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__TECENICAL NOTE 2256

THREE-DIMENSIONAL, UNSTEADY-LIFT PROBLEMS IN
HIGH-SPEED FLIGHT — BASIC GONCEPTS

-By Harvard Lomax, Max. A. Heaslet,
and Franklyn B, Fuller

SUMMARY

The problem of the build-up of lift on two— and three—dimensional
wings flying at high speeds is discussed as a boundary-value problem for
the clagsical wave equation. Kirchhoff's formula is applied so that the
analysis is reduced, Jjust as in the steady state, to an investigation of
sources and doublets, Some simple applicatiorns of this method are con—
sidered, including the determination of the starting 1lift of a three—
dimensional wing and the potential functions for some types of -mstead
vortex motion, '

INTRODUCTION

The usual idealizations introduced in the development of linearized
aerodynamic theory describe a frictionless, perfectly elastic, model
fluid. As is well known, the effect of small disturbances in such a
fluid can be analyzed by means of the familiar wave equation which, in
terms of the perturbation velocity potential @, can be written

1
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where
8o speed of pressure propagation

tt time
x,y,z spatial coordinates
Equation (1) applies to a flow field which is stationary at large dis—

tances from the disturbance region; furthermore, the axial system is
stationary relative to the fluid infinitely distant so that, if a moving

wing is being analyzed, the wing moves with respect to the -x,y,z axes.
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It is possible to use a transformation which will bring the wing to
rest with respect to a new axial system, but this process leads generally
to a different equation for the perturbation potential. The case of a
wing moving at subsonic speed constitutes an exception, for here the
Lorentz transformation, familiar in modern physics, will fix the origin
of the axial system on the wing while leaving the wave equation invariant,
Such is not the case when the wing travels at supersonic speeds, so that,
if it is desired to fix the axial system to the wing, the wave equation
must be abandoned., This latter alternative has been the more extensively
studied in aerodynamics, but, because of the large body of knowledge con-—
cerning equation (1) which is available in mathematical physics, the
present report is based upon the wave—equation approach to problems of
unsteady motion,

The solution to equation (1) known as Kirchhoff's formula (see ref—
erence 1) is found to be of considerable use in unsteady-motion problems
involving thin wings with supersonic edges. The problem is reduced to
one of summing elementary solutions, analogous to sources and doublets
in steady flow, over a region determined by the position of the wing as
well as its traversed path. The theoretical development leads naturally
to the concepts (defined later) of, first, inverse sound waves, which
have a counterpart in the Mach forecones used in steady—state wing theory;
second, acoustic plan forms; and, third, homogeneous flow, which reduces
in part to the familiar conical flow as the wing approaches a steady
supersonic velocity.

In connectlon with boundary-value problems involving noninteracting
surfaces, a theorem will be given which makes it possible to build up a
three—dimensional supersonic-edged wing by superposition of elements of
two—dimensional wings, This result is an extension to wnsteady flow of
a theorem given previously by Lagerstrom and Van Dyke (reference 2)., By

"means of this theorem, problems involving supersonic—edged wings per-—
forming any prescribed maneuver can be solved, provided only that the
behavicr of a two—dimensional wing executing the same maneuver is known,
Thus, the relatively large amount of material available for two—dimensional
unsteady motion at supersonic speeds can be carried over directly to the
supersonic—edged wing.

In the last part of the report, some simple applications of the gen—
‘eral methods are considered, including the determination of the starting
1ift of a three—dimensional wing and the potential functions for some

types of unsteady vortex motion.

ITST OF IMPORTANT SYMBOLS

ap free—stream speed of sound

Co wing root chord, or maximum chord of a wing
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wing chord
gection lift—curve slope

1lift coefficient

oC
coefficient of rolling moment due to yawing [—-—71-—-5-
' : d(rb/2v,

lift

free—stream Mach number

loading coefficient (pressure on the lower surface minus pressure
on the upper surface divided by dynamic pressure)

. free—stream dynamic pressure < % poV02>

time
aot t

free—stream velocity
\

vertical component of perturbation velocity
Cartesian coordinates
angle of attack

V1 =107

slope of stream surface in free—streain direction < W'/'Y-> »
: o

free—gtream density

perturbation velocity potential

discontinuity in the quantity in question across the 2z = 0 plane

Sub soript

\

value on upper surface (z = O plane) of a wing
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THEORETTCAL DEVELOPMENTS
Basic Equation and Solutions

The partial differential equation which forms the basis of the pres—
ent study has been written as equation (1), It is possible to put this
equation in a more convenient form by introducing the notation

t = agt? (2)_

80 that the dimension of t is length Just as are the dimensions of the
geometric variables x, y, and z. Equation (2), together with equation
(1), yields the canonical form of the wave equation

Py + Pyy + Py = Py (3)

and it is this form which will be considered.

The first task 1s to study the relation between the motion of the
wing and the coordinate system. As has already been mentioned, equa—
tion (3) is valid for a flow field produced by a wing moving relative to
a fixed coordinate system. It 1s pertinent to consider the possibility
of finding a transformation which will (1) fix the origin of the axial
system on the wing and, at the same time, (2) retain the wave equation
as the governing equation of the flow, Certainly the first of these
requirements is simple to fulfill 1f the second is neglected. However,
because of the simplicity of the wave equation and, what 1s more lmpor—
tant, because of the great amount of developmental study that has been
expended on 1t, the second requirement 1s not without Justification.

The following transformation (known in relativity theory as a Lorentz
transformation, or as a hyperbolic rotation)

~ x-MOt )
S
= ¥
2 T > (%)
= 2
t—-Myx
T = ——
11— 2
A
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v .
where Mg = 59 <1, will satisfy both conditions (1) and (2), For example,
o

suppose that the wing is moving along the x axis with velocity V. »
Application of equation (4) to equation (3) makes the origin of the new
axial system also travel along the x axis with a velocity V,. This is
seen to be so since ¢ is always zero when X = Vot' = Mpt. Hence, the
¢ axis is "fixed" on the wing. As to the second condition, a straight—
forward exercise in partial differentiation yields

Pee + Py * L= Prr | - B

so that, in going from x,y,z to &,7, 'sﬁace, the wave equation
remains Invariant; consequently, both the requirements mentioned have
been fulfilled,

It is instructive to consider briefly the consequences of applying
the Torentz transformation. Although the wave equation remains invariant,
such physical quantities as length and pressure do not. For example, a
wing with a chord ¢, in the x,y,z space has, according to equation (L),

a chord co/ﬂ/l-Mba in the ¢,n,6 space. Furthermore, the loading

coefficient which, on the basis of linearized theory, is given in the
X,¥,2,5 8pace by

bp _ k00 (6
T " T o (6)
becomég for the ¢, 1,6, T space

:7 Mo 37 o3¢

If the wing motion is steady and there are no transient effects, equa—
tions (5) and (7) are independent of time and together with the resulting -
length transformations become

Pee 9y +Qpp=0 )
A_P______.li?.g___' 1
q oL —M,2 ) - (8)
£ = S 2:n=Y:C=Z J
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These are immediately recognized to be, respectively, Laplace'!s equation
for incompressible flow and the familiar Prandtl-Glauert compressibility

corrections,1

The preceding discussion has an important qualification, however, in
the fact that the velocity of the moving axial system cannot exceed the
speed of sound. A glance at equation (4) serves to verify this statement
since that equation shows My must be less than 1 in order that £ and
T be real for real x and t. In fact, it has been shown that there is
no transformation which will fix the moving axial system in a wing travel—
ing at a wniform supersonic gpeed away from the original fixed axes and
gtill keep the wave equation invariant, Therefore, for analyzing a wing
in supersonic flight, it is necessary to abandon one of the two proposed
requirements: either the axial system cannot be fixed in the wing, or
the field equation must be modified. The latter of these two alternatives
has been studied by several authors (e.g., references 3, 4, 5, 6) but it
is the former which will be considered in the present analysis. Further,
gsince the axes cannot be made to travel as fast as the wing, they will
not be made to move at all and equation (3) will be adopted throughout as
the basic equation.

Having decided upon the form of the partial differential equation,
the boundary conditions must next be established., For any given time
these conditions are similar to those studied in steady—state thin-—
airfoll problems; namely, either that the given slope of the wing surface
is proportional to the vertical induced velocity @, over the region
occupied by the wing in the 2z = 0 plane,® or that the prescribed surface
pressure is proportional to the timewise gradient ¢y 1n velocity poten—
tial over the same region., The addition of time simply means that thig
region moves about in the 2z = 0 plane in conformity with the known
direction and velocity of the wing.

The additional condition is imposed that the induced velocities fall
to zero on the surface which is formed by the envelopes of the spherical
sound waves originating from the surface of the wing.

) The solution to equation (3), subject to the boundary conditions
Just mentioned, can be expressed by a formula which may be regarded as

1The equation &= x/,/1-Mo® would first read ¢ = (x=Mot5) /[ 1-1M2
where to 1is a constant representing the time required for the motion
to reach its steady state. However, the x coordinate can always be
translated to any fixed position without affecting any of the equations
for potential, loading, etc. Such a translation is assumed to have
been made in equation (8).

®The z = O plane is assumed to be the "plane of the wing"; that is, if
the angle of attack were zero and the wing had no thickness it would
lie entirely in the 2 = 0 plane.
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" requiring elther the evaluation of a double integral or the solution of
a doublé-integral equation, depending upon whether a boundary—value

- problem of first or second kind is consldered. This solution 1s known
as Kirchhoff's formula. (See reference 1.) It may be written in a form
convenient for aerodynamic applications as follows:

o b) :O:t" y
P = lff[-}—Ai(P(xl,Yuzl,‘b—ro)—A a q)(Xl ylr r)J as (9)

~a '

where the A indicates the Jump»(value on the upper surface minus value

on the lower surface when applied to ¢ or %g) of the function in

passing through the .z,=0 plaﬁe, r= N/kx—xl)2+(y—y1)2+(2—21)2 s

q)=~/(x-xl)2+(y;yl)2+z2 , and where the area of integration Sz will be

discussed in more detail later.

The terms in the integrand of equation (9) can be shortened ty
introducing the following notation:

140 b ) o La[2%
Yo A Sz, (p(xl,Yl-}Z_l)t_ro) =T AI:aZl]r (10a)
A d ®(x1,y1,0,t-r) _ [Br _?_(P(xl,ylso’t"'r) ]__ _?EQA _8_ 9
dz, r - oz, Or r 3z or|r

(10b)

In this notation, the subscript r in equation (10a) means that r is
to be held constant in the differentiation, and the prefix A obviates
the necessity of indicating that the functions considered are to be
evaluated for z:=0, since it indicates that the difference of the values
of the function across the z;=0 plane is to be taken., The right-hand
side of equation (10a) can be recognized as a term representing a source
located in the 2z3=0 plane, and the right-hand side of equation (10b) 1is
seen to represent a doublet located in and with axis normal to the z,=0
plane. The brackets [ ] about the functions 1n equations (10a) and
(10b) have a special meaning which is defined in the followlng way: if

f 1s a function whose value at a fixed point P depends upon the coor—
dinates' X;,¥yi,Z1,bt of a moving point Q, so that

f f(xlj.—Yl,Zl:t)

[£] = £(x,¥1,21,%7) o (11)
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where r 1is the distance from P to Q. As an example, consider the
potential © at a point P due to a moving source, the location of which
at any time 1s Q. Then ¢ satlisfles the condition just mentioned that
it depends on the coordinates Xx;,y1,z1,t of Q. The brackets [ ] indi—
cate that the potential [¢ ] depends not upon the source strength now at
"time" +t, but rather upon the source strength that exlsted "time" r
ago.2 For convenience, [@] 18 referred to as the retarded value of @,

The expression for a doublet, equation (10b), is usually expanded
ag follows:

or, . d [(P] oro 3 /1 ory 1 3P
"t T -‘gs‘rz(* [ael-5 = [A"‘}

3 /1 1 or d9
~(®) w2 28] e

Finally, equation (9) becomes

__ 1 _1_§A_q>] 3/1 __l_?fg[m]}
¢’- Mtlgdf'{rolszl + [oal az<ro> ro 02 ot ds (13)
a

The application of equation (13) awaits only a discussion of the area Sg
over which the integration is to be made. This discussion is important
enough, however, to merit consideration in some detail and will be given

in the following section.

The Acoustic Plén Form

Suppose that a line of sources is placed along the y .axls and that
the strength of these sources is zero for t <0. At t =0 they are
"turned on" and, at the same time, start moving along the negatlive x;
axls wlth the velocity Vo. After time t' has passed, the source line
has traveled a distance Myt as shown in the accompanying sketch (which

is drawn for the case M,>1).

sQuo‘ces are used around the word time since the dimension of t+ 1is

actually length, not time. It 1s convenient, however, to refer to t
as "time," and, since the actual value of time is simply t multiplled
by the constant a,, this should cause no confusion.
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X3

!

Suppose next that there are two sensing elements, 'or detectors, placed at
the point P(x,y) located somewhere ahead of the ¥1 axis; one of these
detectors 1s responsive to light and the other to sound. Now, the light
detector at any given time will show the sources lying in a straight line
"Just as they would appear visually at each particular instant, The situa—
tion is entirely different, however, for the sound detector. First it is
necessary to understand the nature of a spherical sound wave. Such a
wave travels outward from its origin at a velocity ag, so that in the
time +t*' 1t has traveled a distance +t. Before the wave reaches a point,
the point is completely unaware® of its existence and, further, after the
wave has passed, the point remains subsequently unaware of its exlstence.
Hence the only points disturbed by the wave are those momentarily on the
spherical surface 1tself., (In this connection see reference 1, pp. 1 ff.)

4 . ’ .
. Unaware 1s used in the sense that an instrument will record no change
in any of the physical properties of the air at the point in question.
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' The sound detector, therefore, can only "hear" sources which are so
located that thelr spherical sound waves are Just, at the given instant
of time, reaching the detector. The locus of all the points which, at a
time +t ago, emitted sound waves that are Just now reaching the point
P(x,y) 1s 1tself a sphere and for convenlence this sphere will be
referred to as an inverse sowund wave.® The traces of these inverse sound
waves 1n the 2z = 0 plane are drawn in the sketch as concentric circles
about the point P(x,y). The intersection of an inverse sound wave of
radius t—71 with the line representing the position of the sources at a
time +t'-T' ago gives the position of the sources which are Jjust now
signaling thelr presence to the sound detector at P, For example, when
the source line started, 1t was lylng along the y; axis. With reference
to the present time +t +this was agt' removed, Hence the intersection
of the circle about P of radius t with the y; axis fixes the two
points A and A', the spherical sound waves of which are now reaching
P, A continuation of this process yields, for the locus of all points
from which waves emanated that are just now touching the point P, the
part of the ellipse shown in the sketch,

In the sense that the light detector, because of the very large
velocity of light, is "seeing" a straight line of sources, the sound
detector, because of the relatively slow velocity of sound, is "hearing"
an elliptic line of sources., ZExtending this concept to include a sheet
of sources dlstributed over the surface of the wing, one can refer to
the outline of that part of the wing which generates disturbances which
can be measured by the light detector as the plan form (i.e., the visual
plan form), and to the outline of that part of the wing which affects
the gound detector as the acoustic plan form. In a mathematlcal sense,
the acoustic plan form is the area S over which the integration of
equation (13) is to be made.

The equation for the acoustic plan form can be formulated by means
of the two equations

(x21)% + (552)% + 2% = (t-7)% (14)
£(y1,%1,7) = 0 (15)
where
x,y,z coordinates of the polnt at which the induced effect; are to be

measured

SThe inverse sound wave has for its analogue in steady lifting—surface
theory the Mach forecone. In that theory a disturbance outside the
Mach forecone cannot affect the values of the induced velocities at
the point whers they are belng measured. Similarly, in the present
gtudy, a source located outside the inverse sound wave of radius t
cannot affect the values of any measurement made at the point P,
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X,,y: variable points of the sources
t  "time" now
t-1 "time" ago

Equation (14) is that of the inverse sound waves and equation (15) repre—
gents the position of the visual plan form at a time t—+ past, It is nec—
essary to Include the region behind the wing covered by the vortex wake
as part of the visual plan form, In case the vorticity in the wake
vanishes, as in the thickness problem, the wake may still be considered
ag part of the visual plan form, but the strength of the source—doublet
distribution over that part of the acoustic plen form corresponding to
the wake will vanish, If t2-22<0, the acoustic plan form does not
exist since, for such a case, no source on the Xi,¥1 plane has had time
to transmit its effect to the point x,y,z. On the other hand, if the
circle (in the x;,y; plane) given by the equation

(xx1)% + (y51) % = =7

lies entirely within the area occupied by the visual plan form of the wing
at the beginning of the motion, the acoustic plan form is just this circle
itself. For any other situation the acoustic plan form is formed in part,
or in whole, by the curve found by eliminating T from equations (1)

and (15) and in part, or not at all, by an arc of the circle (x—x;)2 +
(y=y1)2 = t3%22, One of the principal advantages of the acoustic—plan-
form concept arises in the study of problems involving source or doublet
distributions having constant strength. In such cases, the retarded
values of the potential and its gradient appearing in equation (13) are
constant and can be taken outside the integral signs, The problem is
thereby reduced to the integration of a simple geometric variable over

Sa.

A few examples will serve to fix the idea of the acoustic plan form
Consider first a two-dimensional, unswept wing moving at a constant super—
sonic speed In the negative x; direction. At time zero the leading edge
of the wing was along the y1 axis and now, at time equal to t*', the
- wing has moved so that the leading edge coincides with the line x; = —
Mot.  Choose three points that are now lying on the wing. Let one point

have its x coordinate in the range cb\—,,/ t222 > x>,/t222 (where cq
is the chord of the wing), the second in the interval NET LSS S

v t222 ; and the third is the range —,/t2=22 2x2 ~M,t. Designating
these points by P,,P», and Py (see sketch), 1t can be shown that their

acoustic plan forms are, respectively, a complete circle, a part circle and
part ellipse, and a complete ellipse,.
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Wing now o P,
4
N . _
‘‘‘‘‘ 4
Y1
-d
=~ l-:gr
'~ ”
.. P
== <-4
l i
I s S J
Wing at time zero
X3

The points P are at the centers of the circles and at focal points of
the ellipses. Since, moreover, the circular plan form about P; receives
no signals from sources on the leading or trailing edge, conditioms at P;
are consequently completely independent of the actual (visual) plan form
of the wing. The elliptical plan form about Pg, on the other hand,
depends entirely on the shape of the leading edge; and finally the mixed
plan form about P, 1is in certain regions (the circular portion) independ—
ent of the leading edge, and in other regions (the elliptic portion)
entirely dependent upon it. Since the wing is traveling at supersonic
speeds, the trailing edge and vortex wake can have no effect on the meas—
urements taken on the wing and, in the same way, a point ahead of the wing
leading edge, P, in the sketch, is undisturbed.

Next consider a wing moving at a constant subsonic speed in the nega—
tive x; direction. As before, the leading edge was on the y, axis at
t' = 0 and has traveled a distance -Mgt. Choose now three points P;,
Po, and I% on the wing and unaffected by the wing tips. The acoustic
plan forms for these points are combinations of circles and hyperbolas as
contrasted with the circle—ellipse combination in the supersonic case,
Just as in the supersonic case, however, there is a certain region
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represented by P; 1in which the acoustic plan form is a complete circle
and 1s independent of the visual shape of the wing (see sketch).

oP

Wing now _ Py ' 4 :
AQiiiiiijjt>> . :::::::: Ja
< - -2z
AN 7
N Vd
-2 < o
L ————— A GEN VS GEE EEn IR T GED Glis M EER AL I GUD D e SEE GEP  Gum |
Wing at time zero

X3

Point Pz 1is surrounded by a plan form which is part hyberbolic and part
circular, the point itself being the center of the circle and the focus
of the hyperbola. Point Pg 1s a limiting value of Pp; it lles on the
leading edge of the wing and the hyperbolic sides of its plan form have
degenerated into straight lines. Finally, P, lies ahead of the wing;
its plen form is still a combination of a hyperbola eand a circle, but P,
is now the focal point lying ahead of the hyperbolic branch used,

. The sketch was constructed so that the portion of the visual plan
form behind the trailing edge had no effect on the potential at the var—
lous polnts P,;, etc., If these points had been chosen at positions where
the wake could signal its effect, one of two acoustic configurations would
result, First, if the wing is symmetric about the z = 0 plane, no 1lift
is developed and the vorticity in the wake is zero so that the visual plan
form need not include the wake, but effectively ends at the trailing edge.
In this case, the leading edge of the acoustic plan form is then deter—
mined as before, while its modified trailing edge may be made up, in part,
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of circular arcs formed by the primary wave and, in part, by an arc of the
hyperbola formed by the (acoustic) intersection of the straight visual
tralling edge with the primary wave (such an arc being ildentical with the
leading edge of the acoustic plan form but displaced backwards). On the
other hand, i1f the wing has no thickness but is inclined to the free
gtream, 1t develops 1lift and the vorticity in the wake does not vanish;
the acoustic plan form has a trailing edge made up entirely of an arc of
the primary inverse sound wave., The space between this arc and the acous—
tic trace of the visual trailing edge 1is covered by a sheet of doublets,
the strength of which 1s determined by the vorticity distribution of the
vortex wake,

It 1s interesting to notice the conversion of terminology which
arises in the analysis of unsteady 1lift problems. In the study of steady-—
state wings, it is customary (because of the nature of the governing
partial differential equation) to speak of the subsonic problems as ellip—
tic and the supersonic problems as hyperbolic. Yet the acoustic plan
forms Just presented involved ellipses for the supersonic wing and hyper—
bolas for the subsonic case.

To complete the remark, 1t can be observed that when the velocity of
the wing is sonic the steady-state partial differential equation becomes
parabollc and, in this case, the acoustic plan form of a stralght—edged
wing also involves parabolas. When the leading edge is linear and normal
to the stream direction, the eccentricity of the conic sections bounding
the acoustic plan form for a point on the wing is equal to l/Mb. From
this relation 1t is apparent that for M, less than, equal to, and greater
than 1 the sections are, respectively, hyperbolas, parabolas, and ellipses,
As might be presumed, the value of the eccentricity satisfles simple sweep
theory so that, for an infinitely long straight leading edge, the eccentric—
1ty of the acoustic plan form is l/Mo cos A where A 1s the angle of
sweepback, The principal axes of the conic sections are always normal
and parallel to stralght leading edges.

Homogeneous Boundary-Value Problems

Kirchhoff's solution to the wave equation can be applied to arbitrary
wing plan forms undergoing arbltrary maneuvers. The boundary values for
such general problems, however, usually lead to the development of double
Integral equations which are difficult to solve. As 1s usual in such
cases, there are many special types of plan forms and maneuvers which lead
to boundary-value problems that are simpler to analyze. An important
class of these simplified problems 1is that arising from homogeneous bound—
ary conditions,

Iet @ (x,y,2,t) be a solution to equation (3). In certain special
cases this can be written ¢ = (t)ncm)(%, %, %) in which case ¢ 1is
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called & homogeneous fimction of degree n. The number of variables
affecting @, is only three as compared to the four which are necessary
to determine. ¢, If, therefore, a partial differential equation can be
set up for @y, it will contain one less mathematical "dimension" than
the equation for ®. Followlng this observation it is necessary to pro-—
ceed in two directions; one to find the partial differentlal equation for
Qs and the other to find the physical problem and consequent boundary
values leading to a homogeneous flow field. The latter path will be
first explored. '

First, consider an example : TVO
of a homogeneous boundary-value
. problem, Suppose that a rectan- ¥
gular flat plate at an angle of fe)
attack starts suddenly from rest _*_ 1
and moves forward at a supersonic
Mach number My, At "time" 3
the initial spherical wave gen— ’ :
erated by the forward right-hand
corner has traveled outward to a
radius +t; and, at "time" 2t,, ‘
to a radius 2t;. The sketch ) ' ‘ ?Vo
indicates the traces of these —T'

spheres in the z = 0 plane

together with the original and »
present position of the wing , 2Mot, -

leading edge. ILet the points P,
and P, be located on the same P2 ot

rays through the origin of the 1
circles and the wing corners. The

problem is to find the pressures
at Pl and P2.

It is apparent that, if
every dimensioch in the figure
involving P, 1is divided by 2t;
and every dimenslion 1n the figure
involving P; 1s dlvided by t,,
the two figures will be similar 1n every respect and polnt P; will coin-—-
cide with point Po. Since the vertical velocity wo 18 constant over
the plan form, a simple change in scale has made the boundary conditions
for both problems identical. But thils means that the solutions at Py
and P, are identical since the wave equation 1s invariant to change in
scale, Hence, In regions of a rectangular wing wmaffected by the waves
from the tralling edge, the pressure can be written

Ap _ Ap /x I z o .
—q" (x’y,z’t) = ? (E; £ {) ' . : (16)
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and the pressure is a homogeneous function of degree zero. A generaliza—
tion of this example is contained in the following statement:

(1) The pressure in any region affected by only two Intersecting
edges of a straight-sided flat plate traveling at a uniform
subsonic or supersonic speed 1s homogeneous and of degree
zero (i.e., satisfies equation (16)).

Consider as another example the case of a flat rectangular wing
traveling forward at a subsonic or supersonic speed and rolling about
one edge, taken to be coincident with the x axis, The argument follows
the same lines as before, and again a change in scale, proportional to
the time, makes the geometry of the wing-wave combinations identical (in
regions affected by only two intersecting edges) for different times,

- The boundary values over the wings wlll not be the same, however, unless

the slope of the w, distribution is adjusted in each case. But W,
can be adjusted by reducing it an amount proportional to the distance
from the axis of rotation. The boundary—value problems are then similar
for different values of time, Finally, therefore, the pressure can be
written .

%E (xJY:z:t) =3 %‘p ("]ts: %J %) (17)

which 1s a homogeneous function of degree one. A generalization of this
example is expressed as follows:

(2) The pressure in any region affected by only two intersecting
edges of a straight—sided flat plate traveling at a uniform
subsonic or supersonic speed and rotating at a constant rate
of pitch or roll 1s homogeneous and of degree one (i.e.,
satisfies equation (17)).

It should be noted that both (1) and (2) are equally true for the
steady-state case when all transient effects have dlsappeared. In super—
sonic wing theory they lead to conical and quasi—conical flows, respec—

- tively, while 1n the subsonic case they lead to flows about wings having
infinite chordwise extent. In general, homogeneous flow occurs when the
boundary condltions after a change in scale are proportional to their
original values,

Consider next the modification of the basic partlal differential
equation (equation (3)) under the assumption that the flow is homogeneous,
If the pressure 1s given by a function that 1s homogeneous and of degree
zero, then, by equation (6), the velocity-potential function will be
homogeneous and of degree one. If the notation
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X Yy 2
't'=x05'€=yO:E=ZO
. : (18)
q) I(x’y,z,t) = t¢ (xo, yo, ZO)
is used, then equation (3) becomes
. 2 ‘ _
(l—XOZ)QXOXO + (1—y02)¢yoyo + (124 )QZOZO - 2X,¥, QXoYo

2 ] 2y.z,. @ =0 (29)
Xo0%0 “x 2, T “Y0%0 “y42, ,

and a linear partial differential equation with three independent vari--
ables is therefore obtained.

In the general theory of ' ‘ AV
partial differential equations of _ o
second order, the character of an
equation is determined from the
geometric nature of a related TS
quadric surface. The character of
equation (19) can be shown from
such considerations to depend on
the sign of the expression 1-x,%-—
Yo% =22 It is immediately
apparent, however, that within
the unit sphere in the xo,yo,zo
gpace the sign of l-xg2@~yo2-zg 2
is everywhere positive and outside
the sign 1s everywhere negative.
It follows that outside the unit
sphere equation (19) is hyperbolic
and inside the unit sphere it is
elliptic.

SOANIIINN
\5/

The character of equation (19)
"~ is of particular interest since the
difficulties inherent in the deter—
mination of the solutions can be
estimated without actually obtalning
the solutions. For example, con—
gider the two configurations shown
in the sketch. These wings started
moving at t = O with the foremost
5 - portion of their leading edges on
o the yo axis and have by now traveled forward at a supersonic speed to
attain the positions represented by the sketch, the unit circle being in
each case the trace of the primary wave from the vertex on the z =0
. plane. Outside the unit sphere, the governlng equation is hyperbollc and

!
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the behavior of the flow is similar to that in steady-state supersonic—
wing problems; closed solutions, therefore, can be expected in many cases.,
Inside the unit sphere, on the other hand, the character of equation (19)
is elliptic, The canonical form of an elliptic partial differential equa—
tion in three dimenslons is Iaplace's equation which 1s the governing
equation In steady—state subsonic—wing theory. dJudging from the com—
plexity of subsonic, three—dimensional wing problems, it can be concluded
that a closed solution within the unit sphere will be very difficult to
find.

It is instructive to notice that this entire development has a direct
analogue 1n the study of three—dimensional, steady state, supersonic wings,
In that case the original equation is the three—dimensional wave equation

chx'_ cpy-y"' (pzz= 0 (20)

By considering the velocity potential to be homogeneous and of degree one,
Busemann in reference T was able to introduce the transformations

NI

Jo =

(p(x,y,z) =x¢ (yO’ZO)

and transform equation (20) to the form
(1-552) oy ¥, * (1-203) 0z 2, =2¥o2o ®yozo = O (21)

which 18 the two—dimensional form of equation (19). Flows governed by
equation (21) have become known as conical flows. A study of equation (21)
shows 1t to be elliptic inside and hyperbolic outside the wnit circle,

In this case, however, the equation has only two independent varlables so
that once the equation has been transformed to the two—dimensional form

of Laplace's equation® solutions are not difficult to find.

€ The Tschapligin transformation transforms equation (21) into laplace's
equation. .
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Boundary-Value Problems Involving Noninteracting Surfaces

The simplification of the four—dimensional theory brought out by
the introduction of homogeneous flow was more apparent than real since -~
the resulting partial differential equation, although containing one
less dimension, was wnwieldy. Another class of wing problem which is
gimplified both in theory and in practice by reasoning from physical
knowledge of the flow behavior is that in which the wing has a super—
gonic edge (i.e., an edge which is traveling with a supersonic normal
component of velocity).

When the acoustic plan form is affected only by a supersonic edge,
it is obvious that the flow on the upper surface of the wing is independ—
ent of that on the lower surface. Hence the solution to such problems
can always be written in terms only of sources as follows:

1 | 1 | doo |
-/ fs = 2]as (22)
where 09/dz1 = wyu(x1,¥y1) =
////
V//mm %//A
/ ///

Vo Mulx1,¥71), Ay Deing the
(a)

local glope of the surface in
the direction of V,. Since
yI 44 ‘
a,=a(t)/ a=0 _
L2 LLL
(b)

equation (22) is equally valid
7
a=0 . %:a t)/
LL Ll

¥

c

¥

- for symmetrical nonlifting - ‘ L)
: c

4

*

c

¥

surfaces and lifting plates,
its value and simplicity is
evident,

If the wing plan form is
further specialized by having

not only supersonic leading (c)

edges, but also having a - a=a(t)
straight trailing edge perpen— 1

dicular to the direction of z a=0 =0
motion, additional simplifica—

tions can be used.” Consider, (a) a=a(t)

for example, the two—dimensional
wing (a) in the sketch. Let
this wing have an angle of
attack a(t) which varies with
time in an arbltrary manner. - (o)

There results from such an

angle—of—attack variation a

certain 1lift which also varies

with time, Hence, if L! represents the total 1ift on an airfoil of

- o>

TThe following method simply extends, to include the effects of unsteady
motion, a theorem given by Lagerstrom and Van Dyke. (see reference 2.)
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very high aspect ratio and cy ' represents the section lift—curve
slope, then® a

— =c cla' (c,t)(span)

Next, it 1s clear by reason of symmetry that the total 1lift on wings (b)
and (c) in the sketch are equal, Then, since the analysis is based on a
linear partial differential equation, by superposition principles the
total 11ft on wing (b) or (c) is just half of that on wing (a). 1In
another sense, the 1ift coefficient for the whole wing based on the
deflected area ig the same for all three cases. A sultable superposition
of wings (a), (b), and (¢) will give wing (d), which then has the same
1lift coefficient based on deflected area, Finally, because of the super—
sonic stream, wing (e) can be obtained from (d), hence it also has the
1ift coefficlent common to the other wings. It 1s of course necessary
that the variation of « with time be the same in each case.

The preceding process can be extended one step farther to the
development of the 1lift due to a single deflected element. By consider—
ing the sketch 1t can be seen that

—a=0(t) a=x(t) -a,=<1(t)

n
{ L 1 c
1/4,\4’ -

where
AS area of the deflected element
c distance from AS +to tralling edge

J By the usual limiting process the latter equation becomes

8The primes on quantities indicate that two—dimensional values are taken,
or, that a high-espect—ratio wing is considered and tip effects are

neglected.
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~

Finally, if a wing is composed of a distribution of these elements, then,
for an axial system centered at the apex of the wing leading edge, there
results

1 ) '
Cp, = — g-y/q“/ﬂa(x,y) 55 [(co—x) ¢, (co—x,t):}dydx (23)

S . _ :
where co 18 the maximum chord (see sketch). In the defelopment of equa—'
tion (23) each element 1s assumed
to have the same variation of
motion with time,

Notice that when the wing is
a flat plate flying at a steady
speed so that all transient effects
have disappeared, ' 1s independ- ©
ent of t and of the chord length,
being, in fact, equal to L4/B. Then JL
equation (23) becomes

, - x
Cp, = é%\jﬁ ol x,y)dxdy = %%

where a 18 the average angle of attack of the wing. This result has
already been obtained in reference 2, When o(x,y) 1is independent of
x (as for a flat wing sinking or rolling), equation (23) vecomes

b

1 2 |

Cp, == o c, ! t) dy ; 2

=L [ ety oot (o0) oy (24)
-2 |

where c¢ 1is the local chord which is, in general, a function of .

Equation (24) simply indicates that longitudinal—strip theory is exact

for such wings. : ~

Finally, notice that the calculation of the unsteady lift on three—
dimensional wings with supersonic leading edges and straight trailing
edgos perpendicular to the free—stream dlrection has been reduced to an
integration involving the relatively simple results for a two—dimensional
wing undergoing the same unsteady motion. For example, the 1ift on a
flat triangular wing rising and sinking with a harmonic motion can be

computed from a single integration of the results presented in refer—

ence 3. Such a calculation can be carried out numerically quite rapidly.
Two-Dimensional Boundary-Value Problems

The simplification ‘brought about when the flow is 1ndépendent of
one dimension is again obvious. In such cases, the three—dimensional wave
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equation (3) reduces immediately to the two-dimensional wave equation,
Typlcal examples of thls type of problem can be constructed by consider—
ing flat plates which start suddenly at t = 0 and travel thereafter at
constant supersonic velocitles. Two examples, one a corner of a rectan—
gular wing and the other a triangular flat-plate wing are shown 1n the
sketch, After time +t = 0, the edges of the wings send out cylindrical
waves and the outer boundarles of these waves at time t are shown as
dashed llnes parallel to the edges in question.

|

leading edge now

Mach
waves

ILeading edge
at t=0

Since points in regions 1 and 2 are affected only by a single edge, the
wave phenomena in these regions are cylindrical, and the physical quan— -
tities are in both cases independent of distance parallel to the edge
which acts as their generator, Hence, the flow fleld in these reglons
may be regarded as two dimensional. (Reglon 3, incidentally, is independ—
ent of distance In both the x and the y directions and is, therefore,
one--dimensional., )

Solutions to the two—dimensional unsteady problems are sometimes
egpecially easy to find because of the analogy they have with three—
dimensional, steady—state, lifting-surface problems., (Sea,e.g.,refer—
ence 8,) For example, consider an infinitely long unyawed wing which
starts from rest and travels forward at a velocity V which may or may
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not be a function of time. The trace of Traces of

this wing in the x,t plane is like that characteristic cones
shown in the sketch, (In the sketch shown,

the wing velocity is always less than the

speed of sound and varying.) The boundary
conditions are that @, 1s specified over

the shaded area and the loading AQy is /
zero everywhere except within the shaded

area, But if x 1is replaced by y and

t by x, these boundary conditions are

exactly the same as those for a plate of

known camber and angle of attack, with a

plan form as indicated by the shaded area, :
placed in a free stream directed along the Trace of | leading edge
positive x axls at a Mach number equal
to /2. The solution for the one problem
may be used, therefore, as a solution to ‘ "
the other with only a change 1n notation.

Trace of
trailing edge

Boundary Conditions for Very Slender Wings

When the wing plan form is slender in the sense that its length in
the streamwise direction is large compared to its span, an estimation of
the loading on it can be
obtained by neglecting in ;
the partial differential equa=-— _ ‘ y
tion the gradient of the induced
velocity component in the stream
direction., Thus, if the wing

1g moving in the negative x A—— 4 -~ —-A
direction, equation (3) reduces ) I '
to I !
) I
. . I x'
Pyy+Ppp= P (25) | |
ro

which 1s again the wave equa—
tion but in two space dimensions.
Since equation (25) is independent 4
of x, study can be made independ— d 4
ently of the bowndary conditions Section A-A
on each spanwise strip,  This is in the y-t
s an extension of steady-state plane
slender-wing theory. (See, eo.g.,
reference 9.) The sketch shows a

/
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typical section in the yt plane. If the wing is a flat plate starting
from rest and traveling forward at a uniform speed, the boundary condi-
tion is that ®5; should be constant over the shaded area in the sketch .
and A@,; should be zero everywhere except across this area. The solution

to this problem leads directly to the solution for the thin trlangular

wing .2 ‘

TWOeDimensionAl Unsteady Incompressible Flow

The analogy between two—dimensional wnsteady and three—dimensional
- gteady flow provides an interesting viewpolnt for two—dimensional unsteady
problems in incompressible flow. In this case the boundary condltions
are independent of the lateral coordinate and equation (1) becomes

1
Pyx ¥+ P2z = ay? Pty

Since the speed of pressure propagation ap 1s assumed infinite, the
basic equation thus becomes-

PyxtPz= O -

where, however, time still appears
in the boundary conditions and 1in

the expression »
Leading . : ap _ b o9
edge Trailing a Vo2 ¥t
« edge
which is equivalent to equation (6).
Vortex The technique involved in the solu—
sheet tion of such problems is analogous

to that in which one term of the .
three—dimensional steady-—state

equation vanishes by virtue of the

fact that free—stream Mach number
approaches one,

If the two—dimensional wing
gtarts from rest and travels for—
ward at a speed V, the trace of
the wing 1s as shown in the sketch.
- The essential difference between this problem and the more general case

of two-dimensional compressible flow lies in the fact that the traces of

°It is obvious that the wunalogous problem in steady-state wing theory is
that of a low—aspect—ratio, rectangular, flat plate in a free stream
having a Mach nusber equal to J2.

|
|
|
|
|
1
1
|
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the characteristic cones are normal to the +' axis. The boundary
conditions are therefore satisfied along lateral strips and, in lifting—
surface terminology, the analysis corresponds to §lender—wing theory.
These latter methods are well established and in reference 9, for example,
the manner in which the Kutta condition is imposed is discussed in some
detail, The tralling vortex sheet for the 1lifting wing has the same
dlstribution of vorticity that exists behind the unsteady two—dimensional
airfoil and the rolling up of the vortex sheet can be studied from elther
standpoint,

APPIT CATTONS
Starting Iift of a Wing

One of the simplest and yet most general results which can be derived
on the basis of the present theory is the initial value of pressure on a
wing surface starting impulsively from rest with a velocity Vg. The
discussion will be made for a wing without thickness although the results
will be seen to apply to the thickness case as well, .

Consider a surface with a
plan from as indicated in the Wing plan form
sketch. The acoustic plan form i1
of a point P(x,y) on the sur—
face 1s a small circle of radius
t. Since no point on the wing
outside this circle can influence
the pressure at P, the upper
surface is independent of the
lower surface, except for a band
of width t  around the edge of
the wing. It is, therefore,
evident that the boundary—value
problem to be solved has been
treated in the section Bowndary—
Value Problems Involving Noninter—
acting Surfaces. The solution
follows directly from equation (@2)

J(yp [ ]ds Acoustic i
ro dz1 plan form X1
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Using a polar coordinate system defined by

X —X; =T cos @
y=J1=r gin 6
dxy dy, = rdrd6

there résults®

2n t
Wi\ X
(Px_—lié-;[-iz-)-f defd.r':—twu(xJ)

o ¢
so that
(.E) acp> __ hwu(x,y)
VoMo St/ 7 Voo
If a = — wy(x,y)/Vo is the local slope of the wing, the expression for

load coefficlent becomes

The starting value of 1lift coefficient can, therefore, be written

b

Cg, = M, (27)

where @ 1is the average angle of attack of the surface defined by

b e

S Dbeing the area of the wing plan form.

CDII—'

*®7he mean value theorem glves

® = _Wu(g’n) ff as
. en Saro

where ¢ and 7 lie somewhere in Sg. Hence, as t approaches O,
3 and 1 approach x and ¥y, respectively.
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Supersonic Steady-State Lift

In order to illustrate some of the basic concepts, consider next
an example for which the result is well known. 'The problem will be to
derive, by the methods outlined in this report, the steady—state loading
.on a two—dimensional flat plate traveling at a constant supersonic speed.
Since the upper and lower surfaces are noninteracting, the solution
stems from equation (22), In the plane of the wing this equation becomes

1 wpdxy Ay, | |
- —_— (28)
en ij; »/—(-;C"xl)z"‘(Y"Yﬂz ’ .

Leading edge now

/ Wave started by leading

Z edge at t=0 o X
. Acoustic / T —

, / plan form ‘ .
/ . £ Mgt

r T
b P ¥
L/. : : , : ‘.l
L7 . Leading edge at t = 0 ' 4 . \\
1 r
1 |
| |

>

" The accompanyling sketch shows the positions of the wing in the xy
plane., The wing has constant speed for t>0. The point P(x,y) is
chosen on the wing and ahead of the wave which started at time zero;
therefore, P(x,y) 1lles in the region which has attained its steady-state
value, Further, the value of w; 1s constant over the acoustic plan
form in such a region, This constancy reduces the problem to one of
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integrating [(x—xl)2+(yfy1)2]_l/2 over the ellipse representing the
. acoustic plan form,

The equation for S, can be determined from equations (14) and
(15). In this case, equation (15) becomes simply

xl =—'N'[0T

Eliminate T between this equation and equation (1L4) and there results
in the z = 0 plane

(x-x1)° + (y32)° = <c + ;—%)2 (29)

That equation (29) is the equation of an ellipse with one focal point
at x,y can be readily verified., It is more convenient, however, to
change to a polar coordinate system with origin at P. Hence set

X-X; = r cos @
y—vi1 r gin 6
d)'1 d.xl rdrds

Then equation (29) becomes

Mor = Mgt + x—r cos @

or
x + Mgt

" i v oos (30)

r

and, therefore, equation (28) becomes simply

x + Mot
2% ——
o - Wy J[‘ a8 M, + cos @ ar
2n
o) o

21
W
= — 2 (x4 Mot)Jf 46
2n o Mo +cose

The integral 1s not difficult to evaluate so

¢ = — 1

21 |
oot (X+Mot)(~/ﬁ
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no
\O

and, finally, by equation (6)

Ap WMo

i VoMo < A/Moz_l>=~/_ﬁ (3L

which is the familiar Ackeret value for the loading on a two—dimensional
flat plate. The lift coefficient, of course, follows immediately as

op = =2 - (32)

Stability Derivative Cy
r

Consider the case of a high—aspect-ratio (so that the tip effects
can be neglected) rectangular wing yawing at a unifora rate r radians
per second and traveling forward along its flight path at a supersonic
velocity V,. The equation of the leading edge of the wing, using the
coordinates indicated by the sketch, is given by the relation
and since V¥ = rt' this

X = <?‘—-Y%> tan V¥
r
becomes

X = (y - -I-,9—> tan rt! (33)
Wing

The boundary conditions
(when the stability derivative
is to be referred to the body
axis) are that wy, the ver— . : v

region occupied at any given J YQ : ' M
time by the plan form, shall be T

constant., Further, the steady-— ‘
state condition 1s determined

leading-—edge trace with the X

inverse sound wave forms a

closed curve., Honce, the

acoustic plan form is given by eliminating T from the equations
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v(x—xl)z + (y51)% = (+-72

Vo » (3h4)
X = (yl - —r—> tan rr!

It 15 usual to assume r to be small and to retaln only the first
power of r 1n & series expansion, Therefore, since it can be shown
that the equatlion of the acoustic plan form is given correctly to the
first power in r by assuming rt' = tan rt', equation (34) beccmes

R=t —n
M, (35)
Xx—-Rcos @ =<y — R sin 6 — = Jr¥*r
r
where, as in the preceding example, the polar coordinates
¥-X; = R cos 8
y-y1 =R sin 6 ' (36)
dx; dy, = RdRde
have been introduced together wlth the notation
r* = - (37)

8o

solving equations (35) for R, there results

=g +/ A, = & Bor* sin 0
2r* gin 6

R

where

A, =cos 6 —r¥y + My —r*t sin @
By = r*ty-x-Mgyt

and expanding in powers of r* gives, neglecting powers higher than the
first,

By Bo®
R=-— v m r* gin 6
or _
x+Mot N ty (x+Mot) (y+t sin 6) (x+Mot) 2 ain 6
R = Mo+ cos 6 Mo+ cos 6  (My+ cos 6)2 + (Mg+ cos 6)3
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The solution for the velocity potential is given, Just as in the
preceding eoxample, by the equation

P =~ d/\ Rd@

u/“zﬂ gin 6 a8 _U/"eﬂ gin 6 6 = 0
My + cos 6)3 " J,  (My +cos )2

and since

o)

a2x .
de _ 21

My +cos 8 JME-L

o™

f23( ) QnMO
o (Mg +cos )2 (MF-1)3/2

then finally

9 Mot ey ——g——t+M°x - (38)
= + X+ :
=y Mo .
The loading can be obtained from equation (38) by using equation (6)
hence : ‘
Ap ha (ry)
=== + =72\ 7 (39)
. MET (Mg3L) Vo '
This result has been obtained previously in reference 10 by a different
method.
Moving Two-Dimensional Vortex » Lo
Moving
A further interesting application of the vortex __|Starting
methods presented here 'is the development of Y vortex
the moving rectllinear vortex, where a vortex
is represented by a line of constant clrcula- v x
tion. The moving vortex is assoclated with a "' Mot ﬂ

lifting surfacell which starts impulsively at

t = 0 and travels at a wniform veloclity away :

from a fixed axial system. Since a vortex S :
cannot end in a fluld (Helmholtz's fundamental result), the moving vortex
must be adjoined by two trailing vortices and they, in turm, by a final
gtarting vortex (see sketch) which remains in the vicinity of the position

11 Agsociated in the sense that a distribution of these vortices will
satisfy the boundary conditions for the lifting surface, The moving
vortex 1s often referred to as the bound vortex.
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at which the motion commenced. For the present, the assumption is made
that the trailing vortices are far enough away so that they do not affect
the flow arowund the center of the moving and starting vortices (i.e., the
flow is two dimensional); and second, that the starting vortex remains
fixed on the line along which the moving vortex first appeared. With
these assumptions, the boundary conditions can be determined from the
definition that the vortex gystem described is equivalent to a distribu—
tion of doublets of constant strength over the region of the z =0

plane bounded by the moving vortex, the stationary vortex, and the vor-—
tices Joining them at thelr extremitles. Such a sheet of doublets gives
rise to a constant potential difference, Am, across the sheet, while the

normal derivative is continuous so that A(39/dz) = 0. The solutlon is
then glven by equation (13). Thus

P = cp]_ + q)g (]4-0)
where

ff <az = ) . (h1)
Po = uinffs = > %o g (42)

A0 The evaluation of ¢, imposes
no difficulties except in integra-—

tion but the calculation of @,

requlires some speclal conslderation.

?.

and

AP Since A® is a constant, 0AP/dt
J is zero everywhere except along
T the line of the moving vortex and
l., e _.{ there 1t is infinite. In order to
evaluate such an indeterminate

form, assume that the potential
difference rises linearly to its
value A9 in the time interval €

- . (see sketch)., Then the value of
N _ AP I %Z:igi dAP/dt 1is 4P/ in the narrow
ot € strip between the two ellipses

Myt formed by the intersection of the
Ne _ o inverse sound wave
. dt
P - (x-21)% + (352)% + 2% = (+-7)%
\ Y
Starting with the lines
vortex Xy = — MT
X1 xi = —MO(T— G)
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When the equations for these two ellipses are formulated and placed in
equation (42) there results an equation which can be represented by the
expression : :

9, = 22 [F(t)—F(ﬁ—e) }

2" kxe

ORI
Sa 0 Z

and Sz 1s the same acoustic plan form used in equation (1), But since

where

g B0 _ 0
€ —=>0 € ot

the equation for @, becomes

..é?iff 1 3rg
q>2_1m Jt S, o dz as

The calculation of ®; and ®» over the acoustic plan form given
by the area within the curve :

. : 2
2 2 x :

(x~x1)° + (y=1)" + 22 = (t + B_’I.% (43)

or between this curve and the y;

axls gives for the regions defined
by the sketch

Region (1) . :
AP (x+Mot) ¥/ £2x3—22 Moving
® = z— |arc tan ~  wvortex
2n z (Mox+t )
' Starting -
* arc tan g% Jt2x>2 J (hh) vortex
’ Subsonic
Region (2) :

2 z| zt . , £2 = x2452

2 Moving
(x+Mpt) S 3 x2—22] (15)

‘ vortex
arc tan z(MOx+t) ortex

Starting
vortex

Region (3)

AQ

z .
EI o (46) Supersonic
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Tt 1s to be noted that equation (44) gives the potential everywhere
within the c¢ylinder in which disturbances can be affected in subsonic
flow as well as over a large portion of the disturbed region in super—
sonic flow,

Tt is apparent that the results given in equations (4%), (L45), and
(46) can also be obtained independently by the methods indicated in the
sectlion entitled Two-Dimensional Boundary-—Value Problems., From this
viewpoint, the problem of the unsteady two—dimensional vortex palr has
for its asnalogue in lifting—surface theory the case of a triangular wing
yawed so that one side 1s parallel to the free—stream direction and the
other side 1s elther a subsonlc or a supersonic edge, depending on the
case being consldered. Since A® 1is specified a constant over the
entire plan form, the solution is relatively easy. In reference 11, for
example, the solution for the subsonic case is given in terms of the
variables used in steady-state analysis,

The foregoing results for My <1l reduce to more familiar expres—
sions when their asymptotic expressions for large values of time are
determined, A study of the two terms in equation (44) shows that as t
becomes large the expression becomes

N /w2 b'd
¢ > 5’?<2IZ! arc tan.z>

This result provides the velocity potentlal for a stationary vortex in
an incompressible medium, the Jump in the value of the potential occurr—
ing along the plane of the vortex motion (see sketch).

If the axes are flxed in
the moving vortex, new coor—
dinates &, {, T need to be

Introduced as defined by the z
equations
‘ Direction of

£ =x+ Mt moving vortex

{ =2 / T3

T =1 - x

_ 40

As T TDbecomes large, equa- 2

tion (44) reduces to the form

¢-€>ég<: x b + arc tan ___EL“_{>

2x\ 2t Cfie .

This result agrees with that of Glauert (reference 12) for a vortex
obtained from the steady—state linearized theory of compressible flow,
8o that in the vicinity of the moving vortex the induced veloclty fileld



» -

 two-dimensional, steady-state, Mt

8ide and large values of

~number is greater or less

~ starting vortex, but in the Mt
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is identical to the perturbation field of a fixed vortex in a subsonic
free streamn. '

It is interesting to inspect the vertical velocity induced by the
vortex palr in the z = O 'plane, From equations (44) and (45) it
follows that for x2<+t2 the vertical velocity Wy for both subsonic
and supersonic speeds 1s given by the relation

B Acp[“ M§x+t t) 1 }
¥u = T 5% Tt T x) [iexe
(b7)

QQ “/ .t2_x2
2 x(x+Mgt) Mo

The sketch shows the W
variation of w; along the
x axis for a moving vortex
traveling at both subsonic
and supersonic speeds.  For
both cases in the vicinity Moving
of the starting vortex wy, vortex
behaves as it does near g

t

Starting
vortex

fixed vortex, having large
values of downwash on one

upwash on the other. The
velocity distribution arownd -~ _
the moving vortex is quite Subsonic wu
different, however, depend-—
ing on whether its Mach

than one. In the subsonic
cage the dlstribution is )
gimilar to that for the t

Moving vortex

supersonic case the velocity
is just a pulse existing at
the position of the vortex.
Again in both cases the A
velocity falls to zero at Supersonic

the primary wave front (i.e.,

at x = *t in the sketch).

vortex

A final remark can be made concerning equation (44) in connection -
with incompressible theory. In this case, the value of &g becomes
infinitely large and, if equation (44) is written in the form '
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‘ ' 2412 32,2 2412 42 ,2
(x4Vot1) Wag2t12x2 _ arc tan x /8o2t 1 22

Vox zagt!
4 —_— aot')
8¢

- A9
Q= 5x | 3T tan

it is apparent that, as a,->« the velocity potential becomes

t
9= 29 <arc tan XVt — arc tan 5—) (48)
2n z ‘ z

Equation (h8) gives the velocity potential for a moving and a fixed
vortex pair in an incompressible fluid.

Moving Three-Dimensional Vortex

In three—dimensional subsonicl? unsteady 1lift theory an important
role is played by the loop vortex composed of & moving bound vortex of
fixed span, a stationary starting vortex of opposing strength, and two

trailing vortices comnecting the
end—-points of the other two and
Moving vortex\ completing the vortex loop., The
T‘ boundary condition for such a

configuration requires that the
_ Jump in potential A® 18 a con-—
A, MLt stant over the Interior of the
3Zi;i;n§\\\‘ ’ © loop. The calculation of the
induced field can be resolved
;P(X:Y essentially into the determina—
tion of the veloclity potential
¥1 for two semi—infinlte vortices
and a tralling vortex (see
Starting vortex sketch) since, by superposition
methods, two of these latter
configurations can be combined
X1 My<1 wlth the two—dimensional figure
of the last sectlon to glve the
requlred loop. The present
example 18 concerned with the calculatlion of the velocity potential In
the tip region of the semi~Infinite case.

As in the two-dimensional case Just discussed the potentlal can be
dlvided into two parts @, and 9P, such that

12 The extension to include the three—dimensional supersonic loop is
obvious.
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N (p=(pl+(p2.

Aqu dx;dyy |
ff [(x—xl) 24 (y—y1)2+22]3/2

Aq>z f f dxldyl |
b (x—%1) B+ (y—1) 24271

6.
=
1]

S
V]
1

where éa is the acoustic plan form, being the area bounded by the
lines '

(x=x1)% + (y=3y1)2 + (t +

J1 =0

x1¥O

>It is convenient to use the notation

k = Mot
£ = x~x;
1= JJ1

Then the potentlal can be written -

12 (k—M ‘\Afz"‘ﬁ Z +B 1 ) at

Ty +
N _m (£24n2422) 072
1 K2+822 24820 3)
ZAQ —a—-f f—é k—M +8z 4+ ") at
T W12 x2,2 ' §§+n2+zz
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which becomes, after one integfation, ’

Y A
l"ﬂ k<42 +T]2 (T]2+Z ) x2+z +T]2

k (1_M02 Jdn+

N k24822248202 \ %22 kZnBez®

zA® P M Mok :

T s s Y EE === | dn
n k=+z 547 (k®+z%+7°) J/k24B2224p22

- /taﬁxz_zz

Combining and Integrating again there 1is obtained, for M, <1,

AQ (x4Mot) S £3—xB—z 2 ' x4/ t2=x2—2=
P = arc tan —
z .

—-— — arc tan
by z(Myx+t)
arc tan = y(x4tlyt) — arc tan ———y (49)
z W (x+Mt) 24B2(y2+2.2) z x2+y24z2 :l
Moving vortex which is the potentlal within

the primary spherical wave
shown in the sketch, Notice
that across the shaded area the
Jump in potential given by
equation (49) is equal to A9
and elsewhere the potential is
continuous. Along the portion
of the sphere t2 = y2+z24x2
for which y >0, the potential
1s equal to that derived for
the two—dimensional vortex; and
on the rest of the sphere,

® equals O.

Trailing
vortex . _ /7
\

Starting
vortex

Primary wave
t2 = x®+y"+z
X

2

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif.,, October 12, 1950.
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11.

12,
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