the S-3B airframe. Due to the reduction of
missions and the composition of the S-3B airframe crew, a number of changes were
required to the T & R Instruction, resulting in changes to the SHARP Requirements.

The COMNAVAIRPACINST 3500.63 / COMNAVAIRLANTINST
3500.67, Squadron Training and Readiness Report, is revised apprdximately every
eighteen months. As the SHARP program is designed to directly support the T & R
Instruction, any changes to this instruction results in immediate changes to the SHARP
SRS. The T & R Instruction is based on the inputs of the seventeen different type model
series airframes ;md their corresponding Wing Training Manuals (WTM). WTMs are
changed at periodic inteﬁals, independent of each other. Knowing that the T & R
Instruction and related WTMs would influence multiple programmatic changes, attempts
were made to generalize SHARP requirements through logic statements, in an attempt to
build a basic format of the concept of operations with customization. Once the basic

concept of operations was mapped, changes to T & R and WTMs values could then be

55

inserted into the logic nﬁap of the requirements and, respectively, the code. Primary
values within the T & R Manual weré described previously in this chapter. As long as
the basic concept of operations did not change, no real change had to be made to the SRS,
but a requirement did fall on the user to make the customization to the SHARP Program
in operation.

The initial paragraphs of the T & R directly outline the concept of
operations for Naval Aviation. These document changes result in changes to the coﬂcépt
of operations resulting in changes to the SHARP SRS. |

d. External Requirement Factors

As stated previously, the OPNAVINST 3710.7 — NATOPS serves as the
aviation “Bible” of operations. NATOPS receives major revisions approximately every
thirty-six months. The NATOPS Manual also receives interim updates on periodic basis.
The current NATOPS Manual has received twenty-seven interim changes since its
release three years ago.™ vNATOPS directly maps the concept of Naval Fli ght Operatioﬁs
and, correspondingly, its requirements. Any changes to the NATOPS concept of
operation results in immediate changes to the SHARP SRS.

The OPNAVINST 3500.39 - Opefational Risk Management Manual is
scheduled for review every two years. The ORM Manual does not specify any rules for
vORM, does not contain any models for making new rules, nor does it specify a process
for determining specific rules. The ORM Manual does mandate that units should institute

a form of operational risk tools into their business process. Due to a lack of official

3 OPNAVINST 3710.7R, “Naval Air Training And Operating Procedures Standardization
(NATOPS) Manual”, Interim Change 27, 09 Sep 1999.

56

guidance, the ATRRIS IPT combined their knowledge of operational risk management
from the squadron level and coupled it with standard operating procedures and personal
flight schedule writing techniques to create a requirement for ORM. This consolidated
requirement resulted in a move by the SHARP Group to build more than an Operational
Risk Management tool, but instead to compose a requirement to build an Operational
“Requirements” Management tool. Operational Risk Management has the implied
outcome of reducing risk by removing risk. Risk is reduced by removing an individual
from a particular task that he might not be qualified for, or by removing a particular task
from a schedule. Operational “Requirements” Management implies managing the
requirements for tasks By ensuring proper scheduling and management of personnel. If
an individual was not qualified for a particular flight, task, mission, or qualification then
he might be added to the flight scheduled to get qualified. If an individual does not fly,
he would never get qualified. Many aviators regard Operational Risk Management as a
punitive tool, while they view Operational “Requirements” Management as the standard
concept of operations.

Until the Navy or Naval Aviation releases specific instructions on how to
build ORM models, the SHARP SRS will continue to be based on a fleet perspective of
ORM.

The NWP 1-03.3 — SORTS Manual is updated approximately every thirty-
six months. The only data-point that the SHARP system provides to the SORTS Report
is the aviation T & R Value by PMA. The requirement to generate the T & R Value is
outlined in the T & R Manual. Pending on any additional requirements from the SORTS

Manual, no further changes are predicted to the SHARP SRS.

57

The SMART-R Requirement Document outlined the SMART-R’s
interpretation of squadron operaﬁons and ultimately the concept of operations. The
points and findings of the SMART-R were outlined previously in this thesis. The
SMART-R added a new perspective to the SHARP Requirements List by incorl;orating
the inputs of the higher echelons of the'DoD as well as cro.ss service operations.
Previously, the SHARP SRS was based on the inputs of squadron users and their
respective TYCOMs. The predominant voices at the SHARP Requirement Meetings
were potential SHARP users or system clients. The SMART-R combined members from
across the Navy and Marine Corps management level (OPNAV and HQ) with members
of senior members of the aviation community (CNAP, CNAL, and MAWs) to develop a
top-level view of squadron operations. This requirement list® was then compared with
the existing SHARP SRS to ensure completeness and potential compliance in the event
that the SMART-R Concept became a program of record. At this time, due to a lack of
future funding lines, we do not assume the SMART-R will publish any new
requirements.

After a review of all of the SHARP requirements, the team attempted to
create a mapping of related subjects or areas of interést. This map was broken down by
each of the primary functional Naval Operations subject areas, as:

Personal Management
Operations Management
Aircraft Management
Fuel Management
Weapons Management

Adversary Management
Range, Route, and Airspace Management

% “SMARTR Criteria Definitions”, SMARTR, NAVSYSCOM PMA-233, 23 Feb 2000.

38

TAD Management

Reports Generating Capabilities
Astronomical Data
Customization

Program System Support

As the map was developed, each of the requirements were assigned to a
primary function of the map, then broken into secondary level, tertiary level, and so on,
until requirements were driven to their lowest level possible, resulting in a detailed
requirements tree. After a review of the requirements map, it became evident that we
would not be building one system, but a number of small, interrelated systems that would
incorporate themselves to gether to meet the total requirements of Naval Aviation.

After gathering all of the requirements from the governing documents and
ATRRIS IPT meeting members, a small group of aviators and developers worked to
develop a brief framework of the SRS and initial prototype models of the perspective
system. A specific discussion of the requirement gathering. techniques, risk analysis,
relationship and reliance, will be presented in the methodology section of Chapter 3 of
this thesis.

2. SHARP Engineering and Development Model

As illustrated in the previous sectioﬁ, Section II.C — “Review of DoD Readiness
Requirements, Specifically Naval Aviation”, it was demonstrated that thé requirements
for Naval Aviation Training and Readiness were, and remain, extremely fluid. After a
review of many the standard development models, exemplified in Section IL.A — “Review
of Traditional Software Engineering Techniques”, it also became evident that no

conventional model in its entirety would suffice the development of the SHARP system.

59

The Build and Fix Method of software development réquires that the system be
built, reviewed for completeness, and then rebuilt, until the resulting product suffices the
needs of the client. Most cyclic development processes utilize some sort of Build and Fix
Approach, or its basic framework, to manage the project development. In its basic form,
without any real defined requirement or testing stage, the Build and Fix Method was not
even considered. I wish to reiterate that the Build and Fix Method serves as the basis for
most cyclic models, and its concept will be demonstrated to be useful later in this section.

Like the Build and Fix Method, the Stagewise Development Model also serves as
a basis for maﬁy of the formal process models, in that it defines the development process
by breaking it down into stages or incremental steps. The SHARP product needed a
model] that would formalize its developmental process by defining the steps or stages in
which it should be built. As the Stagewise Model was ohly an incremental step to
designing a more formal development model, it did not meet the defined needs of the
SHARP Team.

Due to the fluid requirements defined by the SHARP SRS, the Waterfall
Development Model was immediately removed from contention as ‘a developmental
process. The Waterfall Model mandates that requirements be solidified at the beginning
of the developmental process and that new requirements would not be viewed until the
end of the entire process.

The Waterfall Model is mirrored by the Test Development Model, with the
additional aspect of Test Plan Authoring running in parallel to each of the development
stages. Due to its top down development flow and inflexibility to changing requirements,

the Test Development Model would not meet the needs of the SHARP Development.

60

The concept of Test Plan Authoring running in parallel with system development was
found to be very beneficial, and was extracted to application to the eventual SHARP
Development Model.

The Prototype Model .introduced the notion of prototype development prior to
complete system development, as a part of the Waterfall Model. As previously
mentioned, the Waterfall Model was ill equipped to facilitate the SHARP Development
Project, but the idea of a working prototype was found to be Qery beneficial to
demonstrating the validity and completeness of the SRS. The concept of Prototype
Development would become a key facet in the engineering of the SHARP Project, as
discussed later in this chapter.

The Exploratory Programming Method would be one of the first models that
introduced the client into the development process. With Naval Aviation Squadrons as
the primary clients to the SHARP Product, and Naval Aviators as members of the
development team, the primary element of a close client-developer relationship with
Exploratory Programming had been mef. As the Exploratory Approach still required
formal reference to other fundamental stages such as Prototype, Requirements Gathering,
Risk Analysis, Testing to be a complete model, it did not meet the needs of he SHARP
System, but the concept of a close client-developer relationship would remain for the
ultimate development model.

As méntioned in the conclusion of requirement discussion, the SHARP SRS had
broken the product down into many modules vice that of one large system. The
Incremental Model of development discussed the concept of developing modules of a

system incrementally until a system was complete. As many of the requirements of the

61

SHARP System were not finalized until later in the program, it would seem more
efficient to develop some of the modules before others, in an incremental approach. This
method would also be rolled together into the final SHARP Development.

With the intent of taking advantage of previously designed systems, either
through the improvement of legacy systems or the introduction of second party systems,
logic dictates the use of the Legacy and Reuse Software Life Cycle Model. Due to the
strict and short deadline placed on the SHARP System, developers were intent on taking
advantage of as many predefined systems as possible to reduce the overall effort on the
project. While the SHARP System had never been developed before, a number of other
like systems had come close to meeting some of the requirements. As these systems were
not designed to be up-line compatible, due to system compliance issues and logic
concerns, these systems did serve as partial prototypes, and the SHARP Team was able to
model and extract some requirements. While some systems were working operating
programs, other systems existed solely as logic statements. For example, the SLAC
Astronomical Prediction System developed by the Office of the Naval Observatory in
Washington, D. C., modeled the mathematical logic for predicting the all solar and lunar
phehomena. Logic such as the SLAC Program could be quickly absorbed into the
dévelopment of the project. While the Legacy and Reuse Model has some benefits to the
reuse of modules, it does not completely map all of the other required aspects of software
development.

The most efficient method for developing a project with fluid requirements,
multiple modules, and incorporating incremental design would be the Spiral Model. The

Spiral Model permits a more flexible development process by introducing a stagewise

62

development that permits the redefining of requirements, reassessing of risk, and the

- redevelopment of the product in a cyclic fashion. The Spiral Model of devélopment most

closely matched the needs of the SHARP Project, with the exception of some key items

found in other models: Test Plan Authoring, Close Client-Developer Relationships,

Reuse, and Parallel Development with Modular Design.

Ultimately, the development model that was chosen for the development of the

SHARP System was to be a hybrid of many of the concepts seen in previous models.

The model consisted of the stagewise development steps of:

Initial Requirements Gathering Stage

Module Breakdown and Task Assignment Stage
Solution Search Stage

Rlsk Analysis Stage

Prototype Development and Engineering Stage
Evaluation Stage

Requirement Certification and Requirement Search Stage

Module Breakdown and Task Assignment Stage to repeat the cycle

From the basic view the only two additions to this model over the traditional

Spiral Model would be the incorporation of the Module Breakdown and Task Assi gnment

Stages, and the Solution Search Stages. From a deeper inspection, it becomes relevant

that this model is more then a two-dimensional spiral, but rather a three-dimensional

spiral that builds up like a wedding cake with each successive cycle, hence for the

purpose of this thesis, it shall be referred to as the Wedding Method.

63

a Initial Requirements Gathering Stage

The first step in the Wedding Process is to make an initial search of the
product requirements. The requirement search does not have to be a complete search and
definition of all requirements, but should include the basic theme of the system. The
initial requirement search should outline the primary obj ective of the proposed system. It
is not necessary to establish all of the constraints of the system on the first iteration. The
interaction of product clients, subject matter experts, and developers is essential to ensure
an accurate authoring and understanding of the requirements. Some level of test
documentation should be accomplished in parallel with the requirement gathering stage,
as subject matter experts will be readily accessible to define the potential goals of the test.
Once the initial search is complete, the sets of requirements are defined, and a partial Tes't
Plan is started, requirements need to be grouped in to system modules.

b. Module Breakdown and Task Assignment Stage

Each of the systems modules should be defined as major actions or
functions of the system, like a System Management Module, Configuration Management
Module, Reports Generation Module, Primary Operations Module, and applicable
Secondary Operations Modules. Each of the system modules should then be subdivided
into as many systems sub-modules as possible to develop a hierarchical tree of modules
and their associated sub-modules. After the requirements and system have been broken
down into their associated modules, the next task would be to determine which modules
and sub-modules should be started on the first iteration. This is where the Wedding
method diverges into multiple layers for development on an independent basis, building

tier after tier, as depicted in Figure I1.4.

64

Figure Il.4 Wedding Model with diverging Cycles

To best model the level of effort for module and project development,
functions, tasks, and requirements should be brokeh down to their lowest possible level.
If a function requires a level of effort of “2”, then the function should be i)roken up into
two equal sub-functions, each With a level of effort of “1”. If a particular module has
fifty-two functions and a total level of effort of “175”, then the functions should be
broken into 175 total functions. Such an equitable function breakdown permits easier
evaluation and task assignment.

The tasks should be selected in the first iteration such that they form the
backbone of the system and can assist in demonstrating a functional prototype for

demonstration and project evaluation. Where possible, when requirements are in need of

greater definition through prototype evaluation, these tasks should be selected such that

their prototype can be evaluated to complete requirement specifications. The number of
tasks should be determined by the amount of man-effort that can be given to the project

and the man-effort that would be required to complete each of the sub-modules or tasks.
| 65

c Solution Search Stage

Where possible, a search and evaluation should be made of legacy and
second party systems that could meet the requirements of proposed first iteration tasks.
This search should include systems that could be incorporated directly into the proposed
system, working systems that can be used for requirement definition serving as a set of
prototypes, or system logic that could be used during the development stage. If through
observation and evaluatioﬁ, new requirements are found in the Solution Search Stage to
be beneficial to the system, then they should be fully documented for inclusion with the
next cycle of development. Any changes, refinements, or edits to requirements due to
second party systems should also be documented to ensure their inclusion into cyclic
development. As part of the solution search, Test Plans and documentation should be
authored from finding of potential solutions.

d. Risk Analysis Stage

The risk analysis stage of the Wedding Model closely resembles
traditional risk analysis methods with a few complex caveats. Wedding Risk Analysis
includes an assessment of development risk to the entire system, as well as a specific
assessment of »the sub-modules or tasks under development during the current cycle. If
second party systems are to be utilized, an assessment of those altenatives should be
evalﬁated for development risk over the engineering of new systems. Upon the
completion of the Risk Assessment Module, a detailed list of risk controls should be
authored. The first authpring should include the risk controls for the entire system
development. The second authoring should include the risk controls for the sub-modules

or tasks currently under development in the present cycle. These risk controls should be

66

incorporated into thé Test Plan document to assist in final test and evaluation of the cycle.
These two control documents would be forwarded to the Prototype Development and
Engineering Stage to control the build, to the Evaluation Stage to assist with system
testing, and to the next Requirement Assessment Stage to ensure compliance with the
next cycle of development.

e Prototype Development and Engineering Stage

As the first cycle is to be actually developed, sub-modules and tasks are to
be assigned to development teams for programming. The development teams need to
map the interrelations and reliance between the different tasks to ensure cross
compatibility and communications exist once the different sub-modules are combined.
As each of the tasks is developed, consideration should be made to findings in the Risk
Analysis Stage. As each sub-module is developed independently, it is essential that an
accurate Test Plan be mapped to ensure a complete representation of the development
and evaluation of the system. The completion of the Development Stage woﬁld be the
combination and linkage of the sub-modules for the purpose of composing a Working
prototype or operating system. Proposed prototypes, second party systems, and existing
sub-modules would be combined to éomplete the Engineering Stage.

JA Evaluation Stage

The Wedding Method Evaluation Stage incorporates all of the new sub-
modules developed, second party systems, and existing systems modules together into
one complete working system for evaluation and testing. Evaluation and testing is
completed against the Test Plan developed in the subsequent stages of the existing cycle,

in series with the Test Plan developed in previous cycles for modules incorporated to the

67

current complete system. It is essential that every test element be re-tested with each
iteration of the cycle to ensure the linkage and cross compatibility of all existing sub-
modules or developed tasks has not corrupted the system as a whole. Intimate
cooperation and interaction with subject matter experts, developers, and clients is
essential to ensuring an accurate evaluation of the system against requirements or
intended development outcomes. Test and evaluation should also evaluate the
Development Risk Management Plan to rate its accuracy and applicability to the
development process. Findings from the evaluation of the risk management plan are then
passed back to the risk assessment stages in subsequent cycles as “Lessons Learned.” An
evaluation of applicable requirements against the existing product is the final element of
the evaluation stage. Requirements are validated against the sysfem to determine if the
system is being developed to complete satisfaction. If new requirements are found
through the evaluation stage, they are then posted to the next cycle of the Requirement
Search.

g Requirement Certification and Requirement Search Stage

As the cycle completes its revolution, it expands outward one ring but
returns to the Requirement Stage of development. Requirement modifications from the
previous cyclic development of the Solution Search Stage, Risk Analysis Stage,
Engineering Stage, and Evaluation Stage are consolidated. Completed sub-modules and
tasks are certified for completeness or evaluated for redevelopment. New requirements
are sought out or discovered and added to the SRS. As with the first cyclic iteration of
the Requirement Search Stage, Requirements are then disﬁibuted through the module tree

for task assignment.

68

h. Second Module Breakdown and Task Assignment Stage

In the second and subsequent round of Module Breakdowns, each level of
the Wedding Cake should continue to be evaluated as independent projects. Where
necessary, levels could be further divided to better engineer the system. As depicted in
Figure IL5, the Wedding Model is more then a two-dimensional incremental spiral, but a

spiral with cross connecting spokes that permit information and design to move across

stages as well as progressively forward.

N

Solution Search
Module Breakdown Stage
and Task Assignment

Stage

.....
va.

Risk Analysis
Stage
Requirement
Search
Evaluation Stage Prototype Development

and Engineering Stage
Figure IL.5 \‘;edding Model with Spokes
i The Solar System
The traditional Spiral Model dictates that each of the stages of

development occur sequentially, in a two-dimensional plane. The Wedding Model

. breaks from the traditional concept by incorporating a radical design of multiple

69

independent modules, revolving around the same axis, at irregular rates, similar to the
planets of the solar system that advance at independent rates, as depicted in Figure IL6.
The Wedding Model has a number of inherent risks that have to be managed and
controlled to ensure the success of the development. With each cycle of the system,
independent modulesA of the development have the potential of falling out of sequence or
rate with other modules. This freedom to accelerate or decelerate through the
development process at independent rates adds to the beauty of the system, but also
requires a strict management of interoperability links, cross development
communications of Test Plans and Requirement Changes, and the monitoring of system

progress as a whole.

; Solution Search
Module Breakdown Stage
and Task Assignment H
Stage

Setup Module

ORM Module

g
o
.
e
o
o
o
!
o

e
-

Rl
'

oo
8
o

T & R Matrix

o
o
.
ad
Sad

.....
.....
e,
*eae,
Sva.,

...... Risk Analysis
------- Stage

....
*odue
.....
fou o
. .

Requirement | | | ®e) | L. S
Search A Help and About

Ciod
o
o

......

.....
e,
.....
e
v,
.....

o
o
o

Flight Scheduler

Reports Module

Prototype Development

Evaluation Stage
and Engineering Stage

Figure I1.6 Wédding Model as a Solar System
The independence of process progression actually increases the overall

efficiency of the system. Some modules and their related sub-modules may require little
70

effort for development while other more complex modules would require a greater
amount of effort. This module permits many smaller modules to be completed in a
number of rapid development cycles, concurrent to the development of one larger, more
complex rﬁodule.
E. CHAPTER SUMMARY

The prominent author and philosopher, James Burke, stated that “the way for us
to better manage change is to become acquainted with the interactive process of
change..”s6 This acquaintance to the interactive process requires an understanding of the
foundations of development and not simply just a surface knowledge of the
methodologies. For true growth and understanding, one must find the beauty in the
method and not just the outcome - the outcome will most always be reached, it is the
method that becomes a signature of the development. The development of the SHARP
Project was not simply a cookie-cutter process, but the molding and refining of various
methods and models to produce the successful outcome. To best arrive at this outcome, a
number of processes had to be reviewed and understood. This thesis reviewed many of |
the formal methods of software development, DoD software engineering requirements,
the Training and Readiness Requirements for building the project, and ultimately the
actual method used to build the SHARP System.

Many engineers and managers relate software engineering methods to the
Goldilocks Syndrome. When Goldilocks invited herself to sit town at the breakfast table

of the Three Bears and partake of their porridge, she found one to be hot, one to be too

56 James Burke, “The Pinball Effect: How renaissance water gardens made the carburetor possible
— and other journeys through knowledge”, London Writers Ltd., London, England, 1996, p. 6.

71

cold, and one to be just right. Many managers tumn to software development and say that

~ one method is too hard, one is too relaxed, and one is just right, without ever evaluating

whether they should use their knowledge to take a little from each bowl of porridge and
make it just nght For the purpose of the SHARP Project, the development looked at
many of the software engineering method and found them all to contain some beneficial
traits but also lacking some of the more intricate methods required for the particular
product at hand.

The Build and Fix Approach offered a basis for the client-developer relationship
through repetitive system review, but lacked any other formal method for development
such as testing, requirements analysis, or integration.

The Stagewise Development Approach served as the basis for most‘ other
development methods, introducing the incremental approach to design.

The Waterfall Model was the first layer up from the Stagewise Development

Approach, introducing a non-return flow of development from requirements to

- Integration. Its logical process of development serves well for fixed-structure systems,

but does not buoy well in projects with loose reqﬁirements, flexible design structures, and
its absence of a system prototype.

The Test Development Approach was the second layer up from the Stagewise
Development Approach. Its concept of authoring a formal Test Plan in parallel with the
development process provides the test and integration teams with an accurate depiction of
what the system should do, based on how it was designed. Unfortunately, due to its
inflexibility as based on the Waterfall Model, it would not meet the fluid demands of the

SHARP Development.

72

The Exploratory Programming Approach was similar to the Build and Fix
Approach with the addition of a Use Stage in the development process that permitted the
client and developer to utilize the system as part of the engineering progression. Such a
method would work well in an environment where thé developer and client serve side by
side and have the opportunity to observe the product in action. As the Exploratory
Programming Approach lacked any other formal process methods such as requirements,
testing, and integration, it would not fully aid in the development of the SHARP System.

The Prototyping Model contained one of the important keys fo the development of
the SHARP System and could potentially assist in the definition of requirements. The
use and development of a Prototype early in the engineering stage would permit clients
and developers to bettef evaluate the requirements and logic of the system under design.
A profotype has been found to reduce project risk and improve overall efficiency.
Unfortunately the Prototype Model is an adaptation to the Waterfall Model and brings
along some of the inflexibility traits that would hinder the déﬂ/elopment of SHARP.

The Incremental Model includes another important trait — The developnient of the
project in increments or small modules. The development of incremental modules vice
the development of an entire system significantly improves the engineering process by
permitting stagewise evaluation with each increment of development. The Incremental
Model would serve as the precursor the Spiral Model and eventually to the final process
of choice of the SHARP System.

The Spiral Model, with its incremental method of Planning, Risk Analysis,
Engineering, and Evaluation provided the keys to developing a system with fluid

requirements. The Spiral Model still required some additional facets or stages of

73

development to meet all of the engineering requirements, but the Spiral Model’s base
structure would serve well as a platform for the ultimate design method.

The Legacy and Reuse Software Life Cycle Approach noted the use of second
party systems into the overall design of a system. This approach serves well when
second party systems are designed from the onset to be integrated into other systems. In
attempt to improve the efficiency of the SHARP Devélopment Process, the use of legacy
systems had to be investigated. The ultimate design of the SHARP System would
incorporate many of the Reuse Software Life Cycle Approach methods, in series with
other beneficial Approaches.

After a review of the prominent development methods and the strict timeline that
the SHARP Team constrained by, it was evident that a further investigation of alternative
methods was appropriate. The theory and concept of Rapid Application Development
provided the tools necessary to meet the SHARP Development Requirements. A
complete RAD design, as discussed in this chapter, incorporated all of the required stages
in an efficient cyclic design. The combination of these techniques, with a powerful
prototyping and development language, and competent management would provide an
impeccable model for building the SHARP Project.

A determination was made to integrate Pseudo-Visual Languages in the
development process due to their ease of use, wide acceptance and employment in the
commercial sector, and ready supply of talented developers. A brief description of
Visual Languages was given with examples of commercial products. '

One of the newest development techniques to gain attention is Extreme

Programming or XP, popularized in numerous technical journals and papers. XP will be

74

used as a comparison and contrasting point against the final method of development for
the SHARP Project. XP is based on an alteration from other RAD models to develop a
new formal model of spiral development. After a review of the literature and critiques, it
was evident that XP was a re-wrapping of existing techniques, with the incorporation of a
number of juvenile-like methods and analogies.

When looking at the Department of Defense as é company, it mandates many
rules, regulations, and stipulations directed to the design and development of software
applications. This chapter reviewed many of the current and expired requirement
specifications to generate an understanding of the motivation of DoD Software
Engineering. This chapter also reviewed the lack of authority and oversight that many of
the DoD directives hold to systems like the SHARP Project.

" DOD-STD-2167A was one of the first standards to establish a common
methodology for software development within the Department of Defense. It outlined
each of the phases of development and documentation, but faiied to give an outlet for
non-standard development. Its inability to “pinball”, as Mr. Burke noted, was its demise.

DOD-STD-7935A served as a document template library for design and
development of Automated Information Systems. Like its mate, DOD-STD-2167, DOD-
STD-7935A was found to be too inflexible fit into the fluid development process of
today’s engineering requirements. Many companies desired to incorporate custom design
techniques and documentation, which would not be compatible with DOD-STD-7935A,
resulting in its cé.ncellation.

MIL-STD-498 was designed as a consolidation tool to join DOD-STD-7835A

with DOD-STD-2167A and to provide a baseline DoD Standard for incorporation with

75

commercial standﬁrds. 498 informalized the development process by incorporating more
autonomy at the team level, introducing a pseudo Spiral Model, and the removal of many
formal review processes. It was later cancelled by the commercial method it was
intended to introduce.

ISO/IEC 12207 introduced commercial method to the DoD establishing a life
cycle development process, flexible approaches to CASE tools, the incorporation of ISO
9000 development techniques, and the procedures for developing outside of the existing
standard. While 12207 had a large number of positive methods and tools, it had no
jurisdiction requirements that mandated its implementation. Without it, the standard had
“no teeth” in the DoD arena. |

DII COE mandated a wide broad sweéping array of standardization changes to the
development of DISA products. DII COE required a detailed certification criteria of all
submissions, as well documentation and security protocols for development. Due to the
limited authority of the development process, DII COE has the potential of becoming just
another “stovepipe” requirement. These points were verified in a phone interview with
the Chief Engineer of the Projeét.

DOD-REG-5000.2-R mandated requirements for the acquisition of major systems
for the Department of Defense. This regulation would control the acquisition, definition,
structure, design, review, and reporting of projects from the contractor to the fleet. While
this regulation was very detailed and apparently beneficial, it was apparently over-
burdensome to many contractors who would make attempts to downgrade their projects

to ensure that they were not classified as “major systems.”

76

The final directive that was reviewed in this thesis was the DITSCAP or DOD-
DIR-5200.40, which established an accreditation process DoD IT systems. DITSCAP
development covered project Definition, Verification, Validation, and Post Accreditation.
While the DITSCAP Directive outlines a very beneficial process for system engineering
and accreditation, it is not widely used by contractors or even DoD Developers.

While this chapter attempted to review many of the more prominent directives
and instructions for DoD IT System Development, it by no way includes all of the
potential regulations that could control such products. This chapter attempted to
demonstrate that there are a number of countering and competing directives that could
control the development of IT Systems. Many of these directives had great intentions,
processes, and methodologies that could benefit system development, but they also
lacked - the compelling authority to induce developers to use them. This lack of
compelling authority resulted in nothing more than, as the Chinese refer to as, “Paper
Tigers.”

This chapter also served as an introduction the requirements of Naval Aviation
and the number of directives that combined to drive Combat Readiness. A brief
description was made of the UNTL and of its reference tov the missions and tasks of the
Naval Forces. While the UNTL is not of direct relevance to combat readiness, its indirect
effects upon many of the other requirement documents is sweeping. |

One of the documents affected greatly by the UNTL was the T & R Manual or
3500 Series Instructions. The T & R served as the basis for the requirements of the
SHARP System. The T & R also outlines the procedures for determining readiness at the

command level. The 3500 Instruction was also affected by the requirements of all 17

77

different TMS Airframes, Wing Training Manuals, and Wing SOP. While the 3500
Series Instruction established a bedrock of Training and Operations, it is based on a fluid
set of referencing documents that requires any resulting software support system to be
flexible and adaptable to the changing needs of operations.

NATOPS or the OPNAVINST 3710 also serves as a guiding standard Flight
Operations. While the T & R serves to establish a directive for the execution of specific
missions and tasks, NATOPS outlines guidance for general flight operations with an
emphasis on sténdardization and safety. As with the changes of the T & R, NATOPS has
gone through 27 interim changes during its first 33 months.

OPNAVINST 3500.39, the Navy’s ORM Manual, required all naval forces to
utilize Operational Risk Management techniques in the planning and execution of
operations. The ORM Manual lacks any specific guidance for the development of ORM
Rules, but burdens commands with developing rules based on their own concept of
operations.

NWP 1-03.3, the SORTS Manual, provides guidance for the reporting of unit
readiness. The only direct requirement that the SORTS Manual mandates from the
SHARP System is the reporting of the single readiness values for consolidation with
other readiness indicators. The SORTS Manual dictates that the readiness values are
classified, which in turn classifies the output of the SHARP System and its readiness
value.

For the last two years, OPNAV had been leading an effort to define squadron
operations IT requirements through the evaluation of independently designed competing

software system tools. N889 was eventually commissioned with the SMART-R project,

78

- with funding from the Navy Quality of Life Initiative, to evaluate potential software
systems. One of the competing systems was the SHARP System. The intended outcome
of the SMART-R Evaluation was to recommend a proposed system f-or acquisition to the
AIRBOARD for purchase. Due to a lack of funding and real authority to mandate any
acquisition, the SMART-R Group will complete its efforts in September 2000 with its _
closing recommendations. While the SMART-R effort was established to evaluate
multiple systems, it also served to refine and strengthen the requiremepts of the SHARP
System through competitive cross comparison.

The last portion of this chapter was dedicated to the specific development of the
SHARP System. Recently, Naval Aviation has made the gradual transition to the “Clicks
and Mortar” environment by the introduction of IT Solutions to complex requirements.
A feview was made of the fluid requirements and different models to develop the solution
set. A discussion was -ma'de of the théory and logic behind the SHARP Project, including
the “Cause and Effect Relationships” of modules and data, the “Trickledown Reliance,”
and logic of other modules and data to devélop the resulting system. The final outcome
of this evaluation and discussion was the introduction of the final development system for
the SHARP Project and the Wedding Cake Modél. The Wedding Cake Development
Model is based on the Spiral Development Model with multiple layers or diverging
cycles, and cross stages links or spokes, and independent development speeds of
progressions.

As demonstrated by the requirements and by an evaluation of previously
developed systems, it is evident that the required SHARP System had to be fluid,

modular, and easily customized. The SHARP System was not to be developed as a

79

stagnant system but rather a constantly changing prototype that would reflect the current
and future requirements with each new cycle of development. Such a development could
only be accomplished using the prototype development technique discussed earlier in the

chapter — the Wedding Cake Method.

80

IIl. METHODOLOGY
A. REVIEW OF PROCEDURES FOR SEARCH AND DISCOVERY OF
EXISTING MODELS

| Optimally, a development team is tasked with the design and engineering of a
specific software IT solution system by members of their parent company’s management
or military Chain-of-Command. The de\}elopment team’s parent would task them with
general requirements and direction/procedures for development and engineering. The
SHARP Development Team was tasked with the design and development of the
operations management tool, but was given no direction or requirements to build the
system, with the exception of supporting the T & R. Many development teams might
refer to this scenario as a worst-case, but the SHARP Team actually determined it to be
the most Optimal scenario possible.

Given the requirement to build a system for immediate deploymenf to the fleet,
the SHARP Team fouﬁd it essential to institute a development plan that would prove
flexible and efficient. Chapter Two briefly outlined predominant development models
and DoD Software Engineering Réquirements. This Chapter will detail the final process
and methodology used by the SHARP Team to determine the ultimate models and
standards for development.

1. Search for Existing Models

Software Engineering Development Models are also referred to as Software Life-
Cycle Development Models, defined as:

“The phases a software product goes through between when it is

conceived .and when it is no longer available for use. The software life
cycle typically includes the following: requirement analysis, design,

81

construction, testing (validation), installation, operation, maintenance, and
retirement.”’

For the purpose of this thesis, predominant development models were discussed in
Chapter Two and related appendices.

a NPS Education

In the fall of 1997, I was enrolled as the first uniform service member to
take part in a Distance Learning - Software Engineering Masters Course, sponsored by
the Naval Post Graduate School. The course curriculum included studies in Software
Methodology, Economics, Management, Testing, Design, Reuse, and Thesis Research.
Studies and presentations in the Software Engineering and Management course provided
a framework for determining a viable software development model. The course objective
was to:

~ “Educate the student in areas of great concermn to the

Department of Defense in the fields of software engineering and

management. The course examines both the technical tools of

software production as well as the software engineering techniques

for software project management. Software testing, metrics and

reliability are also covered. DoD software standards and metrics
programs are included.”>?

The course included an in-depth revjew of stagewise development with the
Waterfall Model, Prototype Model, Boehm Spiral Model, and Legacy and Reuse Models.
This foundation granted me the ability to apply course practical knowledge and logic to
determine the best practice for system development. The unique environment of distance

learning allowed me to work during the day and attend course work in the late afternoons.

37 Denis Howe, “The Free On-Line Dictionary of Computing”, http://wombat.doc.ic.ac.uk/, Denis

Howe, 1993-1999.

38 Naval Postgraduate School Catalog, Naval Postgraduate, Monterey.

82

Techniques taught in the class could then be applied to the development proc/ess the next
morning.

For the purpose of the SHARP Development, I was able to physically lay
out all of the class presentation slides, handouts, and literature and do a systematic review
of potential solutions, as noted in APPENDIX C — SOFTWARE ENGINEERING
TECHNIQUES. Through thé review and contrasted with the project development
requirements, it was evident that none of the course prescribed solutions would satisfy the
needs of the system, with the exception of the discussion about rapid application
develo.pment. While RAD was only a topic of discussion, it was not reviewed as a formal
model. In an attempt to create a complete deyelopment model for the project, it was
necessary to combine knowledge from all of the different models. The resulting product
was alluded to in Chapter Two as the Wedding Model.

| Without the formal education from the NPS Program, it would have been
more difficult to create a working development model for the SHARP System. Not all
tasks and IT solutions nicely fit into the rigid structure of existing models. A background
of solid software management education assists developers to tailor their life-cycle
models to optimally fit the future needs of project development.

b. Subject Matter Expertise

Prior to assignment to the SHARP Development Team, members were
previously tasked with a number of IT and non-IT system development projects as part of
their military duties. One member, CDR Mark Burgunder, had an intimate knowledge of
system development through his past experience with SPAWAR and other solution

provider units. Another member, LT Joe Dundas, gained a business knowledge of system

83

development through his postgraduate education and leadership experience. I had also
gained experience through my postgraduate education and previous system development
tasking. As a part of military training, Naval Officers are taught the basic processes of
leadership, management, and project development so that they may quickly adapt to their
duties in military leadership. Many Naval Officers never get the chance to develop IT
systems, but the concept of developments is nearly the same, from requirements, to risk,
to design, and employment.
| The pool of uniform service members with system development subject

matter expertise is great. That pool is also populated with members who have specific
subject matter expertise to particular tasks and fields of operation. All of the members of
the SHARP Development Team had experience with system management, all of the
members had experience with Naval Aviation, some of the members had experience with
Naval Aviation Operations, and a few members had experience with actual software
engineering. The combination of these experts solidified the base necessary to build a
functioning software life-cycle model to support the rapid application developrnént
required for the SHARP Project.

c Literature

In an attempt to gather the greatest collection of Software Engineering
Models for comparison and contrast, the SHARP Team turned to three sources of
information:

e Distributed Class Notes, Lecture Material, and Handouts

e Published Literature and Text

e Web Based Information

84

Speciﬁc lists of literature, notes, and web sites can be found in the
reference section of this thesis. Before any analysis could be done from the given
literature, it was important to understand the basis, bias, and theme of the document.
Class material -was directed towards educating students on the broad overview of the
topic, with some comparison and contrasting arguments. Published Literature
(Professional Text and Joufnals, Student Thesis and Dissertation Material, and Non-Profit
Whitepapers) was designed disseminate information from the bias of the author and
theme of the média. Web Bases Information ranged from biases commercial
advertisements, to professional postings, to archive collections. Any information from
the Web required independent verification and validation to ensure fact and content.

2. Search for DoD Software Engineering Requirements

For the purpose of the SHARP Development Task, Team Members contacted
members of other development teams to query about existing Software Engineering
Requirement, as set forth by the Department .of Defense and Department of the Navy.
Members of the team were directed to the new web based instruction sites for information
on DII COE Manuals, DITSCAP Manuals, and other pertinent instructions. Copies of
these instructions and manuals can be reviewed in APPENDIX D - DOD SOFTWARE
ENGINEERING REQUIREMENTS. As discussed in Chapter Two, it was found that
none of the DoD Software Engineeﬁng Requirement Documents directly controlled or |
governed the development of the SHARP Project. It was also evident that the
employment of any of these requirement standards would overwhelm the development

process and dramatlcally affect the timeline of distribution of the SHARP Project.

85

The SHARP Development Team faced a great amount of scrutiny when it was
revealed that the Team was not following any of the established DoD Requirement
Standards. Many of the organizations that posted scrutiny were the same organizations
that established and policed the requirements. After a discussion with other development
teams, solution providers, and commercial contractors, it was revealed that there was
very sporadic compliance with DoD Requirements in the field of small IT systems.

After a review of all of the facts, requirements, initial development risks, and
scope of the project, the SHARP Development Team elected not to follow any DoD
- Development Requirement Standard.

B. REVIEW OF PROCEDURES FOR DEVELOPMENT OF THE SHARP

MODEL

1. Requirements Search

For the purpose of this thesis, the discussion of the requirement search shall be
limited primarily to SHARP Version 3.1, with reference to previous versions. An
optimal requirement search would be inclusive of all factors that could impact the
operation of the system, regardless of how inconsequential it may appear on the surface.
Additionally, a requirement search would include interviews and investigations with all
applicable clients, subject matter experts, requirements, and regulations governing the
system.

a. T & R Matrix Requirements
Initially, the requirement search for SHARP was based primarily on
supporting the T & R Manual. The primary requirement authors were then CDR Mark

Burgunder, CNAP N845: LCDR Peter Hunt, CNAP NB836; and myself, LT Chris

86

Williamson, CNAP N845SH. A review and requirement tree was made of the T & R to
find common points in the various type wing matrixes as well as to record divergences
and differences. In an attempt to maintain some amount of consistency across the various
wings, each TMS was required to develop a matrix that, on paper, fit a set format
established by CNAP and CNAL. While the matrixes looked similar on paper, they all
required distinctly unique implementation plans. Matrix pointsvincluded, but were not

limited to:

T & R Qualification Name
T & R Qualification Title
° The Media in which the qualification can be accomplished in —
Aircraft, Simulator, or both
Crewmembers who receive the qualification
Valid currency periods of the qualification by ACTC Level, by
crewstation
. The number of hours required to receive the qualification, and the
annual flight-hours requirement for the qualification
The point value of the qualification by PMA
Notes
Ordinance required for the qualification
Resources required for the qualification
Detailed qualification description and UNTL reference.

While all of the type wings were required to follow the basic format for T
& R Matrixes, a number of type wings diverged from the norm and established unique
formats and flows to model their own exclusive concept of operations. The F/A-18
Hornet Wing required an additional field to track repetitive qualifications, in that a
specific qualification could be repeived multiple times on different flights for currency.
The basic model implied that each qualification could be received an infinite number of
times, but the sum of readiness points would only be based on the most recent instance of
that qualification. The F/A-18 Wing Model permitted a qualification to be received a set

number of times, and the sum of readiness points would be based on the addition of all
87

un-expired instances of that qualification, up to the set number of qualifications. This
model permitted the F/A-18 Wing to track repetitive qualifications and to some extent
imply proficiency by the fa.ct that a crewmember could track the number of current
instances of the qualification. In an.attempt to best fit the requirement to all type wings,
TMS were given the default of all qualiﬁcatiéns being logged once, with the
customizatién function of changing the qualification into a repetitive qualification with a
number of instances. Another change was made to best model the fact that some
instances of the qualification could have different point values based on the factors that
existed at the time the qualification was logged, referred to as Degraders.

Due to degraders and repetitive qualifications, the sum of readiness points
was no longer the total of the most recent instance of current qualifications. To best
model the readiness of the unit, SHARP Requirements mandated that the readiness value
be based on the total points of unexpired qualifications. In the case where there were
multiple unexpired instances of a specific qualification, the instance of the qualification
that had the greatest PMA point values would be selected for the calculation. In the case
where repetitive instances of a specific qualification were permitted, the unexpired
instances of that qualifications with the greatest PMA point values, up to the number of
valid repetitive qﬁaliﬁcation as established by the matrix, would be selected for the
‘calculation. It quickly became evident through the requirement search that simple
idiosyncrasy in one matrix could quickly escalate into a wave of requirement changes
. affecting all of the wings as a whole.

Another critical change to the basic structure was the P-3 Orion Wing’s

requirement to track Tactical Crews. Type wings would determine crew compositions

88

based on a best-fit model of crewmembers by Crewstations, ACTC Levels, and seat
numbers. Once the crewxﬁembers were optimally determined and the crews assigned, the
crewmember of each crew with the lowest PMA point value would contribute the overall
readiness value of the unit. The P-3 Model required that crewmembers be permanently
assigned by the operator to a specific Tactical Crew. Qualifications could only be
received if all of the required crewmémbers for a specific qualification were on the flight
and met the required actions for the qualification, as a Tactical Crew. Qualifications are
not received by an ihdividual, but as a Tactical Crevs; entity. Some qualifications permit
for exceptions that permit one or more members of the required crewmembers to be
absent and still receive the qualification. The unit readiness is then determined by the
sum of valid qualification’s PMA points amongst Tactical Crews. This model required
such a shift in the SHARP Requirements to warrant a parallel effort to tract crewmembers
and compute readiness, based on the Best-Fit model and Tactical Crew model.

A number of other requirements came out of the initial investigation of the
T & R Matrixes and the decomposition of determining unit readiness. It should be noted
that the SHARP Product did not drive the format of the T & R Matrix, but that the T & R
Matrix drove the SHARP Product and its supporting requirements. A discussion of the
NALCOMIS System in the next chapter will note the driving of requirements by the
technology of the system.

b. T & R Message Requirements

Once the team had completed a decomposition of the T & R Matrix, an
additional evaluation of the actual T & R Message was completed. The first partof the T

& R Message was the displaying of the command’s readiness value. This determination

89

was accomplished from the calculations of the T & R Matrix, based on the calculation
model (Best-Fit or Tactical Crew). The second part of the T & R Message included all of
the flight-hour data for the unit. This display would be a summing and breaking down of
fight hours and actions for the particular unit over a set period of time. Data included:

The number and hours of Total Training Events

. The number and hours of Actual Training Events minus Transit
Time, as a subset of Total Training Events

. The number of instances and hours of Transit Time, as a subset of
Total Training Events

o The number and hours of Total Operational Events

o The number and hours of Operational Events where no Concurrent
Training took place, as a subset of Total Operational Events

. The number and hours of Operational Events where Concurrent

Training took place, as a subset of Total Operational Events
The number and hours of Total Overhead Events

The number and hours of Overhead - PMCF Events

The number and hours of Overhead - Deployment/Detachment
Transit Events

. The number and hours of Overhead - Aircraft System Abort Events

o The number and hours of Overhead - Weapons System Aborts
Events

. The number and hours of Overhead — Range Aborts Events

. The number and hours of Overhead — Weather Aborts Events

. The number and hours of Overhead — Performance Incomplete
Events

. The number and hours of Total Sorties

. The number and hours of Day Sorties

. The number and hours of Night Sorties

. The number and hours of Contingency Special Interest Hours

accomplished on a sortie

o The number and hours of Deployed Special Interest Hours,
subdivided into day and night, accomplished on a sortie

. The number and hours of Embarked Special Interest Hours,
subdivided into day and night, accomplished on a sortie

o The number and hours of Exercise (International) Special Interest
Hours accomplished on a sortie

. The number and hours of Exercise (J oint) Special Interest Hours

accomplished on a sortie
. The number and hours of NVG Special Interest Hours
accomplished on a sortie

90

o The number and hours of OPFOR Special Interest Hours
accomplished on a sortie

. The number CV Arrested Landings subdivided by day and night,
for the particular period.

. The number HELO Shipboard Landings, subdivided by Clear
Deck, Free Deck, and RAST Landings, further divided by day and
night, for the particular period.

) The Average Hours per Pilot, NFO, and Aircrewman, and the
percent of T & R Required Pilot Hours accomplished by the Unit
for the particular period.

All squadrons were found to fit into the T & R Message Flight-Hours
calculations without any modifications to the requirements by TMS. While one TMS
might not utilize some of the types of hours, another TMS might not utilize a completely
different set of hours, but the message was kept constant to ensure standardization across
all TMS. The requirement was that the system was written to encompass the widest
possible view of the all type model series. Some requirements may be included at the
request of only one particular TMS to support their unique needs, but when later
incorporated in to the system and noticed by the fleet, many other TMS would find a
need to incorporate it into their concept of operations. One example of this was the
concept of Degraders.

Degraders were formally instituted by the F/A-18 Wing to track instances
of qualifications received where some, but not all, of the requirements for the particular
qualification were accomplished on the sortie. Under the F/A-18 Type Wing Manual, a
set of independent Degraders and degrading values were listed for most qualifications.

Degraders included a twenty-five percent reduction of qualification PMA points if the
aircraft was limited in altitude due to fuel, a fifty percent reduction of qualification points

if weather limited the ability to accomplish the qualification, or a ten percent reduction of

qualification points if a specific tactic was not able to be implemented. This

91

methodology allowed for units to still receive qualifications, be they at reduced values,
when factors limited aircrewmen from completing all of the required actions. While this
concept appeared foreign to most other TMS, it was slowly adopted to better model
points received by some qualifications received under degraded situations. The P-3 Wing
looked at adopting this model to resolve a crewmember configuration factor in their
aircraft. The H-60 F/H Wing adopted this model to demonstrate the reduction of
readiness due to a lack of support ordinance for qualifications. New ideas from one wing
gradually found application with other wings.

The review of the T & R Message and other documents to determine
requirements is referred to as Backwards Analysis. Backward Analysis is formally
defined as “an analysis to determine properties of the inputs of a program (or
requirements) from properties or contest of the outputs.”>® Backward Analysis is one of
the most popular techniques used by developers to determine how to build a system based
on the required outputs of the system. If one knows what is supposed to come out of a
product, it is significantly easier to determine what has to go into the development. Once
the team had a blueprint of the T &R Message, all that was required was a analysis of the
output, reverse engineering of the logic and methodologies, decomposing the declarations
to their lowest common state, and then documenting the results. The reverse of
Backwards Analysis is referred to as Forward Analysis, or “an analysis that determines

properties (or requirements) of the output of a program from properties of the inputs.”*

% Denis Howe, “The Free On-Line Dictionary of Computing ”, http://wombat.doc.ic.ac.uk/, Denis

Howe, 1993-1999.

60 Denis Howe, “The Free On-Line Dictionary of Computing”, http://wombat.doc.ic.ac.uk/, Denis

Howe, 1993-1999.

92

The development of product using Forward Analysis is usually reserved for products of
indeterminate outcome such as dynamic report systems, user customized systems, and
logic driven systems. While it is difficult to derive requirements from Forward Analysis,
Forward Analysis is beneficial as a design technique to develop dynamic systems. The
SHARP System would take advantage of the Forward Analysis Technique in the design
and implementation pf the Setup and Configuration Module of the system that would
permit users to customize the SHARP to reflect the needs of their particular TMS.

c. Support Requirements

Once the initial requirements were mapped for supporting the T & R
Message, a review of the requirements revealed various supporting requirements that
were needed to establish and maintain the function of the system at large. Whilethe T &
R Matrix noted that qualifications should be received across various crewstations, there
was no direct requirement to have a support table listing all potential crewstations and
théir attributes. Many of the initial requirements derived difectly from the T & R Manual
were incomplete in that they only listed the surface requirements of the system and did
not list the supporting prerequisite of the system. The development team was located at
the AIRPAC Headquarters, providing them untethéred access to representatives of all of
the various type model representative’s desks. As subject matter experts in Naval
Aviation and with access to various local TMS representatives, we were able to | g0
thrbugh the requirements matrix and fill in most of the values needed to support the
higher level systems.

While the requirements search was underway and being finalized, another

effort was made to develop the initial prototype to model the requirements and

.93

demonstrate functionality. This method was inline with the Wedding Cake Developmeﬁt
Method discussed earlier in this thesis in that it permitted the development of some
modulés and sub-modules of the system while requirements were still being gathered for
other modules and sub-modules of the same systems. This prototype was then used to
verify the requirements of the system, as well as to demonstrate the potential system to
the clients or rather, to other Naval Aviation Units at the first ATRRIS Meeting.

d ATTRIS Meetings

During the development of the SHARP System, four ATRRIS Meeting
were held to demonstrate any new prototypes under development, to review system
requirements, and to discuss the current and future direction of the project. Three of
these meetings were held in San Diego, California, at NAS North Island, while one
ATRRIS meeting was held in Virginia Beach, Virginia, at NAS Oceana. Attendees of
the meeting included membérs of all of the various type model series from both coasts,
members of the CNAP and CNAL Training and Operations Staff, and members of
OPNAV and NAVAIR Headquarters Staff. A significant portion of the meeting was
dedicated to chalk talk of the SHARP System with members brainstorming about
requirements and about design criteria. Many members came prepared with rep'orts,
printouts, drawings, and animations of the requirements that they required to be
developed into the system.

Many of the ATRRIS Members were highly critical of the SHARP System
in its present format due to the fact that it did not meet all of their personal operations
requirements. The SHARP Development Team informed members of the ATRRIS IPT

that they were supposed to be highly critical of the system and dissect it to unearth any

94

potential weakness and shortcoming. Members would be quick to point out oversights,
misdirection in development, and shortcomings to requirements. While members of the
IPT might criticize the present system, they would be quick to recommend solutions and
improvements to enhance the design of the future product. Their critical view was
imperative to ensure compliance with the needs of the fleet.

e SMART-R Requifements

These various inputs, coupled with the T & R Instruction Requirements,
were combined to generate'a consolidated SRS for the development of the SHARP
System. Even when it appeared that a significant amount of the reqﬁircments had been
solidified, a new team was invited to join the development process and requirements
search for SHARP — the SMART-R Evaluation Team. The SMART-R Team added a

new view of the requirements to include a look from the Navy / Marine Corps

 Perspective, vice the limited review from the limited Naval Aviation Perspective. The

SMART-R also introduced requirements that extended beyond that of just Flight
Operations, to include information and requirements from the support side of logistics
operations. After a complete investigation and review of the SMART-R’s requirements,
it became evident that, to build a viable Operations Support Tool, all of the primary and
secondary requirements needed to be considered.

The ATRRIS IPT did a superior job at compiling a set of primary
requirements needed to support Naval Aviation Operations. The SMART-R
complemented the requirement search by closing the loop on ATRRIS IPT findings and
adding secondary or support requirements. The SMART-R Team was able to poll inputs

from a more diverse body of clients and users such as members of other armed services,

95

foreign servicés, private contractors, and higher echelons of Naval Operations. Due to a
lack of budget and logistical ﬁmitations, the SHARP Team had to reserve its search
almost exclusively to Naval Aviators, Squadron Personnel, and the support instructions
that guided our operations. The SMART-R Team, with the geographic advantage of
being located near Washington D. C., the physical access to members of higher echelons
of the military service, the task of evaluating competing systems, and the financial
funding to afford additional support personnel gave the SMART-R a distinct advantage to
find requirements above and beyond that of the SHARP and ATRRIS search. It should
be noted that the SMART-R Team was not able to document all of the primary
requirements due to their detachment from the actual operators.

Due to the rapid development timeline requirement of the SHARP System,
initial development had already started before all of the requirements had been finalized.
In a cyclic approach to design, a small group of the AIRPAC Team members meet to
discuss the risks of the different modules of development, options to reduce risk factors,
and potential céurses of actions taken to mitigate those risks. As requirements were
finalized and risk mitigation plans were developed, the SHARP Team set out to design
prototype models to best demonstraté the requirements. The prototypes were
disseminated to various users, squadrons, and detachments for their evaluation of the
developer’s interpretation of the requirements and for the incremental integration of the
system into the command. The resulting prototypes generated and solidified the
requirements of the SHARP Systelﬁ, ensuring that each of the independent needs of the

various units were meet by one integrated product.

96

2. Product Environment

a. Visual Basic

The backbone of any successful project is the programming or
development language that is used to build the system. Due to the fluid environment and
timely requirements that SHARP was td be developed under, it was necessary to find a
development language that supported Rapid Applications Development. A chosen RAD
tool had to be easy to use; had to accept reusable code; be a recognized indus"uy standard;
have a valid compiler and efficient debugging tools; had to be capable of creating usable
prototype designs; and had to be cross compatible with the windows operating system.
While the commercial sector markets dozens of potential software development
packages, the SHARP Development Team was limited to four particular development
suites, due to DoD license limitations, approved software development products, and
product accessibility. The SHARP‘ Team was limited to selection from the Microsoft
Visual Basic 5.0/6.0 Development Suites, the Sybase PowerBuilder 6.0 Package, Inprise
(formerly Borland International) Delphi 4.0, and the standard C++ Language Kit. The
strongest development language of the four was undoubtedly C++. Due to the
complexities of the C++ Language Suite and the management effort required to maintain
a development, it was quickly ruled out as a valid RAD Tool.

In an effort to determine the best development tool for designing the‘
SHARP System, the development team turned to a number of Benchmark Summaries and
Evaluations to obtain an independent judgment of potential development solutions. The

most inclusive Benchmark found was the NSTL Benchmark of Visual Basic,

97

PowerBuilder, and Delphi.*® NSTL based its evaluation on the compatibility,
performance, usability, acceptance (bug) testing, and BIOS evaluétion of the three
different development tools. A copy of the Benchmark Study can be found in the
appendices of this thesis.

The summary of the NSTL Benchmark stated that “Visual Basic provides
the most powerful enterprise development package. Visual Basic provides excellent
performance, is the easiest to learn and use, and provides an unmatched feature set. The
new OLEDB drivers give it the fastest data access among the programs tested. The new
database tools give it the strongest database programming tools of any development tool
on the market. Visual Basic is the hands-down favorite for COM-related programming
tasks. Creating ActiveX contrcﬂs and Microsoft Transaction Server components is
simplified by exceptional debugger support and the native COM object model. The new
ADO support and Microsoft Transaction Server integration make it easy to use Visual
Basic for three-tier applications. For web development Visual Basic's integration with
ASP and IIS will appeal to the many developers already using that platform. For the 95%
of Visual Basic developers that aré programming database-centric applications, an
upgrade to 6.0 is a no-brainer. The new version makes it easier to develop your program,
and it makes the end product faster.”

“Delphi offers similar performance to Visual Basic, but lacks Visual
Basic's compelling user interface and drag-drop database programming tools. We found
the Borland Desktop Engine to be slower, less reliable, and less manageable than the

OLEDB drivers used by Visual Basic. ActiveX and COM components in Delpﬁi offer

81 Benchmark Study of Visual Basic 6.0, Delphi 4.0, and PowerBuilder 6.0, NSTL, 03 Mar 1999.

98

comparable performance to Visual Basic, but are more difficult to program. Delphi hes
some feature advantages for advanced programming, but most programmers would prefer
to do this type of programming in C++. For Delphi 3 programmers, an upgrade would be
mandated if you have urgent CORBA requirements. The other features like the code
browser and minor Object Pascal enhancements are not that compelling.”

“PowerBuilder is a bad choice for developing anything for a Windows
platform. It is tolerable for client/server development, but it is intolerable for web or
three-tier development. The performance problems, bugs, and poor debugger (still bad, .
though much improved over previous versions) make it ill suited for this work. If you
must work in PowerBuilder, the debugger alone is worth the upgrade.”

| Visual Basic was sited for its ease of use, its drop and drag development
environment, ability to access and mam'pulate data centric objects, compatibility with the
Windows OS, and overall reliability. The Visual Basic debugger provided error detection
from the application level down to the transaction server level. Delphi was plagued with
numerous bugs and poor documentation, making development of a new system nearly
impossible without a strong background knowledge of Delphi’s fundamental logic
principles. Without an intuitive development process, Delphi was found unacceptable for
the SHARP Development Team’s needs. PowerBuilder was found less compatible with
Windows OS than we had hoped, creating a non-standardized GUI and excessive DLL
conflicts. The PowerBuilder Debugging Tool could not be used in the development
environment, but rather off line, restricting real time debugging and solutions correction.

NSTL actually recommended that user now upgrade to the new version of PowerBuilder

99

6.0 for some development projects due to the number of faults and errors in the new
system.

After a full review of the NSTL findings, personal preferences of
development, the availability of skilled programmers and engineers in specific languages,
and the ultimate risk of using the different languages, it was determined that the Visual
Basic Development Suite would best meet the needs of the SHARP Project.

b. Hardware Requirement

~ Shortly after developing the prototype models, it quickly became evident
that the existing fleet deployed computer systems would not support the SHARP Product.
The effort to install IT-21 based system was planned and funded, but had not yet reached
the fleet in 1998, when the SHARP Project was initiated. IT-21 PC Standards were
defined as:®?

200 MHz Pentium Pro CPU

64 MB EDO RAM

3.0 GB Hard Drive

3.5” Floppy Disk Drive

8X IDE CD-ROM

Dual PCMCIA/PC Card Reader

PCI Video with 2MB RAM

17 Inch Monitor (1280-1024)

Pointing Device (Trackball or Mouse) and Keyboard
Soundblaster (compatible) Audio Card with Speakers
CPU compatible 100 MBS Fast Ethernet NIC

The minimum requirements for IT-21 computers would meet the needs for
installation and execution of the deployed SHARP System. Due to the rapidly

approaching deployment timeline, it was elected to take money from the Flying Hours

62 Archie Clemins, Admiral, “IT-21: The Path to Information Superiority”, Quadrennial Defense
Review Secretary’s Report to Congress, Jul 1997. ,

100

Program and purchase four computers for each squadron and detachment. Since the
SHARP System was to be developed by members of the operational staffs of CNAP and
CNAL, the development teams had ready access to members who could channel the
financial burdens of hardware onto other operational budgets. These computers would
serve as stopgap systems for the Operations Office until the deployment of actual IT-21
computers two years later.

c MDB vs. SOL

VB has the ability to support a wide variety of database formats, from the
Microsoft Database Format (MDB) to the Strﬁctured Query Language (SQL).* Due to
site licensing cost and footprint distribution issues with the SQL Database, the SHARP
Development Team was required to look for alternatives that could still provide the
robust features of a dynamic database, be widely compatible with other related systems, -
and use conventional data queries to access data.

The MDB format, using MS Jet Engine Version 3.51.2723.0 was
authorized for open application distribution as part of the SHARP Development Package.
MDB, via the VB'Development Environment, used standard SQL script to access data
from the database. Relationships: Indexes, and Keys were customizable through database
design and could be dynamically reformatted through executable code. Based on its
small footprint, compatibility, and license issues, the Microsoft Database Format was

selected to support the initial data requirements of the SHARP System.

6 Microsoft Data Engine for Visual Studio 6.0, Public Affairs Release, Microsoft Corporation, 23
Nov 1999.

101

Microsoft has elected to include the SQL 7.0 MSDE (Microsoft Data
Engine) as part of the new Office 2000 release.** As well as the MSDE release, SQL 7.0
has also authorized the release of the run time database component with complied
products. Efforts are now underway to incorporate SQL 7.0 into future releases of
SHARP to improve efficiency and optimize the product to a more robust supporting
database. SQL 7.0 will add additional relationship integrity to the system, as well as data_
triggers that permit logic statements to be executed in parallel with data manipulation
from the database level.®® |

d. Dissemination to the Fleet

Today, there are over 4,108 Operational Naval Aircraft, deployed to over
one aviation hundred squadrons and support units, on twelve Aircraft Carriers and over
two hundred aviation capable vessels and shore stations deployed worldwide. The
logistical dilemma of shipping a copy of the software to all aviation units using the postal
system ‘was found impracticable due to the postage cost and delay in transit. The Fleet
Post Office (FPO) System notes that shipping time for packages to overseas and deployed
units could be as short as seven days or as long as fifty days when shipped via standard
mail %

In an effort to get around the logistical problems of mailing the product,

the SHARP Team devised a three-prong approach to the dissemination requirement. The

o4 Microsoft Data Engine for Visual Studio 6.0, Public Affairs Release, Microsoft Corporation, 23
Nov 1999.

& Evaluation Guide, Enterprise Application Development Support, Public Affairs Release,

Microsoft Corporation, 10 Sep 1999.

& Postal Bulleting 22011, United States Postal Service, 18 Nov 1999.

102

Fﬁst solution was to post the entire system on a World Wide Web (WWW) Site hosted
by AIRPAC fof users to download the program and then install it on their system. Most
ships and stations had access to the Web through either Base br Ship provided Local Area
Networks (LAN) or via telephone ﬁne. Once on the web, users could download the
system at their convenience and install it v&;here needed. The Web also provided users
with a ready location to download the f)roduct in the event that their existing syStem had
crashed, had to be re-installed, or the original copy was lost and needed to be refreshed.

The Second method was to post the entire system on the SIPRNET. Some
units did not have reliable connections to the Web due to logistical problems at their
assigned duty station or station of assignment. The SIPRNET provides a more secure
network for uses by defense personnel to access sensitive information through authorized
locations. SIPRNET dissemination provides the same benefits as lWeb dissemination,
with the additional feature of a secure link and alternative connection methods.

The third and most basic technique was to abandon “Snail Mail” methods
for E-Mail. The SHARP Team has consolidated a list of over 330 persons, units, or
locations that requested to be added to, a centralized list of recipients for update bulletins,
announcements, and releases to the program. When requested, the SHARP Office could
quickly mail a packet of SHARP Products to the requifed recipient to immediately meet
their spéciﬁc needs. Some units were unable to reach the SHARP Pages due to network
problems, firewalls, and connection rates. The E-Mail alternative allowed for an
immediate response to time critical requests from the fleet. Most E-mail packets were

limited to 3.0 Mb in size to ensure that they would fit through the e-mail firewalls of fleet

103

servers. Some servers required files packets to be less then 1.0 Mb in size, resulting in a
quick repackaging of the system, and updéte.

One user referred to this technique of dissemination as “Navy Shareware,”
akin to the shareware software that users can download free from the web and then
decide if they like it. This technique has a number of shortcomings including limited
product tracking, reliance on web conductivity at the user level, the unintentional release
of product to unknown individuals, unauthorized access to the product, and no hard
media of the product. These shortcomings were easily outweighed by the rapid rate of
dissemination, easy access to the product, and reduction in overhead cost to manage the
distribution.

3. Leapfrogging Technique and the Three-Year Rule
One of the most popular and often quoted software / hardware development
principle is Moore’s Law from 1965 that states;

“The pace of microchip technology change is such that the amount
of data storage that a microchip can hold doubles every year”’

This law was later revised in 1975 to double every eighteen months. This
principle is based on the concept that technology is constantly improving thereby adding
to an exponential improvement of hardware to support the improvement. This cyclic
reliance on technology to hardware to technology results in a spiraling improvement of

the rate in which we can process data, build new systems, and update legacy products.

Rishi Khanna, Jennifer Kwan, Jason Lamin, Ingred White, “More on Moore'’s Law ”, University
of Texas, 1997.

104

Through my research, I have realized that another rule applies to software system

longevity, that - No IT systems should remain in its present state for longer then three

years. This short life span is limited by the fact that:

e The System is replaced by an update to itself, manufactured by its parent

developer.

* The System is replaces by another system, manufactured by an independent

developer.

e The System is no longer required and is ruled obsolete.

Industry and Defense have exemplified the Three-Year Rule in the recent decade

Windows 1.0
Windows 2.0
Windows 3.0
Windows 3.1
Windows 95
Windows 98

by the following examples:
|

Windows NT 3.1
Windows NT 3.5
Windows NT 3.51
Windows NT 4.0
Windows NT 5.0 Beta

SHARP 1.0
SHARP 2.0
SHARP 3.0
SHARP 3.1
SHARP 4.0

November 20, 1985
April 2, 1987

May 22, 1990
April 6, 1992
August 24, 1995
June 25, 1998 .

August, 1993
September 6, 1994

 June, 1995

August 24, 1996
August 1998%

May 1995

"September 1996

August 1998
March 1, 2000
December 29, 2000

Many systems developed by the commercial sector or by defense contracts have

unintentionally followed the Three-year Rule, under the threat of being beaten out by

competition or due the fact that requirements have changed so dramatically to warrant a

105

new system. The time to develop many systems takes longer then the three-year window
applied to this assumption. In an attempt to remain within the three-year window and not
be outdone by competition many developers use a leapfrogging development technique
where one system is developed, but before its it released, another team is stood up to start
the development of the next system, and so on. To ensure continuity and add subject
matter expertise between the two systerhs, some members of the first team may be pulled

off the development and assigned to the second team, as depicted by Figure IT1.1.

w

5

=] — “ Team Members

£ 8 & i >

g 5 5

&~ > > Development
—_—

, .
N o
., Ry

......
o o
..........

........

Version 2

Figure IIl.1 Leapfrogging Development Technique
If properly executed, the Leapfrogging Development Technique would permit a
developer to start the development of the first version of the system, then soon after, start
the development of the second system. Through this technique, the first version serves as
a prototype to the second system. Requirements and lessons learned by the first version
can be applied to the second and subsequent iterations of development. To assist in the
understanding of the development requirements and to assist in minimizing risks,

members of the first team can also be applied to the development of the second system,

& Frank Condron, “Frank Condron's World O'Windows - Microsoft Windows History”,
http://www.worldowindows.com/wintime.html, February 27, 2000.

106

bringing along proven techniques, methods, énd reusable systems. Through
leapfrogging, this technique can be applied through the entire life of the system.

In the development of the SHARP System, the chain of events dictated that a
product be produced that was flexible enough to meet the fluid documents requirements
established by the chain-of-command. To best manage this requirement a number of
independent efforts were tasked with the design of the system on various layers of the
“Wedding Cake.”

The first iteration of SHARP was started in 1995, using an Excel Spreadsheet
with embedded script and support code. This Spreadsheet was designed at HS-6 to track
qualifications on a “Ribbon Sheet”. A Ribbon Sheet is a long continuous sheet of
information containing crewmembers up the vertical axis, qualifications along the
horizontal axis, and qualification expiration dates as the resulting value at the intersection
of the horizontal and vertical axis. Various other support spreadsheets were written to
archive calculations, code, and views to compile the Ribbon Sheet. Two aircrewmen and
myself were tasked with maintaining and utilizing the initial version of SHARP 1.0. It
was only used within my home squadron - HELANTISUBRON-SIX.

The second iteration of SHARP, also developed exclusively for my home
squadron, was started in late 1996. This version incorporated the Visual Basic 4.0 coding
language in a 16 Bit Environment. Visual Basic 4.0 was chosen for its ease of use,
compatibility with the Windows Operating System Environment, and site license to the
Navy. SHARP 2.0 was built upon the requirements of version 1.0, with the addition of
modules to capture additional operational requirements such as flight-hours tracking and

mission or task accomplishments. SHARP 2.0 was build in parallel with the to the

107

operation of the version 1.0, with 1.0 users assisting in the requirements search and
development of 2.0.

When it came time to start the development of 3.0 in March of 1998, version 2.0
was not complete and a number of requirements remained open. A stop-gap effort was
made to lockdown the development of 2.0 while requirement search was done for version
3.0. Version 3.0 included bring SHARP into the 32 Bit Environment, the expansion of
the system to include all 17 different type model series aircraft, and the expansion of
functionality as noted in the SRS Document. Version 3.0 was disseminated via the Web,
both through the SIPRNET and INTERNET, which permitted a rapid integration to the
fleet. A decision was made to lock down the progressive servicing of Version 3.0 in the
anticipation of my transfer from the project and to establish a baseline for the contractor
to work from. The new Version, SHARP 3.1, was published via the Web and on CD to
the fleet twenty-four months after the release of Version 3.0. While efforts are being
made to maintain and develop Version 3.1, SHARP 4.0 has already been tasked for
development by AIRPAC.

The SHARP Model required rapid changes and successive releases through its
development in an attempt to keep up with the fluid requirements of Naval Aviation. It
would have been extremely difficult to efficiently manage the engineering of the product
without using a Leapfrogging Technique to model thg efforts of two parallel project

developments.

108

4. Development Technique

a. Applied Wedding Method

In compliance with the Wedding Cake Model discussed in the Chapter

Two, there were a series of stages to be completed to develop the SHARP system, as

depicted by Figure II1.2.
Stage Task
1. | Tasking Develop an IT Software Solution to support the CNAP /

CNAL T & R Matrix.

2. | Requirements
Search Stage

Gather initial requirements set for the development of the T
& R support tool. The initial set of requirements was to
include the basic framework or logic backbone for the
system.

3. | Module Breakdown
and Task
Assignment Stage

Initial investigation revealed no need to break down
requirements set. Team would continue to work as a single
unit to develop the prototype task.

4. | Solution Search
Stage

Determination of the required hardware, development
language, and supporting database to meet system
requirements.

5. | Risk Analysis Stage

Determination of potential risks:

¢ with supporting software against system requirements

 with supporting hardware against system requirements
 with supporting database against system requirements

¢ through cross comparison of requirements

6. | Prototype Stage

Development of initial prototype.

7. | Evaluation Stage

Evaluate prototype to determine if:

e the hardware will meet system requirements

the software will meet system requirements

the database will meet system requirements

system requirements can be meet through development
the requirements meet the client’s needs

Evaluation team consists of developers and clients

109

Stage

Task

Second Cycle —
Requirements Stage

Gather detailed requirements set for the development of the
T & R support tool, based on prototype evaluation results.
Develop test methods based on requirements.

Module Breakdown
Stage

Assign team Members to Build:

Main Menu Module

Configuration Module

Crewmember Support Module

T & R Support Module

Flight Logging Module

e Report Module

Team members diverge to own task, assi gned requirements,
develop test methods.

10.

Solution Search
Stage

Main Module Team Establish data configurations and links
between modules. Determine tools required to accomplish
each task.

11.

Risk Analysis

Independent Teams evaluate risk of independent module
development.

Main Module Team Evaluate risk of system development up
to this stage.

12.

Prototype
Development

Independent Teams Develop own Prototype Module.

Main Module Team Develop Main Module

Where able, completed modules shall be joined to the Main
Module.

13.

Evaluation Stage

When each Independent Module Prototype is complete,
evaluate if:

* the independent module will meet module requirements
the hardware will meet module requirements

the software will meet module requirements

the database will meet module requirements

the requirements can be meet through module
development

* the module requirements meet the client's needs

Evaluation team consists of each independent module
developers, the Main Module Development Team, and the
client. Where applicable, the client shall be delivered the
working evaluation product for employment.

110

Stage Task

14. | Additional Tasking | Develop a Software Solution to support all aspects of Naval
- | Aviation Operations

15. | Third Cycle — Gather detailed requirements set for the development of the
Requirements Stage | Aviation Operations Support Tool, based on new tasking,
prototype evaluation results.

Develop test methods based on new requirements.

16. | Repeat Cycles as
required to meet
requirements

Figure IIL.2 Lifecycle Development of the SHARP System

The first step of development was to receive tasking for the actual project.
The SHARP Team was tasked in the spring of 1998 to develop a system to support the
CNAP / CNAL T & R Matrix. Tasking included definition of the initial project
requirement, a line of authority for the development, and funding lines for appropriating
services, supplies, and travel. The initial tasking was assigned. to a group of mﬁfoﬁn
service members, selected for their proven history of project development, software
engineering knowledge, and aviation subject métter expertise.

The second step was to initiate a requirement search of initial baseline
requirements. These requirements were based on the T & R Instruction, supporting
instructions and documents, and personal knowledge of the development team. It was
not necessary to define all systém requirements at this early stage, but to generate a
general requirement set or theme of requirements to build the first prototype bn. Team
members were also required to compose test scenarios for the evaluation phase during the

requirement search.

111

The third step was to evaluate the system for Module Breakdown and Task
Assignment. In the early stages of development, it was not advantageous to break the
system down into modules before the initial prototype was evaluated. For the first cycle
of development, the engineering team remains as a unified group to properly examine the
direction of the system. Team members were also required to compose test scenarios for
the evaluation phase during the Module Breakdown. If the team members noted that
requirements were not properly formatted to permit module breakdown or were not
complete, the team should make recommendations to be reviewed on the next visit to the
requirement search.

The forth step was to make a solution search for the tools and instrument
required to support the development. It was imperative to make a determination early in
the development process as to the design language required to design the SHARP Project.
A conclusion Was made to use Visual Basic as the design language based on an
evaluation of potential design languages, ease of use, its ability to compile an executable
rapid prototype, and the preponderance of qualified engineers. Further evaluations were
required to determine the database format capable of supporting the SHARP System
development. Due to economic limitations and.distribution paths, the SHARP Team
elected to incorporate the MDB Database Format for the initial stage of design. In some
cases, it is necessary to choose a lesser tool due to the limitations of the overall support
structure. Finally, an evaluation was required to determine the hardware necessary to
support the deployed system. Due to the rapid time line of the project, it was necessary
to select the hardware early to ensure sufficient time to have it ordered and delivered.

Team members were also required to compose test scenarios for the evaluation phase

112

during the Module Breakdown. If, during the Solution Search, the team noted that
requirements should be modified to match potential solutions, then they should be
registered for review in the next visit to the Requirements Stage.

The fifth step of development was to evaluate the requirement and
solutions for risk. For the first cycle of development, the risk analysis should evaluate
the software, hardware, and database selection to ensure their ability to support the
project requirerhents. Risk should be assigned to determine the level of difficulty in
implementing each of the three system tools. An initial evaluation of project-
requirements should be made to determine the risk of developing the system as a whole.
The results of the risk analysis should be used to revise the overall system requirements
and to manage the actual system design. Team members were required to compose test
scenarios for the evaluation phase based on risks determined during the Risk Stage. If
risk was determined to be too ‘high for the development phase, then the development
manager could return the cycle back up to the Solution Search Stage to determine
alternatives.

The sixth step is to develop the initial prototype of the system. In the first
cycle, it is only necessary to develop a GUI phase prototype to demonstrate the potential
look and feei of the system. The start of this process may be dedicated to white-board
designing of the look and then transposed into a working model. The sole purpose of the
prototype at this stage is to demonstrate thé assignment and perception of system
requirements. Based on development techniques, team members should compose test
scenarios to evaluate the completed project. If, during the development stage, the team

realized that requirements could not be satisfied, were not complete, or were noted by the

113

client to not meet their needs, changes should be registered to be reviewed in the
Requirements Stage. |

The seventh stage of development was to evaluate the completed
prototype against project requirements. An evaluation should be made against the
hardware, software, and database selected and of their performance against system
requirements. A second evaluation should be made to detennine if the prototype would
meet the project requirements. A final evaluation would then be made to determine if the.
requirements would meet the client’s needs. It is imperative that both the clients and
developers be involved in the evaluation phase.

At the completion of the first cycle, a reinvestigation of system
requirements was necessary to determine system function at a greater depth. With each
re-visit to the requirements stage, requirements analysis should be made to a greater and
greater depth or to a greater width as tasks increase.

The ninth step was to make a Module Breakdown and Task Assignment of
the system. Independent teams were tasked with the development of each module. A
single team was assigned to develﬁp the Main Menu Module, which then served as the
key or backbone to the entire system. The Main Menu Module contained the menu logic,
data transfer protocols, and system standardization ciesign for the entire system.

The tenth step was to determine tools required to meet the independent
module’s development requirements. These tools could have been existing modules
further developed to meet new requirements, reusable code incorporated into the new
system, or the incorporation of parallel efforts that also meets tllle independent module

requirements.

114

The eleventh step in the process was to determine the risk of the
development of each of the modules. Risk would either be an evaluation of the difficulty
to accomplish the independent tasks, or an evaluation of the over tasking of individual
teams. With the. intent of keeping program development cycle time to a minimum,
independent teams should not be tasked with too large a module. Historically, largér
projects have demonstrated a greater change failure. In an attempt to avoid this trend, the
Wedding Model recommends the breaking up of the project into small manageable
modules. The risk stage should.serve as a check and balance to the Module Breakdown
Stage.

From the point of Task Assignment on, independent teams were free to
proceed at their own pace to meet the specific vrequirements of their independent module.
This freedom permitted each team to determine solutions, analyze risk, develop
prototypes, and. evaluate their design for requirement completeness. The dévelopment
team of the Main Menu Module was assigned with consolidating each completed module
prototype when they themselves phased through the development stage.

The Main Menu Module Team served as the final check and balance of
the system. As each independent team would complete their cycle of development and
evaluation, the Main Team would take the completed module and combine it to produce a
single product. This product would then be evaluated with the client for completeness. If
sufficient to meet the client’s needs, the prototype was employed to client stations.

With each successive revolution on the development cycle, independent
teams would re-evaluate requirements for completeness. If requirements were complete

and clients needs were satisfied, the team would then be available for new module tasks.

115

In some cases, a development team may be broken up to conquer smaller module of their
original module.

As development continues and each independent team completed their
own module, the development process diverged into multiple layers. The Main Module
continued to serve as a repository for reusable code and served as the backbone for each
completed system to link to. In some cases, modules were determined to be too difficult
to complete and failed in their development. As each module was engineered as an
autonomous unit, their failure did not effect the function of other working systems.

Clients were permitted intimate access to the life cycle development of the
system through the requirement to the evaluation stage. This intimate access afforded the
client the ability to modify the product before the development team spent excessive
efforts to engineering the system. As the client determined the existing system to satisfy
working requirements, then the client could deploy the completed product to the fleet.

b. Motivations and Theory

Einstein stated that, “Everything should be made as simple as possible, but
not simpler.”® The simplest solution to the SHARP Development Problem was to break
up the complex project of aviatioﬁ readiness automation into a number of smaller simple
projects, without removing any of the greater functionality. These smallér projects could
then be engineered as independent units, tested, and then consolidated for a final system.
As long as each single unit functioned properly, satisfied the testing criterié, followed the
main linking protocol of the system, and the main system functioned properly, then it

could be closely assumed that the entire product would function.

@ Albert Einstein, “Autobiographical Notes”, Open Court Publishing Company, 1991

116

Basic principles of Software Management "imply that the longer a project
takes to develop, the larger the project is, or the more complex the project appears, the
greater the chance is that the project will fail.” This principle can be graphed as noted in
Figure II1.3. Studies by the Standish Group found that a great percentage of large
projects failed due to their size, their complexity, and by the fact that many developers
were moved off the project before syétem design completion.”! These project failures
resulted in significant cost overruns and delays in sysfem completion. In an attempt to
prevent repeating the follies of the past, the SHARP Development Team attempted to
reduce the scope of the project by developing small units of the project in independent
modules. The small size permitted rapid module development, quick verification of
requirement completeness, and safeguarded the project against the turnover of
developers. As an individual would be moved off of tllle team, his impact would be
isolated to a smaller portion of the overall system in compaﬁson to traditional
programming techniques. The military environment did not permit great tolerance to
overruns and delays when it came to uniform service member development. The concept
of “Developmenf by Mandate” where members of the SHARP Project were ordered to
produce a product encouraged the Team to take the most efficient steps possible to
develop the best product in the shortest amount of time.

The SHARP Development Team used a Top-Down Design Methodology
~ def'meci as a design technique which aims to describe functionality at a very high level,

then partition it rapidly into more detailed levels one level at a time until the detail is

0 Man-Tak Shing, CS3460 Software Methodology Slides, Naval Postgraduate School, Monterey,
CA, 1999.

117

sufficient to allow coding.” This theory implies taking the product at its basic level for
an initial decomposition, and then continuing to slice the product up into greater and
greater increasing levels of detail for further decomposition. The Wedding Model
permits this kind of decomposition, with the project given a high level decomposition,
and then each independent module is further decomposed to reveal the intimate workings.
As each cyclic visit, the module is further decomposed until all of the requirements have

been discovered and developed.

?

&
<
~
[
2
=
&8
. —>
Time to Develop
Figure III.3 Failure Rate vs. Time to Deploy
5. Commercial Sector Motivations

a From the Trowel to the Electron

As discussed in Chapter Two of this thesis, the commercial sector is
making a gradual shift in techniques and operations from the “Bricks and Mortar”
Environment to the “Clicks and Mortar” Environment. This shift could not be

accomplished without a significant realignment of resources and change in habits. The

n “CHAOS”, The Standish Group, www.standishgroup.com, 1995,

2 Denis Howe, “The Free On-Line Dictionary of Computing”, http://wombat.doc.ic.ac.uk/, Denis
Howe, 1993-1999.

118

SHARP System was an initial step in the process of moving Naval Flight Operations
from the days of grease boards towards to the world of electronic data processing and
transfer.

This thesis uses the terms “Trowel” and “Electron” to define the
mechanism that creates each of the unique environments. The trowel represents the
conventional methods of building systems, products, and outputs by manual labor. The
electron represents the use of electronic Or smart systems to design systems, products,
and outputs. While it is very difficult to develop a product that is exclusively “Electron”
based, the use of a smart system can potentially increase the efficiency of the operatlons
by removing the expense and potential for human error.

In the trowel-based world, businesses would manually gather data, raw
supplies, and use traditional manufacturing techniques to produce a product. Naval
Aviation would use manual techniques to prepare schedules, record post-flight events,
and manage squadron operations to produce readiness calculations and other reports. In
the electron-environment, businesses have the ability to reduce hard material to electronic
storage, encourage automation devices, and increase efficiency by producing the same
product using technological advances. Naval Aviation Operations benefit by
electronically preparing their schedules, building automated business rules for operations,
and preparing accurate reports based on a controlled user input environment.

It would be difficult to build a system that could remove all mortar-based
environments from Naval Operations, but the SHARP System would dramatically reduce
the overall workload of the aircrew by adding a streamlined and automated operations

business process. Using this motivation, coupled with the subject matter expertise of the

119

development team, the SHARP SRS was written such that it outlined every possible way
to reduce the overall workload of the command through instituting automation. This
automation was not a change in the operating process, but rather an establishment of a
virtual form of the existing environment. This virtual form reduced the overall training
requirement of the SHARP Project because the project directly matched the existing
concept of operations. |

b. Software Shopping in the Bazaar

One of the very popular papers about open source development is Eric
Raymond’s essay entitled “The Cathedral and the Bazaar.” While the development of
Red Hat and other Linux open-source products may be controversial, the methodology is
based on sound management, new generation development techniques, and logical
business practices.

Eric Raymond thought that all large systems should be built like a
cathedral, with no beta products to be released before the complete product was ready for
distribution. After his review of Red Hat, he admitted that the bazaar style of many small
product development efforts is more efficient and flexible. The SHARP System also
used this bazaar type atmosphere to encourage multiple independent efforts in the
development process. The SHARP Bazaar was set up with basic ground rules to ensure
that each ‘fstall” would “sell” compatible products with autonomous flair and timelines.
A customer could purchase the products he desired and place them into his Main Module
“Shopping Basket” to create a system customized to meet his type wing’s unique needs.

The first principle of the “Cathedral” essay was that “Every good work of

software starts by scratching a developer’s personal itch.” SHARP was developed from

120

my own personal itch to make my job easier when I served as a Pilot Training Officer.
Necessity drove the deyelopment of the initial system, and proved the concept to build
the current product.

“Good programmers know what to write. Great ones know }low to rewrite
(and reuse).” The SHARP System today is developed on the bones of yesterday’s
product. Through reuse and rewriting, using the concept of top-down development, the
SHARP Team §Vas able to efficiently tune the product to meet the fluid requirements of

Naval Aviation.

73 and “Often, the most

“Plan to throw one away, you will, anyhow,
striking and innovative solutions come from realizing that your concept if the problem
was wrong.” The SHARP Development Team has thrown many iterations of the system
away with each revolution of the development cycle. The beauty of any spiral
development is the ability to refine the product through repetitive prototype design. It
would be difficult to see any true similarities between the first iteration of the product to
the current release due to the constant reevaluation of requirements. Cyclic development
gave us the opportunity to take a step back after each development phase and redirect our
efforts to better meet the client’s needs. If it became evident that the present cycle was ill
developed, then the SHARP Team could simply not implement the new design into the
Main Menu Module and return to the requirement stage.

“If you have the right attitude, interesting problems will find you.” The

SHARP Team has constantly fought the interesting problems of software engineering,

& Frederick P. Brooks, Jr., “The Mythical Man-Month: Essays on Software Engineering”, Addison-
Wesley Publishing Company, July 1995.

121

command management, competition, and the military development structure. It was only
through engineering knowledge, strong will, and dedication of the team members that the
project was able to strategically work past these interesting problems.

“When you lose interest in a program, your last duty is to hand it off to a
competent successor.” The military provides a great tool for refreshing uniform service
member through active duty service rotations. These rotations permitted a fresh body of
developers and evaluators at irregular intervals. As part of the rotation, members would
be able to hand off their efforts to a new developer before they lost interest in the total
endeavor.

“Treating your users as co-developers is your least-hassle route to rapid
- code improvement and effective debugging.” The SHARP Team treated all users as
requirement analysis, developers, and evaluators to ensure that the subject matter experts |
were given the greatest access to the system. There comments, criticisms, and drive are
what guaranteed the success of the project.

“Release early. Release often. And listen to your customers,” and “The
next best thing to having good ideas is recognizing good ideas from your users.
Sometimes the latter is better.” SHARP users were given frequent access to the
consolidated product so that they could take advantage of new tools, criticize
misinterpretations of requirements, make recommendations for redirection, and test the
system for bugs. Squadrons were informed that their ideas would be taken seriously, and
many Were~ able to see their recommendation implemented in very the next release.
Squadron users had a unique perspective of the program as they were implementing it at

the “Tip of the Spear.”

122

“Given a large enough beta-tester and co-developer base, almost every
problem will be characterized quickly and the fix obvious to som.eone; " and “If you treat
your beta-testers as if they’re your most valuable resource; they will respond by
becoming your most valuable resource.” With over three hundred squadrons and
detachments using the SHARP Product in one release version or another, it was
inevitable that someone would experience a bug that was not noted by the development
team. As bugs were found, an error window would prompt the user of the specific
module that was in operation and line of code, which they could then forward to the
SHARP Team for quick repair. There were “NO DUMB REQUIREMENTS.” If a
Squadron‘ user requested an improvement, it was treated as if was the most important
improvement to the system.

“Smart data structures and dumb code works a lot better then the other
way around.” SHARP was based on supporting a database of information. The database
was constantly refined and improvéd to ensure optimal performance. Many
improvements to the database compensated for shortcomings in code.

“Any tool should be useful in the expected way, but a truly great tool lends
itself to uses you never expected.” The initial version of SHARP was designed to support
the Training and Readiness Matrix, but soon became a tool to support yirtually all aspects
of Naval Aviation Operations. Users realized that they could customize the product to
meet their own unique needs and then could forward these changes back to the
development team for full fleet implementation.

“To solve an interesting problem, start by finding a problem that is

interesting to you.” The converse of this method is find developers interested in the

123

problem. Every developer on the SHARP Project was intimately involved with Naval
Aviation. The users were their friends. They had a relationship with members of the
chain-of-command and understood the risk of failure to their own reputations and to
Naval Aviation.

The same attributes that made Red Hat a development success are
applicable throughout a myriad of sbﬁware development projects. A close client-
developer relationship, integrated management practices, and small independent design
are imperative to the success of any project. The SHARP Team is just another example
of a successful implementation of these principles
C. CHAPTER SUMMARY

| Before the SHARP Team could develop any product, they were required to
determine the optimal model of life-cycle development process, based on a collection of
know and accepted models. Software Life-Cycle evaluations were accomplished using
techniques learned from course studies at the Naval Postgraduate School, past
development knowledge, and software engineering subject matter expertise. After a
detailed study on the subject, it was determined that none of the existing models would
satisfy the requirements of the development requirements due to the strict deadline and
fluid requiremént set of the system. The only pptential solution to the development
dilemma was to create a customized life-cycle model based on a combination of rapid
application development techniques, spiral development models, and parallel

development methods.
The SHARP Development Team was made up of a number of highly skilled

uniform service personnel who were subject matter experts in Software Engineering,

124

Project Management, and Naval Aviation Operations. The talented members of the tearﬁ
put together to design and manage the SHARP System were not unique to the armed
services. Officers and enlisted men serve in a variety of billets that afford them the
opportunity to learn and hone their skills in project development and management. A
number of officers have received special training in information technology and software
engineering as a part of their duty assignments. This prior inner-service training afforded
. the SHARP Management Team a large pool of qualified individuals to select from. The
Navy provided me with significant training through duties and assignments with
operational squadrons and through curriculum with the Naval Postgraduate School.

Once the team had a foundation of members, a search was made of software
engineering, project management, and system development literature to determine
potentilal life cycle models that could support the demanding needs of the SHARP
Development Project. After an exhaustive search and evaluation, it was determined that
a highbred parallel spiral development model would be the most practical model that
could support the design of the system. ThlS conclusion was only reached through an
evaluation based on the past development experience of team members, a review of
fbnnal models, and the application of logical analysis _of development risks.

In parallel with the evaluation for potential applicable life-cycle‘ development
models, an evaluation was made for applicable DoD Development Requirement
Standards. Due the scope of the existing requirements, the lack of requirement oversight
and authority, non-accreditation of standards, and excessive overhead burden that the
standard would force on the RAD of the system, it was determined to not follow any

DoD Development Requirement Standard.

125

The development of the SHARP system required an in-depth search and
discovery of requirement to cover the entire scope of the project. The greatest difficulty
of the requirement search was to capture the uiu'que requirements of each of the
seventeen type-model aircraft for development, without limiting the functions of any
other aircraft series. The ideal development would produce one single system flexible
enough to encompass all potential aircraft types. A series of backward and forward
analysis techniques were used to ensure a complete investigation of requirements. In
parallel with the SHARP Requirement Search and Development, the SMART-R
Assessment provided a corresponding requirement matrix for cross comparison. This
cross comparison ensured a reflective requirement view from alternate members of the
military aviation chain-of-command.

The SHARP team was restricted to a limited number of software development
products due to merchandise available to DoD development groups. In an attempt to
determine the best software development solution, the SHARP Team relied on a series of
white papers, personal preferences, and development considerations to determine the
optimal product. The SHARP team decided to develop using the Microsoft Visual Basic
6.0 Suite with the Microsoft Database. The dev.elopment environment was left open

| ended to future development and expansion by new products in the event that the DoD
software development atmosphere changed.

One of the prime goals of the SHARP Development Team was to find a way to
distribute the software to the fleet in the most resourceful manner possible. The Internet
provided the most cost effective and efficient vehicle for near instantaneous distribution

of the software, as well as a convenient means of archiving database templates and

126

newsletters for user access. Electronic transmission media provided a reliable method for
the transmission of data, program updates, trouble calls, evaluation and critiques, as well
as beta-tester bug reports. The SHARP Team was able to leverage off the unclassified
Internet, as well the classified STPRNET.

The actual development of the SHARP project required the adoption of a series of
unique development techniques. This chapter reviewed the concept of the three-year
rule, in that no IT system should stagnate in its present state for more then three years.
This rule reinforced the concept of fresh development, reusability, competition, and
modernization of legacy software products. A series of commercial and DoD based
examples were given. This chapter also reviewed the concept of leapfrogging
development, in that one team might start a new iteration of devélopment while another
team is still working on the previous stage. A part of the old team might be transferred to
assist the new team with iﬁtegration and continuity, as well as to complement the
development knowledge base of new team members. This method of leapfrogging
personnel and development increased productivity and ensured a smooth transition
through from one stage of development to the next.

A detailed discussion was gi{fen regarding the implementation of the Wedding
Development Method, as introduced in Chapter 2. The Wedding Method centered
around the development of a main system module referred to as the Main Menu Module.
Upon the completion of the Main Menu Module, consecutive modules are then built onto
the system likes spokes on a wheel. This method permitted and encouraged independent
accomplishment of multiple simplified tasks, in contrast to the development of the entire

system in a single effort. The Wedding Method permitted the review of requirements by

127

small independent teams. Each of these teams was able to review the requirements from
a different angle and thereby ensuring completeness and continuity to the comprehensive
project.

The Wedding Method relied on a simplification of the project down to its root
level, in parallel with Einstein’s theory of simplicity. This theory proposed that a
problem should be broken down into its simplest form, without removing any of the
essential body of the problem. The SHARP Team worked to break the project out into a
series of smaller projects, without removing any functionality. This breakdown actually
increased functionality of the project by permitting a greater access to each module as an
independent entity.

The chapter concluded by comparing the SHARP development with “The
Cathedral and the Bazaar” essay. While the “Cathedral” essay was not used as a basis
for the development of the SHARP project, it was ironic how well the methods paralleled
each other. The success of the SHARP development relied on an open development
environment, a large pool of testers, a strong base of subject matter experts, and a drive to
complete the project. A strong customer-client relationship was essential to ensuring the
success and viability of the program. The “Cathedral” encouraged rapid releases, in
harmony with the SHARP Team releasing new versions on an almost bi-monthly basis.
Finally, the military encouraged personnel to step away from a project as they reached a
“burn-out” phase. When I completed my efforts on the SHARP Development, it was best
to walk away to permit a new series of qualified developers to take my place. The
“Cathedral” encouraged developers to know when to leave, and when to find a new

project to work on. |

128

The development of the SHARP Project was not just the creation of an automated
system. The development of the SHARP Project was the tasking of professional military
personnel to build a tool that they would personally take into combat, that would be used
to reduce their workloacis, and that would reflect on their cpnduct as Naval flight
personnel. The intimate relationship of the team to the client encouraged the
development of a more quality prograrh, the frank feedback from users, and the trust of
both sides to make scarifies to ensure project completeness. Such a relationship would be

difficult to establish outside of the military environment for such a project.

129

THIS PAGE INTENTIONALLY LEFT BLAN K

130

Iv. COMPARISON AND CONTRAST OF DATA COLLECTED

A. REVIEW OF THE REQUIREMENTS OF NAVAL AVIATION
READINESS
Naval Aviation Readiness is b#sed on a series of classified and unclassified

documents and instructions that govern short and long-term flight operations, to ensure

the highest level of combat readiness. These instructions and documents reflect the needs
and mandates of the guthoﬁtative chains-of-command. Most of these instructions and
documents are issued through independent channels at irregular intervals, and re;ﬂects the ‘
unique requirements of seventeen aircraft models and over twelve air wings. The core of

Naval Readiness is based on the concept of “P4 + WARTS”

B. REVIEW OF THE REQUIREMENTS OF THE SHARP SYSTEM.

The SHARP System was primarily developed to support the requirement to report

Naval Aviation Readiness. The vsecondary requirement of the SHARP System was to -

automate, track, and report all aspects of Naval Aviation Operations.

C. PRESENTATION OF COMPARISON OF STANDARD SOFTWARE
ENGINEERING MODELS AGAINST THE SHARP MODEL AND
COMPARABLE AVIATION OPERATIONS SYSTEMS
1. SARA

a Background
| The SARA System was developed in 1996 by the McDonald Douglas
company, at the request of the United States Marine Corps. The USMC was searching
for a software automation tool to reduce the increasing mishap rate of the newly acquired

AV-8 Series Harrier Aircraft. McDonald Douglas, and later the Boeing Company,

131

developed SARA to exclusively support the flight operations of the AV-8, and later with
additiopal functionality to cover other aircraft type model series. In an attempt to reduce
aviation mishap rates, SARA was marketed as an operational risk management tool, to
highlight potentially unsafe flight scenarios through a set of user customized rules.”* 7
Testing and évaluation found SARA to be lacking critical data validation rules that
jeopardized data integrity.

b. Specifications

SARA is a PC-based application, currently released in series version 3.x.
The SARA System was originally designed using Microsoft Access 2.0 as the Front End
GUI, Logic Module, and Supporting Database. Despite current and emerging
technology, the SARA development team has elected to maintain the devélopment
product in Access 2.0 with external supporting modules in C++. SARA boasts over 450
form objects, 800 query objects, and 100 report objects with embedded code and external
modules. Due to the chosen development language and infrastructure, it is difficult to
generate accurate system specifications.’® |

c Requirements Search

The initial requirements for SARA came from the USMC, from a broad
request to generate a system capable of reducing AV-8 mishap rates. Additional program

requirements were provided by the Marine Corps Safety Office, in collaboration with

7" Phone con, 20 Sep 00, Robert S. Greenfield, Boeing SARA Software Engineer and System
Consultant, St. Louis, MO, 314-232-2601

" SARA Information Home Page, http://www.boeing.com/defense-
space/military/aerosupport/sara/sara.htm

7 SARA Overviéw, the Boeing Company, On File with the SHARP Development Office.

132

squadron users, members of the Marine Chain-of-Command, and subject matter expertise
by development members. In an attempt to win contractual agreements with other
branches of the armed services, the SARA team gathered requirements from USN,
USAF, and USCG Aviation Safety Offices for integration into future versions of the
system.

d Development Model

Due to the fragmented .infrastructure of the Boeing Company, the
development environment and requirements of the system, and the loss of essential team
members, the SARA Product was designed using a series of different develoﬁment
models. The team consists of twelve members, of which only two members are actual
developers and engineers. Initial development cycles were based on quick solution
requests with “no formal methodology at the base.””’ Depending on the system
requirement, module of development, and who was doing the actual design, a mixture of
development methodologies were instituted. Engineers were given the flexibility to work
with the methods they were comfortable with, based on the task assi gned.

e. Dissemination

SARA is initially distributed to requesting commands via an installation
CD. Incremental updates are distributed by the Internet, via a secure web site hosted by

the Boeing Company. Incremental updates can range in size from 50 Kb to 25 Mb.

’7 Phone con, 20 Sep 00, Robert S. Greenfield, Boeing SARA Software Engineer and System
Consultant, St. Louis, MO, 314-232-2601

133

JA Future
The future of SARA is in doubt due to recent investigations and
evaluations by the SMART-R assessment team. SARA continues to operate in a 32-bit
environment using a 16-bit software development tool. The Program Manager admits
that there are commercial applicétions of the SARA product, but there are no active
efforts to market the product. There are considerations toward updating SARA from the
Access 2.0 environment, but there are no active efforts in place to make this update.”® In
the light of the SMART-R assessment, the USMC is re-evaluating its contract with the
Boeing Company for the SARA product. There are no plans by any other branches of the
armed services to purchase SARA.
2. SQOM
a. Background
In 1987, a team of Israeli Air Force Officers developed a first generation
aviation automation system to track flight operations for land based Israeli Flight Units,
titled SQOM (referred to as PAMOT or POMOT in Hebrew). SQOM was deployed and
evaluated for approximately seven years to two fighter squadrons. After that» period,
SQOM was evaluated for future expansion and rgdesign to meet the new needs of the
IAF and for marketing to foreign military services. Since 1996, efforts have been made

~ to market and integrate the SQOM-2 to the United States Navy.

» Phone con, 20 Sep 00, Ken Bloms, Boeing SARA Program Manager, St. Louis, MO, 314-233-
9929

134

b. Specifications

The original SQOM version was maintained using a DEC/VAC system,
while the SQOM-2 system was written in a proprietary language referred to as
“Freedom”, designed by members of the SQOM and ISYS development team. Freedom
is a development environment capable of constructing a powerful database driven, object
oriented program, capable of interfacing in the IT-21 environment. The database format
is fully compatible with all major relational database.” Due to the proprietary nature of
the system development language, it would be .difﬁcult to determine a relative scope of
the product.

c Requirements Search

SQOM was developed around the IAF Concept of Operations. SQOM
was market to the Navy as a COTS product that would be modified to meet the needs of
the local concept of operations. Both the dévelopers and users could accomplish this
Ocustomization through front end or back end system manipulation, depending on the
level of customization. In an attempt to gather U. S. Navy requirements, SQOM was
deployed in one naval squadron for a period of 45 days. Before this deployment, the
engineers resided with the squadron and made customized changes to the product.

d. Development Model

SQOM was developed using a standard spiral development model, in
parallel with the Freedom Development Environment. System subject matter expertise

comes from Israeli Air Force Officers as well as ex-Naval Flight Personnel.

» Phone Con, 21 Sep 00, Stanley F. Bloyer, SAIC Navy Marine Corps Project Manager, Arlington,
VA,

135

e Dissemination

Due to the size, complexity, and customization of the SQOM system,
installation and dissemination can only be done on-site by SQOM Installation Trained
Personnel.

JA Future

At the completion of the SMART-R assessment, SQOM received negative
marks for its customizability, integration hurdles, and ease of use. Due to the complexity
of the SQOM system, the proprietary nature of the development environment, Foreign
Service security issues, and the inability to meet the United States Navy Concept of
Operations, the DoD elected not to purchase the SQOM system and has terminated its
relationship with ‘the development team. The SQOM Team éontinues to market its
product to other armed service branches throughout the world. At present, no foreign
service has purchased the SQOM Tool for its armed services. The Israeli Air Force
continues to use SQOM version 1.0.

3. NALCOMIS

a Background

The history of NALCOMIS can be broken up into two parts: The
| development of the initial Legacy OMA product in 1991, and the follow on Optimized
version of OMA in 1998. NALCOMIS was designed to meet the automated maintenance
requirements of AV3M and the NAWLIRS Flight Record. NALCOMIS was never
intended for use as an operational management tool, nor was it intended for use in
computing Training and Readiness values. Currently NALCOMIS and its related

backbone are deployed thought out the fleet, in every aviation flight and support unit. Its

136

database is accessible via an exclusive worldwide network that links squadrons to supply
and support branches of naval aviation.

b. Y2K

Due to the age of the Legacy version of OMA, there was a period that
NALCOMIS was found non-Y2K compliant. Dates were stored in single and two digit
year format, and four digit Julian date format. OMA required an estimated 2% change in
the lines of code to ensure compliance. OOMA is fully Y2K compliant.®

c Specifications

The Legacy version of NALCOMIS OMA was engineered with Informex
4GL, directly coupled to an Informex proprietary database, residing on a UNIX platform.
The database format was written to comply with the 80-column card format required by

the NAVFLIRS document and the up-line reporting AV3M database.

The Optimized version of OMA was written using the Powerbuilder
development suite, linking to a Sybe;se formatted database, on an NT platform. Both
systems were Writtén to support relational dataBases.

OMA was conceived in 1991, and fully integrated to the fleet by 1997.
OOMA was started one year later in 1998, and not scheduled for full fleet integration
until 2004. The original version of OMA consisted of over 800,000 lines of code, while

the Legacy version had only one million lines of code. Most of the increased lines of

code were accounted for by added functionality to the Optimized version, in tandem with

80 Phone con, 09 Aug 00, Tom Klooster, NALCOMIS OMA Division Head, Chesapeake, VA, 757-
523-8146

137

efficient coding practices. OOMA has over 3206 system objects, 473 stored procedures,
and 50 form views in 169 C-Files.

d. Requirements Search

The primary purpose of NALCOMIS was to support the maintenance
wing of Naval Aviation. The requirement search was based on publicaﬁons, work hébits,
and the concept of operations of the Maintenance Department. No attempt was made to
mirror the requirements to the Operations Department. The subject matter experts to the
project development team consisted of active duty and retired members of Maintenance
Departments, complemented by members of Naval Aviation Supply and Acquisition, and
Space and Naval Warfare Center. The Legacy Requirements Documentation consisted
only of a general functional description of the project. The Optimized Requirements
Document consisted of approximately 500 lines of general bullet requirements.

e Development Model

NALCOMIS was developed using form of the traditional incremental
spiral models. The engineering team would take the existing requirements, and develop a
product for review by the fleet development team. The initial requirement base came
from a functional description by NAVAIR, based on technical publications on file. No
attempt was made to further define the requirements. The FDT would then test and
evaluated the product for completeness, and make recommendations for changes. Due to
the development infrastructure, the actual requirements document was never refined or
modified based on recommendations by the FTD. In the end, the FDT submitted over

4000 Trouble Reports or Change Proposals to the system. The OOMA product consisted

138

only of improvements to the user interface, improved language, and data replication.
There was no real increase in user functionality.

Due to the government bureaucracy involved in software development,
members of the NALCOMIS team admit that the project suffers from a significant
overhead bufden. Attempts are being made to develop OOMA in parallel with the
maintenance of Legacy OMA. Such a practice requires a large support staff to ensure
that both development teams and customers receive proper support for their particular
product.

f Dissemination

Due to the size and complexity of the sysfem, NALCOMIS can only be
distributed to the fleet via CD. The database network permits real-time updating of the
NALCOMIS database. The program foétprint requires approximately 20 Mb.

g Futﬁre

The short and mid range outlook for NALCOMIS includes the
development and distribution of the OOMA product to replace the Legacy distribution.
NALCOMIS has been accused of suffering from the Second System Effect defined as,
“When one is designing the successor to é relatively small, elegant, and successful
system, there is a tendency to become grandiose in one’s success and design an
elephantine feature-laden monstrosity.”® NALCOMIS has been accused of breading the
preverbal software dinosaur that has become so big and integrated into all facets of

operations that you can not kill it, but you hope that one day it will become extinct as it

8l Denis Howe, “The Free On-Line Dictionary of Computing”, http://wombat.doc.ic.ac.uk/, Denis
Howe, 1993-1999. Attrib. to Fred Brooks, “The Mythical Man-Month”

139

can not adapt to future changes. Due the future emphasis on Enterprise Resource
Planning (ERP), Mr Klooster fears that a COTS product will replace NALCOMIS,
developed by SAP, by 2010.
4. Patriot-Excalibur

a. Background

The Patriot Excalibur System has a very similar history to the SHARP
Program, but while the SHARP System was developed to serve Naval Aviation, Patriot
Excalibur was designed to automate Air Force Flight Operations. A group of Air Force
Officers, complemented by a small team of government employees and contractors,
worked to develop a PC based, database driven, customized tool to track and report all
relevant points of flight operations. Patriot Excalibur was first introduced to the Navy in
the early winter of 2000 as the development team was preparing to distribute an initial
release to members of operational flight wings. The Air Force is currently ﬁeld-testing
version 1.02.

b. Specifications

Patriot Excalibur is developed using the Microsoft Visual Studio and
Visual Basic 6.0. The program has a relatively small footprint at only 400,000 lines of
code for its initial iteration. The preliminary version of Patriot Excalibur is developed
using the Microsoft Database, but is investigating the upgradg: potential of the SQL
Database.

c. Requirements Search

Patriot Excalibur was developed because there was no comparable

solution to meet the requirements of Air Force. The development team was comprised of

140

pilots, aviation support officers, and a civilian staff assigned to support flight operations.
These subject matter experts were ab.le'to take personal and p;ofessional knowledge,
coupled with support documentation and instructions, to generate a baseline set of
requirements for an initial prototype development. Pending the success or failure of the
initial versions of Patriot Excalibur, requirements will be modified to ensure that a
successful program is developed to meet the future needs of the exclusive operations 6f
the United States Air Force.
d. Development Model

Patriot Excalibur continues to be developed using a spiral RAD

development methodology. Initial versions of the program serve as prototypes for future

iterations of the system.

e Dissemination

The Patriot Excalibur system plans to distribute the program through a
limited release on CD, complemented by open distribution via an Air Force hosted
Internet Web Site. The small size of the system permits dissemination through a large
variety of e_lectrom'c media, including the E-Mail and the SIPRNET.

JA Future

The Patriot Excalibur Project is in its infancy, an‘d it is difficult to
determine the long-range direction of the project. The program was given a preliminarily
evaluation by the SMART-R Assessment Team, but the results were found to be

inconclusive due to the scope of the project and limited operating history.

141

5. SHARP

a Background

SHARP was originally developed in 1996 to serve as an exclusive
operations automation tool for HELANTISUBRON - SIX. SHARP was brought to the
attention of COMNAVAIRPAC during the failed evaluation of the SARA system. Once
adopted by AIRPAC and AIRLANT as their joint TYCOM aviation automation system,
SHARP was quickly modified to support the flight operations of all seventeen type model
series aircraft. This version was ultimately disseminated to over 330 operational naval
squadrons and detachments worldwide. A more detailed description of the SHARP
background was provided previously in this thesis.

b. Specifications

The SHARP System was developed using the Microsoft Visual Studio and
Microsoft Database. The decision to use the Microsoft Suite was a factor of authorized
software products, avéilable developers, and the best match to the system requirements.
The interim product consists of over 750,000 lines of code in a relational database, with
over 25 independent modules, in over 800 code and support files, with tens of thousands
of unique procedures, functions, and classes.

c Requirements Search

Initially, the primary requirement for the SHARP system was to engineer a
product to support the newest release of the Training and Readiness Manual and report
the combat readiness of all operational naval aviation units. While the initial scope of the

requirements were limited to supporting and returning a command’s readiness value, it

142

quickly became evident that squadrén users desired something that would better reflect
the complete scope of squadron operations in .the electronic environment.

In an attempt to better understand the requirements of Naval Aviation from the
fleet perspective, a team of over thirty naval aviators were brought together in Nc.>rth
Island, CA to form the ATRRIS IPT. This team of aviators pooled their combined
knowledge of naval aviation, operations, training, and readiness to author a complete list
of requirements to model squadron operations and revolutionize the operations office.
The ATRRIS IPT attempted to incorporate the unique requirements of seventeen
different type wings, tempered by the requirements of six different motivating
documents.

Aviation subject matter experts determined all system requirements. Those
experts were also the ultimate system users.

d Development Model

The SHARP Pr.oduct was developed using the Wedding Method, as
described earlier in this thesis.

e Disseminatio;t

In an attempt to distribute the SHARP Product to the fleet in the most
efficient and cost effective manner possible, the Development Team relied on the Internet
and SIPRNET as a dissemination vehicle. The net provided a reliable method for the
transmission of data, program updates, troublé calls, evaluation and critiques, as well as
beta-tester bug reports. A baseline CD was also made avéilabie for users make initial
installations of the product, but was nét required as installation sets were also made

available on the net.

143

f Future
The SHARP Project is currently under transition from version 3.1 to
version 4.0. Version 4.0 will incorporate additional modularity, refined object modeling,
and increased functionality. A transition from the Microsoft Database to the SQL
Database will increase system operating speed, reduce top end limitations to the database
structure, and improve system response in the network environment. SHARP was judged
overall favorably by the SMART-R assessment team, and has guaranteed the future
survivability of the program.
6. COTS Debate
In 1996, with the release of DoD Reg 5000.2-R, military acquisition profeésionals
and defense contractors emphasized the use of COTS products to supplement

development efforts.®> As noted in Chapter 1 of this thesis, COTS products are defined

as:
1. Commercial items customarily used for non-governmental purposes and

offered for sale, lease, or license to the general public.

2. An item evolved from such an item, as previously stated, that will be
available within sufficient time.

3. Items that are standard modifications available in the commercial
marketplace or are minor modifications.

4. Any non-developmental item developed exclusively at private expense
and competitively sold in substantial quantities to non-federal government
agencies.

82 Department of Defense Regulation 5000.2-R, “Mandatory Procedures for Major Defense
Acquisition Programs (MDAPs) and Major Automated Information System (MAIS) Acquisition
Programs”, 15 March 1996.

8 John Foreman, “On the Front Lines of COTS - Lessons Learned, Speculation for the Future”,

Briefing slides courtesy of the Software Engineering Institute, Carnegie Mellon University, May
8, 1998. http://www.sei.cmu.edu/cbs/cbs_slides/sth8/front1ines/index.h1m, Slide 12.

144

Shortly after the release of DoD 5000.2, a prominent defense contractor spoke out
with a controversial statement against the mandate of COTS solutions in the unique
military environment:

“The requirements for computer systems within those DoD
programs in which Mercury Computer Systems is typically involved
cannot be satisfied by Commercial-Off-The-Shelf (COTS) computer
technology alone. There are various requirements that are simply beyond
the capabilities of the system designed, built and sold in commercial
markets. DoD, in an attempt to meet the military cost reduction
requirements of the Clinton administration, have begun stipulating COTS
technology be used in all applicable applications. It is our contention that
requiring COTS components be itself will not produce the desired

magnitude of cost reduction nor improvements in ‘time-to-
development.””®*

Mercury executives stated that military environment required specialized tools
meet the unique demands of defense operations. While commercial products could
satisfy administration and office automation requirements, there are no commercially
available products that could predict aviation readiness or automate flight operations
without changing the Naval Concept-of-Operations.

A number of contractors attempted to repackage and distribute software that was
not a true COTS product, but that could loosely be referred to as such, in an effort to
increase marketability. SQOM was marketed to the Navy as a COTS compliant solution
to aviation automation, but was oddly based on the Israeli Concept-of-Operations. For
SQOM to work for the U. S. Navy, it would require significant redesign in structure,
flow, and logic. The ISYS team referred to that redesign as “customization™. That

customization could only be accomplished by the development team and not by the user.

145

SQOM satisfied COTS Definition #1 by making itself available for sale to the general
public. Unfortunately, with the exception of the Israeli Air Force, no other branch of
service or country has implemented the SQOM product to meet their aviation automation
requirements. SQOM failed Definition #2 as it was unable to create an optimal product
within the time sét down my SMART-R Assessment Team. SQOM failed Definition #3
becéuse modifications mandated by the U. S. Navy would completely change the logic
pattern of the product and render it useless to other commercial clients. Definition #4
required that any product be developed at private expense, while the ISYS Development
Team requested and received $1.8 Million from the Department of the Navy to make the
required changes to field the SQOM Product.

The Boeing Company has attempted to market SARA to the Navy as a COTS
product, based on its early success in the Marine Corps. SARA satisfies Definition #1,
but is not viable to any other customer due to its exclusive logic to support the Marine
Flight Plan. SARA satisfies Definition #2, as its format could theoretically be changed in
sufficient time to meet the Navy’s requirements, but were not attempted during the
SMART-R Assessment. Modifications to the SARA product would completely change
the logic flow of the program, and would not be considered minor. The base logic to
determine Training and Readiness is unique for each branch of service, resulting in a
failure of Definition #3. Boeing has informed the U. S. Navy that it would make no

changes to the SARA product without contract or payment for services. The U. S. Navy

8 “White Paper: Applying COTS Products and Services to Major Defense Programs”,

http://www.mc.com/COTS_folder/cots_mtb/cots mtb.html, Mercury Computer Systems, Inc, 01
Jun 1996.

146

has informed Boeing that it would not purchase SARA unless it was modified to meet the
unique.demands of Naval Aviation, failing Definition #4.

Future efforts to refine defense system automation will compete with the new
challenge of Enterprise Resource Planning. Future products will no longer be completed

systems, but rather a set of development tools that when combined will create a powerful

‘automation suite. These ERP products will be viable commercial development tools,

satisfying Definition #1. The resulting suite will logically satisfy Definition #2. As the
ERP products are intended to be modified, Definition #3 will be satisfied. ERP products
will be developmental items except from Definition #4. There is nothing to guarantee
that these ERP products will improve software developrhent, automation efﬁbiency, or
that they will even be able to replicate the requirements of Naval Aviation Operations.
COTS implies using a commercially proven product that can be seamlessly
integrated into the existing defense environment more efficiently then the development of
a virgin prodpct. The military has a number of divisions that are run like a business,

where commercial software products can be integrated quickly into the operating process,

~ but there are far too many other divisions that require uniquely tailored products that

meet the specialized needs of combat operations.
D. CHAPTER SUMMARY

The development of the SHARP Project was fraught with complications and
controvefsy due to a number of competitive products that attempted to eliminate the
SHARP System. During the course of development, SHARP and its compétitive
products faced a barrage of evaluations and assessments to determine the most viable

solution. Each of the products were evaluated for their ease of use, completeness to

147

project requirements, cost effectiveness, defense technology compliance, and long range
survivability. This thesis reviewed some of the findings of the assessments in parallel
with the corﬂments by the developers and their published literature.

SARA, the Boeing Company product, was based on an old 16-bit software
environment, criﬁcally limiting its functionality and long range survivability. The
program lacked essential data validation required by Naval Aviation Documentation.
Team members admitted that the SARA product was developed with no formal
methodology, and that engineers were given the luxury of developing in whatever
environment they felt comfortable. SARA was determined to not meet the significant
requirements of Naval Aviation and even lacked the critically functionality for Marine
Corps Aviation.

SQOM was developed by the Isracli Air F orce, and then marketed to the U. S.
Navy as a solution for aviation automation. SQOM attempted to market itself as a COTS
product despite failing to meet the basic definition of a COTS product. SQOM was
developed using a proprietary language and database format, untested outside of the
SQOM / ISYS environment. Security concerns, coupled with an unproven development
language and extensive customization requirements resulted in a negative
recommendation by the SMART-R Assessment.

The NALCOMIS product has continued to improve over time, though be it a few
years behind current technology. The military bureaucracy would result in a product that
would take over seven years to develop and deploy to the fleet. Comparable systems
were capable of being deployed in less then nine months by leveraging off of existing

infrastructures and taking advantage of optimized and refined development techniques.

148

NALCOMIS was marketed as an aviation automation tool, but was customized towards
supporting the Maintenance Department over the Operations Department. |

In an attempt to meet the unique needs of the United States Air Force, members of
the service recently came together to build a new aviation automation tool called Patriot
Excalibur. The Air Force offices and staff members relied on rapid prototyping, spiral
development, and subject matter expertise to develop a potential replacement for legacy
systems. It is too early to forecast the future of the Patriot Excalibur system, but initial
results indicate that the project would make a successful working prototype for future
development. Much of the Patriot Excalibur development is in parallel with the SHARP
development process.

The chapter concludes with a discussion of COTS products and the attempt for
many contractors to repackage their products to qualify under the DoD Reg 5000-2R
requirement to integrate COTS into military acqﬁisition. A review was given of the four
basic definitions of COTS and a cursory evaluation was made of commercial products
that refer to themselves as COTS. It was evident that the SQOM product was not to be
considered as a COTS product based on the basic deﬁnitions. SARA also failed to
classify as a COTS product.

While administrative and executive COTS products may meet the business
reciuirements of an operational command, it would difficult to find an acceptable
operational automation product that would not require extensive customization to meet
the unique needs of Naval Aviation. One of the failed methods of COTS was purchase a
system that marketed itself as an operational solution, only to require users to modify

their own concept-of-operations to make the solution work. Combat, conflict, and

149

aviation operation will not change to meet a software solution. Solutions should be
developed that mimic and automate the existing structure without modification or

compromise. Such a solution would be difficult to find in a true COTS product.

150

V. CONCLUSIONS AND RECOMMENDATIONS
A. CONCLUSIONS

The development of the SHARP Product was not by happen chance. Its
development was the result of a refined development method, professional subject matter
experts, uniform service member trained and experienced in software development, and-_
an intimate developer-client relationship. |

The SHARP engineering team made an extensive search and discovery for
potential development methods, only to realize that none of the existing formal models in
themselves would meet the development requirement. The team was looking for a
method that would permit rapid application prototype development, encourage efficient
testing and requirement review, client interaction, and parallel modular development.
Rather then settling for an inferior model, the SHARP team devisgd an ingenious method,
referred to as a Wedding Method for its similarity to a multi-layered Wedding Cake. The
Wedding Method encouraged the breakdown and simplification of the system to take
advantage of the project in its smallest component possible. The method also permitted
the ‘parallel development of multiple modules, increasing productivity, testing, and
customer critique.

Every member of the development team was a designated of naval aviation with
service in deployed operational commands. Their professional knowledge was critical to
requirement analysis, testing, and product evaluation. Each of the members of the team
had an intimate relationship with a particular aviation type wings, as well as members
within that wing. That accountability and name to face relationship encouraged a greater

level of performance and customer dialog with the development team. Far too many

151

programs are submitted to the fleet with misinterpreted requirements due to a lack of
subject matter experts at the base level of development. The SHARP Team was
dedicated to provide a product that they would be proud of, that would represent the fleet,
and would withstand the scom and criticism of doubters and critics. SHARP was
developed by military members ordered to build a product. They did so in the proud
service of their military. -

As each member of the SHARP Development Team maintained contact with the
fleet, a special relationship was established that encouraged frank feedback on the
developme.nt of the project. Each and every member of the SHARP user group had the
direct phone number to the AIRPAC development office, e-mail addresses of team
members, and the home phone numbers of critical members of the team so that they
could be contacted after hours and on weekends. Users realized that their inputs directly
effected the development of the project. They were ensured that every idea would be
taken into account and implemented into the next iteration of the project because, “If the
fleet though that it was important enough to be in their program, then it should be in their
program.” Developers need to remember that a program is not their property, it is the
property of the customer.

Uniform service members have been trained and educated in myriad of
professional subjects including operational proficiency, leadership, management, and
teamwork. A few select members are specially trained in project development and
software engineering, courtesy of military and civil post-graduate education. The
SHARP Development Team was comprised of officers and enlisted uniform service

members who were demonstrated professionals in the field of project development and

152

information technology. The Naval Postgraduate School — Software Enginéering
Curriculum was directly responsible for the education of some members of the
development team. The application of military provided academic knowledge to defense
service projects functions only to justify the importance of an educational institution like
the Naval Postgraduate School.

The success of any project is a true factor of the strength of the development
team, their ability to adapt and overcome difficult situations, to persevere despite a lack
of resources, and to seek out alternatives when the existing structure no longer appli.es.

B. ANSWERS TO RESEARCH QUESTIONS

1. Primary Question

Question: Can traditional software engineering methods meet the needs of the
military for small development projects or should the military examine a return to Rapid
Prototype Development?

Critique: The “Mongolian Hordes Technique” or the “Chinese Army
Technique”, defined as - assigning a large number of inexperienced programmers to a job
that would be Better preformed by a few skilled ones. The term was first used by Dr.
Fred Brooks in his book “The Mythical Man-Month”, Chapter 3.%°

Answer: No. Traditional software engineering methods continue to fail to meet
needs of the military for small development project requirements. The NALCOMIS
project is a prime example of a development that has been hampered by the military

bureaucracy. If the project was broken down into smaller components it might very well

8 Denis Howe, “The Free On-Line Dictionary of Computing ", http://wombat.doc.ic.ac.uk/, Denis
Howe, 1993-1999.

153

have been completed in a more cost-effective manner, in less time, and more reliably
meet the requirements of Naval Aviation.

Many commercially viable software systems are based on the redevelopment of
legacy systems. Previous iterations eventually serve as working prototypes for future
development. To remain competitive and to take advantage of leading technology,
commercial developers re-issue systems in phase with technological advancements. A
strong rule of thumb should be that - “No IT systems should remain in its present state for
longer then three years.” If the military is to remain technologically viable, it needs to
review and change its development habits to build and deploy software solutions more
efficiently to the fleet.

Existing instructions, requirements, and regulations mandate a considerable
amount of overhead to each project. They are based on rﬁethodologies, techniques, and
technologies that are a few years old. In the world of software engineering, where
technology is known to double every eighteen months, an instruction that is based on a
concept already three years old is actually separated by two generations from present
technology. None of the current DoD development requirements are certified by civilian
standards, nor do any intend to become certified in the future.

The DoD tradition of gathering a large body of personnel together to develop
software, in keeping with the Mongolian Horde Technique, must be abandoned. The
SARA Development Team, with a roster of 17% engineers and developers and 83%
overhead personnel is absolutely unacceptable. Streamlined, efficient, rapid profotype
development is a commercially proven methodology that would save the Department of

Defense precious time and resources. These working prototypes could be developed,

154

deployed, reviewed, and modified at more efficiently then with traditional practices.
Failure to adopt commercial practices will only result in the Department of Defense
playing “catch-up” to industrial technology. It is an embarrassment that the Department
of Defense should play second fiddle to industry when it comes to defending the nation.
It is by no surprise that a team of dedicated uniform service members could do what
others had not. History reminds us that the Mongolian Hordes were eventually concurred
by small bands of rebels and bandits.
2. Subsidiary Questions

a. COTS to the Fleet

Question: Can COTS products be modiﬁed and customized to meet the
rapidly changing needs of the military, specifically aviation readiness reporting?

Answer: No. COTS implies that it product viable in the commercial
miarket. There is no commercial market for aviation readiness reporting. That concept is
exclusive to the military market, and the logic unique to each branch of service. No one
tool can be built that would meet the needs of each branch of service, much less across
international borders, unless services would be willing to dramatically change their
concept-of-operations to match the new tool. Any tool that would be mbdiﬁed to track
the logic of all potential customers would not be considered COTS.

b. Is modified COTS still COTS?

Question: How far can you modify a COTS product and still be
considered COTS? |

| Answer: The four-part definition of COTS states in Rule #3 that modified

COTS are “Items that are standard modifications available in the commercial

155

marketplace or are minor modifications.” Many COTS products are modified or
customized at the user level to ensure compliance with the client’s concept-of-operations,
as long as such customization is part of the standardized product. Customization at the
code level is not a minor modification. Developer induced alterations to repair baseline
shortcomings does not certify a product as COTS. If modifications are made that are not
part of the standard commercial release, then a product is not COTS.

This thesis makes a great effort to disprove the concept of COTS to
replace the unique system requirement of Naval Aviation Operatioﬁs. What is done in
Naval Aviation is unmatched to anything in the commercial sector. The only true
solution to the demanding requirement of aviation operation automation is the
development of customized rapid prototype systems.

c RAD Models

Question: Does a viable model exist to engineer RAD, and can RAD be
certified as a valid development model in the military environment?

Answer: Yes. Of the traditional development models, the Exploratory
Programming Model, Prototyping Model, and Spiral Model all adapt well to rapid
application development. They are built aroﬁnd the concept of cyclic stagewise
development, permitting multiple revisits to the requirement stage. Each of the modéls
encourages customer review and evaluation, and are adaptable to small system
development. None of these development models are endorsed by current DoD
Development Instructions.

The SHARP System was developed using a modified version of the Spiral

Model, referred to as the Wedding Method. The Waterfall Method is the preferred

156

- development model of DoD Software Engineers, known for its rigidity and complete
requirements at the start of the development process. Due to the ever-changing
atmosphere in the military environment, software developers need to look towards more
flexible development practices that permit interim changes to a project. A variety of
RAD methods are reviewed by professional publications as potential software
development solutions. The DoD must review existing RAD methods for applicability in
the.military environment, as either pure development methods or hybrid methods like
Extreme Programming.

d. Reusable Code

Question: Is reusable code beneficial in the development of RAD
applications?

Answer: Yes. RAD must rely on a series of practices that improve
development efficiency. Reusable code provides a library vof resources that can be
applied to the software development process. Most code packaged would have already
been fested and proven in other previous systems, improving the development
effectiveness.

The SHARP Team strongly relied on reusable code to decrease overall
development time of the project. Reusable code included third party code packages, OS
based dynamic link libraries, and team developed repeating modules. Much of the code
relied on centralized or repetitive modules to decrease the total number of lines of code
and increase overall program operating efficiency. SHARP relied on reusable Error
Checking Modules, Database Access Modules, Keystroke Validation Modules, and other

proprietary modules to decrease the development requirements of the project.

157

Many DoD development teams are so fragmented that they do not share
code with other development groups. The DoD would be better served if it would create
an archive or library of reusable code available for standardized integration into other
projects. Such a library would provide an invaluable resource, decrease development
time, and encourage standardized component development.

e Subject Matter Experts

Question: How critical are subject matter‘ experts in the requirements,
deve]opmentai, and testing phases of software engineering, and if they are critical, why
are more contractors not using them?

Answer: Subject Matter Experts are critical to the success of any project
development. SHARP relived on a series of subject matter experts to provide quality
assurance to every aspect of the process. SMEs composed the requirements, developed
the prototype, were actively involved in the testing and evaluation process, and were
finally part of the deployed user group. SMEs ensured that the final project
professionally automated the aviation environment. Without access to SMEs or without
SME participation on the development the SHARP Project would have been making
assumptions ‘at requirements and potentially provided a product that may have not meet
the ultimate needs of Naval Aviation.

The SHARP Team has made its Subject Matter Experts available to other
development team to encourage fleet interaction in other development processes.

JA Streamlining DoD Software Development

Question: How can the Department of Defense (DoD) streamline its

software development protocol to more efficiently produce a product?

158

Answer: The DoD continues to rely on outdates software development
practices for the engineering of small and midsize defense projects. The newest DoD
Standard — DII COE - is not recognized by civilian accreditation organizations, is
congested with 6verhead requirements, and difficult to understand and comply withf Itis
unfortunate that the greatest military in the world has lost to the civilian sector its ability
to develop defense tools, and mandatés that those civilian companies that wish to do
business with the military comply with an inflexible requirement that stifles efficiency.
Many of its standards are fraught with loopholes, lack supervision and compliance
authority, and are based on archaic development principles. The SHARP Team
conducted an extensive search of potential development practices certified by the DoD,
| but quickly realized that all of the existing standards would stifle the development of the
SHARP Product.

The DoD needs to review its development standard to seek out current and
applicable practices that are compliant with proven civilian practices. Attitudes and
comments from the DII COE staff stated a lack of desire to comply with accepted
commercial standards. Such an atmosphere is unprofessional and places the DoD at risk
of continuing to fall in the advancing practice of software engineering.

g Uniform Service Development

Question: To what extent should uniform service personnel serve on
developnient teams?

Answer: The SHARP Team demonstrated the ability for Uniform Service
Personnel to design and engineer a successful project. That success was reliant on the

subject matter expertise, military training in leadership and team building, and education

159

and training in the field of software engineering of team members. Team members
demonstrated the unique ability to adapt and overcome a series of conflicts, lack of
resources, and criticism from members of the chain-of-command. Uniform service
members developed the SHARP Project out of pride for their aviation community, using
personal experience, and professional relétionships to build a product that they could use
when they deployed to flight operations. Uniform service members have a professional
desire to ensure the success of the their projects.

h. Uniform Service Education

Quesﬁon: Should more uniform service personnel be assigned to advance
degree education concurrent to their operational commitment, and how can this be
facilitated?

Answer: Yes. Uniform service members should be afforded every
opportunity to attend postgraduate degree education concurrent to their operational
commitments. Due to operational manning shortfalls, many service specialties are unable
to take service members out of their communities for two years of education, despite
post-education extended service commitments. Many members have opted to pursue
post-graduate education through civilian school at their own cost, in fields that do not
directly benefit the Navy. Such a pursuit is a waste of military resources, as each
member of the military is considered a resource.

SHARP Team members were provided access to Naval Postgraduate
School via distance learning channels to pursue a continuing education. The knowledge
taught in the evening was directly applied the next morning in the project development

environment. The Navy received a direct benefit from the education process through a

160

more quality project, and service members received the satisfaction of increasing their
own personal knowledge. This symbiotic relationship increases the strength of the
military knowledge base, increases the morale of unifor;n service members, and increases
the combat readiness of the military by providing a smarter, more intellectual, more
professional sailor to defend the nation.

The U. S. Navy, streamlined though the Naval Postgraduate School,
should afford more service members the opportunity to pursue postgraduate education
through non-traditional means at no monetary expense to themselves. These service
members will pay the military back in folds by providing a skilled and educated resource,
trained in the unique military environment, and dedicated to national service. These
service members will demonstrate their desire to serve by their desire to pursue such an
education through non-traditional means during operational commitments. This practice
will save the military financial resources by not having to transfer members to
postgraduate locations and maintaining optimal manning in critical billets.

C. RECOMMENDATIONS

The Department of Defense continues to struggle with current technology and has
built up walls of requirements that stifle aggressive aevelopment. For the DoD to remain
competitive, it must change the infrastructure that governs software development. The
DoD must become an active participant in commercial standards development, and be
willing to adapt to new fechnological changes and methods. The DII COE must pursue
commercial certification.

The Department of Defense needs to re-embrace Rapid Applications

Development. In times of conflict, developers were able to build products faster,

161

cheaper, and without bureaucratic overhead. We have lost that edge and hindered
developers with excessive oversight and administrative burdens. Many products wind up
being produced over budget, over time, and obsolete to rapidly changing technology.
The DoD needs to review its development practices to find methods that are more
efficient otherwise, they continue to squander precious resources.

The DoD needs to get away frdm building monolithic large systems that would be
better managed as a series of smaller systems. Smaller systems could be more efficiently
developed, modified, and redistributed to the fleet through existing channels. If one
portion of the program became obsolete, that minbr module could be updated and
redistributed without requiring a rewrite of the entire system, in keeping with the Three-
Year Rule.

The DoD needs to make more subject matter experts available to development
teams, to ensure a quality product is developed the first time that meets the needs of the
soldier and sailor. DoD and contract development teams need to take advantage real
subject matter experts when they engineer a product. You can not ask a high-ranking
officer what he thinks about a new software tool and expect to get a reliable answer,
when the junior sailor is the one who specializes in the tool.

Where applicable, COTS technology should be incorporated into the Department
of Defense to provide a commercially proven automation solution. The DoD should also
admit that COTS is not the “Silver Bullet” to all solutions. In cases where there is no
commercially applicable product, the DoD needs to look towards exclusive development
of unique software solutions. It is unacceptable to the soldier or sailor to providé him

with a product that is not based on his concept-of-operation. A new solution should

162

improve his work environment. Solutions should fit the working environment, not

change the work environment to fit the solution.

Uniform service members have expressed desires to their pursue postgraduate

education, even during operational commitments. The DoD needs to afford the

| opportunity to more service members to pursue their education through as many channels

as possible. The Naval Postgraduate School should provide as many cunjculum choices
as possible, via distance learning methods, to Naval Officers deployed worldjwide. These
curriculums coﬁld be tailored such that Officers would be able to apply their military
training to their assigned missions. The DoD also needs to institute an annual bonus
structure to reward Officers that complete their postgraduate education and remain in

military service.

163

THIS PAGE INTENTIONALLY LEFT BLANK

164

APPENDIX A - QUOTES
1996 Naval Audit Service Report on Naval Aviation

“The Naval Audit Service report on Naval Tactical Air (TACAIR)
and Anti-Submarine Warfare (ASW) Flying Hours Program (FHP)
contained a recommendation that CNO (N889), together with
Commander, Naval Air Force, U. S. Pacific Fleet (COMNAVAIRLANT)
and Commander, Naval Air Force, U. S. Atlantic Fleet
(COMNAVAIRLANT), update the squadron training and readiness matrix
for each aircraft type, document basis for flying hour estimates, and use
the updates matrix hours to determine TACAIR/ASW FHP. The training
and readiness matrixes joint instruction was to be validated by the
Commanders-in Chief and CNO (N889). The instruction was to be used
as the basis for programming FHP funds for TACAIR/AS W%

86

“Flight Hour Program Audit”, Naval Audit Service, Job #950040, 15 Apr 1996.

165

THIS PAGE INTENTIONALLY LEFT BLANK

166

A. PMA List

ASU
C2w
CCC
FAC
FSO

LOG

MOB
MOS
NCO
NSW

STW
WAT

APPENDIX B - LOOK UP LISTS

Anti-Air Warfare

Amphibious Warfare
Anti-Surface Warfare
Command and Control Warfare
Command, Control, and Communications
Forward Air Control

Fleet Support Operations
Intelligence

Logistics

Mine Interdiction Warfare
Mobility

Missions of State
Non-Combative Operations
Naval Strike Warfare

Strike Warfare

Weapons and Tactics

167

THIS PAGE INTENTIONALLY LEFT BLANK

168

APPENDIX C - SOFTWARE ENGINEERING TECHNIQUES

While the following definitions méy serve as a broad representation of the most
popular models of development, they in no way represent all of the potential models that
can or would be employed by software engineers.

1. Build and Fix Approach

The Build and Fix Approach is a very simplistic model of the developer building
the entire product, delivering it to the client who then in-turn requests changes. The
developer would repeatedly exchange the product with the client with incremental

changes, until the client feels that the software can be used productively, as depicted in

Figure C.1.
Build First
Version
Modified Product
 —— (until client is
satisfied)
Development
\ 4
Intermediate Operation
Product]
Maintenance

Figure C.1 Build and Fix Approach Diagram87
The Build and Fix Approach can also be refereed to as the “Hunt and Peck
Method”, relating to the chicken in the barnyard that constantly pecks at the ground

looking for food. If the chicken pecks long enough, he just might find something to eat;

& David F. Redmiles, “ICS 121 Software Tools and Methods, Lifecycle Models, Class Notes”,
http://www.ics.uci.edu/~redmiles/ics121-FQ99, University of California, Irvine, 1999.

169

if a developer keeps changing the system long enough, he just might meet the customer’s
requirements.

This method is highly informal, has no real requirements gathering or analysis
phase, relies on the customer for testing and evaluation, and can result in great
inefficiencies in product completion. The reliance on project completion falls upon the
customer to state when they are satisfied. With no real completion goal established, it
becomes evident that no real time line for stage completion can be set for this method.
An IEEE Workshop Abstract noted that:

“Large organizations throughout industry face immense problems

when they have to adapt their acquired software systems with millions of
lines of code to rapidly changing requirements. Far too often, such
systems have evolved from an uncoordinated build-and-fix attitude
towards software development and suffer from a lack of methodical
support during maintenance. The original design intents of the software
systems are obfuscated, or worse, have disappeared altogether. It takes
immense effort to implement and test changes as the effects on other
software modules and the impact on future reuse are hard to predict.”®

Due to the complexities seen with large system developments, the Build and Fix
Approach does not work well and is not recommended against other approaches. In the
case of smaller, less formal projects, where an intimate relationship exists between

developer and client, the Build-and-Fix Approach may serve well, such as in the case of

in-house development.

8 Rudolf K. Keller, Background Paper for the DEXA '98 International Workshop on Large-Scale
Software Composition held in conjunction with the 9th International Conference on Database and
Expert Systems Applications (DEXA'98) Vienna, Austria, http://www.cs.ttu.edu/fase/v8n02.txt,
August 24-28, 1998.

170

2. Stagewise Development

The concept of Stagewise Development serves as the basis for most formal
developmental models. Each step of the development process is divided up into
distinctly contained units or stages, then executed independently, as depicted in Figure
C.2. This approach requires that the developer reviews each step, execute, complete it,
verify the results, and then evaluate if the results warrant advancing onto the next step. In
the event that changes are required, the developer would return to the phase that required
the change, and then progress through each subsequent phase until development

completion.*’

% Brian Foote, Briefing on “4 Fractal Model of the Lifecycles of Reusable Objects” for the

Workshop on Objects, Iteration, and Development Process Standards,
http://www.laputan.org/talks/fracwash.html, Washington, D. C., 1993.

171

Problem Definition

Requirement
Change -
Validation_l +
Requirement
Specification
Validation
Architecture
Design
Specification
Verification
Detailed Design
Specification
Verification
Implementation
Unit Testing —1

<

Integration 2

(1]

=)

©

>

()]

System Testingj @

Operation
u

Figure C.2 Stagewise Development Diagram®

As depicted in Figure C.2, Stagewise Development is a progressive ladder of

evolution from' the requirements phase to the operation phase, with validation or

verification checks certifying advancement into the next phase. Further examples and

definitions of other development methods and models will demonstrate the relationship

between other models and Stagewise Development. While the concept of Stagewise

% David F. Redmiles, “ICS 121 Software Tools and Meth
http://www.ics.uci.edu/~redmiles/ics121

172

ods, Lifecycle Models, Class Notes”,
-FQ99, University of California, Irvine, 1999.

Development is applicable in the realm of software development, it is also widely used
throughout other avenues of engineering. In a recent Environmental Impact Assessment
for a Hazardous Waste Management Study in Estonia, the context of Stagewise
Development was used as;
The objective of the feasibility study was to prepare a plan for a
stagewise development of a comprehensive nation-wide hazardous waste

management system for Estonia for the period 1994 to 2009, based on
environmental, legal and institutional considerations.”!

| 3. Waterfall Model

The Waterfall Model is one of the most popular derivations of the Stagewise
Development Method. In 1970, Winston Royce first introduced the Waterfall Model,
fashioned after the concept of stagewise development and based on the other process '
models in use at the time.”” It is composed of all of the traditional units of Stagewise
Development with the addition of a single level of feedback between each given stage

and the preceding one, as depicted in Figure C.3

o1 Estonian Ministry of the Environment Estonian Environment Fund 1994-1995,
http://www.sei.se/seit/english/listproj.html, Software Engineering Institute.

52 A. Macro, “Software Engineering: Concepts and Management”, Prentice Hall, 1990.

173

Problem Definition

Validation

Requirement
Change

v

Requirement

A

Specification
. Validaﬁonj

Architecture

Figure C.3

Design
Specification

4 Verification

Detailed Design
Specification

4 Verification

Implementation

4 Unit Testing

i

Integration

The Waterfall Model Diagram

4 System Testingj

Operation

Revalidation

93

The Waterfall Model requires a complete, validated specification of the required

functions, interfaces, and performance before the design of the system is actually

undertaken, due to the non-return flow of the waterfall.

It is extremely popular

throughout industry for its rigid format and reliance on structure and formal

specifications from the onset.

It carries a strong emphasis on fully elaborated

174

David F. Redmiles, “ICS 121 Software Tools and Methods, Lifecycle Models, Class Notes”,

http://www.ics.uci.edu/~redm1'les/ics121-FQ99, University of California, Irvine, 1999,

documentation from the earliest of stages of the requirements and design phase. Each

phase of development is culminated with a validation or verification study to ensure

completeness.94

The strength in the Waterfall Model lies in its usefulness as a management tool
towards the software development process. Each phase is defined by a set of functions,
goals, milestones, and deliverables, making the process highly visible and the project
easier to track. Since requirements and specifications are determined at the onset, the
project manager is better able to determine his resource needs and establish schedules.
Conducive to its formal flow, risk management practices can be instituted through the
process.

The weakness of the Waterfall Model is the fact that it does not flex well to
changes in requirements. The deeper the project advances through the development
phase, the more costly in time and resources it is to revert back and adopt the new
changes. Secondly, a commercial weakness in the process is that a working model of the
system is not visible until late in the process, prohibiting prototype distribution of the
system to potehtial clients. Thirdly, real projects seldom flow sequentially. Despite the
best efforts of any development team to collect and document requirements, new
requirements will surface, old requirements will need to be redefined and refined to be
better understood by the development team, and technology will mandate changes in the
platform. The Waterfall Model does not lend itself well to development in the Rapid

Application Development Environment.”

o James A. DeBardelaben, Lecture Notes of “Cost Modeling for Embedded Digital Svstems Design
Module 57", Pennsylvania State University, Pittsburgh, Pennsylvania, 15 Sept 1998.

175

Many contract developers favor the Waterfall Model in that they are able to
gather the requirements at the start of the process, develop the system, test it, and if it
satisfies the requirements as stated at the beginning, their contract is complete. If, by the
time the development process reaches the client, it meets the requirements stated at the
beginning of the process, then the contractor has succeeded in his obligation. Such a
model does not permit flexible requirements, but reduces the burden on the contractor.
DOD-STD-267A/498, once considered the standard guiding software development for
the Department of Defense, recognized nine distinct stages of development, almost
identical to the Waterfall Model, with the exception of the addition of a precursor
“System Concept Analysis Phase” and a post development “Maintenance Phase”.’® This
document has since been superceded by numerous other DoD standards.

4. Test Development

The next progression from the Waterfall Model is referred to as the Test
Development Model in which the Test Plan is developed in parallel with each phase of
development, as depicted in Figure C.4. At each phase of developed, the team intimately
involved with that model would composes the Test Plan for the final phase of System
Testing. While the Test Development Model does not supercede the need for a balanced

Test Plan, it does strengthen the Test Plan by further refining it through the development.

% Laurance Leef, Dr., UN-10006-1999-11-20, “Rapid Prototyping or the Waterfall Model: Which
Path for Legal XML”, htrp://www.legalxml.orngocumentRepositornynofﬁcialNote/Clear/UN-
10006_1999_11_20.html, Legal XML, 20 Nov 1999.

% DOD-STD-2167A, “Defense System Software Development”, 04 Jun 1985.

176

Requirement

Problem Definition Change —
Validation +
Requirement
; Specification
A Validation
Architecture
..'. '-..-....-.......:.. Design
S Specification
| 4 s
‘ 3 A \eification
System
Acceptance s Detailed Design
Plan :." tanssenresennansd Specification
| 4 A verification
Integration Test {
9 Plan Implementation
|4 < S A Unit Testing
Module Interface N)
Test Plan Integration
: S N, Suasessescccsesaasd c
' S
S &
| 4 A System Testing %
H >
Unit Test H)
Plan Operation o

Figure C4 Test Development Diagram®’

A strong Test Plan is critical in the evaluation phase of a completed product.
Simply determining a Boolean result from a specific reduirement does not accurately
verify if a requirement has been met. Many réquirements have logic driven results that
can generate a wide number of responses, interactions, and outcomes dependent on an
array of inputs and impulses. .If an initial Test Plan is generated in the start of

development during the requirements search and specification stage, and then further

177

refined through each stage of development, it could be ensured that a more accurate test
model be authored. ane authored, this Test Plan could be held in reserve until the
integration stage for final system testing. Such a concept ensures that methodologies and
mentalities used at the onset of development are used to evaluate a final product. Such a
concept would serve as a viable tool in the SHARP development.

5. Exploratory Programming

A kin to the shnpliétic Build and Fix Approach is the Exploratory Programming
Technique that incorporates a repetitive building phase after each test of the operation.
This approach serves as the traditional baseline for Rapid Application Development
(RAD) by incorporating cyclic development. In contrast to the Build and Fix Approach
that relies on feedback from the customer for changes to the requirements, the
Exploratory Programming method has a Use Phase embedded in its protocol, as depicted
by Figure C.5. This apprdach does not require a detailed requirement specification, but
does require direct interaction with the client to progress through each iteration of the

development.

7 David F. Redmiles, “ICS 121 Software Tools and Methods, Lifecycle Models, Class Notes”,
http://www.ics.uci,edu/~redmilcs/ics121-FQ99, University of California, Irvine, 1999.

178

Develop Outline
Specification

Build Software

o) > System

Development

-

% l I Use
Intermediate Operation

Product
Maintenance

Figure C.5 Exploratory Programming Diagram®®

For products of small scale or where the subject matter experts are a part of the
development team, the Exploratory Programming method increases programmer
productivity by giving the development team immediate feedback to all design changes.
The “pause—ﬁ*ge” interaction allows the developer to concentrate on the task at hand to
meet the client’s current criticism and requirement. This interaction can also create a
great distraction to some developers due to the frequent interruptions and reinterpretation
of requirements.*

6. Prototyping Model

The Prototyping Model is an extension of the Waterfall Model with the addition
of an initial Prototype Phase prior to the Requirements Specification Phase. For the
purpose of the Prototype Phase, developers may elect to utilize any of the épplicable

RAD Models; Exploratory Programming, Build and Fix, Spiral Model (defined later in

%8 David F. Redmiles, “ICS 121 Software Tools and Methods, Lifecycle Models, Class Notes”,
http://www.ics.uci.edu/~redmiles/ics121-FQ99, University of California, Irvine, 1999.

179

this chapter), or other RAD Models. The Prototype Phases would be used to define or
demonstrate the proposed requirements for workability, the proposed concepts for
development and applied technology to the system, as well as the applicability of the
overall system. Pointing out errors, flaws, shortcomings, or misdirection in requirements,
their interpretations, or development, in the earliest possible stage benefits the overall
efficiency of a project by limiting the.amount of rework. Such a Prototype Phase can
decrease the overall workload of the product by reducing the number of requirements that
need to be reviewed and revised after system design has commenced. Removal of
excessive, unwanted, or unnecessary modules from the production can be accomplished
before time is spent on its development, thereby increasing the Risk Management Factors
by highlighting potential shortcomings in the overall design and methodology of the
system.

7. Incremental Model

The Incremental Model serves as the precursor to the Spiral Model, b}lilt upon the
Experimental Model, in which the developer would build the first increment or module of
the system, submit it for review by the client, then develop the next increment

successively until project completion, as depicted by Figure C.6.

% Urs Holzle, Dissertation of “Adaptive Optimization for SELF: Reconciling High Performance
with Exploratory Programming ", Stanford University, Palo Alto, CA, Aug 1994,

180

Develop First
Build

Develop

Increment

Development

v

Intermediate
Product

> Operation

Maintenance

Figure C.6 Incremental Model Diagram'®
Development of the Increment Phase can be accomplished using any of the
Stagewise Development Models, including the Waterfall Model.
8. Spiral Model
For the last two decades, Barry Boehm has been recognized as a pioneer in

Software Engineering for his models and techniques of software development and risk

management. One of his most widely adopted accomplishments is that of the Spiral
Model of software development, which he formalized in 1988.'°! The Spiral Model is a
progressive cyclic version of a stagewise development model, which begins each cycle of
the spiral by performing the next level of elaboration of the prospective system’s

requirements, as depicted by Figure C.7

100 David F. Redmiles, “ICS 121 Software Tools and Methods, Lifecycle Models, Class Notes”,
http://www.ics.uci.edu/~redmiles/ics121-FQ99, University of California, Irvine, 1999.

101 Barry Boehm, “4 Spiral Model of Software Development and Enhancement”, Computer, May
1998, p. 61-72. :

181

Cumukbaiive
cost

Progress
through

Determine steps Evaluale alternatives.,
uhjectives. identify, resolve risks
alternatives, :

constraints
(DAC)

Risk
Assessmuent

Concrens
Spocificatzen
TAC

Apmtracr
Secifeation
QA

Coatry]

Regunemmonss
DAC

Cammit

Review —
partiion

Requinerients
Plan

Concept " 5

Operation

Ahsiract
Specificaston

Cuonscriete

Abiract Spesilicstion
Specification

Reyirements
Yaligation

wavten Specification

Abstract Specification
Vulitstion

E:Es%'::

Conerele
Spexilicatinn Valigstion
and Verificanon

s
i Saitware

s Ievelopmen Pl l)c‘.'c](’p, '\’El’if}'

aext-kevel product

Plan next phases

Figure C.7 Spiral Model Diagram'®*
The Spiral Model is built on the fundamental concept of a repetitive or cyclic
development platform, with increasing system complexity or refinement with each revisit
to the phases of the cycle. The Spiral Model consi;ts of four phases;!%

Planning — Determine objectives, gather requirements and alternatives, and

establish constraints.
Risk Analysis — Evaluate alternatives, identify and resolve risks.

Engineering — Develop prototypes or modules of the product.

102 David F. Redmiles, “ICS 121 Sofitware Tools and Methods, Lifecycle Models, Class Notes 7,
http://www.ics.uci.edu/~redm1'les/ics121—FQ99, University of California, Irvine, 1999.

103 Roger S. Pressman, “Sofiware Engineering: A Practitioner’s Approach”, McGraw-Hill, 1992.

182

Evaluation - Test and evaluate product based on Test Plan and requirement
specifications.

Initially, from the center of the spiral, the requirements are researched and
composed, then risk analysis is used to determine the degree of difficulty, uncertainty,
and potential faults in the requirements. The development team would then engineer a
prototype or working model of the system in a simplistic form, then finally have it
evaluated by the testing team or even the client for completeness against the requirement
spe'ciﬁcations. If, at this point in the cycle, the model does not meet the expectations of
the development team or the client, then requirements can be revised and refined.
Potentially new requirements can be inspired from the prototype developed. At the end
of this phase, the decision needs to be made to accept the.product as is, or that the
requirements justify to continue i:hrough another cycle of evolution. Once the
requirements have been revised from the current cycie and the results warrant
continuation in development, the process starts again to the next level, hopefully resulting
in its completion with a more concrete prodﬁct.

One the strength of the Spiral Model is its flexibility in requirements and
evolutionary design, in that design can be done in increments and retailored as system thé
requirements change. Due to the cyclic evaluation of the product, client and developer
feedback can be collected at established points and periods, permitting an opportunity for
positive measures or correction to be taken to rectify errors. Secondly, the Spiral Model
established a risk management phase in the cycle to identify and fnanage risk early in the

software development process'®. If the risk can not be mitigated, a decision can be made

104 R. Charette, “Large-Scale Project Management is Risk Management”, IEEE Software, 1996.

183

early in the process to reformat the requirement or even terminate the project before great

resources are expended on the development. Thirdly, the Spiral Model encourages

incremental design, giving the client a greater opportunity to receive a working prototype

of the system early in the development process, permitting him to make previsions to his
;environment to accept the final system.

One of the weaknesses of the Spiral Model is that, without proper management, it
stands the potential to lacks milestones, as development cycles began to merge together
and depart series from its corresponding cycle.!® It is essential that each stage moves
incrementally through the process and then from one cycle up to the next. Without
proper management, a spiral development can become trapped in one level of the cycle
and not progress up to the next level. Regardless of what soﬁ‘waré design model is
selected for the development process, failure to provide sufficient management oversight
will result in a loss in development inefficiencies.

9. Legacy and Reuse Software Life Cycle

Due to the growing pressure to increase development productivity and efficiency,
many development teams are taking a serious look at the concept of software reuse and
redevelopment of legacy systems over the costly venture of building new systems from
scratch. Some software cost evaluation models have predicted savings of up to 30%
when implementing software source-code reuse management.'”® In an attempt to
properly manage such an undertaking, the Legacy and Reuse Software Life Cycle

Approach was drafted to model the two-way flow of development, as the requirements

108 Barry Boehm, Software Risk Management, IEEE Computer Society Press, 1989.

184

drive the development and previously developed software drives the requirements, as

depicted in Figure C.8.
Hl| v
Requirements
) v
—————————pp Component Specification |gg.wermsecusererense >
t
— Architecture [|qererneencnsiverennene »
) v
—_— Design =~ [geereererenenenenns »
) v
App / Reuse Software
5 =
Transformed Software
Legacy Software
Figure C.8 Legacy and Reuse Software Life Cycle'”’

The primary success of any software reuse plan requires a searchable software

repository with sufficient depth to contain all potential variants of applicable code.

Secondly, the actions of the software development team requires constant attention to

software reuse including standardize code semantics, reverse engineering of

106 Frank McGrath, “16 Best Practices: Management and Technical Practices with High ROI in
Development and Sustainment of Large Scale Software Intensive Systems ”, Software Program

Managers Network, 1996.

107 James A. DeBardelaben, Lecture Notes of “Cost Modeling for Embedded Digital Systems Design
Module 57", Pennsylvania State University, Pittsburgh, Pennsylvania, 15 Sept 1998.

185

development, and an open architecture of engineering, all encouraged by management
actions and applicable support tools. The Reuse Lifecycle relies on a traditional stagewise
development technique with a reverse flow of development in which legacy software
inﬂuenées the transition software, which in turn influences the development of the reuse
software chosen, backwards to the design and eventually driving the requirements. In a
parallel effort, the requirements are driving the design, and then the reuse soﬁwére
selected for the development. DoD Military Standard 498, “Software Development and
Documentation,” dated December of 1994 specifically denoted the Department of

Defense’s efforts for software reuse. %8

108 DOD Military Standard 498, “Software Development and Documentation ”, Dec 1994,

186

APPENDIX D - DOD SOFTWARE ENGINEERING REQUIREMENTS
- While the following reviews of DoD Software Engineering Requirements may
serve as a broad representation of the most relevant reqﬁirement instructions, they in no
way represent all of the potential models that can or would be employed by software
development managers. o
1. DOD-STD-2167A
In an attempt to support the development, design, and acquisition of mission-
critical software systems, the Department of Defense established DOD-STD-2167A —
Defense System Software Development, approved February 29% 1988.1%° 2167A
formalized a stagewise development process including phases for:

System Requirements Analysis and Design
Software Requirements Analysis
Preliminary Design

Detailed Design

Coding and CSU Testing ‘

CSC Integration and Testing

CSCI testing

System Integration and Testing
Maintenance

Standard 2167A was based on the rigid flow of the Waterfall Model for its
developmental process. Previously, software development was accomplished with a
“footloose and fancy-free” attitude, with little oversight or guidance to regulation and
management. With the introduction of 2167A, system design teams were required to
adhefe to a structured evolution flow of development, with phases for requirement
determination and system testing. The 2167A document was designed to follow the

design and development process of a product through its entire lifecycle of the system.

187

Shortly after the document was released and into the early 1990’s, DOD-STD-
2167A became recognized throughout the world as a de-facto software development
standard. The fact that a compelling number of national and international groups were
willing to follow one standard of development served only to strengthen the authority of
the DoD Standard. Despite the growing international support, DOD-STD-2167A was
destined to its own demise due to its inflexibility related to object-orientated design,
excessive documentation, no guidance on management indicators, and the need to
incorporate new development techniques such as reuse and reengineering.''® DOD-STD-
2167A was cancelled on December 5™, 1994!!! when it was supersedeci by MIL-STD-
498. |

2. DOD-STD-7935A

In parallel with the release of DOD-STD-2167A, the Department of Defense
composed DOD-STD-7935A — the Department of Defense Automated Information
System Documentation Standards, published for release on October 31%, 1988.'2 DOD-
STD-7935A was authored as a standard.to provided guidelines for the development and
revision of the documentation for Automated Information System (AIS) or applicable
software, specified in eleven types of documents that may be produced throughout the
life cycle of development:

J DS Database Specification

109 DOD-STD-2167A, “Defense System Software Development”, 29 Feb 1988.

1o George A. Newberry, Mag. USAF, “Changes from DOD-STD-21674 to MIL-STD-498
http://www.stsc.hill.af.mil/crosstallsz/l995/apr/Changes.asp, SAF/AQKS, USN, Apr 1995,

1 DOD Military Standard 498, “Software Development and Documentation”, 08 Nov 1994.

1 DOD-STD-7935A, “Department of Defense Automated Information System Documentation
Standards”, 31 Oct 1988.

188

EM End User Manual

FD Functional Description

IP Implementation Procedures
MM Maintenance Manual

OM Computer Operation Manual

PT Test Plan

RT Test Analysis Report

SS System/Subsystem Specification
UM Users Manual

US Software Unit Specification

As a guidance standard, 7935A provided an invaluable resource to management
by establishing concrete templates for development documentation. Project managers
were able to establish development goals and benchmarks through the process of formal
document submissions, and with the progressive nature and order of the documents,
establish protocols for testing and evaluating the advancement of the system. While the
success of 7935A was found in its standardization features, its demise was also found in
its inflexibility to changing technological requifements and proprietary document
formats. As with its sister, DOD-STD-2167A, DOD-STD-7935A was cancelled on
December 5™, 1994 when it was superseded by MIL-STD-498."> While the
documentation standards of this instruction may have been superseded by the more
flexible structure of MIL-STD-498, the context and content of these documents and their
formats still serve as an invaluable resource template for development engineers to design

and tailor their own papers.

1 DOD Military Standard 498, “Software Development and Documentation”, 08 Nov 1994.

189

3. MIL-STD-498

MIL-STD-498, also referred to as Military Standard 498 — Software Development
and Documentation, was approved November 8™ 1994, with four primary objectives:

. Merge DOD-STD-2167A, used for weapon system, with DOD-STD-

7935A, used for automated information systems, creating a single
software development standard for DoD.

° Resolve issues raised in the use of these standards.
. Ensure compatibility with current DoD directives, instructions, and other

standards.

o Provide a basis for United States implementation of ISO/TEC 12207,
Software Life Cycle Process. !

MIL-STD-498 was composed by a team of DoD Software Engineering Experts
including the Office of the Undersecretary of Defense (Acquisition), the Director of
Defense Research Engineering, and the Joint Logistics Commanders on a board chaired
by the Space and Naval Warfare Command (SPAWAR)_ called the Harmonization
Working Group (HWG). Representatives of all four armed forces, DoD agencies, other
federal agencies, members of industry, and various foreign defense allies participated in
the working group.

MIL-STD-498 was developed as a stopgap solution to the lack of a military
standard for software development and corresponding commercial standard. The
document was issued for an interim period of two years, before it would be reviewed for

an applicable commercial standard.

14 DOD Military Standard 498, “Software Development and Documentation ”, 08 Nov 1994,

1s Jane Radatz, Myran Olson, Stuart Campbell - Logicon, MIL-STD-498, Logicon, San Diego, CA,
1994.

190

One of the key pieces of MIL-STD-498 was the model of developing systems in
multiple stages or “builds”. Each of the builds would incorporate a specified subset of
the planned capabilities of the software, closely resembling the Spiral Model. A second
piece of the document called for disestablishing the practice of formal reviews, due to
great number of man-hours lost preparing for the review, and establishing a more
frequent informal review process. A third part of the document called for a decrease in
the emphasis for documentation and increasing the capabilities of computer-aided
software engineering (CASE) tools to prototype the development of the system. The
document is further broken down into 22 Data Item Descriptions (DIDs) including:

Software Development Plan (SDP)
Software Test Plan (STP) ‘

Software Installation Plan (SIP)

Software Requirements Specification (SRS)
Software Design Descriptions (SDD)
Software Test Descriptions (STD)

Software User Manual (SUM)

MIL-STD-498 was cancelled May 27", 1998 with the DoD acceptance of
IEEE/EIA 12207.1'¢

4. IEEE/EIA or ISO/IEC 12207

In 1995, the Electronic Industries Associatién (EIA) and the Institute of Electrical
and Electronic Engineers (IEEE) jointly established a commercial software development
standard to serve as a precursor to military software development, referred to as Version
12207. This new version was designed to serve as a strategic solution to:

o Represent the best commercial practices.

1e James W. Moore, Perry R. DeWeese, Dennis Rilling, “U. S. Software Lifecycle Process
Standard”, http://stsc.hill.af. mil/crosstalk/1997/jul/lifecycle.asp, Space and Naval Warfare System

Center, Jul 1997. :

191

. Be suitable for application to the complex requirements of Defense
acquisition.

. Be compatible with those of the emerging global marketplace for
software.'!’ '

The U. S. Department of Defense formally adopted 12207 on the 9" of December
1997 to serve as a framework for software development. Standard 12207 included six
important advances over existing software lifecycie standards:

. Coverage of the entire lifecycle constraints and development process.

. Flexible approach to recording process and product data to be handled by
computer—aided software-engineering tools.

. Incorporates specific references to existing U. S. standards.

. Provides a set of process and data objectives that guide adaptation of the
standard for unusual situations..

o Compatible with the ISO 9000 approach to quality systems, quality
management, and quality assurance.

. Fully compliant with the international version of the standard, permitting
U. S. companies to develop a single set of enterprise processes applicable
to both global and domestic business. !
The concept of a flexible approach to documentation can be one of the more
contentious.points of the standard. Many of the previous standards specifically detailed

format and content of documentation, and the management principles of the

documentation process. Many organizations have built a large support complex around

1 James W. Moore, Perry R. DeWeese, Dennis Rilling, “U. . Software Lifecycle Process
Standard”, http://stsc.hill.aﬁmil/crosstalk/1997/ju1/lifecycle.asp, Space and Naval Warfare System
Center, Jul 1997.

118 James W. Moore, Perry R. DeWeese, Dennis Rilling, “U. §. Software Lifecycle Process
Standard”, http://stsc.hill.af.mil/crosstalk/1997/jul/lifecycle.asp, Space and Naval Warfare System
Center, Jul 1997.

192

the concept of documentation management, goal management, and the formal evaluation
and review process. 12207 returned flexibility and autonomy béck to the development
team to design and manage a product development using a principle of guidance and
recommendation.

One of the unforeseen results of 12207 was the fact that, without proper oversight
and management, developlﬁent teams in large commands could face standardization
problems, in that one unit may require strong documentation and evaluations, while
aﬁother unit may permit a lesser level of documentation and evaluation management
oversight. This difference can hinder the concept of reusable systems, as outlined in the
Legacy and Reuse Software Life Cycle Approach.

5. DIi COE

The DI COE - Defense Information Infrastructure Common Operating
Environment was established under the direction of th.e Secretary of Defense on August
22™1996,'" to create a unified structure for the development of software hardware and
software in the joint environment. DII COE is a collection of reusable software
components, a software infrastructure for supporting mission-area applications,
guidelines, standards, and specifications, and an architecture and approach for program
management.'”® DII COE is not a single document, but rather a collection of fluid
documents that cover all of the facets of system development for products under
submission to the Defense Information System Agency (DISA). The cornerstone of DII

COE is its eight levels or degrees of interoperability compliance for development, as:

19 Office of the Secretary of Defense, “Subj: Implementation of the DoD Joint Technical
Architecture”, 22 Aug 1996.

193

e Levell Standard Compliance 14 Requirements

e Level2 Network Compliance ‘ 15 Requirements

e Level3 Platform Compliance 17 Requirements

® Level4 Bootstrap Compliance 16 Requirements

* Level5 Minimal DII Compliance 117 Requirements
* Level6 Intermediate DII Compliance 63 Requirements

e Level7 Interoperable Compliance 35 Requirements

e Level 8 Full DII Compliance 22 Requirements'?!

The DII COE is managed in parallel with the CM-165-60-03 - Configuration
Management Software and Documentation Delivery Requirements, Version 3.0, released
March 8" 1998.1%2

In a phone interview with the Chief Engineer of DII COE, Mr. Kenneth Wheeler,
I was informed that DII COE was designed to serve as an architecture or approach for
developing interoperable systems and establishing a baseline of compliance. While the
DII COE standard is not yet widely accepted in industry, Mr. Wheeler is attempting to
change that by imposing his influence on defense contractors. All defense contractors
who intend to do business with DISA units will be required to be DII COE compliant
. with all product submissions. His intention is that defense contractors will find it more
efficient to adopt the DII COE concept from their military divisions through to their

entire company, and then influence those whom they do business with to also adopt the

standard.'?3

120 Assistant Secretary of Defense, “Subj: Implementation of Defense Information Infrastructure
Common Operating Environment Compliance”, 23 May 1997.

12 DII COE Integration and Runtime Specification Version 4.0, Appendix B: Compliance Checklist,
25 Oct 1999. :

12 CM-165-60-03, “Configuration Management Software And Documentation Delivery
Requirements”, Version 3.0, 08 Mar 1998,

12 Phone Con, 13 Jul 2000, Mr. Kenneth Wheeler, DII COE Chief Engineer, DII COE Agency Joint
Office, Falls Church VA., 703-681-2304.

194

As per the DII COE instruction'?* and the promulgating letter from the Office o-f
the Secretary of Defense,'? the requirement to follow the DII COE standard is mandated
only to C41 systems and the interfaces of other key assets (e.g., weapon system, sensors,
office automation systems, etc.) with C41 systems. While the decision for other branches
énd agencies to follow the DII COE compliance schedulg is voluntary, there by
association, compliance by contractors is also voluntary. Without compelling authority
outside of the C4I environment, the DII COE instruction will remain a limited or even

» def standard.

“stovepipe
Mr. Wheeler stated in out interview that the DII COE mandate is “driven by
technology, tempered by the reality of the limitation of the existing systems.” He
mentioned that any standard needs to be bounded by production reality. While
technology would dictate the installation of fiber-optic networks across all military
installations and vessels, to increase data transfer rates and reliance, reality imposes a
limitation to what the military could impose. The expense of installing a base wide _
network would be too cost prohibitive. The physical limitations of retrofitting and
installing a fiber-optic network on all naval vessels would be physically prohibitive. Mr.
Wheelgr intends to establish a standards based development system that promotes
integration and development cooperation through his organization’s software tools, run
time specifications, and management principles. His and the DII COE success will be a

ssdef

realized through the “commertization”™ of the software environment. The DII COE

124 DII COE Integration and Runtime Specification Versmn 4.0, Appendix B: Compliance Checklist,
25 Oct 1999.

125 Office of the Secretary of Defense, “Subj: Implementation of the DoD Joint Technical
Architecture”, 22 Aug 1996.

195

standard is not recognized or accredited by IEEE or any other internationally recognized
agency, nor does Mr. Wheeler have any intention to seek accreditation from any agency.
When asked why Mr. Wheeler had not made any attempt to seek such accreditation or
recognition, he stated that “the return on investment is not there.”!26

6. DoD Regulation 5000.2-R

DoD Reg 5000.2-R, Change 4, the Mandatory Procedures for Major Defense
Acquisition Programs (MDAPs) and Major Automated Information System (MAIS)
Acquisition Programs, was signed for release on May 11%, 1999 by both the Under
Secretary of Defense (Acquisition and Technology); Director, Operational Test and
Evaluation; and the Assistant Secretary of Defense (Com1hand, Control,
Communications, and Intelligence). The 5000.2 establishes a simplified and flexible
management framework for translating mission needs into stable, affordable, and well-
managed MDAPs and MAIS Acquisition Programs, as well as sets forth mandatory
procedures for MDAPs and MAISs. !’

The scope of the DoD Reg 5000.2 applies to all major defense acquisition
programs or other programs as mandated by Congress, with the exception of highly
sensitive classified programs, cryptologic, and intelligence programs which shall follow
the guidance for other programs, or other programs as waived. A major program is
defined as:

¢ Not a highly sensitive classified program.

126 Phone Con, 13 Jul 2000, Mr. Kenneth Wheeler, DII COE Chief Engineer, DII COE Agency Joint
Office, Falls Church, VA., 703-681-2304.

127 DOD Reg 5000.2-R, Change 4, “The Mandatory Procedures for Major Defense Acquisition
Programs and Major Automated Information System Acquisition”, 11 May 1999.

196

Estimated by the USD(A&T) to require an eventual total expenditure for
research, development, test and evaluation of more than 355 million in fiscal

year (FY) 1996 constant dollars.

Total procurement cost of more than 2.135 billion in FY 1996 constant
dollars.

The 5000.2 is broken up into six phases or parts:

1.

The Acquisition Management Process — Defining and establishing the
system management process, the acquisition phases and accomplishments,
and milestone establishments.

Program Definition — Product support, requirements, alternatives,
affordability, and supportability.

Program Structure — Program goals, acqulsmon strategy, test and
evaluation, and life cycle planning.

Program Design — Integrated process and project development, and system
engineering.

Program Assessments and Decision Reviews — Establishment of the
Defense Acquisition Board, Joint Requirements Oversight Council
Review Procedures, Cost Analysis Improvement Group Procedures, and

various other boards and councils.

Periodic Reporting - Cost, Schedule, and Performance Program Reports
Test and Evaluation Reports, and Contract Management Reports.

Under the direction of the 5000.2, DoD major software acquisitions managers

have new direction for the purchase and maintenance of commercially and government

developed products. Due to the high dollar value definition of major accusation projects,

many development projects actually fall outside of the scope of the requirement. In the

case of some potentially major accusation projects, some contractors will actually

subdivide their projects in an attempt to avoid the requirements of the 5000.2. Due to the

abilities to avoid the DoD Regulation 5000.2, many development teams have opted to use

other accredited and non-accredited standards.

DoD Regulation 5000.2-R, Change 4, remains in effect, under periodic review.

197

7. DoD Directive 5200.40

DoD Directive 5200.40, "DoD Information Technology Security Certification and
chreditation Process” or DITSCAP, was signed for approval on December 30“‘, 1997,
by then active Secretary of Defense for C3I to implement policies, assign responsibilities,
and prescribe procedures for certification and accreditation of information technology.
The scope of DITSCAP covers automation, information systems, networks, and sites in
the Department of Defense.'?®

DITSCAP is designed to standardizes the certification and accreditation (C&A)
process to ensure information systems are properly guarded from unwanted intrusion, as
well as establish a life-cycle management approach to the C&A and reaccredidation
process of DoD IT. The authority of DITSCAP is extremely broad as stated in the
instruction, that it:

“Shall apply to the acquisition, operation, and sustainment of any

DoD system that collects, stores, transmits, or processes unclassified or

classified information. It applies to any IT or information system life

cycle, including the development of new IT systems, the incorporation of

IT systems in to an infrastructure, the incorporation of IT systems outside

the infrastructure, the development of prototype IT systems, the

reconfiguration or upgrading of existing systems, and legacy systems.”

This sweeping authority extends to all military departments, defense agencies,
DoD field activities, their contractors, and agents, in coordination with the National

Security Agency (NSA). The DITSCAP process shall consist of four phases of

development, including:

128 DoD Directive 5200.40, "DoD Information Te echnology Security Certification and Accreditation
Process (DITSCAP)”, 30 Dec 1997. >

198

Phase 1 Definition — The documentation of the system mission,
environment, and architecture, defining of the threat, levels of
effort, and certification authority.

Phase 2 Verification — The verification of compliance with previously
agreed security requirements.

Phase 3 Validation — The evaluation of a fully integrated system to
validate system operation in a specified computing
environment with an acceptable level of residual risk.

Phase 4 Post Accreditation — Actives to monitor system management
and operation to ensure an acceptable level of residual risk is

preserved.

Through the integration of the four phases of DITSCAP, it is intended that this
standard will protect the DII by presenting an infrastructure-centric approach for

certification and ac_creditation. DoD Directive 5200.40 remains in effect under annual

review.

199

THIS PAGE INTENTIONALLY LEFT BLANK

200

10.

11.

12.

13.

LIST OF REFERENCES

Berzins, V., Unpublished Class Notes for CS4500, Naval Postgraduate School,
Monterey, CA

Clark, Edmund M. and Wing, Jeannette M., “Formal Methods: State of the Art
and Future Directions,” Carnegie Mellon University, a part of the NPS CS 4500

Class Notes.

Dampier, David A., “4 Model for Merging Different Versions of a PSDL
Program,” Naval Postgraduate School, Monterey, CA., 1990.

Ibrahim, Osman Mohamed, “4 Model and Decision Support Mechanism for
Software Requirements Engineering, ” Doctoral Dissertation, Naval Postgraduate
School, Monterey, CA, 1996.

“Increasing the Practical Impact of Formal Methods for Computer-Aided
Software Development”, 1994 Monterey Workshop Notes, Naval Postgraduate
School, Monterey, CA, 1994.

“Increasing the Practical Impact of Formal Methods for Computer-Aided
Software Development”, 1995 Monterey Workshop Notes, Naval Postgraduate
School, Monterey, CA, 1995.

Maiden, Neil A. and Ncube, Cornelius, “Acquiring COTS Software Selection
Requirements.” IEEE Software, March / April 1998.

Osmundson, John, Unpublished Class Notes for IS4300, Naval Postgraduate
School, Monterey, CA, 1999.

Reed, John S., “Critical Success Factors in Software Projects,” IEEE Software,
May / June 1999.

Shing, Man-Tak, Unpublished Class Notes forCS3460, Naval Postgraduate
School, Monterey, CA, 1999.

Shing, Man-Tak, Unpublished Class Notes forCS4596, Naval Postgraduate
School, Monterey, CA, 1999.

Troyka, Lynn Quitman, “Handbook for Writers”, Simon and Schuster Publishing,
Englewood Cliffs, N. J., 1998.

White, L. “The Development of a Rapid Prototyping Environment”, Master’s
Thesis, Naval Postgraduate School, Monterey, CA, 1989.

201

THIS PAGE INTENTIONALLY LEFT BLANK

202

ABBREVIATIONS

AAW Anti-Air Warfare

ACTC Aircrew Training Continuum or Air Combat Training Continuum

AIRLANT Naval Air Force, United Stated Atlantic Fleet

AIRPAC Naval Air Force, United Stated Pacific Fleet

AIS Automated Information System

AMW Amphibious Wmf&e

AOA Analysis of Alternatives

AQKS Air Force Acquisition — Office “Kilo” - Depilty Assistant of the Secretary for Logistics -
Software

ASU Anti-Surface Warfare

ASW Anti-Submarine Warfare

ATRRIS Aviation Training, Readiness, and Requirements Information System

C&A Certification and Accreditation

c2w Command and Control Warfare

C31 Command, Control, Communications, and Intelligence

C41 Command, Control, Communications, Computers, & Intelligence

CAG Carrier Air Group |

CANDE Computer Aided NAVFLIRS Data Entry

CASE Computer-Aided Software Engineering

CCC Command, Control, and Communications

CD-W Compact Disk Writer

CDR Commander

CM Configuration Management

CNAL Commander, Naval Air Force, United Stated Atlantic Fleet

CNAP Commander, Naval Air Force, United Stated Pacific Fleet

CNO Chief of Naval Oper;itions

COMNAVAIRLANT

Commander, Naval Air Force, United States Atlantic Fleet

203

COMNAVAIRLANTINST

Commander, Naval Air Force, United States Atlantic Fleet, Instruction

COMNAVAIRPAC

Commander, Naval Air Force, United States Pacific Fleet

COMNAVAIRPACINST

COTS
CPF

DID

DII COE
DISA
DITSCAP
DOD, DoD
EIA

ERP

FAC

FHP

FPO

FSO

GPS
HFQMB

HWG

IEC

IEEE

IPT
ISO

IT

Commander, Naval Air Force, United States Pacific F leet, Instruction
Commercial off the Shelf

Commander Pacific Fleet

Data Item Descriptions

Defense Information Infrastructure Common Operating Environment
Defense Information System Agency

DOD Information Technology Security Certification and Accreditation Process
Department of Defense

Electronic Industries Association

Enterprise Resource Planning

Forward Air Control

Flight-Hours Program

Fleet Post Office

Fleet Support

Global Position Satellite (System)

Human Factors Quality Management Board

Harmonization Working Group

Israeli Air Force

International Electrotechnical Commission

Institute of Electrical and Electronics Engineers

Intelligence

Integrated Process Team

International Organization for Standardization

Information Technology

204

JMETL
LAN
LCDR
LOG
LT
MAIS
MAJ

MAW

MCO
MDAP

MDB

MOB
MOS

4 MS
MSDE
MSVB
MTF
NALCOMIS
NAVAIR
NAVFLIRS
NATOPS
NCA

NCO

Joint Mission Essential Task List
Local Area Network

Lieutenant Commander

Logistics

Lieutenant

Major Automated Information System
Major

Marine Air Wing

Megabyte

Marine Corps Order

Mandatory Procedures for Major Defense Acquisition Programs
Microsoft Database

Mine Interdiction Warfare

Mobility

Missions of State

Microsoft

Microsoft Data Engine

Microsoft Visual Basic

Message Test Format

Naval Aviation Logistics Command Management Information System

Chief of Naval Air Operations

Naval Aircraft Flight Record

Naval Air Training and Operations Procedures Standardization
National Command Authority

Non-Combative Operations

Naval Flight Officer

Naval Postgraduate School

National Security Agency

205

NSwW Naval Strike Warfare

NTTL Naval Tactical Task List

NWP Naval Warfare Publication

OMA Organizational Maintenance Activities
ORM Operational Risk Management

OPNAVINST Chief of Naval Operations Instruction

(0N Operating System

P4+ WARTS People, Planes, Parts, and Petrol, plus Weapons, Adversaries, Ranges, TAD, and
Simulators

PC Personal Computer

PMA Primary Mission Area

POE Projected Operational Environment

PQS Personnel Qualification Standards

RAD Rapid Application Development

ROC Required Operational Capability

SAF Secretary of the Air Force

SARA | Squadron Assistance Risk Assessment

SDD Software Design Specification

SDP Software Development Plan

SE Software Engineering

SHARP Sierra Hotel Aviation Reporting Program

SIP Software Installation Plan

SIPRNET Secret (Secure) Internet Protocol Router Network

SMART-R Squadron Management, Automated Risk Tolerance and Reporting System

SME Subject Matter Expert

SOp Standard Operating Procedures

SORTS Status of Resources and Training System

SPAWAR Space and Naval Warfare System Center

SQL Structured Query Languages

206

SQOM
SRS
STD
STP
STW
SUM
T&R
TACAIR
TAD
TRMS

TYCOM

UAV
UJTL
UNTL
USD
USAF
USCG
USMC

USN

WAT

Squadron Operations Management System
Software (System) Requirements Specification
Software test Description

Software Test Plan

Strike Warfare

Software User Manual

Training and Readiness

Tactical Air

Temporary Assigned Duty

TYCOM Readiness Management System

Type Commander. Commander Naval Air Force United Stated Pacific Fleet and the
Commander Naval Air Force United States Atlantic Fleet

Unmanned Aerial Vehicle
Universal Joint Task List
Universal Naval Task List
Under-Secretary of Defense
United States Air Force
United States Coast Guard
United States Mariﬁe Corps
United States Navy

Visual Basic

Weapons and Tactics

Wing Training Manual

- World Wide Web

207

THIS PAGE INTENTIONALLY LEFT BLANK.

208

Adversaries (P4+WARTS)

Causality Principle

Commertization

COTS

Crewstation
‘Development Field

Detachment -

DEFINITIONS

Sufficient number of adversaries or opponent aircraft available to
complete squadron training requirements, as required by the type
WIM.

The principle that: cause must always proceed effect; cause always
relates effect.

Making a product commercially viable'? | |

Commercial off the Shelf - Commercial items customarily used for
non-governmental purposes and offered for sale, lease, or license
to the general public; An item evolved from such an item that will
be available within sufficient time; Items that are standard
modifications available in the commercial marketplace or are
minor modifications; Any non-developmental item developed
exclusively at private expense and competitively sold in substantial
quantities to non-federal governments.

The position of responsibility that a crewmember would have on
an aircraft; i.e. Pilot, Crew Chief, or Navigator.

A visual language term to represent the graphical area of
development for the placement of visual objects.

Sub-units of a parent command, planning to or actually deployed
away from the parent command.

Determinism Principle

Grease Boards

The principle that: if one knows the state to an infinite accuracy of
a system at one point in tine, one would be able to predict the state
of that system with infinite accuracy at any other time, past or
future.

Large glass panes that can be inscribed or painted from behind to
make borders, columns, and rows, and then written on from the

front to display information. For the purpose of Training and

Readiness computations, users would inscribe a matrix of
qualifications by crewmember, and then enter the dates in which
each of the qualifications would expire.

129 Phone Con, 13 Jul 2000, Mr. Kenneth Wheeler, DII COE Chief Engineer, DII COE Agency Joint
Office, Falls Church VA., 703-681-2304.

209

Homeguard The parent unit for detachments.

Legacy System A computer system or application pro gram which continues to be .

used because of the cost of replacing or designing it and often
despite its poor competitiveness and compatibility with modem
equivalents. The implication is that the system is large,
monolithic, and difficult to modify.!*

P4+ WARTS The encompassing concept of all factors that effect readiness, as

- People, Planes, Parts, and Petrol, plus Weapons, Adversaries,
Ranges, TAD, and Simulators

Parts (P4+WARTS) Access to sufficient inventory of aircraft parts required to maintain

planes, as denoted by the ROC POE.

People (P4+WARTS)

The combination of all personnel assigned to squadrons, either as
pilots, aircrewmen, maintainers, or other support personnel, in the
correct numbers, as denoted by the Personnel Manual.!3!

Petrol (P4+WARTS)

Sufficient budget to purchase aviation fuel, which in turn provides
flight-hours to accomplish training, operational, and overhead
missions, as determined by the OP-20 Report'*?, Overhead
missions are those flights not included in training or operational
events.

Planes (P4+WARTYS)

The aircraft assigned to a squadron, capable of completing
assigned missions, as assigned by the Universal Naval Task List
(UNTL)™, in the correct numbers as denoted by the T & R'** and
Projected Operational Environment (POE) and Required

130

131

132

133

134

Denis Howe, “The Free On-Line Dictionary of Computing”, http://wombat.doc.ic.ac.uk/, Denis
Howe, 1993-1999.

OPNAVINST 1016.J, “Manual of Naval Total Force Manpower Policies and Procedures”, 01
Jun 1998.

OP-20 Report, Flying Hour Program Execution Plan, on file, AIRPAC N8 Office, Various.

OPNAVINST 3500.38 / MCO 3500.26 / USCG CMDTINST M3500.1 “Universal Naval Task
List (UNTL)”, 30 Sep 1996.

COMNAVAIRLANTINST 3500.63E, COMNAVAIRPACINST 3500.67F — “Squadron Training
and Readiness ", 24 Mar 2000, Enclosure (23).

210

Operational Capability (ROC)13 > Instruction, referred to as the
ROC POE.

Ranges (P4+WARTS)

Sufficient numbers and types of ranges required to facﬂltate
squadron training requirements.

Simulators (P4+WARTS)

Stovepipe

TAD (P4+WARTS)

Type Commander

Adequate simulator training devices equipped and available to
meet the training requirements of the squadron, as noted in the type
WTM.

An item with a limited funneling line of data, authority, access,
requirements, or goal. Spoken of in derogatory terms.

Temporary Assignment for Duty. Sufficient funding to provide
temporary duty assignments for squadron personnel to accomplish
training events away from home guard, as outlined by the parent
command’s TAD budget forecast.

TYCOM. The Commander of Naval Air Force United Stated
Pacific Fleet and the Commander of Naval Air Force United States
Atlantic Fleet

Type Wing Unique commanding units that encompass all subcommands or
squadrons of a specific type of aircraft, as in an F/a-18 Hornet
Wing, an H-60F Sea Hawk Wing, or EA-6B TACAMO Wing.
Weapons (P4+WARTS)

A sufficient allocation of weapons, armaments, and expenditures to
complete squadron training requirements, as outlined in the type
ng Training Manuals (WTM) and the T & R.

Visual Programming Language

Any programming language that allows the user to specify a
program in a two-(or more) dimensional way. Conventional
textual languages are not considered two-dimensional since the
compiler or interpreter processes then as one-dimensional streams
of characters. A VPL allows programming with visual expressions
— spatial arrangements of textual and graphical symbols

135 OPNAVINST (C) 3501.2J, “Projected Operational Environment (POE) and Required
Operational Capabilities (ROC) For Aviation Units”, various.

211

VPLs may be further classified, according to the type and extent of
visual expression used, into icon-based languages, form-based
languages and diagram languages. Visual programming
environments provide graphical or iconic elements which can be
manipulated by the user in an interactive way according to some
specific spatial grammar for program construction.

NOTE: Visual Basic, Visual C++ and the entire Microsoft Visual
Family are not, despite their names, visual programming
languages. They are textual languages which use a graphical GUI
builder to make programming interfaces easier. ¢

136

Denis Howe, “The Free On-Line Dictionary of Computing”, http://wombat.doc.ic.ac.uk/, Denis
Howe, 1993-1999.

212

INITIAL DISTRIBUTION LIST

Defense Technical INformation CENtEr.........uureeeeeeeeeeeeeeeeeeeeeeeeeeessseesssessasssessssenns
8725 John J. Kingman Road, Ste 0944
Fort Belvoir, VA 22060-6218

Dudley KNOX LIDIATYccceeveetrerreeisenieiereessssssssiesesseeressessssesssssssssesesensoresssessssnas
Naval Postgraduate School

411 Dyer Road

Monterey, CA 93943-5101

Professor Luqi, Code CS/LQueiiirinrireeierreeceeeeereeerecreseesreeseesessrssesssesessessensen
Naval Postgraduate School :
Monterey, CA 93943

DI Dan BOZET ...t seressesssssesessssssssstssssessssssessesssssssessesesssssesssns
Chairman, Computer Science Department, Code CS

Naval Postgraduate School

Monterey, CA 93943

Dr. Oleg KISEIYOVcoictiieienirieeintrieicteeetestestestesessesesseseesseseesessessessesesssssensasssesess
Naval Postgraduate School
Monterey, CA 93943

Dr. Richard REIRIEcoiiiiiiieieteiceceeeece e sasessessesaessesneaeas
Naval Postgraduate School
Monterey, CA 93943

Captain Paul Young, U. S. NaVYccccecoerevireirteceeeeirreereeseseencssssesesesesesssssnonens :
Naval Postgraduate School
Monterey, CA 93943

Lieutenant Chris Williaméon, U. S NAVY ceeeeeieeeeeteee e svene e ne s enes
2502 Whispering Palms Loop _
Chula Vista, CA, 91915-1402

Commander Mark Burgunder, U. S. Navy — Retiredc.coceeverieeveneeiinienenene

- 4292 Hortensia Street

San Diego, CA, 92103

213

