AMPTIAC

NBS REPORT

9740

THERMAL CONDUCTIVITY STANDARD REFERENCE

MATERIALS FROM 4 TO 300K. I. ARMCO IRON

by

J. G. Hust

Reproduced From
Best Available Copy

NBS

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
Institute for Basic Standards
Boulder, Colorado 80302
NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end, the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards; (2) materials measurements and standards; (3) technological measurements and standards; and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

*Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.
* Located at Boulder, Colorado 80302.
* Located at 6285 Fort Royal Road, Springfield, Virginia 22151.
THERMAL CONDUCTIVITY STANDARD REFERENCE

MATERIALS FROM 4 TO 300K. I. ARMCO IRON

J. G. Hust
Cryogenics Division
Institute for Basic Standards
National Bureau of Standards
Boulder, Colorado, 80302

IMPORTANT NOTICE
NATIONAL BUREAU OF STANDARDS REPORTS are usually preliminary or progress accounting documents intended for use within the Government. Before material in the reports is formally published it is subjected to additional evaluation and review. For this reason, the publication, reprinting, reproduction, or open-literature listing of this Report, either in whole or in part, is not authorized unless permission is obtained in writing from the Office of the Director, National Bureau of Standards, Washington, D.C. 20234. Such permission is not needed, however, by the Government agency for which the Report has been specifically prepared if that agency wishes to reproduce additional copies for its own use.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th></th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Apparatus and Data Analysis</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Specimen Characterization</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Results</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Discussion</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Acknowledgments</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>References</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>Appendix</td>
<td>89</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1 Residual resistivity ratio (ρ_{273K}/ρ_{4K}) of Armco iron ... 9
Table 2 Basic semi-processed temperature gradient data for Armco iron, specimen 2 11
Table 3 Basic semi-processed isothermal electrical resistivity data for Armco iron, specimen 2 16
Table 4 Basic semi-processed temperature gradient data for Armco iron, specimen 2a 18
Table 5 Basic semi-processed isothermal electrical resistivity data for Armco iron, specimen 2a .. 24
Table 6 Basic semi-processed temperature gradient data for Armco iron, specimen 4 25
Table 7 Basic semi-processed isothermal electrical resistivity data for Armco iron, specimen 4 ... 30
Table 8 Parameters in equations 1, 2, and 3 for Armco iron, specimen 2 32
Table 9 Parameters in equations 1, 2, and 3 for Armco iron, specimen 2a 32
Table 10 Parameters in equations 1, 2, and 3 for Armco iron, specimen 4 32
Table 11 Thermal conductivity deviations for Armco iron, specimen 2 33
Table 12 Electrical resistivity deviations for Armco iron, specimen 2 38
Table 13 Thermovoltage deviations for Armco iron, specimen 2 ... 39
LIST OF TABLES (Continued)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 14</td>
<td>Thermal conductivity deviations for Armco iron, specimen 2a</td>
<td>40</td>
</tr>
<tr>
<td>Table 15</td>
<td>Electrical resistivity deviations for Armco iron, specimen 2a</td>
<td>48</td>
</tr>
<tr>
<td>Table 16</td>
<td>Thermovoltage deviations for Armco iron, specimen 2a</td>
<td>49</td>
</tr>
<tr>
<td>Table 17</td>
<td>Thermal conductivity deviations for Armco iron, specimen 4.</td>
<td>50</td>
</tr>
<tr>
<td>Table 18</td>
<td>Electrical resistivity deviations for Armco iron, specimen 4.</td>
<td>57</td>
</tr>
<tr>
<td>Table 19</td>
<td>Thermovoltage deviations for Armco iron, specimen 4.</td>
<td>58</td>
</tr>
<tr>
<td>Table 20</td>
<td>Transport properties of Armco iron, specimen 2</td>
<td>59</td>
</tr>
<tr>
<td>Table 21</td>
<td>Transport properties of Armco iron, specimen 2a</td>
<td>60</td>
</tr>
<tr>
<td>Table 22</td>
<td>Transport properties of Armco iron, specimen 4.</td>
<td>61</td>
</tr>
<tr>
<td>Table 23</td>
<td>The Lorenz ratio and intrinsic electrical resistivity of Armco iron (average of the results from specimens 2, 2a, and 4).</td>
<td>62</td>
</tr>
</tbody>
</table>

Appendix

Table I | Calibration table for Chromel vs Au-Fe (Au-0.07 at. % Fe) thermocouple | 90 |
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Table II</th>
<th>Calibration table for platinum resistance thermometer designated LN-1037903</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Table III</td>
<td>Thermocouple positions and specimen diameter</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Table IV</td>
<td>Zero emfs of specimen temperature measuring thermocouples (Thermocouple number 1 is nearest the floating sink)</td>
<td>97</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Figure 1</td>
<td>Division of Armco iron rod. Each of the 12 pieces shown was machined into a circular cylinder for measurement.</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Figure 2</td>
<td>Thermal conductivity deviations for Armco iron, specimen 2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Figure 3</td>
<td>Electrical resistivity deviations for Armco iron, specimen 2</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Figure 4</td>
<td>Thermovoltage deviations for Armco iron, specimen 2</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Figure 5</td>
<td>Thermal conductivity deviations for Armco iron, specimen 2a</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Figure 6</td>
<td>Electrical resistivity deviations for Armco iron, specimen 2a</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Figure 7</td>
<td>Thermovoltage deviations for Armco iron, specimen 2a</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Figure 8</td>
<td>Thermal conductivity deviations for Armco iron, specimen 4</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Figure 9</td>
<td>Electrical resistivity deviations for Armco iron, specimen 4</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Figure 10</td>
<td>Thermovoltage deviations for Armco iron, specimen 4</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Figure 11a</td>
<td>Thermal conductivity of Armco iron, specimen 2.</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Figure 11b</td>
<td>Electrical resistivity of Armco iron, specimen 2.</td>
<td>74</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES (Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11c</td>
<td>Lorenz ratio of Armco iron, specimen 2</td>
<td>75</td>
</tr>
<tr>
<td>11d</td>
<td>Thermopower of Armco iron, specimen 2</td>
<td>76</td>
</tr>
<tr>
<td>12a</td>
<td>Thermal conductivity of Armco iron, specimen 2a</td>
<td>77</td>
</tr>
<tr>
<td>12b</td>
<td>Electrical resistivity of Armco iron, specimen 2a</td>
<td>78</td>
</tr>
<tr>
<td>12c</td>
<td>Lorenz ratio of Armco iron, specimen 2a</td>
<td>79</td>
</tr>
<tr>
<td>12d</td>
<td>Thermopower of Armco iron, specimen 2a</td>
<td>80</td>
</tr>
<tr>
<td>13a</td>
<td>Thermal conductivity of Armco iron, specimen 4</td>
<td>81</td>
</tr>
<tr>
<td>13b</td>
<td>Electrical resistivity of Armco iron, specimen 4</td>
<td>82</td>
</tr>
<tr>
<td>13c</td>
<td>Lorenz ratio of Armco iron, specimen 4</td>
<td>83</td>
</tr>
<tr>
<td>13d</td>
<td>Thermopower of Armco iron, specimen 4</td>
<td>84</td>
</tr>
<tr>
<td>14</td>
<td>Deviations of the thermal conductivities of each specimen from the mean values</td>
<td>85</td>
</tr>
<tr>
<td>15</td>
<td>Deviations of the Lorenz ratios of each specimen from the mean values</td>
<td>86</td>
</tr>
<tr>
<td>16</td>
<td>Deviations of the computed intrinsic electrical resistivities from the mean values for the three specimens of Armco iron</td>
<td>87</td>
</tr>
<tr>
<td>17</td>
<td>Deviations of the thermopowers from the mean values for three specimens of Armco iron</td>
<td>88</td>
</tr>
</tbody>
</table>
THERMAL CONDUCTIVITY STANDARD REFERENCE
MATERIALS FROM 4 to 300 K. I. ARMCO IRON*

J. G. Hust
Cryogenics Division, NBS-Institute for
Basic Standards, Boulder, Colorado, 80302

ABSTRACT

Thermal conductivity, electrical resistivity, Lorenz ratio, and thermopower data are reported for several specimens of Armco iron for temperatures from 4 to 300 K. At low temperatures the electrical resistivity and thermal conductivity vary from specimen to specimen by more than 10%. However, the Lorenz ratios of these specimens differ by less than 1.5%; and the intrinsic resistivities calculated using Matthiessen's rule differ by less than 0.2% of the total resistivities. Thus, Armco iron specimens can be used as standards by measuring the residual resistivities and utilizing the Lorenz ratio reported here.

KEY WORDS
Cryogenics, electrical resistivity, iron, Lorenz ratio, Seebeck effect, thermal conductivity, transport properties.

* This work was carried out at the National Bureau of Standards under the sponsorship of the NASA-Space Nuclear Propulsion Office, Cleveland.
1. Introduction

Design and development engineers in the aerospace industry continue to have urgent need for thermal and mechanical property data for new materials. For most materials, especially new or uncommon alloys, measured values of thermal conductivity are not available and predictions cannot be made with adequate confidence. To help satisfy these needs, we have constructed an apparatus for the simultaneous measurement of thermal conductivity, electrical resistivity and thermopower. Measurements have been conducted on several aerospace alloys, Hust, et al.[1] Another phase of this program, to establish standard reference data on several standard reference materials (or specimens), has begun. We intend to measure several specimens of materials which appear to be useful as standards. For some materials, material variability may be so great that only standard specimens (not standard materials) will be useful. Standard reference specimens or materials are useful for intercomparison of existing apparatus, for debugging new apparatus, and for calibration of comparative apparatus. The apparent large differences between the results of various investigators for a given material (50% is not unheard of) is evidence of the need for intercomparisons, calibrations, and standardization. The availability of standard reference materials will result in more accurate and more permanent transport property data for technically important solids.

This paper contains the results of our measurements on the transport properties of Armco iron.* Armco iron was investigated at low temperatures primarily because of its extensive use as a thermal conductivity standard at higher temperatures.[2]

* The use in this paper of trade names of specific products is essential to the proper understanding of the work presented. Their use in no way implies any approval, endorsement, or recommendations by NBS. Armco iron is a registered trade name of a commercially pure iron produced by Armco Steel Corporation.
2. **Apparatus and Data Analysis**

The apparatus is based on the axial one-dimensional heat flow method. The specimen is a cylindrical rod 3.6 mm in diameter and 23 cm long with an electric heater at one end and a temperature controlled sink at the other. The specimen is surrounded by glass fiber and a temperature controlled shield. Eight thermocouples are mounted at equally spaced points along the length of the specimen to determine temperature gradients in the range 4 to 300 K.

The experimental data are represented by arbitrary functions over the entire range and smooth tables are generated from these functions. The number of terms used to represent each of the data sets is optimized, through the use of orthonormal functions, so that none of the precision of the data is lost by "underfitting" nor are any necessary oscillations introduced by "overfitting." A detailed description of this apparatus and the methods of data analysis is given by Hust, et al.[1] Further details are given in the Appendix of this report.

3. **Specimen Characterization**

An Armco iron rod (2.54 cm diameter and 35.6 cm long) was obtained from Battelle Memorial Institute. Typical composition of Armco iron in weight percent is: 0.015 C, 0.028 Mn, 0.005 P, 0.025 S, 0.003 Si, 0.04 Cu, and 99.9 Fe. This rod was annealed by the supplier as follows: \(\frac{1}{2} \) hour at 870°C in a gas-heated air muffle, and then in a quartz capsule at \(1 \times 10^{-6} \) torr for \(1 \frac{1}{2} \) hours at 875°C, furnace cooled to 150°C, held at 150°C for 24 hours, and furnace cooled to room temperature. We cut the rod into quarters along its axis and cut a 5 cm long piece from each end of each quadrant. These eight pieces were used for electrical residual resistivity ratio, hardness, and grain size measurements. Two of the center 25 cm sections were measured in the thermal conductivity apparatus. The division of the rod and the labeling of specimens is shown in figure 1.
The hardness of these specimens, after machining, was B-40.0. The specimens were subsequently reannealed using the same procedure indicated by the supplier. The hardness after anneal was B-37.1. The grain size approximated from ASTM Chart E112, plate 1 was 0.053 mm and 0.064 mm after machining and after reannealing respectively.

The electrical residual resistivity ratios, RRR, of the eight specimens (1A... 4A, 1B... 4B) after machining and of two of these specimens after reannealing are recorded in table 1. These ratios obtained from electrical resistance measurements at 273K and 4K in a specially fabricated dip probe, are estimated to be accurate to about 0.2%. Table 1 also contains the resistivity ratios of specimens 2C and 4C. The data marked with asterisks were obtained from the thermal conductivity apparatus.

C. F. Lucks of Battelle Memorial Institute performed similar measurements on another bar of Armco iron. The rms deviation of his results on six specimens is 6.5% of the mean while the rms deviation of our ten specimens is 3.6%. Lucks made his RRR measurements from 4K to 298K; in order to compare absolute values, I adjusted his values to ρ_{273K}/ρ_{4K} by using $d\rho/dT = 0.05\mu \Omega \text{cm/K}$ at the ice point. This value of $d\rho/dT$ comes from my measurements in the thermal conductivity apparatus. The mean value of RRR (13.65) determined from my data is 5.5% below the mean value reported by Lucks. It is noted from table 1 that the RRR values are lower after annealing. This is an unexplained phenomena at this time, but probably is connected with diffusion of impurities from the grain boundaries upon heat treatment.
4. **Results**

The transport properties of specimens 2C and 4C were measured in the thermal conductivity apparatus. Specimen 2C was subsequently annealed (same annealing procedure as described before) and remeasured. These data are presented in tables 2 through 7. These specimens are referred to as 2 and 4 respectively in these tables. Specimen 2C after annealing is referred to as 2a.

The experimental data were functionally represented with the following equations:

\[\ln \lambda = \sum_{i=1}^{n} a_i \left[\ln T \right]^{i+1} \] \hspace{1cm} \text{(1)}

\[\rho = \sum_{i=1}^{m} b_i \left[\ln T \right]^{i+1} \] \hspace{1cm} \text{(2)}

\[S = \sum_{i=1}^{\lambda} c_i \left[\ln T' \right]^i / T'; T' = \frac{T}{10} + 1 \] \hspace{1cm} \text{(3)}

where \(\lambda \) = thermal conductivity, \(\rho \) = electrical resistivity, \(S \) = thermopower, and \(T \) = temperature. Temperatures are based on the IPTS-68 scale above 20 K and the NBS P2-20 (1965) scale below 20 K. The parameters, \(a_i, b_i, \) and \(c_i, \) determined by least squares, are presented in tables 8, 9, and 10. Further details of this procedure are described by Hust, et al.\(^1\) The deviations of the experimental data from these equations are given in tables 11 through 19 and in figures 2 through 10. The "observed" thermal conductivities are computed from the mean temperature gradients indicated by adjacent thermocouples. Calculated values of \(\lambda, \rho, S, \) and \(L = \rho \lambda / T \) (Lorenz ratio) are presented in tables 20, 21, and 22 and in figures 11, 12, and 13.
A detailed error analysis for these measurements has been presented previously by Hust, et al.[1] Based on this analysis of systematic and random errors the uncertainty estimates (with 95\% confidence) are as follows:

- **thermal conductivity:** 2.5\% at 300 K, decreasing as T^4 to 0.70\% at 200 K, 0.70\% from 200 K to 50 K, increasing inversely with temperature to 1.5\% at 4 K.
- **electrical resistivity:** 0.25\%
- **thermopower:** 0.5\% + 0.2\,\mu V/K at 4 K, 0.2\% + 0.05\,\mu V/K at 30 K, and 0.1\% + 0.03\,\mu V/K above 76 K.

The thermopower values given here are absolute values although our measurements were carried out with respect to normal silver wire. The absolute thermopowers of normal silver reported by Borelius, et al.[4] were used to convert the experimental data to the absolute scale.

5. **Discussion**

The thermal conductivities of these specimens differ by as much as 10\% at low temperatures; the differences observed in electrical resistivity are similar. The thermal conductivity deviations of the three sets of values are shown in figure 14. These data would suggest that Armco iron is a poor thermal conductivity standard at low temperatures. However, upon further examination it is found that this conclusion is not valid. The Lorenz ratio for these measurements is much less variable at low temperatures than either ρ or λ. Figure 15 illustrates the deviations of the Lorenz ratios for each specimen from the mean value.
Since these deviations are not appreciably larger than the uncertainty in the measured Lorenz ratio, the Lorenz ratio is assumed to be invariant from specimen to specimen. Thus one can obtain the electrical resistivity of a particular specimen of Armco iron and compute the thermal conductivity using the Lorenz ratio reported here.

In order for the above procedure to be practical one needs a relatively quick method of generating a ρ vs T curve for a particular specimen from relatively few measurements. Matthiessen's rule indicates that $\rho = \rho_0 + \rho_i$, where ρ_0 is the residual resistivity of the specimen and ρ_i is the intrinsic resistivity of the material. It is known that this rule is not satisfied exactly and that a correction term $\Delta(\rho_0, \rho_i)$ exists. However, if this correction term is sufficiently small one can reconstruct a sufficiently accurate ρ vs T curve for a given specimen from knowledge of ρ_i and measurement of ρ_0 (only one measurement). To investigate this possibility, ρ_i was computed for each specimen using Matthiessen's rule. The relative deviations of the computed values of ρ_i from the mean of three sets is shown in figure 16. This plot shows that ρ_i values for specimens 2, 2a, and 4, as computed from Matthiessen's rule, differ from the mean by less than 0.3% of the resistivity. This deviation is only slightly larger than the estimated uncertainty of the measurements. It is not unreasonable to assume that this result can be extended to other specimens of Armco iron having similar values of ρ_0 and thus, Armco iron can be a useful low temperature standard reference material. This is especially significant, since Armco iron is already in extensive use as a high temperature standard reference material.\[2\] The thermal conductivity, λ, of standard reference specimen of Armco iron can be computed from
\[\lambda = \frac{LT}{\rho} = \frac{LT}{\rho_i + \rho_o} \] (4)

where \(L \) and \(\rho_i \) are given in table 23 and \(\rho_o \) is determined by a relatively simple measurement.

The absolute thermopowers of these three specimens are compared in figure 17. The deviations between specimens are only slightly larger than the uncertainty in the tabulated values; thus no significant difference between specimens can be detected from this property.

6. Acknowledgments

I wish to thank C. F. Luck of Battelle Memorial Institute for supplying the Armco iron rod and information regarding annealing. R. P. Reed and R. L. Durcholz of this laboratory did the hardness and grain size testing. This measurement program has been carried out under the helpful guidance of R. L. Powell.
7. References

3. C. F. Lucks, Private communication.

Table 1

Residual resistivity ratio (ρ_{77K}/ρ_{4K}) of Armco iron

<table>
<thead>
<tr>
<th>Specimen</th>
<th>After machining</th>
<th>After annealing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>14.12</td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>13.81</td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>14.13</td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>12.99</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>13.81</td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>14.51</td>
<td>12.88</td>
</tr>
<tr>
<td>3B</td>
<td>14.09</td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td>12.77</td>
<td>11.52</td>
</tr>
<tr>
<td>2C</td>
<td>13.86, 13.83*</td>
<td>12.58*</td>
</tr>
<tr>
<td>4C</td>
<td>12.44, 13.31*</td>
<td></td>
</tr>
</tbody>
</table>

* These values were determined from measurements using the thermal conductivity apparatus.
The data listed in tables 2 thru 7 are, in part, card images of experimental data as read into the computer for data processing. These data are not clearly labelled. The following is a line by line explanation of tables 2, 4, and 6.

1st line - Data identification.
2nd line - Sample heater voltage (μV), current (mA), platinum resistance thermometer voltage (μV), cryogenic bath pressure (mm of Hg), room temperature ($^\circ$C), platinum resistance thermometer current (mA), code indicating type of cryogenic bath (1 = liquid helium, 2 = liquid hydrogen, 3 = liquid nitrogen, 4 = dry ice-alcohol, 5 = ice-water).
3rd line - Thermocouple emfs (μV).
4th line - Seebeck emf (μV), specimen current (mA), specimen voltage drop (μV).
5th line - Thermocouple temperatures (K).
6th line - Heater power (W), reference temperature (K), specimen resistance (Ω).
Table 2. Basic semi-processed temperature gradient data for Armco iron, specimen 2.

<table>
<thead>
<tr>
<th>Thermal Conductivity Data for Armco Iron (2) 27Aug68 135pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2901060 50.1000 3041.95 92.8 21.0 1.0 3.0</td>
</tr>
<tr>
<td>155.85 192.39 229.95 267.77 305.95 344.43 383.00 422.30</td>
</tr>
<tr>
<td>129.98 200.00 52.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermocouple Temperatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>77.251 79.254 81.302 83.354 85.418 87.487 89.555 91.649</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heater Power</th>
<th>Reference Temperature</th>
<th>Specimen Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7322-002</td>
<td>68.606</td>
<td>2.6227-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermal Conductivity Data for Armco Iron (2) 28Aug68 625 pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>5856750 40.0000 4687.70 650.0 21.0 1.0 3.0</td>
</tr>
<tr>
<td>292.10 363.46 437.18 511.91 587.84 664.82 742.62 822.12</td>
</tr>
<tr>
<td>318.51 200.00 75.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermocouple Temperatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.137 95.916 99.790 103.686 107.619 111.577 115.555 119.591</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heater Power</th>
<th>Reference Temperature</th>
<th>Specimen Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5427-001</td>
<td>76.349</td>
<td>3.7630-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermal Conductivity Data for Armco Iron (2) 29Aug68 1145 am</th>
</tr>
</thead>
<tbody>
<tr>
<td>6754900 70.0000 4788.42 653.0 21.0 1.0 3.0</td>
</tr>
<tr>
<td>743.45 992.50 1254.80 1525.50 1804.70 2091.04 2384.58 2686.87</td>
</tr>
<tr>
<td>1343.50 200.00 150.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermocouple Temperatures</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Heater Power</th>
<th>Reference Temperature</th>
<th>Specimen Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7284-001</td>
<td>76.811</td>
<td>7.5130-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermal Conductivity Data for Armco Iron (2) 30Aug68 100 am</th>
</tr>
</thead>
<tbody>
<tr>
<td>9614249 99.5800 4780.40 653.0 21.0 1.0 3.0</td>
</tr>
<tr>
<td>1661.95 2251.69 2878.90 3531.45 4208.12 4903.67 5616.50 6353.80</td>
</tr>
<tr>
<td>2724.50 200.00 315.78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermocouple Temperatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>161.685 189.651 216.693 248.594 278.803 309.855 341.683 374.600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heater Power</th>
<th>Reference Temperature</th>
<th>Specimen Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5739-001</td>
<td>77.192</td>
<td>1.5789-003</td>
</tr>
<tr>
<td>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2) 30AUG68 220PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>399637</td>
<td>4.1500</td>
<td>-0.00</td>
</tr>
<tr>
<td>15.25</td>
<td>15.97</td>
<td>18.95</td>
</tr>
<tr>
<td>-0.03</td>
<td>100.00</td>
<td>11.66</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.010</td>
<td>5.229</td>
<td>5.446</td>
</tr>
<tr>
<td>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6585-005</td>
<td>4.073</td>
<td>1.1660-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2) 30AUG68 330PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>827760</td>
</tr>
<tr>
<td>41.08</td>
</tr>
<tr>
<td>0.13</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</td>
</tr>
<tr>
<td>7.1187-005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2) 30AUG68 630PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1265600</td>
</tr>
<tr>
<td>109.77</td>
</tr>
<tr>
<td>0.51</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</td>
</tr>
<tr>
<td>1.6616-002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2) 30AUG68 710PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2182120</td>
</tr>
<tr>
<td>216.53</td>
</tr>
<tr>
<td>3.60</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</td>
</tr>
<tr>
<td>4.9469-002</td>
</tr>
</tbody>
</table>
Table 2 (Cont.)

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2) 3SEP68 347PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1195030</td>
</tr>
<tr>
<td>56.30</td>
</tr>
<tr>
<td>1.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3860-002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2) 3SEP68 505PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3480880</td>
</tr>
<tr>
<td>263.95</td>
</tr>
<tr>
<td>47.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.483</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2576-001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2) 4SEP68 120PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4860190</td>
</tr>
<tr>
<td>496.40</td>
</tr>
<tr>
<td>241.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.435</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4050-001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2) 4SEP68 430PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2335100</td>
</tr>
<tr>
<td>106.20</td>
</tr>
<tr>
<td>8.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.074</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6629-002</td>
</tr>
<tr>
<td>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON (2) 6SEP76 1130AM</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>4149000</td>
</tr>
<tr>
<td>239.86</td>
</tr>
<tr>
<td>544.20</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>204.212</td>
</tr>
<tr>
<td>HEATER POWER</td>
</tr>
<tr>
<td>1.7840-001</td>
</tr>
</tbody>
</table>

| THERMAL CONDUCTIVITY DATA FOR ARMCO IRON (2) 7SEP76 430 PM |
|---------------|-----------|-----------|----------|---------|--------|--------|
| 6270555 | 60.9600 | 17299.40 | 627.4 | 22.0 | 1.0 | 4.0 |
| 733.74 | 1001.22 | 1277.22 | 1556.20 | 1841.25 | 2129.90| 2422.95| 2722.05 |
| 1174.06 | 100.00 | 160.62 | | | | |
| THERMOCOUPLE TEMPERATURES |
227.472	239.645	252.132	264.687	277.470	290.357	303.441	316.795
HEATER POWER	REFERENCE TEMPERATURE	SPECIMEN RESISTANCE					
4.0734-001	193.620	1.6062-003					

The data listed in tables 2 thru 7 are, in part, card images of experimental data as read into the computer for data processing. These data are not labelled clearly. The following is a line by line explanation of tables 3, 5, and 7.

1st line - Data identification.
2nd line - Platinum resistance thermometer voltage (\(\mu V\)), cryogenic bath pressure (mm of Hg), room temperature (\(^\circ C\)), platinum resistance thermometer current (mA), code indicating type of cryogenic bath (1 = liquid helium, 2 = liquid hydrogen, 3 = liquid nitrogen, 4 = dry ice-alcohol, 5 = ice-water), specimen current (mA), specimen voltage (\(\mu V\)), mean emf of eight thermocouples (\(\mu V\)).

3rd line - Reference temperature (K), specimen resistance (\(\Omega\)), specimen temperature (K).
<table>
<thead>
<tr>
<th>Temperature</th>
<th>Resistance</th>
<th>Temperature</th>
<th>Resistivity</th>
<th>Date/Time</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>840 AM</td>
<td>3242.83</td>
<td>93.20</td>
<td>21.00</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>950 AM</td>
<td>3243.31</td>
<td>93.20</td>
<td>21.00</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>950 AM</td>
<td>3775.15</td>
<td>92.80</td>
<td>21.00</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>950 AM</td>
<td>4689.61</td>
<td>651.60</td>
<td>21.00</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>110 PM</td>
<td>4737.00</td>
<td>653.00</td>
<td>20.00</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>1200 PM</td>
<td>4815.05</td>
<td>652.50</td>
<td>21.00</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>845 PM</td>
<td>17246.80</td>
<td>631.50</td>
<td>20.00</td>
<td>1.00</td>
<td>4.00</td>
</tr>
<tr>
<td>1125 PM</td>
<td>17316.50</td>
<td>628.60</td>
<td>21.00</td>
<td>1.00</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Table 3. Basic semi-processed isothermal electrical resistivity data for Armco iron, specimen 2.
<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron (2)</th>
<th>30Aug68 150pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
</tr>
<tr>
<td>4.075</td>
<td>1.1660-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron (2)</th>
<th>30Aug68 420pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
</tr>
<tr>
<td>4.055</td>
<td>1.1670-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron (2)</th>
<th>30Aug68 520pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
</tr>
<tr>
<td>4.055</td>
<td>1.1685-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron (2)</th>
<th>30Aug68 650pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
</tr>
<tr>
<td>4.055</td>
<td>1.1740-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron (2)</th>
<th>3Sep68 205pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
</tr>
<tr>
<td>19.851</td>
<td>1.1795-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron (2)</th>
<th>3Sep68 255pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
</tr>
<tr>
<td>19.873</td>
<td>1.1860-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron (2)</th>
<th>4Sep68 1115am</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
</tr>
<tr>
<td>19.983</td>
<td>1.3815-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron (2)</th>
<th>4Sep68 255pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
</tr>
<tr>
<td>19.881</td>
<td>1.1890-004</td>
</tr>
</tbody>
</table>
Table 4. Basic semi-processed temperature gradient data for Armco iron, specimen 2a.

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A)</th>
<th>9 MAR 69 900 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>385760</td>
<td>40.0000</td>
</tr>
<tr>
<td>4707.44</td>
<td>647.0</td>
</tr>
<tr>
<td>176.41</td>
<td>246.46</td>
</tr>
<tr>
<td>318.77</td>
<td>392.55</td>
</tr>
<tr>
<td>467.41</td>
<td>643.60</td>
</tr>
<tr>
<td>543.60</td>
<td>620.64</td>
</tr>
<tr>
<td>699.16</td>
<td>3.0</td>
</tr>
<tr>
<td>1.0</td>
<td>300.24</td>
</tr>
<tr>
<td>70.64</td>
<td>200.00</td>
</tr>
</tbody>
</table>

THERMOCOUPLE TEMPERATURES

86.123	89.880
93.726	97.617
101.539	105.499
109.478	113.503

HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE

| 1.5430-001 | 76.529 |
| 3.5320-004 | |

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A)</th>
<th>10 MAR 69 1020 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>5788935</td>
<td>60.0000</td>
</tr>
<tr>
<td>4703.45</td>
<td>648.0</td>
</tr>
<tr>
<td>222.71</td>
<td>304.56</td>
</tr>
<tr>
<td>555.17</td>
<td>732.56</td>
</tr>
<tr>
<td>915.93</td>
<td>1104.85</td>
</tr>
<tr>
<td>1298.58</td>
<td>1497.87</td>
</tr>
<tr>
<td>815.92</td>
<td>200.00</td>
</tr>
<tr>
<td>95.86</td>
<td></td>
</tr>
</tbody>
</table>

THERMOCOUPLE TEMPERATURES

88.574	97.165
106.066	115.174
124.455	133.888
143.444	153.156

HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE

| 3.4734-001 | 76.493 |
| 4.7950-004 | |

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A)</th>
<th>10 MAR 69 500 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>806700</td>
<td>85.5700</td>
</tr>
<tr>
<td>4767.78</td>
<td>648.0</td>
</tr>
<tr>
<td>560.81</td>
<td>909.22</td>
</tr>
<tr>
<td>1282.68</td>
<td>1675.24</td>
</tr>
<tr>
<td>2083.94</td>
<td>2507.94</td>
</tr>
<tr>
<td>2946.02</td>
<td>3399.18</td>
</tr>
<tr>
<td>1922.56</td>
<td>200.00</td>
</tr>
<tr>
<td>169.05</td>
<td></td>
</tr>
</tbody>
</table>

THERMOCOUPLE TEMPERATURES

106.908	124.653
143.186	162.222
181.652	201.478
221.674	242.513

HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE

| 6.7416-001 | 77.078 |
| 8.4525-004 | |

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A)</th>
<th>11 MAR 69 440 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3860100</td>
<td>40.0000</td>
</tr>
<tr>
<td>4859.08</td>
<td>667.0</td>
</tr>
<tr>
<td>1077.97</td>
<td>1163.31</td>
</tr>
<tr>
<td>1251.43</td>
<td>1540.05</td>
</tr>
<tr>
<td>1540.05</td>
<td>1428.79</td>
</tr>
<tr>
<td>1518.60</td>
<td>1608.94</td>
</tr>
<tr>
<td>1700.87</td>
<td>133.58</td>
</tr>
</tbody>
</table>

THERMOCOUPLE TEMPERATURES

133.853	138.057
142.394	146.730
151.054	155.405
159.763	164.175

HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE

| 1.5400-001 | 77.907 |
| 6.6690-004 | |
Table 4 (Cont.)

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 12 MAR 69 1007 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL CONDUCTIVITY</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>HEATER POWER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 25 MAR 69 1345 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL CONDUCTIVITY</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>HEATER POWER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 26 MAR 69 1200 NOON</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL CONDUCTIVITY</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>HEATER POWER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 26 MAR 69 1705 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL CONDUCTIVITY</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>HEATER POWER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 26 MAR 69 2200 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL CONDUCTIVITY</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
</tbody>
</table>
Table 4 (Cont.)

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 13 MAR 69 1215 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3485400 36.1700 119.35 649.0 23.0 1.0 2.0</td>
</tr>
<tr>
<td>121.95 179.47 233.65 285.60 334.52 382.52 429.04 474.74</td>
</tr>
<tr>
<td>35.68 200.00 28.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.118 30.535 35.761 36.867 39.815 42.691 45.459 48.185</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2607-001 20.016 1.4100-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 13 MAR 69 300 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>5068460 52.5700 115.82 649.0 25.0 1.0 2.0</td>
</tr>
<tr>
<td>219.36 324.85 426.15 526.76 627.07 729.72 834.48 943.00</td>
</tr>
<tr>
<td>175.46 200.00 34.37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.034 39.367 45.427 51.371 57.226 63.110 69.019 75.068</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6645-001 20.147 1.7105-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 13 MAR 69 520 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>5634400 58.4200 120.00 649.0 25.0 1.0 2.0</td>
</tr>
<tr>
<td>415.50 534.85 660.15 790.32 925.50 1066.90 1213.85 1367.52</td>
</tr>
<tr>
<td>368.80 200.00 44.98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.888 52.075 59.343 66.746 74.305 82.053 89.959 98.108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2916-001 20.364 2.2490-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 7 MAR 69 500 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2404575 24.9400 4655.48 643.0 24.0 1.0 3.0</td>
</tr>
<tr>
<td>39.78 65.57 91.85 118.38 145.02 171.87 198.65 225.74</td>
</tr>
<tr>
<td>89.71 200.00 52.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>78.236 79.648 81.081 82.521 83.965 85.414 86.858 88.310</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9970-002 76.056 2.6800-004</td>
</tr>
</tbody>
</table>

20
Table 4 (Cont.)

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 19 MAR 69 435PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>456750</td>
</tr>
<tr>
<td>11.55</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>HEATER POWER</td>
</tr>
<tr>
<td>2.1658-003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 19 MAR 69 545 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>696128</td>
</tr>
<tr>
<td>27.32</td>
</tr>
<tr>
<td>0.10</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>HEATER POWER</td>
</tr>
<tr>
<td>5.0330-003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 19 MAR 69 715 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1151310</td>
</tr>
<tr>
<td>49.97</td>
</tr>
<tr>
<td>0.43</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>HEATER POWER</td>
</tr>
<tr>
<td>1.3770-002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 19 MAR 69 810 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1908125</td>
</tr>
<tr>
<td>100.81</td>
</tr>
<tr>
<td>1.99</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>HEATER POWER</td>
</tr>
<tr>
<td>3.7819-002</td>
</tr>
</tbody>
</table>
Table 4 (Cont.)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Thermal Conductivity Data for Armco Iron(2A)</th>
<th>Thermocouple Temperatures</th>
<th>Heater Power</th>
<th>Reference Temperature</th>
<th>Specimen Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Mar 69</td>
<td>10:45 AM</td>
<td>2325375 24.1500 -0.00 673.0 24.0 -0.0 1.0</td>
<td>13.124 15.930 18.345 20.525 22.462 24.271 25.929 27.501</td>
<td>5.6158-002</td>
<td>4.083</td>
<td>1.3090-004</td>
</tr>
<tr>
<td></td>
<td>12 Noon</td>
<td>1263105 15.1210 -0.00 675.0 24.0 -0.0 1.0</td>
<td>15.983 16.725 17.436 18.139 18.796 19.438 20.043 20.627</td>
<td>1.6573-002</td>
<td>4.083</td>
<td>1.3025-004</td>
</tr>
<tr>
<td>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 27 MAR 69 445 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>2896500 30.0000 17492.50 624.0 24.0 1.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>836.10 894.12 953.57 1012.84 1071.74 1130.78 1190.16 1250.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263.21 100.00 137.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>235.947 256.585 259.285 241.973 244.641 247.312 249.995 252.724</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6895-002 195.475 1.3756-003</td>
</tr>
</tbody>
</table>

| THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 3 APR 69 430 PM |
|---|--------|--------|--------|------|--------|
| 2878800 29.8200 25486.20 620.0 23.0 1.0 | 5.0 |
| 60.32 121.19 182.76 244.43 306.20 368.06 430.24 492.86 |
| 245.31 100.00 175.34 |

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>275.998 278.715 281.464 284.218 286.975 289.737 292.513 295.309</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5846-002 275.288 1.7534-003</td>
</tr>
</tbody>
</table>

| THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 4 APR 69 920 AM |
|---|--------|--------|--------|------|--------|
| 2896200 30.0000 25510.00 628.0 23.0 1.0 | 5.0 |
| 60.90 122.44 184.73 247.11 309.60 372.20 435.15 498.55 |
| 247.90 100.00 173.69 |

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>276.257 279.005 281.786 284.571 287.361 290.156 292.966 295.797</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6886-002 275.523 1.7569-003</td>
</tr>
</tbody>
</table>
Table 5. Basic semi-processed isothermal electrical resistivity data for Armco iron, specimen 2a.

<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron (2A)</th>
<th>19 Mar 69 230 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
</tr>
<tr>
<td>4.071</td>
<td>1.2915-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron (2A)</th>
<th>12 Mar 69 445 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
</tr>
<tr>
<td>19.813</td>
<td>1.3050-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron (2A)</th>
<th>7 Mar 69 125 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
</tr>
<tr>
<td>75.931</td>
<td>2.3580-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron (2A)</th>
<th>8 Mar 69 1020 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
</tr>
<tr>
<td>76.485</td>
<td>2.7220-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron (2A)</th>
<th>11 Mar 69 1055 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
</tr>
<tr>
<td>77.907</td>
<td>5.4940-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron (2A)</th>
<th>25 Mar 69 730 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
</tr>
<tr>
<td>192.734</td>
<td>9.8005-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron (2A)</th>
<th>2 April 69 415 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
</tr>
<tr>
<td>275.206</td>
<td>1.6250-003</td>
</tr>
</tbody>
</table>
Table 6. Basic semi-processed temperature gradient data for Armco iron, specimen 4.

<table>
<thead>
<tr>
<th>Time</th>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON</th>
<th>TEMPERATURES</th>
<th>HEATER POWER</th>
<th>REFERENCE TEMPERATURE</th>
<th>SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1140AM</td>
<td>1922030 19 9400 4653 41 644.0 22.0 1.0 3.0</td>
<td>78.525 79.454 80.357 81.276 82.202 83.120 84.052 84.986</td>
<td>3.8325-002</td>
<td>76.037</td>
<td>2.6360-004</td>
</tr>
<tr>
<td>540PM</td>
<td>3369920 34.950 0 4657.94 656.0 23.0 1.0 3.0</td>
<td>85.882 88.762 91.707 94.665 97.655 100.657 103.692 106.759</td>
<td>1.1778-001</td>
<td>76.078</td>
<td>3.5730-004</td>
</tr>
<tr>
<td>1130AM</td>
<td>5301325 54.950 0 4652.75 636.0 21.0 1.0 3.0</td>
<td>101.934 109.460 117.232 125.095 133.085 141.150 149.336 157.630</td>
<td>2.9131-001</td>
<td>76.395</td>
<td>5.4095-004</td>
</tr>
<tr>
<td>915AM</td>
<td>7259100 75.000 0 4792.45 653.0 23.0 1.0 3.0</td>
<td>152.379 167.752 183.675 199.786 216.138 232.694 249.537 266.661</td>
<td>5.4293-001</td>
<td>77.302</td>
<td>1.1159-003</td>
</tr>
<tr>
<td>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(4)</td>
<td>13 DEC 68</td>
<td>835PM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7294.00</td>
<td>75.100</td>
<td>4807.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2475.63</td>
<td>2824.80</td>
<td>3191.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1597.60</td>
<td>200.00</td>
<td>305.46</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.283</td>
</tr>
<tr>
<td>250.132</td>
</tr>
<tr>
<td>520.650</td>
</tr>
<tr>
<td>1.5273-003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(4)</th>
<th>19 DEC 68</th>
<th>500PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4114.970</td>
<td>42.6300</td>
<td>1719.60</td>
</tr>
<tr>
<td>227.50</td>
<td>356.91</td>
<td>453.24</td>
</tr>
<tr>
<td>534.88</td>
<td>200.00</td>
<td>241.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>203.059</td>
</tr>
<tr>
<td>218.768</td>
</tr>
<tr>
<td>234.810</td>
</tr>
<tr>
<td>1.2081-003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(4)</th>
<th>20 DEC 68</th>
<th>1025AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>6274.050</td>
<td>65.0000</td>
<td>1729.90</td>
</tr>
<tr>
<td>105.08</td>
<td>1279.67</td>
<td>1565.42</td>
</tr>
<tr>
<td>1.7451-003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>239.225</td>
</tr>
<tr>
<td>278.073</td>
</tr>
<tr>
<td>318.060</td>
</tr>
<tr>
<td>1.7441-003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(4)</th>
<th>20 DEC 68</th>
<th>340PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>5075.600</td>
<td>52.5800</td>
<td>1729.00</td>
</tr>
<tr>
<td>630.10</td>
<td>804.70</td>
<td>985.10</td>
</tr>
<tr>
<td>294.32</td>
<td>200.00</td>
<td>290.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>222.654</td>
</tr>
<tr>
<td>247.070</td>
</tr>
<tr>
<td>272.191</td>
</tr>
<tr>
<td>1.4515-003</td>
</tr>
</tbody>
</table>
Table 6 (Cont.)

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(4) 16 DEC 68 1135 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>404476 4.2000 -0.00 653.0 23.0 -0.0 1.0</td>
</tr>
<tr>
<td>17.57 20.46 23.52 26.60 29.29 32.21 35.13 37.71</td>
</tr>
<tr>
<td>60.03 200.00 26.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.313 5.541 5.760 5.972 6.179 6.379 6.572 6.766</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6988-003 4.053 1.3030-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(4) 16 DEC 68 1225PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>712355 7.4000 -0.00 654.0 24.0 -0.0 1.0</td>
</tr>
<tr>
<td>40.55 48.59 56.02 63.42 70.15 76.91 83.48 89.53</td>
</tr>
<tr>
<td>0.06 200.00 26.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2713-003 4.054 1.3045-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(4) 16 DEC 68 130PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1102956 11.4600 -0.00 653.0 24.0 -0.0 1.0</td>
</tr>
<tr>
<td>90.17 104.38 117.90 130.75 142.61 154.17 165.50 175.69</td>
</tr>
<tr>
<td>0.31 200.00 26.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2640-002 4.053 1.3070-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(4) 16 DEC 68 505PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>404467 4.2000 -0.00 654.0 24.0 -0.0 1.0</td>
</tr>
<tr>
<td>17.78 20.81 23.93 27.07 29.79 32.76 35.66 38.19</td>
</tr>
<tr>
<td>0.02 200.00 26.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMOCOUPLE TEMPERATURES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6988-003 4.054 1.3030-004</td>
</tr>
</tbody>
</table>
Table 6 (Cont.)

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(4) 16 DEC 68 540PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973298 20.5000 -0.00 654.0 23.0 -0.0 1.0</td>
</tr>
<tr>
<td>200.92 230.19 257.34 282.63 306.01 328.25 349.51 369.68</td>
</tr>
<tr>
<td>2.68 200.00 26.44</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</td>
</tr>
<tr>
<td>4.0453-002 4.054 1.3220-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(4) 16 DEC 68 600PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973298 20.5000 -0.00 654.0 23.0 -0.0 1.0</td>
</tr>
<tr>
<td>201.11 230.50 257.74 283.13 306.70 328.90 350.22 370.46</td>
</tr>
<tr>
<td>2.72 200.00 26.44</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</td>
</tr>
<tr>
<td>4.0453-002 4.054 1.3220-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(4) 16 DEC 68 635PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1386400 14.4050 -0.00 654.0 23.0 -0.0 1.0</td>
</tr>
<tr>
<td>146.98 164.66 181.48 197.47 212.33 226.66 240.45 253.44</td>
</tr>
<tr>
<td>0.73 200.00 26.24</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</td>
</tr>
<tr>
<td>1.9971-002 4.054 1.3120-004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(4) 17DEC68 1140AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>869115 9.0300 110.56 654.0 23.0 1.0 2.0</td>
</tr>
<tr>
<td>32.21 36.70 41.39 46.06 50.39 54.87 59.34 63.47</td>
</tr>
<tr>
<td>0.49 200.00 26.45</td>
</tr>
<tr>
<td>THERMOCOUPLE TEMPERATURES</td>
</tr>
<tr>
<td>HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE</td>
</tr>
<tr>
<td>7.8481-003 19.865 1.3225-004</td>
</tr>
<tr>
<td>Thermal Conductivity Data for Armco Iron(4) 17Dec68</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1250.00 12.9900 110.06 653.0 23.0 1.0 2.0</td>
</tr>
<tr>
<td>62.52 71.31 80.14 88.85 97.15 105.37 113.61 121.38</td>
</tr>
<tr>
<td>1.41 200.00 26.60</td>
</tr>
<tr>
<td>Thermocouple Temperatures</td>
</tr>
<tr>
<td>Heater Power Reference Temperature Specimen Resistance</td>
</tr>
<tr>
<td>1.6243-002 19.881 1.3300-004</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Thermal Conductivity Data for Armco Iron(4) 17Dec68 250PM</td>
</tr>
<tr>
<td>221.1800 22.9700 111.59 653.0 23.0 1.0 2.0</td>
</tr>
<tr>
<td>129.90 153.78 177.13 199.70 221.34 242.44 265.27 283.47</td>
</tr>
<tr>
<td>8.60 200.00 27.30</td>
</tr>
<tr>
<td>Thermocouple Temperatures</td>
</tr>
<tr>
<td>27.491 28.914 30.295 31.632 32.934 34.192 35.431 36.655</td>
</tr>
<tr>
<td>Heater Power Reference Temperature Specimen Resistance</td>
</tr>
<tr>
<td>5.0805-002 19.921 1.3650-004</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Thermal Conductivity Data for Armco Iron(4) 17Dec68 455PM</td>
</tr>
<tr>
<td>5816.900 39.6100 113.55 653.0 23.0 1.0 2.0</td>
</tr>
<tr>
<td>302.91 359.37 417.23 474.16 530.87 587.49 645.15 703.60</td>
</tr>
<tr>
<td>77.53 200.00 32.00</td>
</tr>
<tr>
<td>Thermocouple Temperatures</td>
</tr>
<tr>
<td>37.794 41.326 44.772 48.148 51.501 54.807 58.139 61.507</td>
</tr>
<tr>
<td>Heater Power Reference Temperature Specimen Resistance</td>
</tr>
<tr>
<td>1.5119-001 20.027 1.6000-004</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Thermal Conductivity Data for Armco Iron(4) 18Dec68 1150AM</td>
</tr>
<tr>
<td>4648.820 48.2200 117.32 653.0 22.0 1.0 2.0</td>
</tr>
<tr>
<td>638.00 724.70 815.35 908.42 1004.10 1102.50 1204.40 1309.75</td>
</tr>
<tr>
<td>282.46 200.00 48.55</td>
</tr>
<tr>
<td>Thermocouple Temperatures</td>
</tr>
<tr>
<td>57.922 62.903 68.026 73.216 78.500 83.843 89.327 94.938</td>
</tr>
<tr>
<td>Heater Power Reference Temperature Specimen Resistance</td>
</tr>
<tr>
<td>2.2417-001 20.226 2.4265-004</td>
</tr>
</tbody>
</table>
Table 7. Basic semi-processed isothermal electrical resistivity data for Armco iron, specimen 4.

<table>
<thead>
<tr>
<th>Isothermal Resistivity Data for Armco Iron(4)</th>
<th>Date</th>
<th>Temperature 1</th>
<th>Temperature 2</th>
<th>Temperature 3</th>
<th>Temperature 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.00 653.00 23.00 -0.00 1.00 200.00 26.06 4.28</td>
<td>16DEC68 1050AM</td>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
<td>Specimen Temperature</td>
<td></td>
</tr>
<tr>
<td>4.053</td>
<td>1.3050-004</td>
<td>4.394</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.00 654.50 24.00 -0.00 1.00 200.00 26.10 81.83</td>
<td>16DEC68 100PM</td>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
<td>Specimen Temperature</td>
<td></td>
</tr>
<tr>
<td>4.055</td>
<td>1.3050-004</td>
<td>9.696</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.00 655.00 24.00 -0.00 1.00 200.00 26.20 183.83</td>
<td>16DEC68 155PM</td>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
<td>Specimen Temperature</td>
<td></td>
</tr>
<tr>
<td>4.053</td>
<td>1.3100-004</td>
<td>15.786</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.00 654.00 23.00 -0.00 1.00 200.00 26.35 257.60</td>
<td>16DEC68 700PM</td>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
<td>Specimen Temperature</td>
<td></td>
</tr>
<tr>
<td>4.054</td>
<td>1.3165-004</td>
<td>20.069</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110.22 655.50 23.00 1.00 2.00 200.00 26.32 0.55</td>
<td>17DEC68 1045AM</td>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
<td>Specimen Temperature</td>
<td></td>
</tr>
<tr>
<td>19.846</td>
<td>1.3160-004</td>
<td>19.878</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111.62 653.00 23.00 1.00 2.00 200.00 26.71 116.83</td>
<td>17DEC68 1400PM</td>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
<td>Specimen Temperature</td>
<td></td>
</tr>
<tr>
<td>19.923</td>
<td>1.3355-004</td>
<td>26.745</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113.58 653.50 23.00 1.00 2.00 200.00 27.83 269.55</td>
<td>17DEC68 255PM</td>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
<td>Specimen Temperature</td>
<td></td>
</tr>
<tr>
<td>20.028</td>
<td>1.3915-004</td>
<td>35.958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.54 655.00 23.00 1.00 2.00 200.00 34.06 593.61</td>
<td>17DEC68 550PM</td>
<td>Reference Temperature</td>
<td>Specimen Resistance</td>
<td>Specimen Temperature</td>
<td></td>
</tr>
<tr>
<td>20.237</td>
<td>1.7050-004</td>
<td>55.386</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7 (Cont.)

Isothermal Resistivity Data for ARMCO Iron

<table>
<thead>
<tr>
<th>Reference Temperature</th>
<th>Specimen Resistance</th>
<th>Specimen Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>117.92</td>
<td>653.50</td>
<td>22.00</td>
</tr>
<tr>
<td>1.00</td>
<td>2.00</td>
<td>200.00</td>
</tr>
<tr>
<td>48.59</td>
<td>978.12</td>
<td></td>
</tr>
<tr>
<td>20.257</td>
<td>2.4295-004</td>
<td></td>
</tr>
<tr>
<td>77.113</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Isothermal Resistivity Data for ARMCO Iron

<table>
<thead>
<tr>
<th>Reference Temperature</th>
<th>Specimen Resistance</th>
<th>Specimen Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>4604.18</td>
<td>630.00</td>
<td>23.00</td>
</tr>
<tr>
<td>1.00</td>
<td>3.00</td>
<td>200.00</td>
</tr>
<tr>
<td>47.55</td>
<td>2.71</td>
<td></td>
</tr>
<tr>
<td>75.589</td>
<td>2.3775-004</td>
<td></td>
</tr>
<tr>
<td>75.738</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Isothermal Resistivity Data for ARMCO Iron

<table>
<thead>
<tr>
<th>Reference Temperature</th>
<th>Specimen Resistance</th>
<th>Specimen Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>4658.02</td>
<td>636.00</td>
<td>23.00</td>
</tr>
<tr>
<td>1.00</td>
<td>3.00</td>
<td>200.00</td>
</tr>
<tr>
<td>55.20</td>
<td>151.78</td>
<td></td>
</tr>
<tr>
<td>76.079</td>
<td>2.7600-004</td>
<td></td>
</tr>
<tr>
<td>84.360</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Isothermal Resistivity Data for ARMCO Iron

<table>
<thead>
<tr>
<th>Reference Temperature</th>
<th>Specimen Resistance</th>
<th>Specimen Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>4683.35</td>
<td>636.00</td>
<td>22.00</td>
</tr>
<tr>
<td>1.00</td>
<td>3.00</td>
<td>200.00</td>
</tr>
<tr>
<td>69.23</td>
<td>402.76</td>
<td></td>
</tr>
<tr>
<td>76.364</td>
<td>3.4615-004</td>
<td></td>
</tr>
<tr>
<td>98.003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Isothermal Resistivity Data for ARMCO Iron

<table>
<thead>
<tr>
<th>Reference Temperature</th>
<th>Specimen Resistance</th>
<th>Specimen Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>4766.59</td>
<td>636.00</td>
<td>24.00</td>
</tr>
<tr>
<td>1.00</td>
<td>3.00</td>
<td>200.00</td>
</tr>
<tr>
<td>127.62</td>
<td>1302.61</td>
<td></td>
</tr>
<tr>
<td>77.067</td>
<td>6.3810-004</td>
<td></td>
</tr>
<tr>
<td>144.158</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Isothermal Resistivity Data for ARMCO Iron

<table>
<thead>
<tr>
<th>Reference Temperature</th>
<th>Specimen Resistance</th>
<th>Specimen Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>4808.22</td>
<td>666.00</td>
<td>24.00</td>
</tr>
<tr>
<td>1.00</td>
<td>3.00</td>
<td>200.00</td>
</tr>
<tr>
<td>196.50</td>
<td>2293.19</td>
<td></td>
</tr>
<tr>
<td>77.445</td>
<td>9.8250-004</td>
<td></td>
</tr>
<tr>
<td>191.795</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Isothermal Resistivity Data for ARMCO Iron

<table>
<thead>
<tr>
<th>Reference Temperature</th>
<th>Specimen Resistance</th>
<th>Specimen Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>17156.00</td>
<td>621.00</td>
<td>22.00</td>
</tr>
<tr>
<td>1.00</td>
<td>4.00</td>
<td>200.00</td>
</tr>
<tr>
<td>197.80</td>
<td>19.11</td>
<td></td>
</tr>
<tr>
<td>192.249</td>
<td>9.8900-004</td>
<td></td>
</tr>
<tr>
<td>193.141</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Isothermal Resistivity Data for ARMCO Iron

<table>
<thead>
<tr>
<th>Reference Temperature</th>
<th>Specimen Resistance</th>
<th>Specimen Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>17290.00</td>
<td>621.00</td>
<td>22.00</td>
</tr>
<tr>
<td>1.00</td>
<td>4.00</td>
<td>200.00</td>
</tr>
<tr>
<td>260.64</td>
<td>866.01</td>
<td></td>
</tr>
<tr>
<td>193.530</td>
<td>1.3032-003</td>
<td></td>
</tr>
<tr>
<td>233.413</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8. Parameters in eqs. 1, 2, and 3 for Armco iron, specimen 2.

<table>
<thead>
<tr>
<th>COEFFICIENTS FOR</th>
<th>THERMAL CONDUCTIVITY</th>
<th>ELECTRICAL RESISTIVITY</th>
<th>THERMOPOWER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.51614994×10^4</td>
<td>-4.95085810×10^-7</td>
<td>-5.48881675×10^2</td>
</tr>
<tr>
<td></td>
<td>-4.13926935×10^3</td>
<td>1.65473929×10^-6</td>
<td>2.37018333×10^3</td>
</tr>
<tr>
<td></td>
<td>2.07596856×10^3</td>
<td>-2.3709406×10^-6</td>
<td>-6.6836762×10^2</td>
</tr>
<tr>
<td></td>
<td>-8.61606749×10^-1</td>
<td>1.93568635×10^-6</td>
<td>9.99411766×10^3</td>
</tr>
<tr>
<td></td>
<td>3.59215321×10^-1</td>
<td>-9.9319337×10^-7</td>
<td>-8.77747098×10^3</td>
</tr>
<tr>
<td></td>
<td>-9.99898612×10^-2</td>
<td>5.31309468×10^-7</td>
<td>4.46376537×10^3</td>
</tr>
<tr>
<td></td>
<td>1.79360964×10^-2</td>
<td>-7.18946332×10^-8</td>
<td>-1.32173829×10^3</td>
</tr>
<tr>
<td></td>
<td>-1.71155124×10^-3</td>
<td>9.77121499×10^-9</td>
<td>2.08103179×10^2</td>
</tr>
<tr>
<td></td>
<td>6.66070951×10^-5</td>
<td>-7.50546890×10^-10</td>
<td>-1.35462989×10^1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.52577946×10^-11</td>
<td></td>
</tr>
</tbody>
</table>

Table 9. Parameters in eqs. 1, 2, and 3 for Armco iron, specimen 2a.

<table>
<thead>
<tr>
<th>COEFFICIENTS FOR</th>
<th>THERMAL CONDUCTIVITY</th>
<th>ELECTRICAL RESISTIVITY</th>
<th>THERMOPOWER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.43990940×10^-9</td>
<td>-4.20510751×10^-7</td>
<td>-5.10933865×10^2</td>
</tr>
<tr>
<td></td>
<td>-1.14675555×10^-9</td>
<td>1.45081937×10^-6</td>
<td>3.5681241×10^3</td>
</tr>
<tr>
<td></td>
<td>9.72124560×10^-9</td>
<td>-2.12826875×10^-6</td>
<td>-9.06609424×10^3</td>
</tr>
<tr>
<td></td>
<td>-5.28250471×10^-9</td>
<td>1.77356602×10^-6</td>
<td>1.30552541×10^4</td>
</tr>
<tr>
<td></td>
<td>1.89245802×10^-9</td>
<td>-9.25249389×10^-7</td>
<td>-1.0997641×10^4</td>
</tr>
<tr>
<td></td>
<td>-4.41102771×10^-9</td>
<td>3.13228379×10^-7</td>
<td>5.52800895×10^3</td>
</tr>
<tr>
<td></td>
<td>6.37973455×10^-9</td>
<td>-6.87884712×10^-8</td>
<td>-1.61455399×10^3</td>
</tr>
<tr>
<td></td>
<td>-5.1702759×10^-9</td>
<td>9.44600166×10^-9</td>
<td>2.52389423×10^2</td>
</tr>
<tr>
<td></td>
<td>1.78839874×10^-9</td>
<td>-7.35622503×10^-10</td>
<td>-1.63749922×10^1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.47951058×10^-11</td>
<td></td>
</tr>
</tbody>
</table>

Table 10. Parameters in eqs. 1, 2, and 3 for Armco iron, specimen 4.

<table>
<thead>
<tr>
<th>COEFFICIENTS FOR</th>
<th>THERMAL CONDUCTIVITY</th>
<th>ELECTRICAL RESISTIVITY</th>
<th>THERMOPOWER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.21226100×10^3</td>
<td>-5.03088441×10^-7</td>
<td>-6.42942844×10^2</td>
</tr>
<tr>
<td></td>
<td>-1.32577224×10^-1</td>
<td>1.69059561×10^-6</td>
<td>4.14540857×10^3</td>
</tr>
<tr>
<td></td>
<td>1.14750701×10^-1</td>
<td>-2.42733181×10^-6</td>
<td>-1.09289158×10^4</td>
</tr>
<tr>
<td></td>
<td>-6.21776147×10^-9</td>
<td>1.98402296×10^-6</td>
<td>1.54381788×10^4</td>
</tr>
<tr>
<td></td>
<td>-2.39572810×10^-9</td>
<td>-1.01722378×10^-6</td>
<td>-1.2733650×10^4</td>
</tr>
<tr>
<td></td>
<td>-5.01619108×10^-9</td>
<td>3.39158559×10^-7</td>
<td>6.34295244×10^3</td>
</tr>
<tr>
<td></td>
<td>7.10720281×10^-9</td>
<td>-7.35034919×10^-8</td>
<td>-1.83456286×10^3</td>
</tr>
<tr>
<td></td>
<td>-5.64940725×10^-9</td>
<td>9.97927431×10^-9</td>
<td>2.84809534×10^2</td>
</tr>
<tr>
<td></td>
<td>1.91995267×10^-9</td>
<td>-7.69054134×10^-10</td>
<td>-1.83820643×10^1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.57278514×10^-11</td>
<td></td>
</tr>
</tbody>
</table>

These parameters are listed in E format. This format is illustrated by the following example: 1.788-004 = 1.788 × 10^-4
Table 11 Thermal conductivity deviations for Armco iron, specimen 2.

<table>
<thead>
<tr>
<th>MEAN TEMPERATURE</th>
<th>TEMPERATURE DIFFERENCE</th>
<th>OBSERVED CONDUCTIVITY</th>
<th>CALCULATED CONDUCTIVITY</th>
<th>THERMAL CONDUCTIVITY DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>94.026</td>
<td>3.779</td>
<td>9.86E+001</td>
<td>9.88E+001</td>
<td>-0.2</td>
</tr>
<tr>
<td>97.053</td>
<td>3.874</td>
<td>9.59E+001</td>
<td>9.73E+001</td>
<td>-1.5</td>
</tr>
<tr>
<td>101.739</td>
<td>3.896</td>
<td>9.55E+001</td>
<td>9.60E+001</td>
<td>-0.5</td>
</tr>
<tr>
<td>105.653</td>
<td>3.933</td>
<td>9.45E+001</td>
<td>9.47E+001</td>
<td>-0.2</td>
</tr>
<tr>
<td>109.598</td>
<td>3.958</td>
<td>9.41E+001</td>
<td>9.35E+001</td>
<td>0.6</td>
</tr>
<tr>
<td>113.566</td>
<td>3.978</td>
<td>9.36E+001</td>
<td>9.24E+001</td>
<td>1.3</td>
</tr>
<tr>
<td>117.575</td>
<td>4.036</td>
<td>9.26E+001</td>
<td>9.14E+001</td>
<td>1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEAN TEMPERATURE</th>
<th>TEMPERATURE DIFFERENCE</th>
<th>OBSERVED CONDUCTIVITY</th>
<th>CALCULATED CONDUCTIVITY</th>
<th>THERMAL CONDUCTIVITY DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>122.304</td>
<td>12.559</td>
<td>9.09E+001</td>
<td>9.03E+001</td>
<td>0.7</td>
</tr>
<tr>
<td>135.081</td>
<td>12.996</td>
<td>8.76E+001</td>
<td>8.79E+001</td>
<td>-0.2</td>
</tr>
<tr>
<td>148.177</td>
<td>13.194</td>
<td>8.64E+001</td>
<td>8.60E+001</td>
<td>0.5</td>
</tr>
<tr>
<td>161.479</td>
<td>13.410</td>
<td>8.49E+001</td>
<td>8.46E+001</td>
<td>0.4</td>
</tr>
<tr>
<td>174.970</td>
<td>13.572</td>
<td>8.41E+001</td>
<td>8.35E+001</td>
<td>0.7</td>
</tr>
<tr>
<td>188.656</td>
<td>13.759</td>
<td>8.29E+001</td>
<td>8.25E+001</td>
<td>0.5</td>
</tr>
<tr>
<td>202.525</td>
<td>14.020</td>
<td>8.15E+001</td>
<td>8.16E+001</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEAN TEMPERATURE</th>
<th>TEMPERATURE DIFFERENCE</th>
<th>OBSERVED CONDUCTIVITY</th>
<th>CALCULATED CONDUCTIVITY</th>
<th>THERMAL CONDUCTIVITY DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>175.658</td>
<td>27.946</td>
<td>8.27E+001</td>
<td>8.34E+001</td>
<td>-0.9</td>
</tr>
<tr>
<td>204.162</td>
<td>29.062</td>
<td>7.94E+001</td>
<td>8.15E+001</td>
<td>-2.7</td>
</tr>
<tr>
<td>233.544</td>
<td>29.701</td>
<td>7.77E+001</td>
<td>7.95E+001</td>
<td>-2.3</td>
</tr>
<tr>
<td>263.598</td>
<td>30.409</td>
<td>7.58E+001</td>
<td>7.72E+001</td>
<td>-1.9</td>
</tr>
<tr>
<td>294.329</td>
<td>31.055</td>
<td>7.44E+001</td>
<td>7.47E+001</td>
<td>-0.3</td>
</tr>
<tr>
<td>325.769</td>
<td>31.827</td>
<td>7.26E+001</td>
<td>7.23E+001</td>
<td>0.3</td>
</tr>
<tr>
<td>358.141</td>
<td>32.917</td>
<td>7.03E+001</td>
<td>7.06E+001</td>
<td>-0.5</td>
</tr>
<tr>
<td>Mean Temperature</td>
<td>Temperature Difference</td>
<td>Observed Conductivity</td>
<td>Calculated Conductivity</td>
<td>Percent Deviation</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>-------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>5.119</td>
<td>0.219</td>
<td>1.8301</td>
<td>1.8001</td>
<td>1.7</td>
</tr>
<tr>
<td>5.538</td>
<td>0.217</td>
<td>1.8401</td>
<td>1.8901</td>
<td>-2.7</td>
</tr>
<tr>
<td>5.548</td>
<td>0.204</td>
<td>1.9601</td>
<td>1.9801</td>
<td>-1.0</td>
</tr>
<tr>
<td>5.748</td>
<td>0.196</td>
<td>2.0401</td>
<td>2.0601</td>
<td>-1.3</td>
</tr>
<tr>
<td>5.939</td>
<td>0.186</td>
<td>2.1501</td>
<td>2.1401</td>
<td>0.4</td>
</tr>
<tr>
<td>6.119</td>
<td>0.173</td>
<td>2.3101</td>
<td>2.2101</td>
<td>4.2</td>
</tr>
<tr>
<td>6.292</td>
<td>0.172</td>
<td>2.3201</td>
<td>2.2801</td>
<td>1.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Conductivity</th>
<th>Calculated Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.317</td>
<td>0.651</td>
<td>2.64001</td>
<td>2.67001</td>
<td>-1.2</td>
</tr>
<tr>
<td>7.947</td>
<td>0.610</td>
<td>2.81001</td>
<td>2.91001</td>
<td>-3.5</td>
</tr>
<tr>
<td>8.536</td>
<td>0.568</td>
<td>3.02001</td>
<td>3.12001</td>
<td>-5.1</td>
</tr>
<tr>
<td>9.084</td>
<td>0.528</td>
<td>3.25001</td>
<td>3.31001</td>
<td>-2.1</td>
</tr>
<tr>
<td>9.592</td>
<td>0.488</td>
<td>3.52001</td>
<td>3.50001</td>
<td>0.8</td>
</tr>
<tr>
<td>10.061</td>
<td>0.449</td>
<td>3.82001</td>
<td>3.66001</td>
<td>4.2</td>
</tr>
<tr>
<td>10.502</td>
<td>0.433</td>
<td>3.98001</td>
<td>3.82001</td>
<td>3.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Conductivity</th>
<th>Calculated Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.805</td>
<td>0.938</td>
<td>4.27001</td>
<td>4.28001</td>
<td>-0.2</td>
</tr>
<tr>
<td>12.717</td>
<td>0.885</td>
<td>4.52001</td>
<td>4.61001</td>
<td>-1.9</td>
</tr>
<tr>
<td>13.575</td>
<td>0.831</td>
<td>4.82001</td>
<td>4.92001</td>
<td>-2.0</td>
</tr>
<tr>
<td>14.383</td>
<td>0.786</td>
<td>5.09001</td>
<td>5.21001</td>
<td>-2.3</td>
</tr>
<tr>
<td>15.156</td>
<td>0.721</td>
<td>5.56001</td>
<td>5.48001</td>
<td>1.5</td>
</tr>
<tr>
<td>15.833</td>
<td>0.672</td>
<td>5.96001</td>
<td>5.75001</td>
<td>3.9</td>
</tr>
<tr>
<td>16.495</td>
<td>0.652</td>
<td>6.16001</td>
<td>5.97001</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Table 11 (Cont.)

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.516</td>
<td>1.798</td>
<td>6.64\times10^{-1}</td>
<td>6.67\times10^{-1}</td>
<td>-0.5</td>
</tr>
<tr>
<td>20.255</td>
<td>1.681</td>
<td>7.09\times10^{-1}</td>
<td>7.26\times10^{-1}</td>
<td>-2.4</td>
</tr>
<tr>
<td>21.881</td>
<td>1.570</td>
<td>7.60\times10^{-1}</td>
<td>7.78\times10^{-1}</td>
<td>-2.4</td>
</tr>
<tr>
<td>23.405</td>
<td>1.478</td>
<td>8.06\times10^{-1}</td>
<td>8.24\times10^{-1}</td>
<td>-2.3</td>
</tr>
<tr>
<td>24.826</td>
<td>1.365</td>
<td>8.75\times10^{-1}</td>
<td>8.65\times10^{-1}</td>
<td>1.2</td>
</tr>
<tr>
<td>26.147</td>
<td>1.277</td>
<td>9.35\times10^{-1}</td>
<td>9.00\times10^{-1}</td>
<td>3.7</td>
</tr>
<tr>
<td>27.409</td>
<td>1.247</td>
<td>9.59\times10^{-1}</td>
<td>9.32\times10^{-1}</td>
<td>2.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.334</td>
<td>0.413</td>
<td>8.10\times10^{-1}</td>
<td>8.22\times10^{-1}</td>
<td>-1.6</td>
</tr>
<tr>
<td>23.744</td>
<td>0.407</td>
<td>8.21\times10^{-1}</td>
<td>8.34\times10^{-1}</td>
<td>-1.6</td>
</tr>
<tr>
<td>24.151</td>
<td>0.409</td>
<td>8.18\times10^{-1}</td>
<td>8.46\times10^{-1}</td>
<td>-3.5</td>
</tr>
<tr>
<td>24.554</td>
<td>0.397</td>
<td>8.41\times10^{-1}</td>
<td>8.57\times10^{-1}</td>
<td>-2.0</td>
</tr>
<tr>
<td>24.945</td>
<td>0.384</td>
<td>8.72\times10^{-1}</td>
<td>8.68\times10^{-1}</td>
<td>0.4</td>
</tr>
<tr>
<td>25.323</td>
<td>0.373</td>
<td>8.98\times10^{-1}</td>
<td>8.78\times10^{-1}</td>
<td>2.1</td>
</tr>
<tr>
<td>25.691</td>
<td>0.364</td>
<td>9.20\times10^{-1}</td>
<td>8.88\times10^{-1}</td>
<td>3.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.870</td>
<td>2.774</td>
<td>1.09\times10^{-2}</td>
<td>1.10\times10^{-2}</td>
<td>-0.1</td>
</tr>
<tr>
<td>39.637</td>
<td>2.758</td>
<td>1.10\times10^{-2}</td>
<td>1.12\times10^{-2}</td>
<td>-2.2</td>
</tr>
<tr>
<td>42.366</td>
<td>2.700</td>
<td>1.12\times10^{-2}</td>
<td>1.14\times10^{-2}</td>
<td>-1.6</td>
</tr>
<tr>
<td>45.038</td>
<td>2.645</td>
<td>1.15\times10^{-2}</td>
<td>1.15\times10^{-2}</td>
<td>-0.6</td>
</tr>
<tr>
<td>47.653</td>
<td>2.586</td>
<td>1.17\times10^{-2}</td>
<td>1.16\times10^{-2}</td>
<td>1.3</td>
</tr>
<tr>
<td>50.217</td>
<td>2.542</td>
<td>1.19\times10^{-2}</td>
<td>1.16\times10^{-2}</td>
<td>2.8</td>
</tr>
<tr>
<td>52.769</td>
<td>2.563</td>
<td>1.19\times10^{-2}</td>
<td>1.16\times10^{-2}</td>
<td>2.3</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>TEMPERATURE DIFFERENCE</td>
<td>OBSERVED CONDUCTIVITY</td>
<td>CALCULATED CONDUCTIVITY</td>
<td>PERCENT DEVIATION</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>-------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>51.986</td>
<td>5.099</td>
<td>1.16+002</td>
<td>1.16+002</td>
<td>0.1</td>
</tr>
<tr>
<td>57.146</td>
<td>5.224</td>
<td>1.15+002</td>
<td>1.15+002</td>
<td>-1.7</td>
</tr>
<tr>
<td>62.402</td>
<td>5.288</td>
<td>1.12+002</td>
<td>1.13+002</td>
<td>-1.2</td>
</tr>
<tr>
<td>67.732</td>
<td>5.372</td>
<td>1.10+002</td>
<td>1.11+002</td>
<td>-0.8</td>
</tr>
<tr>
<td>73.149</td>
<td>5.461</td>
<td>1.08+002</td>
<td>1.08+002</td>
<td>0.1</td>
</tr>
<tr>
<td>78.649</td>
<td>5.539</td>
<td>1.07+002</td>
<td>1.06+002</td>
<td>1.1</td>
</tr>
<tr>
<td>84.276</td>
<td>5.715</td>
<td>1.04+002</td>
<td>1.03+002</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>TEMPERATURE DIFFERENCE</th>
<th>OBSERVED CONDUCTIVITY</th>
<th>CALCULATED CONDUCTIVITY</th>
<th>PERCENT DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.822</td>
<td>1.496</td>
<td>9.14+001</td>
<td>9.17+001</td>
<td>-0.4</td>
</tr>
<tr>
<td>28.305</td>
<td>1.470</td>
<td>9.28+001</td>
<td>9.53+001</td>
<td>-2.7</td>
</tr>
<tr>
<td>29.751</td>
<td>1.421</td>
<td>9.61+001</td>
<td>9.84+001</td>
<td>-2.4</td>
</tr>
<tr>
<td>31.148</td>
<td>1.373</td>
<td>9.95+001</td>
<td>1.01+002</td>
<td>-1.8</td>
</tr>
<tr>
<td>32.492</td>
<td>1.316</td>
<td>1.04+002</td>
<td>1.04+002</td>
<td>0.4</td>
</tr>
<tr>
<td>33.774</td>
<td>1.247</td>
<td>1.10+002</td>
<td>1.06+002</td>
<td>3.7</td>
</tr>
<tr>
<td>35.019</td>
<td>1.244</td>
<td>1.10+002</td>
<td>1.07+002</td>
<td>2.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>TEMPERATURE DIFFERENCE</th>
<th>OBSERVED CONDUCTIVITY</th>
<th>CALCULATED CONDUCTIVITY</th>
<th>PERCENT DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>78.252</td>
<td>2.003</td>
<td>1.05+002</td>
<td>1.06+002</td>
<td>-0.5</td>
</tr>
<tr>
<td>80.278</td>
<td>2.048</td>
<td>1.03+002</td>
<td>1.05+002</td>
<td>-2.0</td>
</tr>
<tr>
<td>82.328</td>
<td>2.053</td>
<td>1.03+002</td>
<td>1.04+002</td>
<td>-1.2</td>
</tr>
<tr>
<td>84.386</td>
<td>2.064</td>
<td>1.02+002</td>
<td>1.03+002</td>
<td>-1.0</td>
</tr>
<tr>
<td>86.452</td>
<td>2.069</td>
<td>1.02+002</td>
<td>1.02+002</td>
<td>-0.1</td>
</tr>
<tr>
<td>88.521</td>
<td>2.068</td>
<td>1.02+002</td>
<td>1.01+002</td>
<td>0.8</td>
</tr>
<tr>
<td>90.602</td>
<td>2.094</td>
<td>1.01+002</td>
<td>1.00+002</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Table 11 (Cont.)

<table>
<thead>
<tr>
<th>Temperature Difference</th>
<th>Conductivity</th>
<th>Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>206.823</td>
<td>8.25+001</td>
<td>8.13+001</td>
<td>1.4</td>
</tr>
<tr>
<td>212.090</td>
<td>8.09+001</td>
<td>8.10+001</td>
<td>-0.1</td>
</tr>
<tr>
<td>217.401</td>
<td>8.10+001</td>
<td>8.07+001</td>
<td>0.4</td>
</tr>
<tr>
<td>222.757</td>
<td>8.02+001</td>
<td>8.03+001</td>
<td>-0.2</td>
</tr>
<tr>
<td>228.104</td>
<td>8.01+001</td>
<td>7.99+001</td>
<td>0.2</td>
</tr>
<tr>
<td>233.494</td>
<td>7.97+001</td>
<td>7.95+001</td>
<td>0.1</td>
</tr>
<tr>
<td>238.926</td>
<td>7.89+001</td>
<td>7.91+001</td>
<td>-0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature Difference</th>
<th>Conductivity</th>
<th>Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>233.559</td>
<td>8.08+001</td>
<td>7.95+001</td>
<td>1.6</td>
</tr>
<tr>
<td>245.889</td>
<td>7.86+001</td>
<td>7.86+001</td>
<td>-0.1</td>
</tr>
<tr>
<td>258.409</td>
<td>7.82+001</td>
<td>7.77+001</td>
<td>0.8</td>
</tr>
<tr>
<td>271.078</td>
<td>7.67+001</td>
<td>7.66+001</td>
<td>0.1</td>
</tr>
<tr>
<td>283.913</td>
<td>7.63+001</td>
<td>7.56+001</td>
<td>1.0</td>
</tr>
<tr>
<td>296.899</td>
<td>7.51+001</td>
<td>7.45+001</td>
<td>0.8</td>
</tr>
<tr>
<td>310.118</td>
<td>7.37+001</td>
<td>7.35+001</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Table 12 Electrical resistivity deviations for Armco iron, specimen 2.

<table>
<thead>
<tr>
<th>MEAN TEMPERATURE</th>
<th>TEMPERATURE RANGE</th>
<th>OBSERVED RESISTANCE</th>
<th>CALCULATED RESISTANCE</th>
<th>PERCENT DEVIATION</th>
<th>INTRINSIC RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.729</td>
<td>1.368</td>
<td>1.166-004</td>
<td>1.166-004</td>
<td>-0.03</td>
<td>2.034-009</td>
</tr>
<tr>
<td>9.006</td>
<td>3.727</td>
<td>1.168-004</td>
<td>1.168-004</td>
<td>-0.02</td>
<td>2.029-007</td>
</tr>
<tr>
<td>14.277</td>
<td>5.485</td>
<td>1.171-004</td>
<td>1.171-004</td>
<td>0.04</td>
<td>5.520-007</td>
</tr>
<tr>
<td>23.205</td>
<td>10.416</td>
<td>1.188-004</td>
<td>1.189-004</td>
<td>-0.01</td>
<td>2.252-006</td>
</tr>
<tr>
<td>24.534</td>
<td>2.746</td>
<td>1.191-004</td>
<td>1.192-004</td>
<td>-0.07</td>
<td>2.502-006</td>
</tr>
<tr>
<td>44.935</td>
<td>18.568</td>
<td>1.372-004</td>
<td>1.370-004</td>
<td>0.10</td>
<td>2.055-005</td>
</tr>
<tr>
<td>67.905</td>
<td>37.699</td>
<td>1.980-004</td>
<td>1.983-004</td>
<td>-0.16</td>
<td>8.135-005</td>
</tr>
<tr>
<td>31.044</td>
<td>9.567</td>
<td>1.221-004</td>
<td>1.222-004</td>
<td>-0.12</td>
<td>5.502-006</td>
</tr>
<tr>
<td>84.402</td>
<td>14.398</td>
<td>2.623-004</td>
<td>2.624-004</td>
<td>-0.05</td>
<td>1.457-004</td>
</tr>
<tr>
<td>105.715</td>
<td>27.454</td>
<td>3.763-004</td>
<td>3.763-004</td>
<td>-0.01</td>
<td>2.597-004</td>
</tr>
<tr>
<td>161.880</td>
<td>93.511</td>
<td>7.513-004</td>
<td>7.510-004</td>
<td>0.03</td>
<td>6.347-004</td>
</tr>
<tr>
<td>265.025</td>
<td>212.914</td>
<td>1.579-003</td>
<td>1.580-003</td>
<td>-0.08</td>
<td>1.462-003</td>
</tr>
<tr>
<td>222.796</td>
<td>37.445</td>
<td>1.201-003</td>
<td>1.202-003</td>
<td>-0.03</td>
<td>1.085-003</td>
</tr>
<tr>
<td>271.407</td>
<td>89.522</td>
<td>1.606-003</td>
<td>1.604-003</td>
<td>0.12</td>
<td>1.490-003</td>
</tr>
<tr>
<td>4.941</td>
<td>0.000</td>
<td>1.166-004</td>
<td>1.166-004</td>
<td>0.01</td>
<td>2.034-009</td>
</tr>
<tr>
<td>7.440</td>
<td>0.000</td>
<td>1.167-004</td>
<td>1.166-004</td>
<td>0.07</td>
<td>1.020-007</td>
</tr>
<tr>
<td>10.762</td>
<td>0.000</td>
<td>1.168-004</td>
<td>1.170-004</td>
<td>-0.12</td>
<td>2.526-007</td>
</tr>
<tr>
<td>16.463</td>
<td>0.000</td>
<td>1.174-004</td>
<td>1.175-004</td>
<td>0.13</td>
<td>8.029-007</td>
</tr>
<tr>
<td>19.866</td>
<td>0.000</td>
<td>1.179-004</td>
<td>1.179-004</td>
<td>0.08</td>
<td>1.552-006</td>
</tr>
<tr>
<td>22.883</td>
<td>0.000</td>
<td>1.186-004</td>
<td>1.186-004</td>
<td>-0.04</td>
<td>2.002-006</td>
</tr>
<tr>
<td>46.251</td>
<td>0.000</td>
<td>1.581-004</td>
<td>1.579-004</td>
<td>0.20</td>
<td>2.155-005</td>
</tr>
<tr>
<td>23.936</td>
<td>0.000</td>
<td>1.182-004</td>
<td>1.190-004</td>
<td>-0.07</td>
<td>2.302-006</td>
</tr>
<tr>
<td>63.298</td>
<td>0.000</td>
<td>1.782-004</td>
<td>1.783-004</td>
<td>-0.04</td>
<td>6.163-005</td>
</tr>
<tr>
<td>63.076</td>
<td>0.000</td>
<td>1.777-004</td>
<td>1.776-004</td>
<td>0.07</td>
<td>6.110-005</td>
</tr>
<tr>
<td>75.983</td>
<td>0.000</td>
<td>2.245-004</td>
<td>2.245-004</td>
<td>0.00</td>
<td>1.079-004</td>
</tr>
<tr>
<td>89.764</td>
<td>0.000</td>
<td>2.879-004</td>
<td>2.880-004</td>
<td>-0.06</td>
<td>1.713-004</td>
</tr>
<tr>
<td>108.179</td>
<td>0.000</td>
<td>3.897-004</td>
<td>3.895-004</td>
<td>0.04</td>
<td>2.731-004</td>
</tr>
<tr>
<td>144.310</td>
<td>0.000</td>
<td>6.241-004</td>
<td>6.251-004</td>
<td>0.16</td>
<td>5.079-004</td>
</tr>
<tr>
<td>200.924</td>
<td>0.000</td>
<td>1.032-003</td>
<td>1.035-003</td>
<td>-0.14</td>
<td>9.151-004</td>
</tr>
<tr>
<td>220.121</td>
<td>0.000</td>
<td>1.180-003</td>
<td>1.180-003</td>
<td>0.01</td>
<td>1.064-003</td>
</tr>
<tr>
<td>Upper Temperature</td>
<td>Lower Temperature</td>
<td>Observed Thermovoltage</td>
<td>Calculated Thermovoltage</td>
<td>Deviation</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>6.378</td>
<td>5.010</td>
<td>-0.03</td>
<td>-0.03</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>10.719</td>
<td>6.992</td>
<td>0.13</td>
<td>0.18</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>16.821</td>
<td>11.356</td>
<td>0.51</td>
<td>0.40</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>28.033</td>
<td>17.616</td>
<td>3.60</td>
<td>3.71</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>25.873</td>
<td>23.127</td>
<td>1.04</td>
<td>1.15</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>54.051</td>
<td>35.483</td>
<td>47.20</td>
<td>46.99</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>87.134</td>
<td>49.435</td>
<td>241.42</td>
<td>241.65</td>
<td>-0.23</td>
<td></td>
</tr>
<tr>
<td>35.641</td>
<td>26.074</td>
<td>8.19</td>
<td>8.15</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>91.649</td>
<td>77.251</td>
<td>129.98</td>
<td>129.81</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>119.591</td>
<td>92.157</td>
<td>318.51</td>
<td>318.18</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>209.535</td>
<td>116.024</td>
<td>1343.50</td>
<td>1343.64</td>
<td>-0.15</td>
<td></td>
</tr>
<tr>
<td>374.600</td>
<td>161.685</td>
<td>2724.50</td>
<td>2724.48</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>241.657</td>
<td>204.212</td>
<td>544.20</td>
<td>543.87</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>316.795</td>
<td>227.472</td>
<td>1174.06</td>
<td>1174.17</td>
<td>-0.11</td>
<td></td>
</tr>
</tbody>
</table>
Table 14 Thermal conductivity deviations for Armco iron, specimen 2a.

<table>
<thead>
<tr>
<th>MEAN TEMPERATURE</th>
<th>TEMPERATURE DIFFERENCE</th>
<th>OBSERVED CONDUCTIVITY</th>
<th>CALCULATED CONDUCTIVITY</th>
<th>THERMAL DEVIATION</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>88.001</td>
<td>3.756</td>
<td>9.92e+001</td>
<td>9.91e+001</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>91.803</td>
<td>3.846</td>
<td>9.66e+001</td>
<td>9.77e+001</td>
<td>-1.1</td>
<td></td>
</tr>
<tr>
<td>95.671</td>
<td>3.891</td>
<td>9.56e+001</td>
<td>9.64e+001</td>
<td>-0.8</td>
<td></td>
</tr>
<tr>
<td>99.578</td>
<td>3.922</td>
<td>9.47e+001</td>
<td>9.52e+001</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>103.519</td>
<td>3.960</td>
<td>9.41e+001</td>
<td>9.41e+001</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>107.488</td>
<td>3.979</td>
<td>9.36e+001</td>
<td>9.30e+001</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>111.490</td>
<td>4.025</td>
<td>9.26e+001</td>
<td>9.20e+001</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEAN TEMPERATURE</th>
<th>TEMPERATURE DIFFERENCE</th>
<th>OBSERVED CONDUCTIVITY</th>
<th>CALCULATED CONDUCTIVITY</th>
<th>THERMAL DEVIATION</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.869</td>
<td>8.591</td>
<td>9.76e+001</td>
<td>9.74e+001</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>101.615</td>
<td>8.902</td>
<td>9.40e+001</td>
<td>9.46e+001</td>
<td>-0.6</td>
<td></td>
</tr>
<tr>
<td>110.620</td>
<td>9.108</td>
<td>9.20e+001</td>
<td>9.22e+001</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>119.815</td>
<td>9.281</td>
<td>9.01e+001</td>
<td>9.01e+001</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>129.171</td>
<td>9.453</td>
<td>8.89e+001</td>
<td>8.84e+001</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>138.666</td>
<td>9.556</td>
<td>8.77e+001</td>
<td>8.70e+001</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>148.300</td>
<td>9.712</td>
<td>8.64e+001</td>
<td>8.59e+001</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEAN TEMPERATURE</th>
<th>TEMPERATURE DIFFERENCE</th>
<th>OBSERVED CONDUCTIVITY</th>
<th>CALCULATED CONDUCTIVITY</th>
<th>THERMAL DEVIATION</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>115.780</td>
<td>17.746</td>
<td>9.17e+001</td>
<td>9.10e+001</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>133.920</td>
<td>18.533</td>
<td>8.76e+001</td>
<td>8.77e+001</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>152.704</td>
<td>19.036</td>
<td>8.54e+001</td>
<td>8.54e+001</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>171.937</td>
<td>19.430</td>
<td>8.36e+001</td>
<td>8.36e+001</td>
<td>-1.1</td>
<td></td>
</tr>
<tr>
<td>191.565</td>
<td>19.826</td>
<td>8.21e+001</td>
<td>8.21e+001</td>
<td>-0.0</td>
<td></td>
</tr>
<tr>
<td>211.576</td>
<td>20.196</td>
<td>8.05e+001</td>
<td>8.05e+001</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>231.993</td>
<td>20.659</td>
<td>7.89e+001</td>
<td>7.89e+001</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>
Table 14 (Cont.)

<table>
<thead>
<tr>
<th>MEAN TEMPERATURE</th>
<th>TEMPERATURE DIFFERENCE</th>
<th>OBSERVED</th>
<th>CALCULATED</th>
<th>THERMAL CONDUCTIVITY</th>
<th>THERMAL CONDUCTIVITY</th>
<th>PERCENT DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.945</td>
<td>4.224</td>
<td>8.83E+001</td>
<td>8.74E+001</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140.226</td>
<td>4.357</td>
<td>8.58E+001</td>
<td>8.68E+001</td>
<td>-1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144.562</td>
<td>4.356</td>
<td>8.59E+001</td>
<td>8.63E+001</td>
<td>-0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148.892</td>
<td>4.323</td>
<td>8.60E+001</td>
<td>8.58E+001</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>153.229</td>
<td>4.351</td>
<td>8.57E+001</td>
<td>8.53E+001</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>157.584</td>
<td>4.359</td>
<td>8.55E+001</td>
<td>8.49E+001</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>161.969</td>
<td>4.411</td>
<td>8.46E+001</td>
<td>8.45E+001</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEAN TEMPERATURE</th>
<th>TEMPERATURE DIFFERENCE</th>
<th>OBSERVED</th>
<th>CALCULATED</th>
<th>THERMAL CONDUCTIVITY</th>
<th>THERMAL CONDUCTIVITY</th>
<th>PERCENT DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>141.419</td>
<td>9.589</td>
<td>8.75E+001</td>
<td>8.67E+001</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151.153</td>
<td>9.839</td>
<td>8.51E+001</td>
<td>8.56E+001</td>
<td>-0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>161.016</td>
<td>9.927</td>
<td>8.44E+001</td>
<td>8.46E+001</td>
<td>-0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170.979</td>
<td>10.000</td>
<td>8.37E+001</td>
<td>8.37E+001</td>
<td>-0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>181.042</td>
<td>10.127</td>
<td>8.28E+001</td>
<td>8.29E+001</td>
<td>-0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>191.213</td>
<td>10.214</td>
<td>8.21E+001</td>
<td>8.21E+001</td>
<td>-0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.500</td>
<td>10.359</td>
<td>8.11E+001</td>
<td>8.13E+001</td>
<td>-0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEAN TEMPERATURE</th>
<th>TEMPERATURE DIFFERENCE</th>
<th>OBSERVED</th>
<th>CALCULATED</th>
<th>THERMAL CONDUCTIVITY</th>
<th>THERMAL CONDUCTIVITY</th>
<th>PERCENT DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>198.547</td>
<td>3.502</td>
<td>8.15E+001</td>
<td>8.15E+001</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202.066</td>
<td>3.536</td>
<td>8.06E+001</td>
<td>8.13E+001</td>
<td>-0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205.604</td>
<td>3.541</td>
<td>8.05E+001</td>
<td>8.10E+001</td>
<td>-0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>209.148</td>
<td>3.548</td>
<td>8.03E+001</td>
<td>8.07E+001</td>
<td>-0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212.699</td>
<td>3.553</td>
<td>8.03E+001</td>
<td>8.04E+001</td>
<td>-0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216.257</td>
<td>3.561</td>
<td>8.01E+001</td>
<td>8.01E+001</td>
<td>-0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>219.851</td>
<td>3.587</td>
<td>7.96E+001</td>
<td>7.99E+001</td>
<td>-0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Temperature Difference</td>
<td>Observed Thermal Conductivity (W/m·K)</td>
<td>Calculated Thermal Conductivity (W/m·K)</td>
<td>Percent Deviation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.536</td>
<td>7.00×10⁻⁰¹</td>
<td>7.02×10⁻⁰¹</td>
<td>-0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.265</td>
<td>7.12×10⁻⁰¹</td>
<td>7.23×10⁻⁰¹</td>
<td>-1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.982</td>
<td>7.21×10⁻⁰¹</td>
<td>7.44×10⁻⁰¹</td>
<td>-3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.678</td>
<td>7.57×10⁻⁰¹</td>
<td>7.63×10⁻⁰¹</td>
<td>-0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.350</td>
<td>7.75×10⁻⁰¹</td>
<td>7.81×10⁻⁰¹</td>
<td>-0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.000</td>
<td>8.09×10⁻⁰¹</td>
<td>7.98×10⁻⁰¹</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.628</td>
<td>8.33×10⁻⁰¹</td>
<td>8.14×10⁻⁰¹</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Temperature Difference</th>
<th>Observed Thermal Conductivity (W/m·K)</th>
<th>Calculated Thermal Conductivity (W/m·K)</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.982</td>
<td>7.70×10⁻⁰¹</td>
<td>7.71×10⁻⁰¹</td>
<td>-0.1</td>
</tr>
<tr>
<td>25.293</td>
<td>7.93×10⁻⁰¹</td>
<td>8.05×10⁻⁰¹</td>
<td>-1.5</td>
</tr>
<tr>
<td>26.569</td>
<td>8.12×10⁻⁰¹</td>
<td>8.37×10⁻⁰¹</td>
<td>-3.0</td>
</tr>
<tr>
<td>27.795</td>
<td>8.58×10⁻⁰¹</td>
<td>8.65×10⁻⁰¹</td>
<td>-0.8</td>
</tr>
<tr>
<td>28.970</td>
<td>8.86×10⁻⁰¹</td>
<td>8.91×10⁻⁰¹</td>
<td>-0.6</td>
</tr>
<tr>
<td>30.099</td>
<td>9.31×10⁻⁰¹</td>
<td>9.14×10⁻⁰¹</td>
<td>1.9</td>
</tr>
<tr>
<td>31.184</td>
<td>9.59×10⁻⁰¹</td>
<td>9.34×10⁻⁰¹</td>
<td>2.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Temperature Difference</th>
<th>Observed Thermal Conductivity (W/m·K)</th>
<th>Calculated Thermal Conductivity (W/m·K)</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.826</td>
<td>8.91×10⁻⁰¹</td>
<td>8.88×10⁻⁰¹</td>
<td>0.3</td>
</tr>
<tr>
<td>32.148</td>
<td>9.41×10⁻⁰¹</td>
<td>9.52×10⁻⁰¹</td>
<td>-1.1</td>
</tr>
<tr>
<td>35.314</td>
<td>9.79×10⁻⁰¹</td>
<td>1.00×10⁻⁰²</td>
<td>-2.2</td>
</tr>
<tr>
<td>38.341</td>
<td>1.03×10⁻⁰²</td>
<td>1.04×10⁻⁰²</td>
<td>-0.6</td>
</tr>
<tr>
<td>41.253</td>
<td>1.06×10⁻⁰²</td>
<td>1.06×10⁻⁰²</td>
<td>-0.3</td>
</tr>
<tr>
<td>44.075</td>
<td>1.10×10⁻⁰²</td>
<td>1.08×10⁻⁰²</td>
<td>1.7</td>
</tr>
<tr>
<td>46.822</td>
<td>1.12×10⁻⁰²</td>
<td>1.09×10⁻⁰²</td>
<td>2.4</td>
</tr>
</tbody>
</table>

42
Table 14 (Cont.)

<table>
<thead>
<tr>
<th>Temperature Difference</th>
<th>Mean Temperature</th>
<th>Observ</th>
<th>Calculated</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Thermal Conductivity</td>
<td>Thermal Conductivity</td>
<td></td>
</tr>
<tr>
<td>36.201</td>
<td>6.333</td>
<td>1.02×002</td>
<td>1.01×002</td>
<td>0.4</td>
</tr>
<tr>
<td>42.397</td>
<td>6.060</td>
<td>1.06×002</td>
<td>1.07×002</td>
<td>-1.0</td>
</tr>
<tr>
<td>48.399</td>
<td>5.943</td>
<td>1.08×002</td>
<td>1.10×002</td>
<td>-1.3</td>
</tr>
<tr>
<td>54.298</td>
<td>5.855</td>
<td>1.10×002</td>
<td>1.10×002</td>
<td>0.4</td>
</tr>
<tr>
<td>60.168</td>
<td>5.885</td>
<td>1.09×002</td>
<td>1.09×002</td>
<td>0.2</td>
</tr>
<tr>
<td>66.065</td>
<td>5.909</td>
<td>1.09×002</td>
<td>1.07×002</td>
<td>1.3</td>
</tr>
<tr>
<td>72.043</td>
<td>6.049</td>
<td>1.06×002</td>
<td>1.05×002</td>
<td>1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature Difference</th>
<th>Mean Temperature</th>
<th>Observ</th>
<th>Calculated</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Thermal Conductivity</td>
<td>Thermal Conductivity</td>
<td></td>
</tr>
<tr>
<td>48.480</td>
<td>7.184</td>
<td>1.11×002</td>
<td>1.10×002</td>
<td>0.9</td>
</tr>
<tr>
<td>55.708</td>
<td>7.270</td>
<td>1.09×002</td>
<td>1.10×002</td>
<td>-0.7</td>
</tr>
<tr>
<td>63.045</td>
<td>7.403</td>
<td>1.07×002</td>
<td>1.08×002</td>
<td>-1.0</td>
</tr>
<tr>
<td>70.526</td>
<td>7.558</td>
<td>1.05×002</td>
<td>1.06×002</td>
<td>-0.9</td>
</tr>
<tr>
<td>78.179</td>
<td>7.748</td>
<td>1.03×002</td>
<td>1.05×002</td>
<td>-0.3</td>
</tr>
<tr>
<td>86.006</td>
<td>7.907</td>
<td>1.00×002</td>
<td>9.98×001</td>
<td>0.6</td>
</tr>
<tr>
<td>94.033</td>
<td>8.148</td>
<td>9.76×001</td>
<td>9.70×001</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature Difference</th>
<th>Mean Temperature</th>
<th>Observ</th>
<th>Calculated</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Thermal Conductivity</td>
<td>Thermal Conductivity</td>
<td></td>
</tr>
<tr>
<td>78.942</td>
<td>1.412</td>
<td>1.05×002</td>
<td>1.05×002</td>
<td>0.0</td>
</tr>
<tr>
<td>80.364</td>
<td>1.433</td>
<td>1.01×002</td>
<td>1.02×002</td>
<td>-1.2</td>
</tr>
<tr>
<td>81.801</td>
<td>1.440</td>
<td>1.00×002</td>
<td>1.01×002</td>
<td>-1.0</td>
</tr>
<tr>
<td>83.243</td>
<td>1.444</td>
<td>1.00×002</td>
<td>1.01×002</td>
<td>-0.8</td>
</tr>
<tr>
<td>84.690</td>
<td>1.448</td>
<td>9.99×001</td>
<td>1.00×002</td>
<td>-0.4</td>
</tr>
<tr>
<td>86.136</td>
<td>1.444</td>
<td>1.00×002</td>
<td>9.98×001</td>
<td>0.4</td>
</tr>
<tr>
<td>87.584</td>
<td>1.452</td>
<td>9.98×001</td>
<td>9.92×001</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Table 14 (Cont.)

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.048</td>
<td>0.317</td>
<td>1.65×10⁻¹⁰</td>
<td>1.63×10⁻¹⁰</td>
<td>1.1</td>
</tr>
<tr>
<td>5.955</td>
<td>0.296</td>
<td>1.76×10⁻¹⁰</td>
<td>1.74×10⁻¹⁰</td>
<td>0.9</td>
</tr>
<tr>
<td>5.647</td>
<td>0.289</td>
<td>1.81×10⁻¹⁰</td>
<td>1.85×10⁻¹⁰</td>
<td>-2.1</td>
</tr>
<tr>
<td>5.926</td>
<td>0.269</td>
<td>1.94×10⁻¹⁰</td>
<td>1.95×10⁻¹⁰</td>
<td>-0.5</td>
</tr>
<tr>
<td>6.191</td>
<td>0.261</td>
<td>2.01×10⁻¹⁰</td>
<td>2.04×10⁻¹⁰</td>
<td>-1.8</td>
</tr>
<tr>
<td>6.441</td>
<td>0.239</td>
<td>2.19×10⁻¹⁰</td>
<td>2.13×10⁻¹⁰</td>
<td>2.8</td>
</tr>
<tr>
<td>6.677</td>
<td>0.233</td>
<td>2.24×10⁻¹⁰</td>
<td>2.21×10⁻¹⁰</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table 14 (Cont.)

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.337</td>
<td>0.584</td>
<td>2.08×10⁻¹⁰</td>
<td>2.09×10⁻¹⁰</td>
<td>-0.5</td>
</tr>
<tr>
<td>6.894</td>
<td>0.550</td>
<td>2.29×10⁻¹⁰</td>
<td>2.28×10⁻¹⁰</td>
<td>0.2</td>
</tr>
<tr>
<td>7.413</td>
<td>0.509</td>
<td>2.39×10⁻¹⁰</td>
<td>2.46×10⁻¹⁰</td>
<td>-3.1</td>
</tr>
<tr>
<td>7.900</td>
<td>0.465</td>
<td>2.61×10⁻¹⁰</td>
<td>2.62×10⁻¹⁰</td>
<td>-0.7</td>
</tr>
<tr>
<td>8.355</td>
<td>0.444</td>
<td>2.74×10⁻¹⁰</td>
<td>2.77×10⁻¹⁰</td>
<td>-1.3</td>
</tr>
<tr>
<td>8.780</td>
<td>0.407</td>
<td>2.99×10⁻¹⁰</td>
<td>2.91×10⁻¹⁰</td>
<td>2.4</td>
</tr>
<tr>
<td>9.179</td>
<td>0.389</td>
<td>3.12×10⁻¹⁰</td>
<td>3.05×10⁻¹⁰</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 14 (Cont.)

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.206</td>
<td>1.220</td>
<td>2.72×10⁻¹⁰</td>
<td>2.72×10⁻¹⁰</td>
<td>0.0</td>
</tr>
<tr>
<td>9.355</td>
<td>1.078</td>
<td>3.08×10⁻¹⁰</td>
<td>3.10×10⁻¹⁰</td>
<td>-0.9</td>
</tr>
<tr>
<td>10.386</td>
<td>0.986</td>
<td>3.37×10⁻¹⁰</td>
<td>3.44×10⁻¹⁰</td>
<td>-2.3</td>
</tr>
<tr>
<td>11.321</td>
<td>0.883</td>
<td>3.75×10⁻¹⁰</td>
<td>3.75×10⁻¹⁰</td>
<td>0.1</td>
</tr>
<tr>
<td>12.176</td>
<td>0.827</td>
<td>4.02×10⁻¹⁰</td>
<td>4.03×10⁻¹⁰</td>
<td>-0.3</td>
</tr>
<tr>
<td>12.966</td>
<td>0.753</td>
<td>4.41×10⁻¹⁰</td>
<td>4.29×10⁻¹⁰</td>
<td>2.7</td>
</tr>
<tr>
<td>13.698</td>
<td>0.711</td>
<td>4.68×10⁻¹⁰</td>
<td>4.54×10⁻¹⁰</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Table 14 (Cont.)

Thermal Conductivity Data for Armco Iron(2A) 19 Mar 69 810 PM

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.955</td>
<td>2.286</td>
<td>3.99+001</td>
<td>3.96+001</td>
<td>0.9</td>
</tr>
<tr>
<td>14.080</td>
<td>1.963</td>
<td>4.64+001</td>
<td>4.66+001</td>
<td>-0.5</td>
</tr>
<tr>
<td>15.947</td>
<td>1.771</td>
<td>5.15+001</td>
<td>5.28+001</td>
<td>-2.4</td>
</tr>
<tr>
<td>17.615</td>
<td>1.565</td>
<td>5.82+001</td>
<td>5.81+001</td>
<td>0.1</td>
</tr>
<tr>
<td>19.127</td>
<td>1.459</td>
<td>6.26+001</td>
<td>6.29+001</td>
<td>-0.6</td>
</tr>
<tr>
<td>20.521</td>
<td>1.328</td>
<td>6.87+001</td>
<td>6.72+001</td>
<td>2.2</td>
</tr>
<tr>
<td>21.811</td>
<td>1.252</td>
<td>7.30+001</td>
<td>7.10+001</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Thermal Conductivity Data for Armco Iron(2A) 20 Mar 69 1045 AM

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.527</td>
<td>2.806</td>
<td>4.85+001</td>
<td>4.81+001</td>
<td>0.5</td>
</tr>
<tr>
<td>17.137</td>
<td>2.415</td>
<td>5.60+001</td>
<td>5.66+001</td>
<td>-1.1</td>
</tr>
<tr>
<td>19.435</td>
<td>2.180</td>
<td>6.21+001</td>
<td>6.39+001</td>
<td>-2.8</td>
</tr>
<tr>
<td>21.494</td>
<td>1.937</td>
<td>6.98+001</td>
<td>7.01+001</td>
<td>-0.4</td>
</tr>
<tr>
<td>23.366</td>
<td>1.809</td>
<td>7.50+001</td>
<td>7.54+001</td>
<td>-0.6</td>
</tr>
<tr>
<td>25.100</td>
<td>1.659</td>
<td>8.17+001</td>
<td>8.00+001</td>
<td>2.0</td>
</tr>
<tr>
<td>26.715</td>
<td>1.571</td>
<td>8.63+001</td>
<td>8.40+001</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Thermal Conductivity Data for Armco Iron(2A) 20 Mar 69 1200 Noon

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.353</td>
<td>0.740</td>
<td>5.41+001</td>
<td>5.41+001</td>
<td>0.0</td>
</tr>
<tr>
<td>17.080</td>
<td>0.715</td>
<td>5.58+001</td>
<td>5.64+001</td>
<td>-1.1</td>
</tr>
<tr>
<td>17.789</td>
<td>0.701</td>
<td>5.70+001</td>
<td>5.87+001</td>
<td>-3.0</td>
</tr>
<tr>
<td>18.468</td>
<td>0.657</td>
<td>6.08+001</td>
<td>6.09+001</td>
<td>-0.2</td>
</tr>
<tr>
<td>19.117</td>
<td>0.641</td>
<td>6.24+001</td>
<td>6.29+001</td>
<td>-0.8</td>
</tr>
<tr>
<td>19.740</td>
<td>0.605</td>
<td>6.61+001</td>
<td>6.48+001</td>
<td>1.9</td>
</tr>
<tr>
<td>20.335</td>
<td>0.585</td>
<td>6.85+001</td>
<td>6.66+001</td>
<td>2.7</td>
</tr>
</tbody>
</table>

45
Table 14 (Cont.)

Thermal Conductivity Data for Armco Iron (12A) 26 Mar 69 1200 Noon

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>212.561</td>
<td>6.947</td>
<td>8.060+001</td>
<td>8.040+001</td>
<td>0.1</td>
</tr>
<tr>
<td>219.559</td>
<td>7.049</td>
<td>7.920+001</td>
<td>7.990+001</td>
<td>-0.8</td>
</tr>
<tr>
<td>226.623</td>
<td>7.078</td>
<td>7.900+001</td>
<td>7.930+001</td>
<td>-0.4</td>
</tr>
<tr>
<td>233.717</td>
<td>7.111</td>
<td>7.850+0.1</td>
<td>7.870+001</td>
<td>-0.3</td>
</tr>
<tr>
<td>240.846</td>
<td>7.146</td>
<td>7.830+001</td>
<td>7.810+001</td>
<td>0.2</td>
</tr>
<tr>
<td>248.015</td>
<td>7.192</td>
<td>7.780+001</td>
<td>7.760+001</td>
<td>0.3</td>
</tr>
<tr>
<td>255.244</td>
<td>7.267</td>
<td>7.710+001</td>
<td>7.700+001</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Thermal Conductivity Data for Armco Iron (12A) 26 Mar 69 715 PM

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>218.594</td>
<td>12.985</td>
<td>8.000+001</td>
<td>8.000+001</td>
<td>0.1</td>
</tr>
<tr>
<td>231.706</td>
<td>13.240</td>
<td>7.850+001</td>
<td>7.890+001</td>
<td>-0.7</td>
</tr>
<tr>
<td>245.013</td>
<td>13.375</td>
<td>7.760+001</td>
<td>7.780+001</td>
<td>-0.2</td>
</tr>
<tr>
<td>258.456</td>
<td>13.512</td>
<td>7.670+001</td>
<td>7.670+001</td>
<td>-0.0</td>
</tr>
<tr>
<td>272.039</td>
<td>13.653</td>
<td>7.610+001</td>
<td>7.580+001</td>
<td>0.4</td>
</tr>
<tr>
<td>285.779</td>
<td>13.829</td>
<td>7.510+001</td>
<td>7.500+001</td>
<td>0.2</td>
</tr>
<tr>
<td>299.737</td>
<td>14.086</td>
<td>7.580+001</td>
<td>7.450+001</td>
<td>-0.8</td>
</tr>
</tbody>
</table>

Thermal Conductivity Data for Armco Iron (12A) 27 Mar 69 445 PM

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>235.266</td>
<td>2.658</td>
<td>7.950+001</td>
<td>7.860+001</td>
<td>1.2</td>
</tr>
<tr>
<td>237.935</td>
<td>2.700</td>
<td>7.750+001</td>
<td>7.840+001</td>
<td>-1.1</td>
</tr>
<tr>
<td>240.629</td>
<td>2.688</td>
<td>7.800+001</td>
<td>7.820+001</td>
<td>-0.2</td>
</tr>
<tr>
<td>243.307</td>
<td>2.668</td>
<td>7.840+001</td>
<td>7.790+001</td>
<td>0.6</td>
</tr>
<tr>
<td>245.976</td>
<td>2.671</td>
<td>7.850+001</td>
<td>7.770+001</td>
<td>1.0</td>
</tr>
<tr>
<td>248.654</td>
<td>2.683</td>
<td>7.810+001</td>
<td>7.750+001</td>
<td>0.8</td>
</tr>
<tr>
<td>251.360</td>
<td>2.729</td>
<td>7.690+001</td>
<td>7.730+001</td>
<td>-0.5</td>
</tr>
</tbody>
</table>
Table 14 (Cont.)

THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 3 APRIL 69 430 PM

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Conductivity</th>
<th>Calculated Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>277.356</td>
<td>2.718</td>
<td>7.63×001</td>
<td>7.55×001</td>
<td>1.1</td>
</tr>
<tr>
<td>280.090</td>
<td>2.749</td>
<td>7.52×001</td>
<td>7.53×001</td>
<td>-0.1</td>
</tr>
<tr>
<td>282.841</td>
<td>2.753</td>
<td>7.52×001</td>
<td>7.51×001</td>
<td>0.1</td>
</tr>
<tr>
<td>285.596</td>
<td>2.750</td>
<td>7.50×001</td>
<td>7.50×001</td>
<td>-0.1</td>
</tr>
<tr>
<td>288.356</td>
<td>2.762</td>
<td>7.50×001</td>
<td>7.49×001</td>
<td>0.2</td>
</tr>
<tr>
<td>291.125</td>
<td>2.776</td>
<td>7.46×001</td>
<td>7.48×001</td>
<td>-0.2</td>
</tr>
<tr>
<td>293.911</td>
<td>2.796</td>
<td>7.42×001</td>
<td>7.46×001</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

THERMAL CONDUCTIVITY DATA FOR ARMCO IRON(2A) 4 APRIL 69 920 AM

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Conductivity</th>
<th>Calculated Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>277.631</td>
<td>2.748</td>
<td>7.63×001</td>
<td>7.54×001</td>
<td>1.2</td>
</tr>
<tr>
<td>280.395</td>
<td>2.781</td>
<td>7.53×001</td>
<td>7.53×001</td>
<td>-0.0</td>
</tr>
<tr>
<td>283.178</td>
<td>2.785</td>
<td>7.52×001</td>
<td>7.51×001</td>
<td>0.1</td>
</tr>
<tr>
<td>285.966</td>
<td>2.790</td>
<td>7.50×001</td>
<td>7.50×001</td>
<td>0.0</td>
</tr>
<tr>
<td>288.758</td>
<td>2.795</td>
<td>7.50×001</td>
<td>7.49×001</td>
<td>0.2</td>
</tr>
<tr>
<td>291.561</td>
<td>2.811</td>
<td>7.46×001</td>
<td>7.47×001</td>
<td>-0.2</td>
</tr>
<tr>
<td>294.382</td>
<td>2.831</td>
<td>7.42×001</td>
<td>7.46×001</td>
<td>-0.6</td>
</tr>
</tbody>
</table>
Table 15 Electrical resistivity deviations for Armco iron, specimen 2a.

<table>
<thead>
<tr>
<th>MEAN TEMPERATURE</th>
<th>TEMPERATURE RANGE</th>
<th>OBSERVED RESISTANCE</th>
<th>CALCULATED RESISTANCE</th>
<th>PERCENT DEVIATION</th>
<th>INTRINSIC RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.898</td>
<td>1.904</td>
<td>1.292-004</td>
<td>1.292-004</td>
<td>-0.00</td>
<td>5.572-008</td>
</tr>
<tr>
<td>7.837</td>
<td>3.527</td>
<td>1.293-004</td>
<td>1.293-004</td>
<td>0.02</td>
<td>1.557-007</td>
</tr>
<tr>
<td>11.158</td>
<td>6.458</td>
<td>1.295-004</td>
<td>1.296-004</td>
<td>-0.05</td>
<td>3.557-007</td>
</tr>
<tr>
<td>17.293</td>
<td>11.624</td>
<td>1.301-004</td>
<td>1.301-004</td>
<td>0.03</td>
<td>1.006-006</td>
</tr>
<tr>
<td>18.412</td>
<td>4.644</td>
<td>1.302-004</td>
<td>1.302-004</td>
<td>0.07</td>
<td>1.106-006</td>
</tr>
<tr>
<td>25.634</td>
<td>4.770</td>
<td>1.314-004</td>
<td>1.315-004</td>
<td>-0.07</td>
<td>2.256-006</td>
</tr>
<tr>
<td>27.699</td>
<td>8.402</td>
<td>1.329-004</td>
<td>1.330-004</td>
<td>0.11</td>
<td>3.756-006</td>
</tr>
<tr>
<td>38.111</td>
<td>21.067</td>
<td>1.410-004</td>
<td>1.409-004</td>
<td>0.05</td>
<td>1.186-005</td>
</tr>
<tr>
<td>54.224</td>
<td>42.033</td>
<td>1.719-004</td>
<td>1.716-004</td>
<td>0.12</td>
<td>4.271-005</td>
</tr>
<tr>
<td>70.853</td>
<td>53.219</td>
<td>2.249-004</td>
<td>2.249-004</td>
<td>0.01</td>
<td>9.576-005</td>
</tr>
<tr>
<td>83.251</td>
<td>10.074</td>
<td>2.680-004</td>
<td>2.682-004</td>
<td>-0.08</td>
<td>1.389-004</td>
</tr>
<tr>
<td>99.650</td>
<td>27.379</td>
<td>3.532-004</td>
<td>3.554-004</td>
<td>-0.05</td>
<td>2.241-004</td>
</tr>
<tr>
<td>120.150</td>
<td>64.582</td>
<td>4.793-004</td>
<td>4.793-004</td>
<td>0.01</td>
<td>3.502-004</td>
</tr>
<tr>
<td>172.780</td>
<td>135.405</td>
<td>8.452-004</td>
<td>8.446-004</td>
<td>0.07</td>
<td>7.161-004</td>
</tr>
<tr>
<td>148.915</td>
<td>30.341</td>
<td>6.669-004</td>
<td>6.664-004</td>
<td>0.07</td>
<td>5.378-004</td>
</tr>
<tr>
<td>171.185</td>
<td>70.055</td>
<td>8.265-004</td>
<td>8.260-004</td>
<td>0.06</td>
<td>6.974-004</td>
</tr>
<tr>
<td>209.164</td>
<td>24.828</td>
<td>1.105-003</td>
<td>1.106-003</td>
<td>-0.10</td>
<td>9.759-004</td>
</tr>
<tr>
<td>253.794</td>
<td>49.790</td>
<td>1.299-003</td>
<td>1.299-003</td>
<td>0.03</td>
<td>1.170-003</td>
</tr>
<tr>
<td>258.759</td>
<td>94.678</td>
<td>1.508-003</td>
<td>1.508-003</td>
<td>0.01</td>
<td>1.379-003</td>
</tr>
<tr>
<td>243.303</td>
<td>18.777</td>
<td>1.576-003</td>
<td>1.574-003</td>
<td>0.11</td>
<td>1.246-003</td>
</tr>
<tr>
<td>285.611</td>
<td>19.312</td>
<td>1.753-003</td>
<td>1.754-003</td>
<td>-0.04</td>
<td>1.604-003</td>
</tr>
<tr>
<td>285.981</td>
<td>19.540</td>
<td>1.737-003</td>
<td>1.737-003</td>
<td>-0.03</td>
<td>1.608-003</td>
</tr>
<tr>
<td>4.132</td>
<td>0.000</td>
<td>1.291-004</td>
<td>1.292-004</td>
<td>-0.00</td>
<td>5.721-009</td>
</tr>
<tr>
<td>19.818</td>
<td>0.000</td>
<td>1.305-004</td>
<td>1.304-004</td>
<td>0.06</td>
<td>1.356-006</td>
</tr>
<tr>
<td>75.934</td>
<td>0.000</td>
<td>2.358-004</td>
<td>2.358-004</td>
<td>0.01</td>
<td>1.067-004</td>
</tr>
<tr>
<td>84.195</td>
<td>0.000</td>
<td>2.722-004</td>
<td>2.724-004</td>
<td>-0.06</td>
<td>1.431-004</td>
</tr>
<tr>
<td>151.684</td>
<td>0.000</td>
<td>5.494-004</td>
<td>5.489-004</td>
<td>0.09</td>
<td>4.203-004</td>
</tr>
<tr>
<td>192.760</td>
<td>0.000</td>
<td>9.801-004</td>
<td>9.820-004</td>
<td>-0.20</td>
<td>8.509-004</td>
</tr>
<tr>
<td>273.215</td>
<td>0.000</td>
<td>1.625-003</td>
<td>1.624-003</td>
<td>0.04</td>
<td>1.496-003</td>
</tr>
</tbody>
</table>
Table 16 Thermovoltage deviations for Armco iron, specimen 2a.

<table>
<thead>
<tr>
<th>Upper Temperature</th>
<th>Lower Temperature</th>
<th>Observed Thermovoltage</th>
<th>Calculated Thermovoltage</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.793</td>
<td>4.889</td>
<td>0.01</td>
<td>-0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>9.572</td>
<td>6.045</td>
<td>0.10</td>
<td>0.24</td>
<td>-0.14</td>
</tr>
<tr>
<td>14.053</td>
<td>7.595</td>
<td>0.43</td>
<td>0.48</td>
<td>-0.05</td>
</tr>
<tr>
<td>22.437</td>
<td>10.813</td>
<td>1.99</td>
<td>1.84</td>
<td>0.15</td>
</tr>
<tr>
<td>27.501</td>
<td>13.124</td>
<td>4.21</td>
<td>4.21</td>
<td>0.00</td>
</tr>
<tr>
<td>20.627</td>
<td>15.983</td>
<td>0.84</td>
<td>0.88</td>
<td>-0.04</td>
</tr>
<tr>
<td>25.937</td>
<td>21.168</td>
<td>1.82</td>
<td>1.99</td>
<td>-0.17</td>
</tr>
<tr>
<td>31.719</td>
<td>23.316</td>
<td>5.37</td>
<td>5.59</td>
<td>-0.22</td>
</tr>
<tr>
<td>48.185</td>
<td>27.118</td>
<td>35.68</td>
<td>35.66</td>
<td>0.02</td>
</tr>
<tr>
<td>75.068</td>
<td>33.034</td>
<td>175.46</td>
<td>175.26</td>
<td>0.20</td>
</tr>
<tr>
<td>98.108</td>
<td>44.888</td>
<td>368.80</td>
<td>369.03</td>
<td>-0.23</td>
</tr>
<tr>
<td>88.310</td>
<td>78.236</td>
<td>89.71</td>
<td>89.65</td>
<td>0.06</td>
</tr>
<tr>
<td>113.503</td>
<td>86.123</td>
<td>300.24</td>
<td>300.21</td>
<td>0.03</td>
</tr>
<tr>
<td>153.156</td>
<td>88.574</td>
<td>815.92</td>
<td>815.81</td>
<td>0.11</td>
</tr>
<tr>
<td>242.313</td>
<td>106.908</td>
<td>1922.56</td>
<td>1922.21</td>
<td>0.15</td>
</tr>
<tr>
<td>164.175</td>
<td>133.853</td>
<td>432.88</td>
<td>433.24</td>
<td>-0.36</td>
</tr>
<tr>
<td>206.680</td>
<td>136.624</td>
<td>1023.47</td>
<td>1023.63</td>
<td>-0.16</td>
</tr>
<tr>
<td>221.625</td>
<td>196.796</td>
<td>364.64</td>
<td>364.50</td>
<td>0.14</td>
</tr>
<tr>
<td>258.878</td>
<td>209.087</td>
<td>708.45</td>
<td>708.36</td>
<td>0.09</td>
</tr>
<tr>
<td>306.779</td>
<td>212.101</td>
<td>1276.16</td>
<td>1276.24</td>
<td>-0.08</td>
</tr>
<tr>
<td>252.724</td>
<td>233.947</td>
<td>263.21</td>
<td>263.59</td>
<td>-0.38</td>
</tr>
<tr>
<td>295.309</td>
<td>275.998</td>
<td>245.31</td>
<td>245.17</td>
<td>0.14</td>
</tr>
<tr>
<td>295.797</td>
<td>276.257</td>
<td>247.90</td>
<td>247.79</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Table 17 Thermal conductivity deviations for Armco iron, specimen 4.

<table>
<thead>
<tr>
<th></th>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1140AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78.980</td>
<td>0.909</td>
<td>1.02±002</td>
<td>1.02±002</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>79.895</td>
<td>0.923</td>
<td>1.01±002</td>
<td>1.02±002</td>
<td>-1.2</td>
<td></td>
</tr>
<tr>
<td>80.816</td>
<td>0.919</td>
<td>1.01±002</td>
<td>1.01±002</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>81.739</td>
<td>0.926</td>
<td>1.00±002</td>
<td>1.01±002</td>
<td>-0.6</td>
<td></td>
</tr>
<tr>
<td>82.663</td>
<td>0.923</td>
<td>1.01±002</td>
<td>1.01±002</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>83.588</td>
<td>0.928</td>
<td>1.00±002</td>
<td>1.00±002</td>
<td>-0.0</td>
<td></td>
</tr>
<tr>
<td>84.519</td>
<td>0.934</td>
<td>9.96±001</td>
<td>1.00±002</td>
<td>-0.4</td>
<td></td>
</tr>
<tr>
<td>1140PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.322</td>
<td>2.880</td>
<td>9.89±001</td>
<td>9.89±001</td>
<td>-0.0</td>
<td></td>
</tr>
<tr>
<td>90.234</td>
<td>2.946</td>
<td>9.68±001</td>
<td>9.78±001</td>
<td>-1.1</td>
<td></td>
</tr>
<tr>
<td>93.186</td>
<td>2.957</td>
<td>9.66±001</td>
<td>9.68±001</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>96.160</td>
<td>2.990</td>
<td>9.56±001</td>
<td>9.58±001</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>99.156</td>
<td>3.002</td>
<td>9.54±001</td>
<td>9.49±001</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>102.174</td>
<td>3.035</td>
<td>9.42±001</td>
<td>9.59±001</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>105.226</td>
<td>3.067</td>
<td>9.32±001</td>
<td>9.31±001</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>12 December 68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.697</td>
<td>7.526</td>
<td>9.36±001</td>
<td>9.29±001</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>113.946</td>
<td>7.772</td>
<td>9.07±001</td>
<td>9.10±001</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>121.163</td>
<td>7.863</td>
<td>8.98±001</td>
<td>8.94±001</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>129.090</td>
<td>7.990</td>
<td>8.85±001</td>
<td>8.80±001</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>137.118</td>
<td>8.065</td>
<td>8.78±001</td>
<td>8.69±001</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>145.243</td>
<td>8.186</td>
<td>8.64±001</td>
<td>8.59±001</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>153.483</td>
<td>8.294</td>
<td>8.52±001</td>
<td>8.51±001</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Mean Temperature (°C)</td>
<td>Temperature Difference (°C)</td>
<td>Observed Thermal Conductivity (W/m·K)</td>
<td>Calculated Thermal Conductivity (W/m·K)</td>
<td>Percent Deviation</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>160.065</td>
<td>15.373</td>
<td>8.54±001</td>
<td>8.45±001</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>175.714</td>
<td>15.923</td>
<td>8.25±001</td>
<td>8.34±001</td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td>191.731</td>
<td>16.111</td>
<td>8.17±001</td>
<td>8.23±001</td>
<td>-0.8</td>
<td></td>
</tr>
<tr>
<td>207.962</td>
<td>16.352</td>
<td>8.06±001</td>
<td>8.12±001</td>
<td>-0.8</td>
<td></td>
</tr>
<tr>
<td>224.416</td>
<td>16.556</td>
<td>7.97±001</td>
<td>8.00±001</td>
<td>-0.4</td>
<td></td>
</tr>
<tr>
<td>241.116</td>
<td>16.843</td>
<td>7.83±001</td>
<td>7.87±001</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>256.099</td>
<td>17.124</td>
<td>7.69±001</td>
<td>7.72±001</td>
<td>-0.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Temperature (°C)</th>
<th>Temperature Difference (°C)</th>
<th>Observed Thermal Conductivity (W/m·K)</th>
<th>Calculated Thermal Conductivity (W/m·K)</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>208.349</td>
<td>16.131</td>
<td>8.16±001</td>
<td>8.12±001</td>
<td>0.5</td>
</tr>
<tr>
<td>224.806</td>
<td>16.785</td>
<td>7.85±001</td>
<td>8.00±001</td>
<td>-1.9</td>
</tr>
<tr>
<td>241.665</td>
<td>16.954</td>
<td>7.80±001</td>
<td>7.86±001</td>
<td>-0.8</td>
</tr>
<tr>
<td>258.718</td>
<td>17.172</td>
<td>7.69±001</td>
<td>7.71±001</td>
<td>-0.2</td>
</tr>
<tr>
<td>276.003</td>
<td>17.399</td>
<td>7.61±001</td>
<td>7.56±001</td>
<td>0.6</td>
</tr>
<tr>
<td>293.594</td>
<td>17.782</td>
<td>7.44±001</td>
<td>7.42±001</td>
<td>0.2</td>
</tr>
<tr>
<td>311.567</td>
<td>18.165</td>
<td>7.27±001</td>
<td>7.31±001</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Temperature (°C)</th>
<th>Temperature Difference (°C)</th>
<th>Observed Thermal Conductivity (W/m·K)</th>
<th>Calculated Thermal Conductivity (W/m·K)</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>205.638</td>
<td>5.156</td>
<td>8.23±001</td>
<td>8.14±001</td>
<td>1.0</td>
</tr>
<tr>
<td>210.852</td>
<td>5.272</td>
<td>8.05±001</td>
<td>8.10±001</td>
<td>-0.6</td>
</tr>
<tr>
<td>216.128</td>
<td>5.280</td>
<td>8.06±001</td>
<td>8.07±001</td>
<td>-0.1</td>
</tr>
<tr>
<td>221.429</td>
<td>5.321</td>
<td>8.00±001</td>
<td>8.03±001</td>
<td>-0.3</td>
</tr>
<tr>
<td>226.759</td>
<td>5.359</td>
<td>7.99±001</td>
<td>7.98±001</td>
<td>0.0</td>
</tr>
<tr>
<td>232.120</td>
<td>5.381</td>
<td>7.92±001</td>
<td>7.94±001</td>
<td>-0.3</td>
</tr>
<tr>
<td>237.524</td>
<td>5.427</td>
<td>7.84±001</td>
<td>7.90±001</td>
<td>-0.7</td>
</tr>
</tbody>
</table>
Table 17 (Cont.)

Thermal Conductivity Data for Armco Iron(4) 16 Dec 68 1135 AM

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.427</td>
<td>0.228</td>
<td>1.80×10⁻⁴</td>
<td>1.76×10⁻⁴</td>
<td>2.4</td>
</tr>
<tr>
<td>5.650</td>
<td>0.219</td>
<td>1.88×10⁻⁴</td>
<td>1.84×10⁻⁴</td>
<td>2.1</td>
</tr>
<tr>
<td>5.866</td>
<td>0.212</td>
<td>1.94×10⁻⁴</td>
<td>1.91×10⁻⁴</td>
<td>1.5</td>
</tr>
<tr>
<td>6.075</td>
<td>0.207</td>
<td>1.99×10⁻⁴</td>
<td>1.99×10⁻⁴</td>
<td>0.4</td>
</tr>
<tr>
<td>6.279</td>
<td>0.200</td>
<td>2.07×10⁻⁴</td>
<td>2.06×10⁻⁴</td>
<td>0.5</td>
</tr>
<tr>
<td>6.475</td>
<td>0.193</td>
<td>2.14×10⁻⁴</td>
<td>2.12×10⁻⁴</td>
<td>0.7</td>
</tr>
<tr>
<td>6.669</td>
<td>0.194</td>
<td>2.12×10⁻⁴</td>
<td>2.19×10⁻⁴</td>
<td>-3.0</td>
</tr>
</tbody>
</table>

Thermal Conductivity Data for Armco Iron(4) 16 Dec 68 1225 PM

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.211</td>
<td>0.542</td>
<td>2.35×10⁻⁴</td>
<td>2.37×10⁻⁴</td>
<td>-0.7</td>
</tr>
<tr>
<td>7.732</td>
<td>0.501</td>
<td>2.55×10⁻⁴</td>
<td>2.54×10⁻⁴</td>
<td>0.2</td>
</tr>
<tr>
<td>8.219</td>
<td>0.473</td>
<td>2.70×10⁻⁴</td>
<td>2.70×10⁻⁴</td>
<td>0.0</td>
</tr>
<tr>
<td>8.678</td>
<td>0.446</td>
<td>2.87×10⁻⁴</td>
<td>2.85×10⁻⁴</td>
<td>0.6</td>
</tr>
<tr>
<td>9.113</td>
<td>0.423</td>
<td>3.03×10⁻⁴</td>
<td>3.00×10⁻⁴</td>
<td>1.0</td>
</tr>
<tr>
<td>9.526</td>
<td>0.403</td>
<td>3.18×10⁻⁴</td>
<td>3.15×10⁻⁴</td>
<td>1.4</td>
</tr>
<tr>
<td>9.922</td>
<td>0.391</td>
<td>3.27×10⁻⁴</td>
<td>3.26×10⁻⁴</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Thermal Conductivity Data for Armco Iron(4) 16 Dec 68 1500 PM

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.579</td>
<td>0.884</td>
<td>3.46×10⁻⁴</td>
<td>3.48×10⁻⁴</td>
<td>-0.6</td>
</tr>
<tr>
<td>11.428</td>
<td>0.815</td>
<td>3.76×10⁻⁴</td>
<td>3.76×10⁻⁴</td>
<td>0.0</td>
</tr>
<tr>
<td>12.216</td>
<td>0.761</td>
<td>4.03×10⁻⁴</td>
<td>4.01×10⁻⁴</td>
<td>0.3</td>
</tr>
<tr>
<td>12.955</td>
<td>0.717</td>
<td>4.28×10⁻⁴</td>
<td>4.26×10⁻⁴</td>
<td>0.5</td>
</tr>
<tr>
<td>15.653</td>
<td>0.677</td>
<td>4.54×10⁻⁴</td>
<td>4.49×10⁻⁴</td>
<td>1.1</td>
</tr>
<tr>
<td>14.314</td>
<td>0.645</td>
<td>4.76×10⁻⁴</td>
<td>4.70×10⁻⁴</td>
<td>1.2</td>
</tr>
<tr>
<td>14.947</td>
<td>0.622</td>
<td>4.93×10⁻⁴</td>
<td>4.91×10⁻⁴</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Table 17 (Cont.)

Thermal Conductivity Data for Armco Iron (4) 16 Dec 68 505PM

<table>
<thead>
<tr>
<th>Temperature Difference</th>
<th>Mean Temperature</th>
<th>Observed Conductivity</th>
<th>Calculated Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.238</td>
<td>5.449</td>
<td>1.75 x 10^1</td>
<td>1.77 x 10^1</td>
<td>-2.5</td>
</tr>
<tr>
<td>0.223</td>
<td>5.679</td>
<td>1.85 x 10^1</td>
<td>1.85 x 10^1</td>
<td>-0.2</td>
</tr>
<tr>
<td>0.216</td>
<td>5.899</td>
<td>1.91 x 10^1</td>
<td>1.93 x 10^1</td>
<td>-0.9</td>
</tr>
<tr>
<td>0.209</td>
<td>6.111</td>
<td>1.98 x 10^1</td>
<td>2.00 x 10^1</td>
<td>-1.1</td>
</tr>
<tr>
<td>0.203</td>
<td>6.317</td>
<td>2.03 x 10^1</td>
<td>2.07 x 10^1</td>
<td>-1.6</td>
</tr>
<tr>
<td>0.191</td>
<td>6.514</td>
<td>2.16 x 10^1</td>
<td>2.14 x 10^1</td>
<td>0.9</td>
</tr>
<tr>
<td>0.190</td>
<td>6.705</td>
<td>2.16 x 10^1</td>
<td>2.20 x 10^1</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

Thermal Conductivity Data for Armco Iron (4) 16 Dec 68 540PM

<table>
<thead>
<tr>
<th>Temperature Difference</th>
<th>Mean Temperature</th>
<th>Observed Conductivity</th>
<th>Calculated Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.711</td>
<td>17.565</td>
<td>5.72 x 10^1</td>
<td>5.75 x 10^1</td>
<td>-0.6</td>
</tr>
<tr>
<td>1.572</td>
<td>19.207</td>
<td>6.25 x 10^1</td>
<td>6.27 x 10^1</td>
<td>-0.6</td>
</tr>
<tr>
<td>1.462</td>
<td>20.724</td>
<td>6.71 x 10^1</td>
<td>6.72 x 10^1</td>
<td>-0.2</td>
</tr>
<tr>
<td>1.375</td>
<td>22.142</td>
<td>7.14 x 10^1</td>
<td>7.14 x 10^1</td>
<td>0.1</td>
</tr>
<tr>
<td>1.295</td>
<td>23.477</td>
<td>7.60 x 10^1</td>
<td>7.51 x 10^1</td>
<td>1.2</td>
</tr>
<tr>
<td>1.237</td>
<td>24.743</td>
<td>7.94 x 10^1</td>
<td>7.84 x 10^1</td>
<td>1.2</td>
</tr>
<tr>
<td>1.199</td>
<td>25.961</td>
<td>8.18 x 10^1</td>
<td>8.15 x 10^1</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Thermal Conductivity Data for Armco Iron (4) 16 Dec 68 600PM

<table>
<thead>
<tr>
<th>Temperature Difference</th>
<th>Mean Temperature</th>
<th>Observed Conductivity</th>
<th>Calculated Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.718</td>
<td>17.580</td>
<td>5.69 x 10^1</td>
<td>5.76 x 10^1</td>
<td>-1.1</td>
</tr>
<tr>
<td>1.577</td>
<td>19.227</td>
<td>6.21 x 10^1</td>
<td>6.27 x 10^1</td>
<td>-1.0</td>
</tr>
<tr>
<td>1.468</td>
<td>20.750</td>
<td>6.68 x 10^1</td>
<td>6.73 x 10^1</td>
<td>-0.7</td>
</tr>
<tr>
<td>1.386</td>
<td>22.177</td>
<td>7.08 x 10^1</td>
<td>7.15 x 10^1</td>
<td>-0.9</td>
</tr>
<tr>
<td>1.292</td>
<td>23.516</td>
<td>7.61 x 10^1</td>
<td>7.52 x 10^1</td>
<td>1.2</td>
</tr>
<tr>
<td>1.241</td>
<td>24.782</td>
<td>7.92 x 10^1</td>
<td>7.85 x 10^1</td>
<td>0.8</td>
</tr>
<tr>
<td>1.204</td>
<td>26.005</td>
<td>8.15 x 10^1</td>
<td>8.16 x 10^1</td>
<td>-0.1</td>
</tr>
</tbody>
</table>
Table 17 (Cont.)

Thermal Conductivity Data for Armco Iron (4) 16 Dec 68 6:35 PM

<table>
<thead>
<tr>
<th>Temperature Difference</th>
<th>Observed Conductivity</th>
<th>Calculated Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.083</td>
<td>1.051</td>
<td>4.59×10^1</td>
<td>4.63×10^1</td>
</tr>
<tr>
<td>15.096</td>
<td>0.980</td>
<td>4.95×10^1</td>
<td>4.96×10^1</td>
</tr>
<tr>
<td>16.051</td>
<td>0.924</td>
<td>5.24×10^1</td>
<td>5.27×10^1</td>
</tr>
<tr>
<td>16.951</td>
<td>0.876</td>
<td>5.53×10^1</td>
<td>5.56×10^1</td>
</tr>
<tr>
<td>17.802</td>
<td>0.827</td>
<td>5.87×10^1</td>
<td>5.85×10^1</td>
</tr>
<tr>
<td>18.612</td>
<td>0.791</td>
<td>6.13×10^1</td>
<td>6.08×10^1</td>
</tr>
<tr>
<td>19.391</td>
<td>0.767</td>
<td>6.32×10^1</td>
<td>6.32×10^1</td>
</tr>
</tbody>
</table>

Thermal Conductivity Data for Armco Iron (4) 17 Dec 68 11:00 AM

<table>
<thead>
<tr>
<th>Temperature Difference</th>
<th>Observed Conductivity</th>
<th>Calculated Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.850</td>
<td>0.273</td>
<td>6.95×10^1</td>
<td>7.05×10^1</td>
</tr>
<tr>
<td>22.121</td>
<td>0.270</td>
<td>7.05×10^1</td>
<td>7.13×10^1</td>
</tr>
<tr>
<td>22.389</td>
<td>0.266</td>
<td>7.15×10^1</td>
<td>7.21×10^1</td>
</tr>
<tr>
<td>22.654</td>
<td>0.263</td>
<td>7.25×10^1</td>
<td>7.28×10^1</td>
</tr>
<tr>
<td>22.914</td>
<td>0.258</td>
<td>7.39×10^1</td>
<td>7.35×10^1</td>
</tr>
<tr>
<td>23.170</td>
<td>0.253</td>
<td>7.53×10^1</td>
<td>7.42×10^1</td>
</tr>
<tr>
<td>23.424</td>
<td>0.254</td>
<td>7.50×10^1</td>
<td>7.49×10^1</td>
</tr>
</tbody>
</table>

Thermal Conductivity Data for Armco Iron (4) 17 Dec 68 11:55 PM

<table>
<thead>
<tr>
<th>Temperature Difference</th>
<th>Observed Conductivity</th>
<th>Calculated Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.759</td>
<td>0.525</td>
<td>7.48×10^1</td>
<td>7.58×10^1</td>
</tr>
<tr>
<td>24.278</td>
<td>0.513</td>
<td>7.66×10^1</td>
<td>7.72×10^1</td>
</tr>
<tr>
<td>24.787</td>
<td>0.504</td>
<td>7.81×10^1</td>
<td>7.86×10^1</td>
</tr>
<tr>
<td>25.288</td>
<td>0.498</td>
<td>7.91×10^1</td>
<td>7.98×10^1</td>
</tr>
<tr>
<td>25.777</td>
<td>0.480</td>
<td>8.23×10^1</td>
<td>8.11×10^1</td>
</tr>
<tr>
<td>26.255</td>
<td>0.477</td>
<td>8.27×10^1</td>
<td>8.22×10^1</td>
</tr>
<tr>
<td>26.729</td>
<td>0.470</td>
<td>8.58×10^1</td>
<td>8.54×10^1</td>
</tr>
<tr>
<td>Temperature Difference</td>
<td>Mean Temperature</td>
<td>Thermal Conductivity</td>
<td>Thermal Conductivity</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>28.203</td>
<td>1.423</td>
<td>8.63+001</td>
<td>8.67+001</td>
</tr>
<tr>
<td>29.605</td>
<td>1.381</td>
<td>8.90+001</td>
<td>8.97+001</td>
</tr>
<tr>
<td>30.964</td>
<td>1.337</td>
<td>9.22+001</td>
<td>9.23+001</td>
</tr>
<tr>
<td>32.283</td>
<td>1.302</td>
<td>9.47+001</td>
<td>9.47+001</td>
</tr>
<tr>
<td>33.563</td>
<td>1.258</td>
<td>9.82+001</td>
<td>9.68+001</td>
</tr>
<tr>
<td>34.811</td>
<td>1.239</td>
<td>9.96+001</td>
<td>9.86+001</td>
</tr>
<tr>
<td>36.043</td>
<td>1.224</td>
<td>1.01+002</td>
<td>1.00+002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature Difference</th>
<th>Mean Temperature</th>
<th>Thermal Conductivity</th>
<th>Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.555</td>
<td>3.522</td>
<td>1.04+002</td>
<td>1.04+002</td>
<td>-0.3</td>
</tr>
<tr>
<td>43.044</td>
<td>3.456</td>
<td>1.06+002</td>
<td>1.07+002</td>
<td>-0.9</td>
</tr>
<tr>
<td>46.460</td>
<td>3.375</td>
<td>1.09+002</td>
<td>1.08+002</td>
<td>0.1</td>
</tr>
<tr>
<td>49.824</td>
<td>3.353</td>
<td>1.09+002</td>
<td>1.09+002</td>
<td>0.1</td>
</tr>
<tr>
<td>53.154</td>
<td>3.306</td>
<td>1.11+002</td>
<td>1.10+002</td>
<td>1.4</td>
</tr>
<tr>
<td>56.473</td>
<td>3.332</td>
<td>1.10+002</td>
<td>1.09+002</td>
<td>0.7</td>
</tr>
<tr>
<td>59.823</td>
<td>3.368</td>
<td>1.09+002</td>
<td>1.09+002</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature Difference</th>
<th>Mean Temperature</th>
<th>Thermal Conductivity</th>
<th>Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.412</td>
<td>4.981</td>
<td>1.09+002</td>
<td>1.09+002</td>
<td>0.2</td>
</tr>
<tr>
<td>65.465</td>
<td>5.124</td>
<td>1.06+002</td>
<td>1.07+002</td>
<td>-1.2</td>
</tr>
<tr>
<td>70.621</td>
<td>5.190</td>
<td>1.05+002</td>
<td>1.05+002</td>
<td>-0.6</td>
</tr>
<tr>
<td>75.858</td>
<td>5.284</td>
<td>1.03+002</td>
<td>1.03+002</td>
<td>-0.4</td>
</tr>
<tr>
<td>81.171</td>
<td>5.343</td>
<td>1.02+002</td>
<td>1.01+002</td>
<td>0.7</td>
</tr>
<tr>
<td>86.585</td>
<td>5.484</td>
<td>9.93+001</td>
<td>9.92+001</td>
<td>0.1</td>
</tr>
<tr>
<td>92.133</td>
<td>5.612</td>
<td>9.69+001</td>
<td>9.72+001</td>
<td>-0.2</td>
</tr>
</tbody>
</table>
Table 17 (Cont.)

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>246.036</td>
<td>12.423</td>
<td>7.94×10⁻¹¹</td>
<td>7.82×10⁻¹¹</td>
<td>1.4</td>
</tr>
<tr>
<td>258.676</td>
<td>12.858</td>
<td>7.68×10⁻¹¹</td>
<td>7.71×10⁻¹¹</td>
<td>-0.4</td>
</tr>
<tr>
<td>271.589</td>
<td>12.968</td>
<td>7.63×10⁻¹¹</td>
<td>7.60×10⁻¹¹</td>
<td>0.4</td>
</tr>
<tr>
<td>284.644</td>
<td>13.141</td>
<td>7.53×10⁻¹¹</td>
<td>7.49×10⁻¹¹</td>
<td>0.6</td>
</tr>
<tr>
<td>297.864</td>
<td>13.300</td>
<td>7.45×10⁻¹¹</td>
<td>7.39×10⁻¹¹</td>
<td>0.9</td>
</tr>
<tr>
<td>311.287</td>
<td>13.546</td>
<td>7.31×10⁻¹¹</td>
<td>7.31×10⁻¹¹</td>
<td>0.1</td>
</tr>
<tr>
<td>324.952</td>
<td>13.782</td>
<td>7.18×10⁻¹¹</td>
<td>7.25×10⁻¹¹</td>
<td>-1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>Temperature Difference</th>
<th>Observed Thermal Conductivity</th>
<th>Calculated Thermal Conductivity</th>
<th>Percent Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>226.641</td>
<td>7.974</td>
<td>8.09×10⁻¹¹</td>
<td>7.98×10⁻¹¹</td>
<td>1.3</td>
</tr>
<tr>
<td>234.731</td>
<td>8.205</td>
<td>7.87×10⁻¹¹</td>
<td>7.92×10⁻¹¹</td>
<td>-0.6</td>
</tr>
<tr>
<td>242.951</td>
<td>8.236</td>
<td>7.86×10⁻¹¹</td>
<td>7.85×10⁻¹¹</td>
<td>0.1</td>
</tr>
<tr>
<td>251.227</td>
<td>8.316</td>
<td>7.79×10⁻¹¹</td>
<td>7.78×10⁻¹¹</td>
<td>0.1</td>
</tr>
<tr>
<td>259.564</td>
<td>8.557</td>
<td>7.76×10⁻¹¹</td>
<td>7.70×10⁻¹¹</td>
<td>0.8</td>
</tr>
<tr>
<td>267.967</td>
<td>8.489</td>
<td>7.67×10⁻¹¹</td>
<td>7.63×10⁻¹¹</td>
<td>0.5</td>
</tr>
<tr>
<td>276.464</td>
<td>8.545</td>
<td>7.58×10⁻¹¹</td>
<td>7.56×10⁻¹¹</td>
<td>0.3</td>
</tr>
</tbody>
</table>

56
Table 18 Electrical resistivity deviations for Armco iron, specimen 4.

<table>
<thead>
<tr>
<th>MEAN TEMPERATURE</th>
<th>TEMPERATURE RANGE</th>
<th>OBSERVED RESISTANCE</th>
<th>CALCULATED RESISTANCE</th>
<th>PERCENT DEVIATION</th>
<th>INTRINSIC RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.063</td>
<td>1.452</td>
<td>1.363-004</td>
<td>1.305-004</td>
<td>-0.01</td>
<td>-4.826-008</td>
</tr>
<tr>
<td>8.629</td>
<td>3.178</td>
<td>1.364-004</td>
<td>1.304-004</td>
<td>0.05</td>
<td>1.017-007</td>
</tr>
<tr>
<td>12.870</td>
<td>5.121</td>
<td>1.367-004</td>
<td>1.308-004</td>
<td>-0.06</td>
<td>3.517-007</td>
</tr>
<tr>
<td>6.996</td>
<td>1.470</td>
<td>1.365-004</td>
<td>1.305-004</td>
<td>0.00</td>
<td>-4.826-008</td>
</tr>
<tr>
<td>21.974</td>
<td>9.850</td>
<td>1.322-004</td>
<td>1.322-004</td>
<td>0.01</td>
<td>1.852-006</td>
</tr>
<tr>
<td>22.005</td>
<td>9.885</td>
<td>1.322-004</td>
<td>1.322-004</td>
<td>0.01</td>
<td>1.852-006</td>
</tr>
<tr>
<td>16.855</td>
<td>6.218</td>
<td>1.322-004</td>
<td>1.311-004</td>
<td>0.07</td>
<td>8.517-007</td>
</tr>
<tr>
<td>22.646</td>
<td>1.838</td>
<td>1.323-004</td>
<td>1.323-004</td>
<td>-0.01</td>
<td>1.902-006</td>
</tr>
<tr>
<td>25.268</td>
<td>5.468</td>
<td>1.330-004</td>
<td>1.331-004</td>
<td>-0.08</td>
<td>2.652-006</td>
</tr>
<tr>
<td>32.210</td>
<td>9.164</td>
<td>1.365-004</td>
<td>1.366-004</td>
<td>-0.05</td>
<td>6.152-006</td>
</tr>
<tr>
<td>49.762</td>
<td>23.713</td>
<td>1.600-004</td>
<td>1.598-004</td>
<td>0.11</td>
<td>2.965-005</td>
</tr>
<tr>
<td>76.035</td>
<td>37.016</td>
<td>2.427-004</td>
<td>2.429-004</td>
<td>-0.12</td>
<td>1.123-004</td>
</tr>
<tr>
<td>81.743</td>
<td>6.451</td>
<td>2.636-004</td>
<td>2.639-004</td>
<td>-0.11</td>
<td>1.333-004</td>
</tr>
<tr>
<td>96.208</td>
<td>20.877</td>
<td>3.373-004</td>
<td>3.371-004</td>
<td>0.05</td>
<td>2.070-004</td>
</tr>
<tr>
<td>129.306</td>
<td>55.696</td>
<td>5.409-004</td>
<td>5.405-004</td>
<td>0.08</td>
<td>4.106-004</td>
</tr>
<tr>
<td>208.443</td>
<td>114.282</td>
<td>1.116-003</td>
<td>1.114-003</td>
<td>0.16</td>
<td>9.855-004</td>
</tr>
<tr>
<td>259.243</td>
<td>120.367</td>
<td>1.527-003</td>
<td>1.525-003</td>
<td>0.12</td>
<td>1.397-003</td>
</tr>
<tr>
<td>221.493</td>
<td>37.178</td>
<td>1.208-003</td>
<td>1.209-003</td>
<td>-0.11</td>
<td>1.078-003</td>
</tr>
<tr>
<td>285.007</td>
<td>92.018</td>
<td>1.744-003</td>
<td>1.746-003</td>
<td>-0.09</td>
<td>1.614-003</td>
</tr>
<tr>
<td>251.364</td>
<td>58.082</td>
<td>1.452-003</td>
<td>1.451-003</td>
<td>0.04</td>
<td>1.321-003</td>
</tr>
<tr>
<td>4.394</td>
<td>0.000</td>
<td>1.303-004</td>
<td>1.305-004</td>
<td>-0.00</td>
<td>-4.826-008</td>
</tr>
<tr>
<td>9.696</td>
<td>0.000</td>
<td>1.305-004</td>
<td>1.306-004</td>
<td>-0.06</td>
<td>1.517-007</td>
</tr>
<tr>
<td>15.786</td>
<td>0.000</td>
<td>1.310-004</td>
<td>1.309-004</td>
<td>0.04</td>
<td>6.517-007</td>
</tr>
<tr>
<td>20.069</td>
<td>0.000</td>
<td>1.317-004</td>
<td>1.316-004</td>
<td>0.03</td>
<td>1.302-006</td>
</tr>
<tr>
<td>19.878</td>
<td>0.000</td>
<td>1.316-004</td>
<td>1.316-004</td>
<td>0.02</td>
<td>1.252-006</td>
</tr>
<tr>
<td>26.745</td>
<td>0.000</td>
<td>1.336-004</td>
<td>1.336-004</td>
<td>-0.07</td>
<td>3.202-006</td>
</tr>
<tr>
<td>35.938</td>
<td>0.000</td>
<td>1.392-004</td>
<td>1.391-004</td>
<td>0.03</td>
<td>8.802-006</td>
</tr>
<tr>
<td>55.386</td>
<td>0.000</td>
<td>1.703-004</td>
<td>1.701-004</td>
<td>0.12</td>
<td>3.995-005</td>
</tr>
<tr>
<td>77.113</td>
<td>0.000</td>
<td>2.429-004</td>
<td>2.434-004</td>
<td>-0.17</td>
<td>1.126-004</td>
</tr>
<tr>
<td>75.738</td>
<td>0.000</td>
<td>2.378-004</td>
<td>2.376-004</td>
<td>0.06</td>
<td>1.074-004</td>
</tr>
<tr>
<td>84.560</td>
<td>0.000</td>
<td>2.760-004</td>
<td>2.759-004</td>
<td>0.02</td>
<td>1.457-004</td>
</tr>
<tr>
<td>98.003</td>
<td>0.000</td>
<td>3.462-004</td>
<td>3.469-004</td>
<td>0.04</td>
<td>2.158-004</td>
</tr>
<tr>
<td>144.158</td>
<td>0.000</td>
<td>6.381-004</td>
<td>6.376-004</td>
<td>0.05</td>
<td>5.078-004</td>
</tr>
<tr>
<td>191.793</td>
<td>0.000</td>
<td>9.825-004</td>
<td>9.817-004</td>
<td>0.09</td>
<td>8.522-004</td>
</tr>
<tr>
<td>193.141</td>
<td>0.000</td>
<td>9.890-004</td>
<td>9.918-004</td>
<td>-0.28</td>
<td>8.587-004</td>
</tr>
<tr>
<td>233.413</td>
<td>0.000</td>
<td>1.303-003</td>
<td>1.303-003</td>
<td>0.02</td>
<td>1.173-003</td>
</tr>
</tbody>
</table>
Table 19 Thermovoltage deviations for Armco iron, specimen 4.

<table>
<thead>
<tr>
<th>UPPER TEMPERATURE</th>
<th>LOWER TEMPERATURE</th>
<th>OBSERVED THERMOVOLTAGE</th>
<th>CALCULATED THERMOVOLTAGE</th>
<th>DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.766</td>
<td>5.315</td>
<td>-0.03</td>
<td>-0.12</td>
<td>0.09</td>
</tr>
<tr>
<td>10.118</td>
<td>6.940</td>
<td>0.06</td>
<td>0.28</td>
<td>-0.22</td>
</tr>
<tr>
<td>15.258</td>
<td>10.137</td>
<td>0.31</td>
<td>0.24</td>
<td>0.07</td>
</tr>
<tr>
<td>6.800</td>
<td>5.330</td>
<td>-0.02</td>
<td>-0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>26.560</td>
<td>16.710</td>
<td>2.68</td>
<td>2.71</td>
<td>-0.03</td>
</tr>
<tr>
<td>26.606</td>
<td>16.721</td>
<td>2.72</td>
<td>2.73</td>
<td>-0.01</td>
</tr>
<tr>
<td>19.775</td>
<td>13.557</td>
<td>0.75</td>
<td>0.58</td>
<td>0.15</td>
</tr>
<tr>
<td>23.551</td>
<td>21.713</td>
<td>0.49</td>
<td>0.57</td>
<td>-0.08</td>
</tr>
<tr>
<td>26.964</td>
<td>23.496</td>
<td>1.41</td>
<td>1.54</td>
<td>-0.13</td>
</tr>
<tr>
<td>36.655</td>
<td>27.491</td>
<td>8.60</td>
<td>8.72</td>
<td>-0.12</td>
</tr>
<tr>
<td>61.507</td>
<td>37.794</td>
<td>77.53</td>
<td>77.36</td>
<td>0.17</td>
</tr>
<tr>
<td>94.938</td>
<td>57.922</td>
<td>282.46</td>
<td>282.65</td>
<td>-0.19</td>
</tr>
<tr>
<td>84.986</td>
<td>78.525</td>
<td>55.32</td>
<td>55.19</td>
<td>0.13</td>
</tr>
<tr>
<td>106.759</td>
<td>85.882</td>
<td>218.50</td>
<td>218.42</td>
<td>0.08</td>
</tr>
<tr>
<td>157.630</td>
<td>101.934</td>
<td>734.22</td>
<td>734.13</td>
<td>0.09</td>
</tr>
<tr>
<td>266.661</td>
<td>152.379</td>
<td>1636.76</td>
<td>1636.91</td>
<td>-0.15</td>
</tr>
<tr>
<td>320.650</td>
<td>200.283</td>
<td>1597.60</td>
<td>1597.72</td>
<td>-0.12</td>
</tr>
<tr>
<td>240.238</td>
<td>203.059</td>
<td>534.88</td>
<td>534.46</td>
<td>0.42</td>
</tr>
<tr>
<td>331.843</td>
<td>239.825</td>
<td>1149.44</td>
<td>1149.36</td>
<td>0.08</td>
</tr>
<tr>
<td>280.736</td>
<td>222.654</td>
<td>794.52</td>
<td>794.22</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Table 20 Transport properties of Armco iron, specimen 2.

<table>
<thead>
<tr>
<th>Temp (K)</th>
<th>Thermal Conductivity (Wm$^{-1}$K$^{-1}$)</th>
<th>Electrical Resistivity (μohm m)</th>
<th>Lorenz ratio $\times 10^8$ (V2/K2)</th>
<th>Thermo-power (μW/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>21.7</td>
<td>0.006905</td>
<td>2.49</td>
<td>0.02</td>
</tr>
<tr>
<td>7</td>
<td>25.6</td>
<td>0.006903</td>
<td>2.52</td>
<td>0.06</td>
</tr>
<tr>
<td>8</td>
<td>29.2</td>
<td>0.006911</td>
<td>2.53</td>
<td>0.07</td>
</tr>
<tr>
<td>9</td>
<td>32.8</td>
<td>0.006920</td>
<td>2.53</td>
<td>0.06</td>
</tr>
<tr>
<td>10</td>
<td>36.4</td>
<td>0.006926</td>
<td>2.52</td>
<td>0.07</td>
</tr>
<tr>
<td>12</td>
<td>43.5</td>
<td>0.006929</td>
<td>2.51</td>
<td>0.13</td>
</tr>
<tr>
<td>14</td>
<td>50.7</td>
<td>0.006932</td>
<td>2.51</td>
<td>0.22</td>
</tr>
<tr>
<td>16</td>
<td>57.9</td>
<td>0.006941</td>
<td>2.51</td>
<td>0.32</td>
</tr>
<tr>
<td>18</td>
<td>65.0</td>
<td>0.006957</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>20</td>
<td>71.8</td>
<td>0.006981</td>
<td>2.50</td>
<td>0.54</td>
</tr>
<tr>
<td>25</td>
<td>87.0</td>
<td>0.007067</td>
<td>2.46</td>
<td>0.82</td>
</tr>
<tr>
<td>30</td>
<td>98.9</td>
<td>0.007196</td>
<td>2.37</td>
<td>1.18</td>
</tr>
<tr>
<td>35</td>
<td>107</td>
<td>0.007386</td>
<td>2.26</td>
<td>1.67</td>
</tr>
<tr>
<td>40</td>
<td>113</td>
<td>0.007664</td>
<td>2.16</td>
<td>2.28</td>
</tr>
<tr>
<td>45</td>
<td>115</td>
<td>0.008051</td>
<td>2.06</td>
<td>3.00</td>
</tr>
<tr>
<td>50</td>
<td>116</td>
<td>0.008562</td>
<td>1.99</td>
<td>3.79</td>
</tr>
<tr>
<td>55</td>
<td>115</td>
<td>0.009202</td>
<td>1.93</td>
<td>4.63</td>
</tr>
<tr>
<td>60</td>
<td>114</td>
<td>0.009976</td>
<td>1.89</td>
<td>5.51</td>
</tr>
<tr>
<td>65</td>
<td>112</td>
<td>0.01088</td>
<td>1.87</td>
<td>6.38</td>
</tr>
<tr>
<td>70</td>
<td>110</td>
<td>0.01191</td>
<td>1.87</td>
<td>7.24</td>
</tr>
<tr>
<td>75</td>
<td>107</td>
<td>0.01306</td>
<td>1.87</td>
<td>8.07</td>
</tr>
<tr>
<td>80</td>
<td>105</td>
<td>0.01432</td>
<td>1.88</td>
<td>8.86</td>
</tr>
<tr>
<td>85</td>
<td>103</td>
<td>0.01568</td>
<td>1.89</td>
<td>9.60</td>
</tr>
<tr>
<td>90</td>
<td>100</td>
<td>0.01713</td>
<td>1.91</td>
<td>10.30</td>
</tr>
<tr>
<td>95</td>
<td>98.4</td>
<td>0.01867</td>
<td>1.93</td>
<td>10.95</td>
</tr>
<tr>
<td>100</td>
<td>96.6</td>
<td>0.02028</td>
<td>1.96</td>
<td>11.54</td>
</tr>
<tr>
<td>110</td>
<td>93.4</td>
<td>0.02371</td>
<td>2.01</td>
<td>12.58</td>
</tr>
<tr>
<td>120</td>
<td>90.8</td>
<td>0.02756</td>
<td>2.07</td>
<td>13.44</td>
</tr>
<tr>
<td>130</td>
<td>88.7</td>
<td>0.03119</td>
<td>2.13</td>
<td>14.13</td>
</tr>
<tr>
<td>140</td>
<td>87.1</td>
<td>0.03516</td>
<td>2.19</td>
<td>14.67</td>
</tr>
<tr>
<td>150</td>
<td>85.8</td>
<td>0.03923</td>
<td>2.24</td>
<td>15.07</td>
</tr>
<tr>
<td>160</td>
<td>84.7</td>
<td>0.04340</td>
<td>2.30</td>
<td>15.57</td>
</tr>
<tr>
<td>170</td>
<td>83.9</td>
<td>0.04765</td>
<td>2.35</td>
<td>15.57</td>
</tr>
<tr>
<td>180</td>
<td>83.1</td>
<td>0.05196</td>
<td>2.40</td>
<td>15.69</td>
</tr>
<tr>
<td>190</td>
<td>82.4</td>
<td>0.05633</td>
<td>2.44</td>
<td>15.74</td>
</tr>
<tr>
<td>200</td>
<td>81.8</td>
<td>0.06077</td>
<td>2.48</td>
<td>15.73</td>
</tr>
<tr>
<td>220</td>
<td>80.5</td>
<td>0.06983</td>
<td>2.55</td>
<td>15.56</td>
</tr>
<tr>
<td>240</td>
<td>79.1</td>
<td>0.07918</td>
<td>2.61</td>
<td>15.23</td>
</tr>
<tr>
<td>260</td>
<td>77.5</td>
<td>0.08888</td>
<td>2.65</td>
<td>14.77</td>
</tr>
<tr>
<td>280</td>
<td>75.9</td>
<td>0.09903</td>
<td>2.68</td>
<td>14.19</td>
</tr>
<tr>
<td>300</td>
<td>74.3</td>
<td>0.10970</td>
<td>2.72</td>
<td>13.51</td>
</tr>
<tr>
<td>Temp (K)</td>
<td>Thermal Conductivity (Wm$^{-1}$K$^{-1}$)</td>
<td>Electrical Resistivity (µ ohm m)</td>
<td>Lorenz ratio x 108 (V²/K²)</td>
<td>Thermopower (µV/K)</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>6</td>
<td>19.7</td>
<td>0.007645</td>
<td>2.52</td>
<td>-0.02</td>
</tr>
<tr>
<td>7</td>
<td>23.2</td>
<td>0.007645</td>
<td>2.53</td>
<td>0.08</td>
</tr>
<tr>
<td>8</td>
<td>26.6</td>
<td>0.007658</td>
<td>2.54</td>
<td>0.11</td>
</tr>
<tr>
<td>9</td>
<td>29.9</td>
<td>0.007669</td>
<td>2.55</td>
<td>0.11</td>
</tr>
<tr>
<td>10</td>
<td>33.2</td>
<td>0.007674</td>
<td>2.55</td>
<td>0.11</td>
</tr>
<tr>
<td>12</td>
<td>39.8</td>
<td>0.007676</td>
<td>2.54</td>
<td>0.15</td>
</tr>
<tr>
<td>14</td>
<td>46.4</td>
<td>0.007676</td>
<td>2.54</td>
<td>0.23</td>
</tr>
<tr>
<td>16</td>
<td>52.9</td>
<td>0.007685</td>
<td>2.54</td>
<td>0.33</td>
</tr>
<tr>
<td>18</td>
<td>59.4</td>
<td>0.007702</td>
<td>2.54</td>
<td>0.44</td>
</tr>
<tr>
<td>20</td>
<td>65.6</td>
<td>0.007726</td>
<td>2.53</td>
<td>0.56</td>
</tr>
<tr>
<td>25</td>
<td>79.8</td>
<td>0.007812</td>
<td>2.49</td>
<td>0.87</td>
</tr>
<tr>
<td>30</td>
<td>91.2</td>
<td>0.007936</td>
<td>2.41</td>
<td>1.25</td>
</tr>
<tr>
<td>35</td>
<td>99.6</td>
<td>0.008119</td>
<td>2.31</td>
<td>1.75</td>
</tr>
<tr>
<td>40</td>
<td>105</td>
<td>0.008388</td>
<td>2.21</td>
<td>2.37</td>
</tr>
<tr>
<td>45</td>
<td>108</td>
<td>0.008766</td>
<td>2.11</td>
<td>3.09</td>
</tr>
<tr>
<td>50</td>
<td>110</td>
<td>0.009268</td>
<td>2.04</td>
<td>3.87</td>
</tr>
<tr>
<td>55</td>
<td>110</td>
<td>0.009902</td>
<td>1.98</td>
<td>4.72</td>
</tr>
<tr>
<td>60</td>
<td>109</td>
<td>0.01067</td>
<td>1.94</td>
<td>5.58</td>
</tr>
<tr>
<td>65</td>
<td>108</td>
<td>0.01157</td>
<td>1.92</td>
<td>6.45</td>
</tr>
<tr>
<td>70</td>
<td>106</td>
<td>0.01259</td>
<td>1.91</td>
<td>7.30</td>
</tr>
<tr>
<td>75</td>
<td>104</td>
<td>0.01374</td>
<td>1.91</td>
<td>8.12</td>
</tr>
<tr>
<td>80</td>
<td>102</td>
<td>0.01500</td>
<td>1.91</td>
<td>8.91</td>
</tr>
<tr>
<td>85</td>
<td>100</td>
<td>0.01635</td>
<td>1.93</td>
<td>9.65</td>
</tr>
<tr>
<td>90</td>
<td>98.4</td>
<td>0.01781</td>
<td>1.95</td>
<td>10.34</td>
</tr>
<tr>
<td>95</td>
<td>96.7</td>
<td>0.01934</td>
<td>1.97</td>
<td>10.97</td>
</tr>
<tr>
<td>100</td>
<td>95.1</td>
<td>0.02096</td>
<td>1.99</td>
<td>11.56</td>
</tr>
<tr>
<td>110</td>
<td>92.3</td>
<td>0.02438</td>
<td>2.05</td>
<td>12.59</td>
</tr>
<tr>
<td>120</td>
<td>90.1</td>
<td>0.02803</td>
<td>2.10</td>
<td>13.43</td>
</tr>
<tr>
<td>130</td>
<td>88.3</td>
<td>0.03185</td>
<td>2.16</td>
<td>14.10</td>
</tr>
<tr>
<td>140</td>
<td>86.9</td>
<td>0.03581</td>
<td>2.22</td>
<td>14.63</td>
</tr>
<tr>
<td>150</td>
<td>85.7</td>
<td>0.03988</td>
<td>2.28</td>
<td>15.02</td>
</tr>
<tr>
<td>160</td>
<td>84.7</td>
<td>0.04404</td>
<td>2.33</td>
<td>15.31</td>
</tr>
<tr>
<td>170</td>
<td>83.8</td>
<td>0.04827</td>
<td>2.38</td>
<td>15.50</td>
</tr>
<tr>
<td>180</td>
<td>83.0</td>
<td>0.05258</td>
<td>2.42</td>
<td>15.62</td>
</tr>
<tr>
<td>190</td>
<td>82.2</td>
<td>0.05604</td>
<td>2.46</td>
<td>15.67</td>
</tr>
<tr>
<td>200</td>
<td>81.4</td>
<td>0.06137</td>
<td>2.50</td>
<td>15.66</td>
</tr>
<tr>
<td>220</td>
<td>79.8</td>
<td>0.07042</td>
<td>2.56</td>
<td>15.50</td>
</tr>
<tr>
<td>240</td>
<td>78.2</td>
<td>0.07978</td>
<td>2.60</td>
<td>15.18</td>
</tr>
<tr>
<td>260</td>
<td>76.6</td>
<td>0.08952</td>
<td>2.64</td>
<td>14.72</td>
</tr>
<tr>
<td>280</td>
<td>75.3</td>
<td>0.09971</td>
<td>2.68</td>
<td>14.14</td>
</tr>
</tbody>
</table>
Table 22 Transport properties of Armco iron, specimen 4.

<table>
<thead>
<tr>
<th>Temp (K)</th>
<th>Thermal Conductivity (Wm(^{-1})K(^{-1}))</th>
<th>Electrical Resistivity ((\mu)ohm m)</th>
<th>Lorenz ratio (\times 10^8) (V(^2)/K(^2))</th>
<th>Thermo-power ((\mu)V/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>19.6</td>
<td>0.007675</td>
<td>2.51</td>
<td>-0.07</td>
</tr>
<tr>
<td>7</td>
<td>23.0</td>
<td>0.007764</td>
<td>2.52</td>
<td>0.07</td>
</tr>
<tr>
<td>8</td>
<td>26.3</td>
<td>0.007763</td>
<td>2.52</td>
<td>0.11</td>
</tr>
<tr>
<td>9</td>
<td>29.6</td>
<td>0.007685</td>
<td>2.53</td>
<td>0.11</td>
</tr>
<tr>
<td>10</td>
<td>32.9</td>
<td>0.007694</td>
<td>2.53</td>
<td>0.11</td>
</tr>
<tr>
<td>12</td>
<td>39.4</td>
<td>0.007702</td>
<td>2.53</td>
<td>0.13</td>
</tr>
<tr>
<td>14</td>
<td>46.0</td>
<td>0.007706</td>
<td>2.53</td>
<td>0.19</td>
</tr>
<tr>
<td>16</td>
<td>52.5</td>
<td>0.007715</td>
<td>2.53</td>
<td>0.28</td>
</tr>
<tr>
<td>18</td>
<td>58.9</td>
<td>0.007730</td>
<td>2.53</td>
<td>0.39</td>
</tr>
<tr>
<td>20</td>
<td>65.1</td>
<td>0.007752</td>
<td>2.52</td>
<td>0.50</td>
</tr>
<tr>
<td>25</td>
<td>79.1</td>
<td>0.007834</td>
<td>2.48</td>
<td>0.80</td>
</tr>
<tr>
<td>30</td>
<td>90.5</td>
<td>0.007960</td>
<td>2.40</td>
<td>1.18</td>
</tr>
<tr>
<td>35</td>
<td>98.9</td>
<td>0.008149</td>
<td>2.30</td>
<td>1.66</td>
</tr>
<tr>
<td>40</td>
<td>105</td>
<td>0.008427</td>
<td>2.20</td>
<td>2.27</td>
</tr>
<tr>
<td>45</td>
<td>108</td>
<td>0.008814</td>
<td>2.11</td>
<td>2.97</td>
</tr>
<tr>
<td>50</td>
<td>109</td>
<td>0.009324</td>
<td>2.04</td>
<td>3.74</td>
</tr>
<tr>
<td>55</td>
<td>110</td>
<td>0.009965</td>
<td>1.98</td>
<td>4.58</td>
</tr>
<tr>
<td>60</td>
<td>109</td>
<td>0.01074</td>
<td>1.95</td>
<td>5.44</td>
</tr>
<tr>
<td>65</td>
<td>107</td>
<td>0.01164</td>
<td>1.92</td>
<td>6.30</td>
</tr>
<tr>
<td>70</td>
<td>106</td>
<td>0.01267</td>
<td>1.91</td>
<td>7.15</td>
</tr>
<tr>
<td>75</td>
<td>104</td>
<td>0.01382</td>
<td>1.91</td>
<td>7.98</td>
</tr>
<tr>
<td>80</td>
<td>102</td>
<td>0.01507</td>
<td>1.92</td>
<td>8.77</td>
</tr>
<tr>
<td>85</td>
<td>99.8</td>
<td>0.01643</td>
<td>1.93</td>
<td>9.51</td>
</tr>
<tr>
<td>90</td>
<td>97.9</td>
<td>0.01789</td>
<td>1.95</td>
<td>10.20</td>
</tr>
<tr>
<td>95</td>
<td>96.2</td>
<td>0.01942</td>
<td>1.97</td>
<td>10.85</td>
</tr>
<tr>
<td>100</td>
<td>94.6</td>
<td>0.02104</td>
<td>1.99</td>
<td>11.44</td>
</tr>
<tr>
<td>110</td>
<td>91.8</td>
<td>0.02446</td>
<td>2.04</td>
<td>12.47</td>
</tr>
<tr>
<td>120</td>
<td>89.6</td>
<td>0.02811</td>
<td>2.10</td>
<td>13.31</td>
</tr>
<tr>
<td>130</td>
<td>87.9</td>
<td>0.03193</td>
<td>2.16</td>
<td>13.99</td>
</tr>
<tr>
<td>140</td>
<td>86.5</td>
<td>0.03589</td>
<td>2.22</td>
<td>14.51</td>
</tr>
<tr>
<td>150</td>
<td>85.4</td>
<td>0.03996</td>
<td>2.28</td>
<td>14.91</td>
</tr>
<tr>
<td>160</td>
<td>84.5</td>
<td>0.04412</td>
<td>2.33</td>
<td>15.20</td>
</tr>
<tr>
<td>170</td>
<td>83.8</td>
<td>0.04856</td>
<td>2.38</td>
<td>15.39</td>
</tr>
<tr>
<td>180</td>
<td>83.1</td>
<td>0.05267</td>
<td>2.43</td>
<td>15.51</td>
</tr>
<tr>
<td>190</td>
<td>82.4</td>
<td>0.05704</td>
<td>2.47</td>
<td>15.56</td>
</tr>
<tr>
<td>200</td>
<td>81.8</td>
<td>0.06146</td>
<td>2.51</td>
<td>15.55</td>
</tr>
<tr>
<td>220</td>
<td>80.4</td>
<td>0.07052</td>
<td>2.58</td>
<td>15.39</td>
</tr>
<tr>
<td>240</td>
<td>78.8</td>
<td>0.07986</td>
<td>2.62</td>
<td>15.07</td>
</tr>
<tr>
<td>260</td>
<td>77.0</td>
<td>0.08957</td>
<td>2.65</td>
<td>14.62</td>
</tr>
<tr>
<td>280</td>
<td>75.3</td>
<td>0.09973</td>
<td>2.68</td>
<td>14.05</td>
</tr>
<tr>
<td>300</td>
<td>73.8</td>
<td>0.11040</td>
<td>2.71</td>
<td>13.36</td>
</tr>
<tr>
<td>Temp (K)</td>
<td>Lorenz ratio $\times 10^8$ (V2/K2)</td>
<td>Intrinsic Electrical Resistivity (μ ohm m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.263</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.455</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.505</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.523</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.531</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2.533</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.532</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.529</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2.528</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2.528</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2.527</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2.521</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2.477</td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.395</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>2.292</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2.188</td>
<td>0.0008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>2.096</td>
<td>0.0011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2.021</td>
<td>0.0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>2.021</td>
<td>0.0023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1.927</td>
<td>0.0030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>1.905</td>
<td>0.0040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>1.895</td>
<td>0.0050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>1.895</td>
<td>0.0061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1.903</td>
<td>0.0074</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>1.917</td>
<td>0.0087</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>1.935</td>
<td>0.0102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>1.956</td>
<td>0.0117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.980</td>
<td>0.0134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>2.034</td>
<td>0.0168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>2.091</td>
<td>0.0204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>2.150</td>
<td>0.0242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>2.209</td>
<td>0.0282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>2.266</td>
<td>0.0323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>2.320</td>
<td>0.0364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>2.371</td>
<td>0.0407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>2.418</td>
<td>0.0450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>2.461</td>
<td>0.0494</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>2.499</td>
<td>0.0538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>2.562</td>
<td>0.0628</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>2.610</td>
<td>0.0722</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>2.647</td>
<td>0.0819</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>2.682</td>
<td>0.0921</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>2.724</td>
<td>0.1028</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Division of Armco iron rod. Each of the 12 pieces shown was machined into a circular cylinder for measurement.
Figure 2. Thermal conductivity deviations for Armco iron, specimen 2.
Figure 3. Electrical resistivity deviations for Armco iron, specimen 2.
Figure 4. Thermovoltage deviations for Armco iron, specimen 2.
Figure 5. Thermal conductivity deviations for Armco iron, specimen 2a.
Figure 6. Electrical resistivity deviations for Armco iron, specimen 2a.
Figure 7. Thermovoltage deviations for Armco iron, specimen 2a.
Figure 8. Thermal conductivity deviations for Armco iron, specimen 4.
Figure 9. Electrical resistivity deviations for Armco iron, specimen 4.
Figure 10. Thermovoltage deviations for Armco iron, specimen 4.
Figure 11a. Thermal conductivity of Armco iron, specimen 2.
Figure 11b. Electrical resistivity of Armco iron, specimen 2.
Figure 11c. Lorenz ratio of Armco iron, specimen 2.
Figure 11d. Thermopower of Armco iron, specimen 2.
Figure 12a. Thermal conductivity of Armco iron, specimen 2a.
Figure 12b. Electrical resistivity of Armco iron, specimen 2a.
Figure 12c. Lorenz ratio of Armco iron, specimen 2a.
Figure 12d. Thermopower of Armco iron, specimen 2a.
Figure 13a. Thermal conductivity of Armco iron, specimen 4.
Figure 13b. Electrical resistivity of Armco iron, specimen 4.
Figure 13c. Lorenz ratio of Armco iron, specimen 4.
Figure 13d. Thermopower of Armco iron, specimen 4.
Figure 14. Deviations of the thermal conductivities of each specimen from the mean values.
Figure 15. Deviations of the Lorenz ratios of each specimen from the mean values.
Deviations of the computed intrinsic electrical resistivities from the mean values for the three specimens.

Figure 16.
Figure 17. Deviations of the thermopowers from the mean values for three specimens of Armco iron.
8. Appendix

A complete documentation of experimental and numerical procedures was intended to be given in a previous report (Hust, et al.[1]) so that future manipulations with the experimental data could be performed if necessary. Some useful information, overlooked in the preparation of that report, is included here.

The calibration table for the Chromel vs $\text{Au-Fe (Au-0.07 at.\% Fe)}$ thermocouples is given in table I. The derivation of this table is explained in reference [1].

To compute the reference ring temperature from the experimental data one needs the calibration of the platinum resistance thermometer. Table II is the calibration table for the PRT used in this apparatus and designated LN-1037903.

To reanalyze any of the reported data one must have the actual thermocouple positions (nominally 2.54 cm apart) and the diameter of the specimen. Table II contains these data for the previously reported specimens as well as for Armco iron.

As reported by Hust, et al.[1] zero emfs were read for each thermocouple to eliminate, as much as possible, the effect of spurious emfs in the potentiometric circuitry. These zero emfs differ for each cryogenic bath and are listed in table IV.
<table>
<thead>
<tr>
<th>T (K)</th>
<th>Emf (μV)</th>
<th>T (K)</th>
<th>Emf (μV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>39.59</td>
<td>51</td>
<td>819.32</td>
</tr>
<tr>
<td>5</td>
<td>52.40</td>
<td>52</td>
<td>836.35</td>
</tr>
<tr>
<td>6</td>
<td>66.07</td>
<td>53</td>
<td>853.44</td>
</tr>
<tr>
<td>7</td>
<td>80.48</td>
<td>54</td>
<td>870.57</td>
</tr>
<tr>
<td>8</td>
<td>95.50</td>
<td>55</td>
<td>887.74</td>
</tr>
<tr>
<td>9</td>
<td>111.03</td>
<td>56</td>
<td>904.96</td>
</tr>
<tr>
<td>10</td>
<td>126.98</td>
<td>57</td>
<td>922.22</td>
</tr>
<tr>
<td>11</td>
<td>143.27</td>
<td>58</td>
<td>939.53</td>
</tr>
<tr>
<td>12</td>
<td>159.83</td>
<td>59</td>
<td>956.89</td>
</tr>
<tr>
<td>13</td>
<td>176.61</td>
<td>60</td>
<td>974.30</td>
</tr>
<tr>
<td>14</td>
<td>193.55</td>
<td>61</td>
<td>991.75</td>
</tr>
<tr>
<td>15</td>
<td>210.61</td>
<td>62</td>
<td>1009.24</td>
</tr>
<tr>
<td>16</td>
<td>227.75</td>
<td>63</td>
<td>1026.79</td>
</tr>
<tr>
<td>17</td>
<td>244.96</td>
<td>64</td>
<td>1044.38</td>
</tr>
<tr>
<td>18</td>
<td>262.19</td>
<td>65</td>
<td>1062.01</td>
</tr>
<tr>
<td>19</td>
<td>279.44</td>
<td>66</td>
<td>1079.70</td>
</tr>
<tr>
<td>20</td>
<td>296.68</td>
<td>67</td>
<td>1097.42</td>
</tr>
<tr>
<td>21</td>
<td>313.90</td>
<td>68</td>
<td>1115.20</td>
</tr>
<tr>
<td>22</td>
<td>331.10</td>
<td>69</td>
<td>1133.02</td>
</tr>
<tr>
<td>23</td>
<td>348.26</td>
<td>70</td>
<td>1150.88</td>
</tr>
<tr>
<td>24</td>
<td>365.38</td>
<td>71</td>
<td>1168.79</td>
</tr>
<tr>
<td>25</td>
<td>382.47</td>
<td>72</td>
<td>1186.75</td>
</tr>
<tr>
<td>26</td>
<td>399.50</td>
<td>73</td>
<td>1204.74</td>
</tr>
<tr>
<td>27</td>
<td>416.50</td>
<td>74</td>
<td>1222.79</td>
</tr>
<tr>
<td>28</td>
<td>433.45</td>
<td>75</td>
<td>1240.87</td>
</tr>
<tr>
<td>29</td>
<td>450.35</td>
<td>76</td>
<td>1259.00</td>
</tr>
<tr>
<td>30</td>
<td>467.22</td>
<td>77</td>
<td>1277.17</td>
</tr>
<tr>
<td>31</td>
<td>484.05</td>
<td>78</td>
<td>1295.39</td>
</tr>
<tr>
<td>32</td>
<td>500.84</td>
<td>79</td>
<td>1313.65</td>
</tr>
<tr>
<td>33</td>
<td>517.61</td>
<td>80</td>
<td>1331.95</td>
</tr>
<tr>
<td>34</td>
<td>534.34</td>
<td>81</td>
<td>1350.29</td>
</tr>
<tr>
<td>35</td>
<td>551.05</td>
<td>82</td>
<td>1368.67</td>
</tr>
<tr>
<td>36</td>
<td>567.74</td>
<td>83</td>
<td>1387.10</td>
</tr>
<tr>
<td>37</td>
<td>584.42</td>
<td>84</td>
<td>1405.57</td>
</tr>
<tr>
<td>38</td>
<td>601.08</td>
<td>85</td>
<td>1424.08</td>
</tr>
<tr>
<td>39</td>
<td>617.74</td>
<td>86</td>
<td>1442.63</td>
</tr>
<tr>
<td>40</td>
<td>634.39</td>
<td>87</td>
<td>1461.22</td>
</tr>
<tr>
<td>41</td>
<td>651.05</td>
<td>88</td>
<td>1479.85</td>
</tr>
<tr>
<td>42</td>
<td>667.73</td>
<td>89</td>
<td>1498.52</td>
</tr>
<tr>
<td>43</td>
<td>684.44</td>
<td>90</td>
<td>1517.23</td>
</tr>
<tr>
<td>44</td>
<td>701.17</td>
<td>91</td>
<td>1535.98</td>
</tr>
<tr>
<td>45</td>
<td>717.94</td>
<td>92</td>
<td>1554.77</td>
</tr>
<tr>
<td>46</td>
<td>734.74</td>
<td>93</td>
<td>1573.60</td>
</tr>
<tr>
<td>47</td>
<td>751.58</td>
<td>94</td>
<td>1592.46</td>
</tr>
<tr>
<td>48</td>
<td>768.45</td>
<td>95</td>
<td>1611.37</td>
</tr>
<tr>
<td>49</td>
<td>785.37</td>
<td>96</td>
<td>1630.31</td>
</tr>
<tr>
<td>50</td>
<td>802.32</td>
<td>97</td>
<td>1649.29</td>
</tr>
</tbody>
</table>

Table 1 - Calibration table for Chromel vs Au-Fe (Au-0.07 at. % Fe) thermocouple
<table>
<thead>
<tr>
<th>T (K)</th>
<th>Emf (μV)</th>
<th>T (K)</th>
<th>Emf (μV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>1725.58</td>
<td>151</td>
<td>2721.26</td>
</tr>
<tr>
<td>102</td>
<td>1744.74</td>
<td>152</td>
<td>2741.86</td>
</tr>
<tr>
<td>103</td>
<td>1763.94</td>
<td>153</td>
<td>2762.48</td>
</tr>
<tr>
<td>104</td>
<td>1783.17</td>
<td>154</td>
<td>2783.12</td>
</tr>
<tr>
<td>105</td>
<td>1802.44</td>
<td>155</td>
<td>2803.78</td>
</tr>
<tr>
<td>106</td>
<td>1821.75</td>
<td>156</td>
<td>2824.47</td>
</tr>
<tr>
<td>107</td>
<td>1841.08</td>
<td>157</td>
<td>2845.18</td>
</tr>
<tr>
<td>108</td>
<td>1860.45</td>
<td>158</td>
<td>2865.92</td>
</tr>
<tr>
<td>109</td>
<td>1879.86</td>
<td>159</td>
<td>2886.67</td>
</tr>
<tr>
<td>110</td>
<td>1899.30</td>
<td>160</td>
<td>2907.45</td>
</tr>
<tr>
<td>111</td>
<td>1918.77</td>
<td>161</td>
<td>2928.25</td>
</tr>
<tr>
<td>112</td>
<td>1938.27</td>
<td>162</td>
<td>2949.07</td>
</tr>
<tr>
<td>113</td>
<td>1957.80</td>
<td>163</td>
<td>2969.92</td>
</tr>
<tr>
<td>114</td>
<td>1977.37</td>
<td>164</td>
<td>2990.78</td>
</tr>
<tr>
<td>115</td>
<td>1996.97</td>
<td>165</td>
<td>3011.67</td>
</tr>
<tr>
<td>116</td>
<td>2016.60</td>
<td>166</td>
<td>3032.58</td>
</tr>
<tr>
<td>117</td>
<td>2036.26</td>
<td>167</td>
<td>3053.51</td>
</tr>
<tr>
<td>118</td>
<td>2055.95</td>
<td>168</td>
<td>3074.46</td>
</tr>
<tr>
<td>119</td>
<td>2075.67</td>
<td>169</td>
<td>3095.43</td>
</tr>
<tr>
<td>120</td>
<td>2095.42</td>
<td>170</td>
<td>3116.42</td>
</tr>
<tr>
<td>121</td>
<td>2115.20</td>
<td>171</td>
<td>3137.43</td>
</tr>
<tr>
<td>122</td>
<td>2135.01</td>
<td>172</td>
<td>3158.46</td>
</tr>
<tr>
<td>123</td>
<td>2154.85</td>
<td>173</td>
<td>3179.50</td>
</tr>
<tr>
<td>124</td>
<td>2174.72</td>
<td>174</td>
<td>3200.57</td>
</tr>
<tr>
<td>125</td>
<td>2194.61</td>
<td>175</td>
<td>3221.66</td>
</tr>
<tr>
<td>126</td>
<td>2214.54</td>
<td>176</td>
<td>3242.77</td>
</tr>
<tr>
<td>127</td>
<td>2234.49</td>
<td>177</td>
<td>3263.89</td>
</tr>
<tr>
<td>128</td>
<td>2254.47</td>
<td>178</td>
<td>3285.04</td>
</tr>
<tr>
<td>129</td>
<td>2274.48</td>
<td>179</td>
<td>3306.20</td>
</tr>
<tr>
<td>130</td>
<td>2294.51</td>
<td>180</td>
<td>3327.38</td>
</tr>
<tr>
<td>131</td>
<td>2314.57</td>
<td>181</td>
<td>3348.58</td>
</tr>
<tr>
<td>132</td>
<td>2334.66</td>
<td>182</td>
<td>3369.79</td>
</tr>
<tr>
<td>133</td>
<td>2354.78</td>
<td>183</td>
<td>3391.03</td>
</tr>
<tr>
<td>134</td>
<td>2374.92</td>
<td>184</td>
<td>3412.28</td>
</tr>
<tr>
<td>135</td>
<td>2395.09</td>
<td>185</td>
<td>3433.55</td>
</tr>
<tr>
<td>136</td>
<td>2415.29</td>
<td>186</td>
<td>3454.83</td>
</tr>
<tr>
<td>137</td>
<td>2435.51</td>
<td>187</td>
<td>3476.13</td>
</tr>
<tr>
<td>138</td>
<td>2455.75</td>
<td>188</td>
<td>3497.45</td>
</tr>
<tr>
<td>139</td>
<td>2476.03</td>
<td>189</td>
<td>3518.79</td>
</tr>
<tr>
<td>140</td>
<td>2496.33</td>
<td>190</td>
<td>3540.14</td>
</tr>
<tr>
<td>141</td>
<td>2516.65</td>
<td>191</td>
<td>3561.51</td>
</tr>
<tr>
<td>142</td>
<td>2537.00</td>
<td>192</td>
<td>3582.90</td>
</tr>
<tr>
<td>143</td>
<td>2557.38</td>
<td>193</td>
<td>3604.30</td>
</tr>
<tr>
<td>144</td>
<td>2577.78</td>
<td>194</td>
<td>3625.72</td>
</tr>
<tr>
<td>145</td>
<td>2598.20</td>
<td>195</td>
<td>3647.15</td>
</tr>
<tr>
<td>146</td>
<td>2618.65</td>
<td>196</td>
<td>3668.60</td>
</tr>
<tr>
<td>147</td>
<td>2639.12</td>
<td>197</td>
<td>3689.07</td>
</tr>
<tr>
<td>148</td>
<td>2659.62</td>
<td>198</td>
<td>3711.55</td>
</tr>
<tr>
<td>149</td>
<td>2680.15</td>
<td>199</td>
<td>3733.05</td>
</tr>
<tr>
<td>150</td>
<td>2700.69</td>
<td>200</td>
<td>3754.56</td>
</tr>
<tr>
<td>T (K)</td>
<td>Emf (μV)</td>
<td>T (K)</td>
<td>Emf (μV)</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>201</td>
<td>3776.09</td>
<td>251</td>
<td>4869.70</td>
</tr>
<tr>
<td>202</td>
<td>3797.64</td>
<td>252</td>
<td>4891.86</td>
</tr>
<tr>
<td>203</td>
<td>3819.20</td>
<td>253</td>
<td>4914.03</td>
</tr>
<tr>
<td>204</td>
<td>3840.77</td>
<td>254</td>
<td>4936.21</td>
</tr>
<tr>
<td>205</td>
<td>3862.36</td>
<td>255</td>
<td>4958.40</td>
</tr>
<tr>
<td>206</td>
<td>3883.97</td>
<td>256</td>
<td>4980.60</td>
</tr>
<tr>
<td>207</td>
<td>3905.59</td>
<td>257</td>
<td>5002.80</td>
</tr>
<tr>
<td>208</td>
<td>3927.22</td>
<td>258</td>
<td>5025.02</td>
</tr>
<tr>
<td>209</td>
<td>3948.87</td>
<td>259</td>
<td>5047.24</td>
</tr>
<tr>
<td>210</td>
<td>3970.54</td>
<td>260</td>
<td>5069.48</td>
</tr>
<tr>
<td>211</td>
<td>3992.22</td>
<td>261</td>
<td>5091.72</td>
</tr>
<tr>
<td>212</td>
<td>4013.91</td>
<td>262</td>
<td>5113.97</td>
</tr>
<tr>
<td>213</td>
<td>4035.62</td>
<td>263</td>
<td>5136.22</td>
</tr>
<tr>
<td>214</td>
<td>4057.34</td>
<td>264</td>
<td>5158.49</td>
</tr>
<tr>
<td>215</td>
<td>4079.08</td>
<td>265</td>
<td>5180.76</td>
</tr>
<tr>
<td>216</td>
<td>4100.83</td>
<td>266</td>
<td>5203.03</td>
</tr>
<tr>
<td>217</td>
<td>4122.60</td>
<td>267</td>
<td>5225.31</td>
</tr>
<tr>
<td>218</td>
<td>4144.38</td>
<td>268</td>
<td>5247.60</td>
</tr>
<tr>
<td>219</td>
<td>4166.17</td>
<td>269</td>
<td>5269.89</td>
</tr>
<tr>
<td>220</td>
<td>4187.97</td>
<td>270</td>
<td>5292.19</td>
</tr>
<tr>
<td>221</td>
<td>4209.79</td>
<td>271</td>
<td>5314.49</td>
</tr>
<tr>
<td>222</td>
<td>4231.62</td>
<td>272</td>
<td>5336.79</td>
</tr>
<tr>
<td>223</td>
<td>4253.47</td>
<td>273</td>
<td>5359.10</td>
</tr>
<tr>
<td>224</td>
<td>4275.32</td>
<td>274</td>
<td>5381.41</td>
</tr>
<tr>
<td>225</td>
<td>4297.19</td>
<td>275</td>
<td>5403.73</td>
</tr>
<tr>
<td>226</td>
<td>4319.08</td>
<td>276</td>
<td>5426.06</td>
</tr>
<tr>
<td>227</td>
<td>4340.97</td>
<td>277</td>
<td>5448.40</td>
</tr>
<tr>
<td>228</td>
<td>4362.88</td>
<td>278</td>
<td>5470.75</td>
</tr>
<tr>
<td>229</td>
<td>4384.79</td>
<td>279</td>
<td>5493.12</td>
</tr>
<tr>
<td>230</td>
<td>4406.72</td>
<td>280</td>
<td>5515.50</td>
</tr>
<tr>
<td>231</td>
<td>4428.66</td>
<td>281</td>
<td>5537.90</td>
</tr>
<tr>
<td>232</td>
<td>4450.62</td>
<td>282</td>
<td>5560.30</td>
</tr>
<tr>
<td>233</td>
<td>4472.58</td>
<td>283</td>
<td>5582.69</td>
</tr>
<tr>
<td>234</td>
<td>4494.55</td>
<td>284</td>
<td>5605.09</td>
</tr>
<tr>
<td>235</td>
<td>4516.54</td>
<td>285</td>
<td>5627.49</td>
</tr>
<tr>
<td>236</td>
<td>4538.53</td>
<td>286</td>
<td>5649.89</td>
</tr>
<tr>
<td>237</td>
<td>4560.54</td>
<td>287</td>
<td>5672.29</td>
</tr>
<tr>
<td>238</td>
<td>4582.56</td>
<td>288</td>
<td>5694.68</td>
</tr>
<tr>
<td>239</td>
<td>4604.58</td>
<td>289</td>
<td>5717.08</td>
</tr>
<tr>
<td>240</td>
<td>4626.62</td>
<td>290</td>
<td>5739.48</td>
</tr>
<tr>
<td>241</td>
<td>4648.67</td>
<td>291</td>
<td>5761.88</td>
</tr>
<tr>
<td>242</td>
<td>4670.73</td>
<td>292</td>
<td>5784.28</td>
</tr>
<tr>
<td>243</td>
<td>4692.80</td>
<td>293</td>
<td>5806.67</td>
</tr>
<tr>
<td>244</td>
<td>4714.87</td>
<td>294</td>
<td>5829.07</td>
</tr>
<tr>
<td>245</td>
<td>4736.96</td>
<td>295</td>
<td>5851.47</td>
</tr>
<tr>
<td>246</td>
<td>4759.06</td>
<td>296</td>
<td>5873.87</td>
</tr>
<tr>
<td>247</td>
<td>4781.17</td>
<td>297</td>
<td>5896.27</td>
</tr>
<tr>
<td>248</td>
<td>4803.29</td>
<td>298</td>
<td>5918.66</td>
</tr>
<tr>
<td>249</td>
<td>4825.42</td>
<td>299</td>
<td>5941.06</td>
</tr>
<tr>
<td>250</td>
<td>4847.56</td>
<td>300</td>
<td>5963.46</td>
</tr>
<tr>
<td>T (K)</td>
<td>R (ohms)</td>
<td>T (K)</td>
<td>R (ohms)</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>51</td>
<td>2.02192</td>
<td>52</td>
<td>2.11806</td>
</tr>
<tr>
<td>53</td>
<td>2.21540</td>
<td>54</td>
<td>2.31385</td>
</tr>
<tr>
<td>55</td>
<td>2.41334</td>
<td>56</td>
<td>2.51381</td>
</tr>
<tr>
<td>57</td>
<td>2.61520</td>
<td>58</td>
<td>2.71745</td>
</tr>
<tr>
<td>59</td>
<td>2.82651</td>
<td>60</td>
<td>2.92435</td>
</tr>
<tr>
<td>61</td>
<td>3.02891</td>
<td>62</td>
<td>3.13413</td>
</tr>
<tr>
<td>63</td>
<td>3.23997</td>
<td>64</td>
<td>3.34636</td>
</tr>
<tr>
<td>65</td>
<td>3.45326</td>
<td>66</td>
<td>3.56058</td>
</tr>
<tr>
<td>67</td>
<td>3.66829</td>
<td>68</td>
<td>3.77634</td>
</tr>
<tr>
<td>69</td>
<td>3.88468</td>
<td>70</td>
<td>3.99329</td>
</tr>
<tr>
<td>71</td>
<td>4.10213</td>
<td>72</td>
<td>4.21119</td>
</tr>
<tr>
<td>73</td>
<td>4.32046</td>
<td>74</td>
<td>4.42992</td>
</tr>
<tr>
<td>75</td>
<td>4.53954</td>
<td>76</td>
<td>4.64932</td>
</tr>
<tr>
<td>77</td>
<td>4.75925</td>
<td>78</td>
<td>4.86933</td>
</tr>
<tr>
<td>79</td>
<td>4.97954</td>
<td>80</td>
<td>5.08988</td>
</tr>
<tr>
<td>81</td>
<td>5.20035</td>
<td>82</td>
<td>5.31092</td>
</tr>
<tr>
<td>83</td>
<td>5.42157</td>
<td>84</td>
<td>5.53229</td>
</tr>
<tr>
<td>85</td>
<td>5.64307</td>
<td>86</td>
<td>5.75391</td>
</tr>
<tr>
<td>87</td>
<td>5.86480</td>
<td>88</td>
<td>5.97569</td>
</tr>
<tr>
<td>89</td>
<td>6.08654</td>
<td>90</td>
<td>6.19732</td>
</tr>
<tr>
<td>91</td>
<td>6.30805</td>
<td>92</td>
<td>6.41869</td>
</tr>
<tr>
<td>93</td>
<td>6.52925</td>
<td>94</td>
<td>6.63972</td>
</tr>
<tr>
<td>95</td>
<td>6.75011</td>
<td>96</td>
<td>6.86042</td>
</tr>
<tr>
<td>97</td>
<td>6.97064</td>
<td>98</td>
<td>7.08078</td>
</tr>
<tr>
<td>99</td>
<td>7.19083</td>
<td>100</td>
<td>7.30079</td>
</tr>
</tbody>
</table>
Table II - Calibration table for platinum resistance thermometer designated LN-1037903 (Continued)

<table>
<thead>
<tr>
<th>T (K)</th>
<th>R (ohms)</th>
<th>T (K)</th>
<th>R (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>7.41069</td>
<td>151</td>
<td>12.81232</td>
</tr>
<tr>
<td>102</td>
<td>7.52050</td>
<td>152</td>
<td>12.91870</td>
</tr>
<tr>
<td>103</td>
<td>7.63023</td>
<td>153</td>
<td>13.02502</td>
</tr>
<tr>
<td>104</td>
<td>7.73988</td>
<td>154</td>
<td>13.13128</td>
</tr>
<tr>
<td>105</td>
<td>7.84945</td>
<td>155</td>
<td>13.23748</td>
</tr>
<tr>
<td>106</td>
<td>7.95894</td>
<td>156</td>
<td>13.34363</td>
</tr>
<tr>
<td>107</td>
<td>8.06836</td>
<td>157</td>
<td>13.44973</td>
</tr>
<tr>
<td>108</td>
<td>8.17769</td>
<td>158</td>
<td>13.55577</td>
</tr>
<tr>
<td>109</td>
<td>8.28695</td>
<td>159</td>
<td>13.66175</td>
</tr>
<tr>
<td>110</td>
<td>8.39613</td>
<td>160</td>
<td>13.76768</td>
</tr>
<tr>
<td>111</td>
<td>8.50524</td>
<td>161</td>
<td>13.87355</td>
</tr>
<tr>
<td>112</td>
<td>8.61427</td>
<td>162</td>
<td>13.97937</td>
</tr>
<tr>
<td>113</td>
<td>8.72322</td>
<td>163</td>
<td>14.08513</td>
</tr>
<tr>
<td>114</td>
<td>8.83210</td>
<td>164</td>
<td>14.19085</td>
</tr>
<tr>
<td>115</td>
<td>8.94091</td>
<td>165</td>
<td>14.29650</td>
</tr>
<tr>
<td>116</td>
<td>9.04964</td>
<td>166</td>
<td>14.40211</td>
</tr>
<tr>
<td>117</td>
<td>9.15830</td>
<td>167</td>
<td>14.50766</td>
</tr>
<tr>
<td>118</td>
<td>9.26688</td>
<td>168</td>
<td>14.61316</td>
</tr>
<tr>
<td>119</td>
<td>9.37539</td>
<td>169</td>
<td>14.71861</td>
</tr>
<tr>
<td>120</td>
<td>9.48383</td>
<td>170</td>
<td>14.82401</td>
</tr>
<tr>
<td>121</td>
<td>9.59220</td>
<td>171</td>
<td>14.92936</td>
</tr>
<tr>
<td>122</td>
<td>9.70050</td>
<td>172</td>
<td>15.03465</td>
</tr>
<tr>
<td>123</td>
<td>9.80873</td>
<td>173</td>
<td>15.13990</td>
</tr>
<tr>
<td>124</td>
<td>9.91689</td>
<td>174</td>
<td>15.24510</td>
</tr>
<tr>
<td>125</td>
<td>10.02497</td>
<td>175</td>
<td>15.35024</td>
</tr>
<tr>
<td>126</td>
<td>10.13299</td>
<td>176</td>
<td>15.45534</td>
</tr>
<tr>
<td>127</td>
<td>10.24094</td>
<td>177</td>
<td>15.56039</td>
</tr>
<tr>
<td>128</td>
<td>10.34883</td>
<td>178</td>
<td>15.66539</td>
</tr>
<tr>
<td>129</td>
<td>10.45664</td>
<td>179</td>
<td>15.77034</td>
</tr>
<tr>
<td>130</td>
<td>10.56439</td>
<td>180</td>
<td>15.87524</td>
</tr>
<tr>
<td>131</td>
<td>10.67207</td>
<td>181</td>
<td>15.98010</td>
</tr>
<tr>
<td>132</td>
<td>10.77968</td>
<td>182</td>
<td>16.08491</td>
</tr>
<tr>
<td>133</td>
<td>10.88723</td>
<td>183</td>
<td>16.18967</td>
</tr>
<tr>
<td>134</td>
<td>10.99471</td>
<td>184</td>
<td>16.29439</td>
</tr>
<tr>
<td>135</td>
<td>11.10213</td>
<td>185</td>
<td>16.39905</td>
</tr>
<tr>
<td>136</td>
<td>11.20949</td>
<td>186</td>
<td>16.50368</td>
</tr>
<tr>
<td>137</td>
<td>11.31677</td>
<td>187</td>
<td>16.60825</td>
</tr>
<tr>
<td>138</td>
<td>11.42400</td>
<td>188</td>
<td>16.71278</td>
</tr>
<tr>
<td>139</td>
<td>11.53116</td>
<td>189</td>
<td>16.81727</td>
</tr>
<tr>
<td>140</td>
<td>11.63826</td>
<td>190</td>
<td>16.92171</td>
</tr>
<tr>
<td>141</td>
<td>11.74530</td>
<td>191</td>
<td>17.02611</td>
</tr>
<tr>
<td>142</td>
<td>11.85227</td>
<td>192</td>
<td>17.13046</td>
</tr>
<tr>
<td>143</td>
<td>11.95918</td>
<td>193</td>
<td>17.23477</td>
</tr>
<tr>
<td>144</td>
<td>12.06604</td>
<td>194</td>
<td>17.33903</td>
</tr>
<tr>
<td>145</td>
<td>12.17283</td>
<td>195</td>
<td>17.44325</td>
</tr>
<tr>
<td>146</td>
<td>12.27956</td>
<td>196</td>
<td>17.54743</td>
</tr>
<tr>
<td>147</td>
<td>12.38623</td>
<td>197</td>
<td>17.65156</td>
</tr>
<tr>
<td>148</td>
<td>12.49284</td>
<td>198</td>
<td>17.75565</td>
</tr>
<tr>
<td>149</td>
<td>12.59939</td>
<td>199</td>
<td>17.85970</td>
</tr>
<tr>
<td>150</td>
<td>12.70589</td>
<td>200</td>
<td>17.96371</td>
</tr>
<tr>
<td>T (K)</td>
<td>R (ohms)</td>
<td>T (K)</td>
<td>R (ohms)</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>201</td>
<td>18.06767</td>
<td>251</td>
<td>23.21758</td>
</tr>
<tr>
<td>202</td>
<td>18.17160</td>
<td>252</td>
<td>23.31969</td>
</tr>
<tr>
<td>203</td>
<td>18.27548</td>
<td>253</td>
<td>23.42178</td>
</tr>
<tr>
<td>204</td>
<td>18.37932</td>
<td>254</td>
<td>23.52383</td>
</tr>
<tr>
<td>205</td>
<td>18.48412</td>
<td>255</td>
<td>23.62585</td>
</tr>
<tr>
<td>206</td>
<td>18.58688</td>
<td>256</td>
<td>23.72784</td>
</tr>
<tr>
<td>207</td>
<td>18.69060</td>
<td>257</td>
<td>23.82980</td>
</tr>
<tr>
<td>208</td>
<td>18.79428</td>
<td>258</td>
<td>23.93172</td>
</tr>
<tr>
<td>209</td>
<td>18.89792</td>
<td>259</td>
<td>24.03362</td>
</tr>
<tr>
<td>210</td>
<td>19.00152</td>
<td>260</td>
<td>24.13548</td>
</tr>
<tr>
<td>211</td>
<td>19.10508</td>
<td>261</td>
<td>24.23732</td>
</tr>
<tr>
<td>212</td>
<td>19.20860</td>
<td>262</td>
<td>24.33912</td>
</tr>
<tr>
<td>213</td>
<td>19.31208</td>
<td>263</td>
<td>24.44089</td>
</tr>
<tr>
<td>214</td>
<td>19.41552</td>
<td>264</td>
<td>24.54263</td>
</tr>
<tr>
<td>215</td>
<td>19.51893</td>
<td>265</td>
<td>24.64435</td>
</tr>
<tr>
<td>216</td>
<td>19.62230</td>
<td>266</td>
<td>24.74603</td>
</tr>
<tr>
<td>217</td>
<td>19.72563</td>
<td>267</td>
<td>24.84768</td>
</tr>
<tr>
<td>218</td>
<td>19.82892</td>
<td>268</td>
<td>24.94930</td>
</tr>
<tr>
<td>219</td>
<td>19.93217</td>
<td>269</td>
<td>25.05088</td>
</tr>
<tr>
<td>220</td>
<td>20.03539</td>
<td>270</td>
<td>25.15245</td>
</tr>
<tr>
<td>221</td>
<td>20.13856</td>
<td>271</td>
<td>25.25397</td>
</tr>
<tr>
<td>222</td>
<td>20.24171</td>
<td>272</td>
<td>25.35547</td>
</tr>
<tr>
<td>223</td>
<td>20.34481</td>
<td>273</td>
<td>25.45694</td>
</tr>
<tr>
<td>224</td>
<td>20.44788</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>20.55091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>20.65390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>20.75686</td>
<td></td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>20.85979</td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>20.96268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>21.06553</td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>21.16835</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>21.27113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>21.37388</td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>21.47659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>21.57927</td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>21.68192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>21.78453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>21.88771</td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>21.98965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>22.09216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>22.19463</td>
<td></td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>22.29707</td>
<td></td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>22.39948</td>
<td></td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>22.50186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>22.60420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>22.70651</td>
<td></td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>22.80879</td>
<td></td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>22.91103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>23.01325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>23.11543</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table III. Thermocouple positions and specimen diameter

Al-7039

<table>
<thead>
<tr>
<th>Thermocouple positions (inches from floating sink)</th>
<th>Specimen diameter (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.87540, 1.87550, 2.87560, 3.87540, 4.87570, 5.87560, 6.87560, 7.87580</td>
<td>0.14499</td>
</tr>
</tbody>
</table>

Be

<table>
<thead>
<tr>
<th>Thermocouple positions (inches from floating sink)</th>
<th>Specimen diameter (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.86375, 1.86380, 2.86300, 3.86365, 4.86420, 5.86385, 6.86360, 7.86265</td>
<td>0.14421</td>
</tr>
</tbody>
</table>

Hastelloy-X

<table>
<thead>
<tr>
<th>Thermocouple positions (inches from floating sink)</th>
<th>Specimen diameter (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.87640, 1.87630, 2.87650, 3.87640, 4.87650, 5.87640, 6.87640, 7.87620</td>
<td>0.44432</td>
</tr>
</tbody>
</table>

Ti A-110 AT

<table>
<thead>
<tr>
<th>Thermocouple positions (inches from floating sink)</th>
<th>Specimen diameter (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.87570, 1.87570, 2.87580, 3.87630, 4.87620, 5.87610, 6.87610, 7.87630</td>
<td>0.44425</td>
</tr>
</tbody>
</table>

Inconel 718

<table>
<thead>
<tr>
<th>Thermocouple positions (inches from floating sink)</th>
<th>Specimen diameter (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.87580, 1.87580, 2.87680, 3.87590, 4.87710, 5.87710, 6.87740, 7.87740</td>
<td>0.44380</td>
</tr>
</tbody>
</table>

PO-3 graphite

<table>
<thead>
<tr>
<th>Thermocouple positions (inches from floating sink)</th>
<th>Specimen diameter (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.87500, 1.87500, 2.87500, 3.87500, 4.87500, 5.87500, 6.87500, 7.87500</td>
<td>0.42400</td>
</tr>
</tbody>
</table>

Armco iron (2c)

<table>
<thead>
<tr>
<th>Thermocouple positions (inches from floating sink)</th>
<th>Specimen diameters (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.87520, 1.87560, 2.87580, 3.87620, 4.87490, 5.87550, 6.87540, 7.87560</td>
<td>0.14412, 0.14427, 0.14420, 0.14418, 0.14415, 0.14413, 0.14405</td>
</tr>
</tbody>
</table>

Armco iron (4c)

<table>
<thead>
<tr>
<th>Thermocouple positions (inches from floating sink)</th>
<th>Specimen diameters (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.87720, 1.87700, 2.87740, 3.87750, 4.87690, 5.87770, 6.87780, 7.87760</td>
<td>0.14397, 0.14393, 0.14378, 0.14368, 0.14365, 0.14368, 0.14372</td>
</tr>
</tbody>
</table>

These diameters are average values between successive thermocouples starting with the end nearest the floating sink.

96
Table IV. Zero emfs of specimen temperature measuring thermocouples
(Thermocouple number 1 is nearest the floating sink)

<table>
<thead>
<tr>
<th>Cryogenic bath</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>liquid helium</td>
<td>1.22</td>
<td>1.01</td>
<td>1.05</td>
<td>1.17</td>
<td>0.94</td>
<td>1.01</td>
<td>1.15</td>
<td>0.91</td>
</tr>
<tr>
<td>liquid hydrogen</td>
<td>0.39</td>
<td>0.19</td>
<td>0.25</td>
<td>0.35</td>
<td>0.16</td>
<td>0.21</td>
<td>0.34</td>
<td>0.12</td>
</tr>
<tr>
<td>liquid nitrogen</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.12</td>
<td>0.11</td>
<td>0.14</td>
<td>0.10</td>
<td>0.13</td>
</tr>
<tr>
<td>alcohol and CO₂</td>
<td>0.00</td>
<td>0.12</td>
<td>0.08</td>
<td>0.09</td>
<td>0.12</td>
<td>0.12</td>
<td>0.09</td>
<td>0.14</td>
</tr>
<tr>
<td>ice and water</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

- **Physics and Chemistry**
 Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, $9.50; foreign, $11.75*.

- **Mathematical Sciences**
 Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, $5.00; foreign, $6.25*.

- **Engineering and Instrumentation**
 Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, $5.00; foreign, $6.25*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, $3.00; foreign, $4.00*.

* Difference in price is due to extra cost of foreign mailing.

Order NBS publications from:

Superintendent of Documents
Government Printing Office
Washington, D.C. 20402

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Government-generated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

Clearinghouse
U.S. Department of Commerce
Springfield, Virginia 22151