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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECENI CAL NOTE 2222

A METHOD FOR THE DETERMINATION OF THE SPANWISE LOAD DISTEIBUTION
OF A FLEXIBLE SWEPT WING AT SUBSONIC SPEEDS

By Richard B, Skoog and Harvey H. Brown
SUMMARY -

A method 1s presented for the determination of the spanwise load
distribution of a flexible swept wing at subsonic speeds. The method
1s based on a relaxation approach utilizing aerodynamic loadings
obtained from previously published work (NACA Rep. 921, 1948) based on
Welssinger's simplified 1lifting-—surface theory together with 8imple beam
theory, The solution is expressed in a convenient form such that the
amount of detailed computing involved when extensive aeroelastic cal—
culations for many flight conditions are desired is reduced to that for
a single set of flight conditions. The method is simplified further by
an abbreviated solution to the relaxation process, Sample computing
forms and a numerical example are presented to illustrate the method.

INTRODUCTION

In the design of unswept wings, the spanwise distribution of aero—
dynamic load usually has been considered to be independent of structural
deflections since torsional deflections normally are negligible at
design operating speeds (usually well below the wing divergence speed)
and bending deflections are not a factor for zero sweep. On a swept
wing, however, the span load distribution no longer may be considered to
be independent of structural deflections since the contribution of
bending to the streamwise change in section angle of attack can become
of considerable magnitude as the sweep angle is increased. In addition
to this aerocelastic effect associated with wing sweep the trend toward
higher operating dynamic pressures causes factors, which were previously
negligible, to assume increased significance.

Several methods have been suggested for calculating the aerocdynamic
loading of the flexible swept wing, both explicitly (references 1 and 2)
and by iteration (reference 3). The approach in each of these methods
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has been to incorporate aerodynamic and structural theory in an eguation
of equilibrium expressing the balance existing between external and
internal forces on the wing. Tc simplify the mathematics involved, ]
matrix notations have been employed in twe of these methods (references

1 and 2). Although twe of the methods (references 2 and 3) indicate how
aerodynamic theory other than strip theory could be employed, it is
apparent that such application increases the mathematical difficulties

a great deal sc that the simplest aerodynamic theory has been used in all
the methods. In addition, although solution of the problem by use of
matrices has the advantage of simplicity in reducing the necessary com-
putations tc a routine form, the engineer unversed in this mathematical
tool encounters a loss in physical appreciation.

The present method arose from the effort to £i11 the need for a
mathematically simple approach which can yet include the asrodynamic
refinements contained in lifting—line or lifting—surface theories. It
was desired, alsc, to separate the aeroelastic effects associated with
the various rigid—wing loadings sc that it would not be necessary tc
perform detailed calculations for each new set of flight conditions.

The method of this report is based on relaxation concepts and employs
aerodynamic span load distributions from previously published work
(reference 4) based on Weissinger's simplified lifting surface theory
together with structural deflections found from simple beam theory.
Sample computing forms and calculated effects for an example wing alsoc "
are presented.

SYMBOLS

A wing aspect ratio <}§{>

a distance from elastic axis tec section quarter chord measured
normal to elastic axis (positive measured forward), inches

(See fig. 1.)

Ay ratio of net aerodynamic force along the airplane Z axis
(positive when directed upward) to the weight of the airplene
b wing span measured normal to plane of symmetry, inches
c section chord parallel to the plane of symmetry, inches
c!t section chord normal to the elastic axis, inches
Cav average section chord parallel to the plane of symmetry, inches )
3 fc? ay
T mean aerodynamic chord | — |, inches *

[ecay
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section pitching—moment coefficient due to camber as usually

c
o
defined <section pitching moment)
qc®
cho section pitching—moment coefficient due to camber as used in
this report (associated with camber, chord length, and
dynamic pressure normal to the wing quarter—chord line)
C1, wing 1lift coefficient <%i§§>
q
CLa rate of change of 1ift coefficient with angle of attack of
root section at plane of symmetry
cy section 1lift coefficient
cy section 1lift coefficient from additional—type loading
2
cy section 1lift coefficient from basic—type loading associated
b with built—in structural twist
Cle total change in section lift coefficient due to structural
deflection
cy change in section 1ift coefficient due to structural deflec—
€a tion associated with additional loading
Cle change in section lift coefficient due to structural deflec—
b tion associated with basic loading
cy change in section 1lift coefficient due to structural deflec—
echb tion associated with torsional moment due to camber loading
czeA change in section 1lift coefficient due to structural deflec—
Z tion associated with inertia loading
B Young's modulus of elasticity, pounds per square inch
€ total change in section angle of attack due to structural
deflection, radians
o change in section angle of attack due to structural deflection
L associated with additional loading, radians
€ey, change in section angle of attack due to structural deflection
associated with basic loading, radians
Ec; change in section angle of attack due to structural deflection

© associated with torsional moment due to camber loading, radians
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change in section angle of attack due to structural deflection
associated with inertia loading, radians

built—in structural twist of tip section with respect to root
section, radians

change in section angle of attack due to structural deflection.
produced by rigid-wing loadings, radians

change in section angle of attack due to structural deflection
produced by the aerodynamic loading introduced by deflection,
radians ‘

modulus of elasticity in shearing, pounds per square inch

distance from elastic exis to section center of gravity
measured normal to elastic axis (positive measured forward),
inches

moment of inertia in bending, inches to the fourth power
polar moment of inertia, inches to the fourth power
section 1ift loading, pounds per inch

section 1lift loading plus section inertia loading for chord
sections defined by c¢', pounds per inch

bending moment at any position along the swept span in a
plane normal to assumed effective root (see fig. 1),
inch—pound
dimensionless span coordinate [Y/(b/2)], fraction of semispan
free—stream dynamic pressure, pounds per square inch
wing area (total), square inches

semispan measured along elastic axis, inches

torsional moment at any position along the swept span in a
plane normal to the elastic axis, inch—pound

span coordinate, inches
(See fig. 1.)

torsional moment representing combined contribution of section
1ift, inertia, and moment to the torsional loading about the
elastic axis at any spanwise station, inch—pounds per inch
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v angular change in slope of the elastic axis due to bending,
radians
o rotation of wing sections normal to the elastic axis due to

torsion, radians

A angle of sweep of the quarter—chord line, degrees
¢/« (See fig. 1.)

Aeg angle of sweep of elastic axis (positive for sweepback), degrees -

(See fig. 1.)

W total airplane weight, pounds
w section structural weight based on chord sections defined by
¢!, vpounds per inch
. : tip chord
A wing taper ratio ( R_Ciord
& wap <root chor%)

THEORY

The method discussed in this report is developed to apply to the
general case of a flexible wing with built—in structural twist, camber,
and with structural inertia. The essential feature of the method is
the application of relaxationl procedures to the physical problem of
determining the aerodynamic span load distribution for the flexible
wing. In formulating the theory in the subsections of the report which
follow, the unknown aerodynamic span load distribution for the flexible
wing expressed in general terms is applied to the wing together with
the known load distribution due to inertia. From the bending and tor—
sional deflections associated with this loading, the rotation (or aero—
elastic twist) of wing sections parallel to the plane of symmetry then
i1s derived. An implicit equation thus is obtained for the twist dis—
tribution of the flexible wing corresponding to the final equilibrium
position of the wing under the combined aerodynamic, elastic, and
inertia forces. To solve the equation, relaxation methods are applied,
resulting in a series—type solution for the loading change contributed
by structural deflection. As a final step, the lengthy series—type
solution is converted to an abbreviated solution which approximates the
series—type solution very closely. '

lIn reference 5, relaxation methods are shown to provide a powerful tool
in solving redundant problems of structural frameworks, electrical
circuits, and vibratory systems. In the present report the relaxation
approach employed is based on the principles of that reference rather
than the exact procedures outlined therein,
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In applying relaxation methods to the present problem, the wing is
assumed to be fixed in position as the rigid—wing loading is applied to
the wing and then the wing is allowed to deflect under the applied load.
The wing then is fixed in the deflected position, while the loading
corresponding to the afore-mentioned deflection as found from rigid-wing
theory is applied to the wing. The wing then 1s allowed to deflect
again. In this way successive deflections can be found which are depend—
ent on the loading corresponding to the previous deflection. In the
formulation of the theory, this procedure is used only to develop the
geries—type solution. Actually in practice the abbreviated solution
previously mentioned is used. In order to apply the method most expedl—
tiously, available methods for the guick determination of aerodynamic
span load distributions for wings of arbitrary twist and arbitrary plan
form (e.g., reference 4) should be used. With any load distribution so
determined and a knowledge of where to apply the load, it is then a
simple matter to calculate the amount of structural deflection {bending
or torsion) due to that load using well-known methods of solution.

Before discussing the theory in detail, it is desirable to establish
the conventions which are used throughout the report with regard to span
load distribution. In accordance with the convention of reference 6 the
gpanwise distribution of lift on the rigid wing is considered to be sep—
arated into an additional 1ift distribution and a basic 1ift distribution
tion, the additional 1ift being proportional to wing angle of attack and
the basic 1lift being dependent only on bullt—in structural twist. In 9
this report, the spanwise 1lift distribution on the flexible wing is con—
gidered to be separated into (1) the additional and basic loadings as
defined above for the rigid wing, and (2) an aeroelastic loading defined v
as that due to the section angle-—of-attack changes produced by structural

deflection.

The axes roferred to in the report are shown in figure 1. The Y
axis is the reference axis for all aerodynamic span load distributions
with the lift assumed to act at the quarter—chord line. The wing is
assumed to have an effective root perpendicular to the elastic axis and
located at the intersection of the elastic axis and the plane of sym—

metry.

Tn the following discussion, the basic theory is developed in the
subssctions, Loading on Flexible Wing, Aeroelastic Twist of Flexible
Wing, and Evaluation of Aeroelastic Integrals. The details of this
development are described in the following steps:

1. TIn the subsection, Loading on Flexible Wing, expressions are
presented for the rumning load and running torque on the flexible wing
in terms of the component loading involved.
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2. TIn the subsection, Aeroelastic Twist of Flexible Wing, a gen—
eral expression is developed for the twist due to gtructural deflection
based on the unknown aerodynamic loading2® for the flexible wing and the
effect of inertia as presented in the first section., It is also shown
how the general equation may be broken down to lessen the amount of com—
puting involved when extensive aeroelastic calculations are desired,

3. In the subsection, Evaluation of Aercelastic Integrals, it is
shown how the equation resulting from application of the relaxation
method can be abbreviated to provide a simple and direct means of evalu—
ating the implicit twist equations presented in the previous subsection.

Based on the background developed in these three sections, an equation
is presented in a fourth subsection, Determination of Span lLoading for
Flexible Wing, showing how the span loading for the flexible wing is
determined from the various loadings involved. The application of the
basic theory to determination of lift—curve slope, aerodynamic center,
and divergence speed for the flexible wing also is discussed in subse—
quent subsections.

Loading on Flexible Wing

The loads which will produce bending of a flexible wing are the
rigid-wing aerodynamic 1lift (additional and basic), the inertia load
normal to the wing, and the increments in aerodynamic 1ift produced by
aeroelastic twist., The lifting load per wnit span based on streamwise
wing sections can be expressed as

(rigid—wing loading) + (loading produced by wing deflection)

o~
1l

(1)

(CZaCQ+°leQ) + (czecq)

If it is assumed that the effect of taper on sweep is small enough that
Agss may be taken equal to Aegg and 1f the effects of inertia or dead
weight also are included, the 1lifting load per mit span along the wing
panel can be expressed as

2In setting up the expressions for aeroelastic twist, it is convenient
to think of the entire flexible wing loading as being unknown.
Actually all components are known except the component introduced by
structural deflection. :
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Iy = (clacq+c1béq) cos .Aea+czecq cos Aea~why, (2)

The aerodynamic and inertia loadings normal to the plane of the
wing will produce & torsional loading about the elastic axis if theilr
lines of application do not coincide with the elastic axis. If a wing
has camber there will be another torsional loading due to cpy. In this
report, the contribution of canmber has been taken such as to affect only
torsional deflections of the wing since it was felt that values of
pitching—moment coefficient for sections normal to the quarter—chord
line would more likely be available from two—dimensional tests. In so
doing, however, it is assumed that simple sweep concepts can be applied
to finite—span wings without serious error. The torsional moment repre—
senting the combined contribution of section 1ift, inertia, and moment
to the torsional loading about the elastic axis® at any spanwise station
thus may be expressed as

ty = (rigid—wing torsional loading) + w
(torsional loading produced by wing deflection)’
| ) (3)
= [(czacq+czbcq)a cos Aegg —WAzh + émoczq cos* Aea:} +
A
(czecqa coSs ea) )

Aeroelasgtic Twist of Flexible Wing

In this section of the report, expressions for the rotation (or
aeroelastic twist) of streamwise sections of the flexible wing are
derived in terms of simple integrals of shear and moment based on

®The torsional loading about the elastic axis at 17 = ny (where 1n; is
an arbitrary value of 1) will be a summation of loadings in a plane
normal to the elastic axis. Since this plane will intersect the span—-
wige line of application of the aerodynamic or inertia loadings at
some point 17 = n» (where 15 # n1) an error is introduced, which was
ignored in the analysis.
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elementary beam theory. The general case of the twist due to the load—
ings on the flexible wing glven by equations (2) and (3) is discussed
first, followed by discussion of a convenient way of breaking down the
general expression for aeroelastic twist to facilitate computation when
extensive aeroelastic calculations for a large number of flight condi-
tions are desired,

Twist due to loading on flexible wing.— The bending moment at any
point along the span due to the flexible-wing loading will be*

M= g2 d/\ u/\ 1, dndn (&)
1.0 V1.0 '

and the torsion will be4

1
T=sf ty dn - (5)
1.0

From elementary beam theory » .
n .
vea [ Ea (6)
o]
and

n
T
¢ = sl a7 dn (7)

For the case of the swept wing, both bending along the elastic axis
and twisting about the elastic axis cause changes in the streamwise
angle of attack. The change in section angle of attack® due to struc—
tural deflection for"arbitrary bending and twist may be expressed as

4Again a slight error is introduced (see footnote 3) because the various
loadings lie along different axes. To be correct the loadings should
be referenced with respect to the elastic axis rather than Y axis.
The effect of drag on bending moment also was neglected in the anal—
ysis and normal force was assumed equal to 1lift force.

SThis involves the assumption of a straight elastic axis for the unde—

flected wing and ignores the effect of taper in regard to the rotation
of wing sections due to torsion.
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€ ==V 8In Agg + @ cO08 Agg (8)

In the case of swept—back wings, the two terms of equation (8) wiil be
of opposite sign. For swept—orward wings, the terms are of like sign.

Substituting as required in equation (8), we have

1 1 b
€ = — 8 sin Aeaf J:j;-’lqu+sc>os Aeafldﬂ
‘ o o &9
: n
= —=8% gin A n »fl.o '/;.n.o tw dndn
- ea ET dn + (9)
o
%
n
M Jio tw dn
82 cos Aeaf dn -
o GJ J

If substitution is made for 1y and t, from equations (2) and (3) and
if the terms are arranged in such a manner as to show clearly the
various types of loading which contribute to the streamwise twist of a

flexible wing, the expression for ¢ becomes:®

6
Equation (10) comsists of nine terms. The word description given oppo—
gsite each term on page 11 merely gives a physical explanation for the

existence of the term for the convenience of the reader.
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3

n M
. J/HUE' 1.0C15Cd COS  Agadndn
sin Agg
0

1

ET

ﬂ_fnoczacqa cos Aggdn

cos Aggy
0

GdJd

dn

n O
) nflofl Oclbcq cos Aggdndn
sin Aeﬁ/\ —s
o}

ET

1
n‘ﬁ‘oclbcqa cos Aggdn

Cc0OS Aea dT]
o Gd
'
qj;LFmocgq cos* Agadn
cos Agg . dn
o GJ
T M
N wA,dnd
sin Ay fl.ojl...o 2N
o EI

n
n whAzdn
cos %J ii'—o__.—_— ad
o

GJ

n

cqg cos Agg dndn
e

nfhomoe
o}

ET

n
N[ ¢y cqa cos Agydn
cos Ae%/‘ﬁho e

o

GJ

dn

dn

dn

| (1]

| [2]

(3]

| [

l [5]

| (6]

[7]

| [8]

(10)

11

twist due to bend—
ing caused by
additional load of
the rigid wing

twist due to tor—
gion caused by
additional load of

the rigid wing

twist due to bend—
ing caused by
basic load of
rigid wing

twist due to tor-—
sion caused by
bagic load of

rigid wing

twist due to tor—
gion caused by

]

Cmg of rigid

wing

twist due to bend—
ing caused by
inertia loads

twist due to tor—
glon caused by
inertia loads

twist dus to bend—
ing caused by
aeroelastic
loading

twist due to tor-—
sion caused by
aeroelastic
loading

It is evident that the first seven terms of the preceding expres—

sion give the twist due to various types of loading of the rigid wing.

The computation of this portion of €

ig fairly straightforward; however,
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the last two terms (terms [8] and [9]) include e (which is a function
of €) so that an explicit solution for these terms is not immediately

apparent.

Twist associated with individual loadings,— As already stated, the
purpose of the method presented in this report is to determine the aero—
dynamic spanwise load distribution for a flexible wing. If this load
distribution is desired for only a single set of flight conditions
(1nvolving a specific combination of Cf, q, and Ay), the over—all
effect of flexibility is expressed by equation (10). However, normally
it is desired to examine the aeroelastic effects of a wing over a wide

» 4, and Ay and for various combinations of these factors.

range of
Therefore, it is usually more convenient to separate Clg appearing in
terms [8] and [9] into the components ¢, , ¢, ,c¢c, , ,and ¢

. log’ “lep 7'ecmo 7'eAZ

associated with Clgs Clys c;no, and AZ" respectively. The advantage

of solving the problem in this way lies in the fact that only one
detalled computation of the components of ci need be made. This
simplification arises from the fact that (1) Cleg is proportional
to Cp, (2) cleb and clecl‘ do not depend on Cp, and (3) c?’eAZ
o ‘
1s proportional to Ay (or to Cp for a given q and W/s).. It is
possible also to perform the calculations for umit built—in twist and
unit camber effect. The terms of equation (10) therefore can be
separated into several components as follows:. o

1. Twist for additional loading only.— The seroelastic twist
,associated with the additional loading, consists of terms [1] -
and [2] of equation (10) plus the portions of terms (8] and [9]
contributed by Clgg* Since the additional loading is proportional

to Cr, €cj can be put into the following form:

Czc

>cos Aggdndn’

Ll 1
fnfl o) fl o) (CLca.v

dn +

ecp, = CrL [—cavq s®sin Agg =T

[o]
(o4 [+
e la- &
» n [ (e o )pos Aeadn
252 cos A f l.0 L-av av, dﬂ -
ACgavy ea GJd

Cze C
a >cos A ggdndn

1 1
fnfl .Ofl .0 <CL°av

dn +

qCeyS sin Agy EI

(o)

c,_C .
1 leg > a
cos Agg = d
g fl .0 <EL°av €8 Cqy " an ] (11)

qcavzs2 cos Aea£ | Y
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In this equation the terms within the brackets are based on unit Cr,.
Once these terms have been evaluated, eCL may be found for any value
of Cp simply by multiplying by CL,.

2. ZIwist for basic loading only.— The aeroelastic twist €cv
assoclated with the basic loading, consists of terms [3] and [4] bof
equation (10) plus the portions of terms [8] and [9] contributed by
cleb' Since the basic loading is proportional to built—in twist,

€€b ~can be put in the following form:

ClC

_ N b )cos Agndnd
s . nfl .Ofl .0 <€bt°av ea® an  +
eeb = ebt —qCgyyS  sin Aea BT - dn
o

ci.C
fﬂ fl.O <€btcav> Aea. Cav i .
[o]

GJ

252 —
qcav 5= CcOs Aea n

CZ [+]
N N e—b—e >cos dnd
n fl 10 biCav feadndn
qCgyS® sin Agg o dn +
o
Czebc .

n L cos A..d

2.2 L fl .0 <€btcav ‘av ea®
acyyos2 cos Agy i dn (12)

(o}

In this equation the terms within the brackets are based on unit
structural twist of the tip section for a given spanwise distribu—
tion of twist. Once these terms have been evaluated for this dis—
tribution, €¢c, can be found for any amount of twist having the
same distribution simply by multiplying by th.

3. Twist for camber loading only.— The aeroelastic twist ec'mo,

associated with the torsional moment due to camber loading, consists
of term [5] of equation (10) plus the portions of terms [8] and [9]
contributed by Czec'mo' Since the torsion due to camber depends

1
upon the amount of camber (or the value of c‘mo), €cm0 can be put
in the following form, provided the camber is constant across the

span:
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' 2
n c 4
1
c n [ . [0.0l(———) cos AeaJdn
- mol {écavzsz cos Aea\/p. 1.0 Cav dn —
()

GJ

n . CZeC,mOC
nfl S <__°av >COS Ay dndn

qc..s2 sin A 2071 .0 an +
av ea A , BT i
c c
lod
c
fn < o > 2_ cos Agnadn '
5.5 1.0 Cay Cav ca 1
AC,yy 8% COS Ay, f a7 dﬂJ (13)
o

In this equation the te’rms within the brackets are based on a unit
camber equivalent to cpy = 0.01l. Once these terms have been
evaluated, €c'mo may be found for any amount of this type camber
by multiplying by cmo/0.0l. In the case where a spanwise varia-—
tion in camber is employed, the same procedure adopted for €eb
can be used; that is, calculate the terms within the brackets for
a given camber distribution and then use c'mo at some representa—
tive section as the scale factor.

4, Twist for inertia ioading only.— The aeroelastic twist €pp,
associated with the inertia loading, consists of terms (6] and [7]

of equation (10) plus the portions of terms [8] and [9] contributed *
by CzeAZ. Since the inertia or dead-weight loading is proportional
to Ag, GAZ can be put in the following form: .
W
Mol o andn
. n"1.01.0 8V
€py = Ag [Cavss sin Aeaf T dn -
o]
‘ T w__h 4
1 i 0 Cav Cav 1
Cgqy S cos Aeaf in -
o GJ
M M c
. n o (cleAZ 5—> cos Aggpdndn
ACqayS~ Sin Aeaf — 2 dn +
ET
(o]
a
gcgy2s2 cos Aeaf 57 dn | (1k)
o]
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In this equation the terms within the brackets are based on a
structural weight at lg. Once these terms have been evaluated,

€Ay, may be found for any load factor simply by multiplying by Ag.
It should be remembered that in combining the effect of Ay given
by this equation and the effect of C, given by equation 11), it
is necessary to adhere to the following relation, in order to retain
any physical significance:

CLq

AZ=W-7§
Evaluation of Aeroelastic Integrals

Swept—back wings.— As has already been discussed, terms [8] and
[9] of equation (10) are not immediately solvable; however, as shown in
the appendix, the solution of these terms can be expressed as a power
geries in q of the following type:

Bse(n) = £1(n)g3faln)g® + £4(n)a*+ . . . fnln)e™ (15)

Equations (10) through (14) can be expressed, therefore, in series form
aa: ‘ '

e(n) = +#5(n)a+f1(n)a3+f2(n)q® + £3(n)a* + . . . fr(n)q® (16)

where the coefficlents are determined by the particular requirements of
the equations (10) through (14) in mind, In this series (equation (16))
the values of successive terms are of opposite sign. If equation (16)
is divided by fy(n)g, we have

e(n) _ £,(n) fo(q) ,
rme T am ¢ R R (17)

As has been shown by 0, K, Smith in an unpublished Northrup report,?
succeeding terms of the series are very mnearly related by a constant of
proportionality so that equation (17) can be written as:

e(n) . _
f__o(n)q =1-kq +k3%2, ., . (18)

" similar approach also is contained in outline form in referemnce 7
uder the section titled Effect of Wing Twist.
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where® :
_ f1(n) - __fa(n)v

s otc.
£o(n) £1(n)

As also shown by Smith, the series of equation (18) represents an
expansion of 1/l+kq so that e(n) can be written as:

£o(n) (19)

e(n) - l;iq

In these equations, f(n) corresponds to terms [1] through [T] of
equation (10) (or the first two terms of equation (11), (12), or (14),
or the first term of equation (13)) with q set equal to unity. The
function fl(n) corresponds to the twlst produced by the aerodynamic
loading obtained from f,(n) by the method of reference 4. With £,(n)
and fl(n) determined, the twist distribution of the flexlible wing
e(n) can be quickly determined for any value of q by equation (19),
Then, having e(n), 1t is a relatively simple matter to get cze(n) by
the method of reference 4, which 1s based on the Weissinger simplified
lifting-surface theory and is generalized to permit determination of
load distribution for a wing of arbitrary plan form and arbitrary con-—
tinuous twist distribution., The reference can be used to provide

Cle (n) for either a constant 1ift analysis or a constant angle—of—

attack analysis.

It should be noted that the series represented by equation (16)
will diverge at ascme value of dynamic pressure, depending on the struc—
tural rigidity. An outstanding advantage of equation (19) (in addition
to being brief) is that no such mathematical difficulty will be encoun-—
tered so that the aerocelastic effect at any dynamic pressure can be

calculated,

8Tn practice, 1t 1s usually sufficlently accurate to determine Xk as:
__fl(n)
fo(ﬂ)

Since curves of the fumctions fy(n) and f£3(n) wlll generally not be
of exactly the same shape, the value of k will vary somewhat across
the span. In the case of the example wing, the best approximation was
obtained by using the value of k at n=1.0 since at that station the
twists given by successive twist distributions (as evaluated using the
series—type solution) were almost exactly proportional. It should be
noted that the shape of a given € curve as found from the series-type

solution will differ slightly, in general, from the shape given by -
Ty (n). It has been found, however, that the differences in curve shape
encountered do not affect ¢y, (n) significantly.
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Swept~forward wings.— The method can be applied with approximately
the same accuracy to a swept—forward wing by rewriting equation (19) so
that a minus sign appears in the denominator of the function contain-—

ing q.

The equation then becomes

q

= T—kq foln) | (20)

e (1)

the minus sign arising from the fact that the series for a swept~forward
wing (equivalent to equation (18) for a swept—back wing) is
l+kqfk2q2+ . . . which is merely an expansion of 1/1-kq.

Determination of Aerodynamic Span Ioading for Flexible Wing

The. preceding sections of this report have laid the background for
determining the aerodynamic span load distribution for a flexible wing.
From equation (1) : , .

0 e

= 00 + 0y C * clec (21)

From equation (19) it is evident that the distribution of C1,C across
the span can be written as

[

q
Clec(n) = Tkg £l £5(n)] (22)
For q=1.0, this load distribution can be written as

[Czec(”)]Q= Lo illE £ [£5(n)] (23)

If solution of f£[fy(n)] from equation (23) is substituted in equa-—
tion (22) and the resulting expression for C14C is then substituted

in equation (21), equation (21) can then be written

q(1+k)

= C1C * Ol t g (clec)qﬂ.0 (2k)

Q| e

If the following relation

. Cle = C'Lea + Cle_b + C'Lec'mo + C'LeAZ

is substituted in equation (24) and if the various terms are written as
loading coefficients, equation (24) becomes
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Qcay Creav) L7 Cay |
q(1+k) ClegC Cleyt Lo, lep,”
1+kq l: < CLcav> CL + Cav * Cov * <AanV > AZ:}'
. d=1 .0
(25)

With the various aerocelastic loadings evaluated for g¢=1.0, it is a simple
matter to calculate (1/gcgy)(i) for the flexible wing for any combination
of q, Cp,, and Ag.

Stability Parameters for Flexible Wing

Lift—curve slope.— The lift—curve slope for the flexible wing can
be found by either of two methods, depending on whether the viewpoint
adopted originally was that of constant 1ift coefficient or constant
angle of attack. Both methods are presented here for convenience:

1. Constant lift-coefficient analysis.— The aeroelastic span
load distribution resulting from a constant 1ift analysis is a
basic~type loading, which yields zero 1lift when integrated. In
solving for the aeroelastic loading by the method of reference 4,
the angle of attack of the wing root ay required to obtain zero
over—all 1lift also is obtained. This angle of attack represents
the angle through which the wing root must be turned in order to
maintain a given wing 1lift coefficient for the flexible wing at all
dynamic pressures. If the lift—curve slope for the rigid wing is
known, the lift—curve slope for the flexible wing can be found
graphically by simply laying off the value of ap in the proper
direction from the rigid—wing 1lift curve (increasing wing angle of
attack for swept—back wings) at the Cy for which the value of ayp
was obtained. This procedure is indicated in the following sketch
for swept—back wings:
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1.0

The value of o, is made up of (1) the contribution associ-
ated with rigid—wing additional loading and (2) the contribution
associated with inertia (or dead weight) loading, since only the
contributions associated with these loadings are proportional to Cp,.
These contributions are given by the values of a, associated with
clea(n) and cy ea (n), respectively. These loadings are found from

equations (11) and (14) previously presented. Lift—curve slope for
rigid wings is given directly in reference 4 for a w1de range of
plan forms.

2. Constant angle—of—attack analysis.— The aeroelastic span
load distribution resulting from a constant angle—of-attack analysis
is similar to an additional—type loading and yields a 1lift when
integrated. For a swept-back wing, the change in 1lift resulting from
integration of the aeroelastic loading associated with the twist of
equation (19) can be written as

q
1+kqg

ACp, = ALy, - | (26)

where
ACy, 1lift coefficient resulting from integration of the aeroelastic
loading corresponding to €(7)

AC1,, 1ift coefficient resulting from integration of the aeroelastic
loading corresponding to fo(7)
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The 1ift coefficient for the flexible wing (swept-back) therefore
is

— _a :
Ci = CLO - m ACLl (27)

where
CLo 1ift coefficient of the rigid wing

If equation (27) is divided by the arbitrary angle cf attack, the
lift—curve slope for the flexible wing can be written as

ACy. |
(CLa)F-: (CLon)R l—l—%k—q- CL(1,> (28)

where the subscripts F and R refer to the flexible and rigid
wing, respectively. In the case of a swept—forward wing, equation
(28) becomes '

' NC
(CL@)F - (CL:L)R <l+ i:%fk?q_' cii) | (29)

Aerodynamic center.— The accepted definition of serodynemic center
of a rigid wing is the centroid of all the additional loads. . It is evi-—
dent that on a flexible wing the lift increment due to angle of. attack
includes not only an additional—-type load (in the rigiddwing‘sense) but
also & varying amount of aeroelastic 1lift. The effective aerodynamic
 center of a flexible wing will thus differ from that of the rigid wing

but will still be the centroid of all the additional loads. In stability
analyses, it usually is customary to neglect the vertical location of the
centroid since the effect of drag on stability normally is negligible.

The varying amount of aeroelastic 1ift is made up of (1) the com-
ponent associated with the additional loading and (2) the component
associated with the inertia (or dead welght) loading, since only the
components associated with these loadings are proportional to Cj.

These components, Cle (n) and CZQA (n), respectively, are defined by
a Z

the twist distributions given by equations (11) and (1) previously pre—
sented. With cj_ (n) and Cle (n) determined, the aerodynamic cen-—
a Ay

ter of the flexible wing can be found by any method for determining
centrolds, remembering that the chordwise load is assumed to lie along
the quarter—chord line of the wing, The same method is applicable, in
general, whether the amalysis adopted 1s for constant 1lift or constant
angle of attack.
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Divergence Speed for Flexible Wing

The ease with which divergence speed can be obtained from equations
(19) and (20) is worthy of brief mention also. If equation (19) is dif—
ferentiated with respect to q, the derivative becomes

o
a e(n) = _—__(l+iq)2 fo-(n) (30)

The condition for divergence is that the derivative (d/dq) €(n) must
equal infinity. To satisfy this condition,

1+kqp =0 (31)

where qp 1s the divergence dynamic pressure, so that
1
ap = — § (32)

In the case of a swept—forward wing, differentiating equation (20) and
proceeding as before yields

1

ap = p (33)

Equations (32) and (33) show the familiar fact that a swept—forward wing
will diverge at some positive value of q while a swept-back wing will
not diverge at any positive value of q.

APPLICATION
Computing Forms

Computing forms to ald in solving for the change in span load dis—
tribution dve to wing flexibillty are presented in table I. The basic
data needed to perform the calculations are shown in table I(a). Tables
I(v), I(c), I(d), and I(e) are for the purpose of computing the functions
(f5(n) and £1(n)) for each of the rigid—wing loadings, amd require essen—
tially the same operations. Any differences noted are merely for ease in
handling the computations for a given loading. Table I(f) is essentially
the same as table I{(c) which is for basic—type loadings. The only dis—
tinction between the two forms is that table I(f) is for the aeroelastic
loading introduced by wing deflection and table I(c) is for the basic
loading due to built—in twist. With one exception these forms consist of
separate calculations of bending deflection (columns 4% through 7) and of



22 - o NACA TN 22022

torsional deflection (colums 9 through 11). The single exception is
table I(e) for camber loading (c'm,) which does not reguire bending com—
putations for obvious reasons. The last colum (columm 12) in each .
case 18 the sum of the bending and torsional deflections in terms of
streamwise angle—of—attack change. This column yields f,(n) in the
case of tables I(b), I(c), I(d), and I(e) and yields f,(n) in the

case of table I(f). The column headings are elther self-explanatory or
are explained in the computing instructions following the tables., In
the computing instructions operation A integrates the rumninhg load
normal to the wing to obtain the shear at designated spanwise stations,
Operation B integrates the shear curve so obtained to determine the
bending moment at the same spanwise stations. Operation D Integrates
the running torsional load to obtain the torsional moment at the same
spanwise stations, The summations are performed as indicated from
n=1.0 to n =0, Operation C integrates the M/EI‘ curve to obtain
the slope of the elastic axis at the chosen spanwlse stations., Opera—
tion E integrates the T/GJ curve to obtain the twist about the elastic
axis at the same spanwise stations., The summations in these two opera—
tions are performed as indicated from 5 =0 to 7 = 1.0. The
integrating operations have been set up in accordance with the trapezoi-
dal rule for approximate integration. The spanwise statlons used in

the computations, therefore, should be of sufficient number and of
adequate spacing so that the integrations will not be subJect to signif-

icant error. .

Numerical Example

The solution procedure indicated in the preceding section of this X
report has been applied to a relatively flexible example wing of moder—
ate sweep and high aspect ratio. Compressibility considerations were
neglected in the present example, since the modifying influence of com—
pressibility is small compared to the isolated, primary influence of
dynamic pressure. The geometry of the example wing is shown in figure 2
together with curves of the structural—stiffness data used in the cal—
culations. The wing has an aspect ratio of 9.43, a taper ratio of 0.42,
and a sweep angle of the quarter-chord line of 350. "As indicated in
the figure, the elastic axis is located at 38—percent chord.

The rigid—wing loading curves used in the calculations are shown in
figure 3. The aerodynamic loadings (additional and basic) were obtained
from reference 4, neglecting com.pressibility.9 The additional-type

9For the reader interested in including compressibility, it should be
noted that the method of reference 4 accounts for compressibility
effects on the basis of linearized compressible flow theory so that ' »
the modifying influence of compressibility can easily be included
using that reference by merely following the procedure outlined
therein. _ .
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loading corresponds to an over—all wing lift coefficient of 1.0 and the
basic loading corresponds to & linear twist distribution having 1.0°
washout at the wing tip. The dead—weight shear distribution was obtained
from welght estimates for the wing. The abrupt shear changes shown are
due to the concentrated masses of the engines. The camber loading was
oPtained assuming constant camber across the span equivalent to

Cmp = — 0.01.

Loading.— Computations for the example wing assuming only the addi-—
tional loading to exist and based on a constant 1lift analysls are pre—
sented in table II to illustrate use of the computing forms. Table
II(a) presents the geometric and structural parameters for the example
wing for specified stations along the semispan. Table II(b) presents
the calculations for the angle—of-attack redistribution from which the
function fo(n) is foumd. The function f£3(n) i1s found from the
angle—of—-attack redistribution calculated in table ITI(c). In table
IT(b), the loading used is the additional loading., In table II(c), the
loading used 1s the basic loading found from the twist distribution cal—
culated in table II(b). The fumctions f,(y) and f£;(n) and the ratio
£1(q)/£5(n) are plotted in figure U4 against spanwise station 7. The
ratio fl(q)/fo(n) is plotted for the purpose of illustrating the
differences in curve shape between the functions fo(n) and fi(y).

As can be seen from the figure, the distributions of twist (as defined
by the shape of the curves) for fo(n) and fi(n) are somewhat dif-—
ferent due to the fact that fo(ﬂ) was determined from an additional
loading and f;(n) was determined from a basic loading. In spite of
the difference shown, however, the assumption of proportionality between
successive terms of the series is sufficlently close to provide a good
approximation since basic—type loading 1s affected very little by dif—
ferences in curve shape such as shown in the figure. As can be seen
from the figure, a large variation in f,(n)/f (n) across the semispan
can exist so that it is important to choose the value of this ratlio at
the proper value of 1. As stated earller, the best approximation to
the series—type solution was obtained for the example wing by choosing
the value of f31(n)/fo(n) at the tip station. These remarks also apply
1f a constant angle—of-attack analysis 1s adopted.

The aerocelastic loadings associated with each of the rigid-swing
loadings are presented in figure 5 for several values of dynamic pres—
gure as obtained from the constant—lift analysis., With the solution in
the form shown in the figure, the computation of the spanwise load
digtribution for the flexible wing can be found relatively simple for
any set of flight conditions and any set of camber and twist distribu—
tion similar to that assumed merely by cambining the loading for the
rigid wing with the proper combination of basic loadings due to deflec—
tion as indicated by .equation (25). As has already been pointed out,
such a computing shortcut 1s made possible by the linear aerodynamic
and structural theory of the analysis which renders the deflection
loadings (at a glven dynamic pressure) proporticnal to either CL, Ay,
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€pss OF cho, depending on the rigid-wing loading involved. The aero—
elastic loadings for a constant angle—of—attack analysis are not pre—
sented since the proper combination of aeroelastic loadings is believed
to be indicated sufficiently by figure 5.

Stability parameters.— Since no experimental data were available
with whicn theoretical span load distributions of a flexible wing could
be compared, the validity of the method was checked to some extent by
comparing predictions of lift-—curve—slope change and aerodynamic—center
shift with those predicted by the method of reference 1.

The variation in lift—curve slope with dynemic pressure for the
example wing, as calculated by the procedures outlined sarlier in the
report, is presented in figure 6, neglecting the modifying influence of
compressibility. In the calculations, a rigid-wing lift—curve slope of
0.071 obtained from reference 4 was used. In the figure, a curve
showing the slope variation according to the method of reference 1 also
is presented for comparison. As can be seen, agreement between the two
methods is very good.

The spanwise shift in the centroid of the additional loads with .
dynamic pressure for one panel of the example wing 1s presented in
figure 7 together with the corresponding shift in aerodynamic center
parallel to the plane of symmetry. At a dynamic pressure of 500 pounds
per square foot, the spanwise shift is shown to be inboard by about
6 percent of the semispan. The corresponding chordwise shift is shown:
to be forward by about 20 percent of the mean aerodynamic chord. Good
agreement with the prediction of reference 1 is shown again.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., July 31, 1950.
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APPENDIX

DERTVATION OF WING TWIST POWER SERIES

In the text of this report, the streamwise twist of a flexible,
swept wing is given by equation (10) as a sumation of terms due to the
various rigid-wing loadings and the aeroelastic loading introduced by
flexibility., Equation (10) can be summarized as follows:

€(n) = e (n)+ae (n) (A1)
where

eo(n) the twist of the flexible wing due to the total rigid—wing
loading (as given by terms [1] through [7] of equation (10))

and

Ae(n) the twist of the flexible wing due to the aeroelastic loading (as
given by terms [8] and [9] of equation (10))

As stated in the text, the value of A<(n) in the above equation
cannot be evaluated directly in any explicit manner so that a method of
guccesgive approximations must be employed.

One method for evaluating €(7n) 1s to adopt the obvious iterative
approach and compute €(n) by successive approximations to A€(n) wntil
gufficient accuracy is obtained. A more convenlent method, however, is
to apply a relaxation procedure to the determination of A€(n). In this
method, the wing is assumed to be fixed in position as the rigid-wing
loading 1s applied, and then the wing is allowed to deflect under the
applied load, resulting in the streamwise twist distribution eo(q) of
equation (Al). The wing then is fixed in position again and the rigid—
wing loading is removed. The aerodynamic loading corresponding to
eo(q) then is applied to the wing and again the wing is allowed to
deflect (in accordance with the applied load only), resulting in a new
twiat distribution., In this way successive twist distributions can be
found which are dependent upon the aserodynamic loading corresponding to
the previous twist distribution. The fimal twist distribution for the
flexible wing can therefore be expressed as

(1) = e(nsder(madean) « . .+ A () (s2)

Comparison of equation (A2) with equation (Al) shows that

Ac(n) = A&y (n)+aex(n) . . . + &g (n) (a3)
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Now since ®

res(n) = a F [clel(n)J . )
and

(1) = 1 "eo(n)]
where ,

e4m=qFrqmq
or

€o(n) = a £o(n)

it 1s apparent that equation (AL) can be written as '

il

£eq(n) = a®f1(n) : (a5)

Similarly,

Aee(n) = F[ czez(n)] )

where , . | | .
10,0 = £| sea(n)|

so that, with equation (A5), it is apparent that

a
£es(n) = g f2(n) (A7)
In like manner
A€ (1) = o™ £, (n) (a8)
®In these expressions, the nota.fions ' [ ] . and F[ ] merely

indicate the general dependence of loading and twist on the associated

twist and loading, respéctively. The notation f, l: } indicates

a specific function. ‘ »
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It should be noted that for a swept—back wing each new twist dis~
tribution calculation by this procedure will be of opposite sign to the
twist immediately preceding, since successive aerodynamic loadings will
exert bending moments of opposite sense due to the bending-twist rela-
tionship for a swept—back wing. Summing the successive contributions

to Ae(n) of equation (Al) as given by equations (A5), (A7), and (A8),
we have

Ae(n) = g2f1(n) + a%=2(n) + . . . ¢ ry(n) (49)

Substituting in equation (Al) for eo(n) by the relation given under
equation (A4%) and for Ae(n) as given by equation (A9), it can be seen
that the twist distribution for the flexible wing can be expressed as a
power series in q as follows:

e(n) = azo(n) + a®ea(n) +a%a(n) + . . . a%__ (1) (al0)
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TABIE I.— CONCLUDED
(g) Computing Instructions.
A (col. 4)
: " _
® -y .. @0 0.0,
B (col. 5)
| n
@ - Zn = 1.0 <®n+l " ®n+l ! @n‘x ®n>
C (col. 7)
n ,
<:> B —'Ez <§:>nr¢ X <:>n—1 + <:>n X (:)é)
n=o0
D (col. 9)
1
@+ (Cur @+ ®r®)
E (col. 11)
1
@) (OnrOn+®,x®,)
n=o0
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Figure |.- Sketch of swept-back wing showing axes used
in analysis.
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Figure 2.— Sketch of example wing with pertinent
dimensions, plan-form paramefters, and elastic
properties. _ -
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Figure 3.- Rigid-wing loadings for the example wing. -
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Figure 4.~ The twist distributions fo(y) and fi(y) and

fi(y) .
for the example wing as calcu-

the ratio

fo(7)
lated for the additional loading.
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(a) Additional loading.

Figure 5.- Aeroelastic loadings and deflections associ-
ated with the various rigid-wing loadings for the
example wing as calculated for several values of
dynamic pressure using a constant - lift analysis.
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Figure 5.— Continuved .
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Figure 6.- Variation in [ift-curve-slope ratio with dynamic pressure for
example wing.
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