NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

120000815 035

THESIS

DEVELOPMENT OF A PROTOTYPE RELATIONAL
DATABASE SYSTEM FOR MANAGING FLEET
BATTLE EXPERIMENT DATA
by

Kevin Colén

June 2000

Thesis Co-Advisors: Kishore Sengupta
Magdi N. Kamel

Approved for public release; distribution is unlimited.

REPORT DO CUMENT ATION P AGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching .
existing data sources. gathering and maintaining the data needed. and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 2000 Master’s Thesis
4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS

Development of a Prototype Relational Database System for Managing Fleet Battle
Experiment Data

6. AUTHOR(S)
Coldn, Kevin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Naval Postgraduate School REPORT NUMBER

Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed here are those of the authors and do not reflect the official policy or position of the Department
of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT . 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 2060 words) This research develops a prototype relational database system for
storing and managing Fleet Battle Experiment (FBE) data. It is the first step in constructing a knowledge-base system for
such data. The objective is to create a relational database capable of generating information from past experiments for
analysis and lessons learned to benefit future experiments. Research methodology included literature research of
application development methodologies and database systems, as well as observing a FBE and gathering system
requirements information from personnel that plan, configure, and participate in FBEs and war games.

Development of the system involved designing a schema (data model) that consists of entities, attributes, and
relationships of the FBE environment. The data model is transaction- (event-) based and concentrates on information flow
in order to categorize and store the data. These events provide the logical links between the identified entities and the
capability to query the system for desired information. Finally, a prototype application against the data model was
developed to facilitate data entry, modification, and querying.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Database, Database Management System, Knowledge Management 260

16. PRICE CODE

17. SECURITY 18. SECURITY CLASSIFICATION | 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF REPORT | OF THIS PAGE CLASSIFICATION OF ABSTRACT
Unclassified Unclassified ABSTRACT UL
Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

i1

Approved for public release; distribution is unlimited.

DEVELOPMENT OF A PRTOTYPE RELATIONAL DATABASE
SYSTEM FOR MANAGING FLEET BATTLE EXPERIMENT DATA

Kevin Colén
Ensign, United States Navy
B.S. Computer Information Systems, Jacksonville Umver51ty, 1999

Submitted in partial fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT
from the

NAVAL POSTGRADUATE SCHOOL
June 2000

4 P L,
Aauthor: / ’/
- / /l(evin Colons ’

o i
T —_—
o , =
S e DT A

Kishore up?a—'FhesTs‘Co/ Advisor
Secoo o

}dj:i(amel Thesis Co Advisor -

Dan Boger, Chai
Department of Information Systems Technology

Approved by:

11

iv

ABSTRACT

This research develops a prototype relational database system for storing and
managing Fleet Battle Experiment (FBE) data. It is the first step in constructing a
knowledge-base system for such data. The objective is to create a relational database
capable of generating information from past experiments for analysis and lessons learned
to benefit future experiments. Research methodology included literature research of
application development methodologies and database systems, as well as observing a
FBE and gathering system requirements information from personnel that plan, configure,
and participate in FBEs and war games.

Development of the system involved designing a schema (data model) that
consists of entities, attributes, and relationships of the FBE environment. The data model
is transaction- (event-) based and concentrates on information flow in order to categorize
and store the data. These events provide the logical links between the identified entities
and the capability to query the system for desired information. Finally, a prototype
application against the data model was developed to facilitate data entry, modification,

and querying.

vi

TABLE OF CONTENTS

L INTRODUGTION ...coeeeeeeeetteieeeeteeessesesseeseeeessesssssessenssensassssssestesasssssssesess et aa s sss st aaseane 1
A . BACKGROUND.....otioiiiitiietietteeeeseesseetessestesassanssasse st asstasae st snssan st ras e snnsans 1

B. PURPOSE . ..ot eeeeeeeeeteet e eeaeereeasaeesesse st saesseressasea s sssesa s e st sttt e s en e s anenes 2

C. SCOPE AND METHODOLOGY ...occtriniecmriinienieniessesss st etssnssnssasssssnsessnass 3

IL. OVERVIEW OF FLEET BATTLE EXPERIMENTSccoiiiieiiiiiines 5
A.FRAMEWORK ...ooeoieioiecteeeecseesssesesstet e ssasasseebesaessst e s st e sss e s s ss s nsenaens 5

B. DESCRIPTIONooioiioieoteeieieeeeresce e st sananses s sssss s ene st sas s s s s s ssa st 5

C. ORGANIZATIONAL STRUCTURE 6

1. Design, Planning, and EXECULION ...cocoveiiiiiiiiiimenisernes 6

2. The EXPETIMENLS ..ecuvuvecumiuerraesessisnsnsnmsistues e essasts s st 6

D.DATA OF AFBE......ooiiiieiiniiirnieneiecceienens e 9

1. Sources and COlECHOMcccvermeeeeerrereeereriiriisnereersses s eesas s b aaeaas 10

2. SEOTAZE ..vevereencuencecetsirssaeasaesssese st s s s bbb e h st 12

3. INfOrmation FIOW......cecieeceieceeicnritiie et 13

III. DATA AND APPLICATION DESIGN ..o eeeeveeseeoseeesees s sesses e 17
A. SCHEMA DESIGN......otiitiiteeierieeereeniitiinniessssssssse e sseseseesssssssssesssnassssnssees 17

B. APPLICATION DESIGNoooierieetitiriiiinminnisssessessesnensssesnaesnasssssssseess 22

L. QUETYANIZ coeecueceeeeecncrcacre sttt 22

2. REPOTHIG .ottt trins e b e 23

IV. DATA AND APPLICATION IMPLEMENTATION.....ccooiiiiiiiiiiiieieee 25
A. DATABASE IMPLEMENTATIONcoiiiiiiinieieete it 25

B. APPLICATION IMPLEMENTATIONcooire e 30

L TP OTIIIS aveeeeee ettt seeeesseeeseeess s eeesee e et e sacesnsaas s s e e b e e Rassan s e n e s b e b s st 30

2 METIUS «eoveeveeeeeeeeeeeeseseetenseeessesssasseaneeatssessesesaessorneasaa s e s e et e st e e r et s n e s e 36

3. QUETIES ovueeieeeecereree et sa ettt s ettt 38

4. REPOTLS -.ceeuererecviuininesrnsrnssessssssssb sttt s st s 42

5. IMIOGUIES ..vvveeeeeeeeeseeeeeeeeseeeeesssssssssssssssssssessesssssssesssassssesssessesssssssssiesssasssnes 43

C. POST-IMPLEMENTATIONc.cooiriiriiiiiinininniiestestesseeisaisnt s aeeens 44

A CONCLUSIONcoooeaeiermmsersmsssssssssssssssssssess s s st 45
B. RECOMMENDATIONoouoirirumrimrissemssmsimsssssssses s oo 46
APPENDIX A: GLOSSARY OF TERMS...voeeeeeveveseeemcesemssssesesmsnsss s s nsasnes 49
APPENDIX B: APPLICATION CODE MODULES ... cceeoteeicenrreirseesinnnssssn s snssaseces 55
LIST OF REFERENCESccrrvuurrrmmasrimssssssssssesss s s 239
INITIAL DISTRIBUTION LIST covovviiirisssessemssssssssssssssssss s somss s s 241

viil

LIST OF FIGURES

Figure 1 Command and Control Organization for FBE-G with MCC Concept Included

(MCC Units Designated with Asterisk). After Ref. [9] ..o 8
Figure 2 Sensor Network for FBE-G. After REF. [9] oot 9
Figure 3 Detailed Engagement Process. After Ref. [9] ..o, 14
Figure 4 Engagement Network. After Ref. [9] ..o 15
Figure 5 TCT Process Overview. After REf. [9] et 16
Figure 6 Fleet Battle Experiment Database Schema with All Entities Represented......... 18
Figure 7 Schema of Entities Implemented in Prototype Database.ccccceveveeruerineineenens 27
Figure 8 Open Database Dialog Box Displayed at RUN-me. ...ccovuviivicmcrnciciincicnninnns 31
Figure 9 Main Interface FOIM.ovuriermriciecicisieiin st 32
Figure 10 Example Update Form (Acquisition Event Update Form). ...cocevcenviiniiiiiennn. 33
Figure 11 Targets WinAOW.couovueiimciriniciciini st e 34
Figure 12 Target Timeline Window.occciiiiimiiiiis s 35
Figure 13 Target Record Filters WINOW.coovoiiiiiiiniiin e 36
Figure 14 Hierarchical Chart of Menu OPLions.oooeiiiiiiininisis e 37
Figure 15 “Canned” QUETies FOIML..ccccuoviiiiiiiiiiiiii e 38
Figure 16 “Canned” Query Output Wmdow 39
Figure 17 SQL Custom QUeTy WinAOW........cccuvuiuimimimmimiiiniisisss e 40

Figure 18 Acquisition Events Report Created in Word 97® by Using Print Option on
Acquisition Event Update Form (Figure 10).......coiiniiiiicens 43

iX

LIST OF TABLES

Table 1 Engagement Nodes and Assets for FBE-G.ocoiinn 10
Table 2 Sensor Nodes and Assets fOr FBE-G.coviviiiieiiieeeeieeeeeeeeeree e eveeeeneeeeens 11

xi

X11

ACKNOWLEDGMENTS

I would like to acknowledge the financial support of the Institute for Joint
Warfare Analysis (I'WA) that enabled me to attend the Navy’s Global "99 War Game at
the Naval War College in Newport, Rhode Island.

I would also like to thank Shelley Gallup, Nelson J. Irvine, Rich Kimmel, Gordon
Schacher, and the rest of the IT'WA staff at the Naval Postgraduate School for their time
and efforts in support of my thesis. Thanks also to Martha Wring for helping arrange
thesis travel on such short notice.

I would like to express my appreciation to Professors Kishore Sengupta and
Magdi N. Kamel for their collaboration on this project.

I would like to thank my parents, Victor and Juana Coldn, for their patience,
backing, and understanding. They have always been there for me and all my endeavors,

providing their love and support. Thank you. Ilove you very much.

Xiii

X1v

I. INTRODUCTION

A. BACKGROUND

In a world full of uncertainty and the possibility of conflict, our country’s military
personnel must be prepared to deal with any number of potential threats. Preparedness is
crucial, but training for certain scenarios may be economically infeasible for and/or
logistically impossible to support.

In order to prepare for such scenarios and to test war fighting doctrine and
philosophy, our armed forces have developed two types of training: Fleet Battle
Experiments (FBE) and War Games. A War Game is an exercise that the military and
other defense organizations use in order to gain experience at making decisions in diverse
scenarios. War Games typically use computer simulations, also known as Synthetic
Theaters of War (STOW), but may also be designed as discussion groups for system and
doctrine experts. Objectives chosen are aimed at testing particular systems, practicing
specific maneuvers and tactics, providing familiarization with certain environments and
situations, and/or enhancing and honing decision-making skills. War Game scenarios are
chosen so they are plausible and relevant to the objectives of the game. They are most
effective for testing strategic and tactical levels of warfare.

FBEs are designed as genuine experiments, not demonstrations or exXercises.

Each experiment has a hypothesis and specific, carefully considered measures of
effectiveness. Products from the FBEs include: new doctrine; new insight into
technology in an operational environment; identification of new required operational
capabilities; identification of new acquisition requirements; ideas for further warfare
concepts; and ideas for further experimentation. FBEs are useful at testing all levels of
an operation from strategic to operational. [Ref. 11]

The information and knowledge that is produced during the war game is vast and
complex. The data produced is of varying types, recorded in dissimilar ways, and is

related in a complex manner. Experiential knowledge from an FBE is carried away by

the participants and is rapidly dispersed by personnel assignments and tasking. This
information would be of great benefit to future scenario design and to provide decision
support to the participants. Unfortunately, it is too diverse to be appropriately collected
and stored. Consequently, there is currently no appropriate approach or mechanism to
systematically capture, retrieve, and analyze the data collected from an FBE.

Currently, several disparate systems are used to manage data for a FBE. For
example, Land Attack Weapons System (LAWS) and Global Intelligence, Surveillance,
and Reconnaissance System (GISRS) provide weapon and sensor node data management
as well as the data repositories for these objects. This collection of heterogenous systems
causes problems in the integration of the data for the purpose of querying and analysis.
Additionally, data stored in these systems may not be accurate due to the data input and
collection methods used. For example, a large portion of LAWS data is entered manually

and therefore may be inaccurate and incomplete.

B. PURPOSE

The purpose of this research is to ascertain the feasibility of developing a
prototype relational database system for storing and managing FBE data. Such a
database system would enable analysts to retrieve data and information from past
experiments for the purposes of analysis and extracting lessons learned to benefit future
experiments.

This research is part of a larger effort to develop a knowledge base system to
support FBEs by transferring knowledge obtained from past experiments to the
appropriate context of a current experiment. To accomplish this elaborate task, a four-
phased approach is being considered.

The first phase, the focus of this thesis, develops a data model and application for
storing and managing the quantitative aspect of FBE data. More specifically, this first
phase provides:

1. Collection of the data and functional requirements needed for the data model and

application system.

2. Development of a data model that consists of the entities, attributes, and relationships
of FBE data.

3. Development of an application system that defines the main queries, forms, and
reports of the developed data model. '

4. Development of data import facilities that populate the developed database with data
from other archival systems (e.g., LAWS).

5. A prototype data management system tested with actual FBE data to evaluate its

functionality, usability, and effectiveness.

The second phase develops an ethnographic model to collect and manage the
qualitative aspects of FBE data. The third phase integrates the first two efforts into a
loosely defined “Knowledge Management System.” The fourth phase evolves the
product of the third phase into a full-fledged knowledge management engine and system
using an appropriate technology (e.g., object-oriented, Web, or collaborative

technologies).
C. SCOPE AND METHODOLOGY

This thesis focuses on the collection, storage, and analysis of tracking and
targeting data. Development of the system involved designing a schema (data model)
that consisted of entities, attributes, and relationships of the FBE environment and
structure (both physical and logical). The personnel structure was studied for data model
completeness, but not implemented in the prototype system.

The data model is transaction- (event-) based and concentrates on information
flow in order to categorize and store the data. It represents the information exchanges
and data links that are the focus for this research. This approach provides logical links
between the identified entities and the capability to query the system for desired
information. A prototype application was coupled with the database to complete the data
management system and facilitate data entry, modification, and querying.

. The following research methodology was implemented to properly develop the

3

system. The architectures of fleet battle experiments and war games were studied.
Elements and entities of the architectures were discussed to establish their significance to
the overall structure, and personnel were interviewed to determine information flow and
critical points of information exchange.

A schema was developed in an attempt to capture the essence of the FBE
architecture. The schema was analyzed to ensure that critical entities were accurately
defined and that key information was not overlooked. Relationships were studied to
guarantee proper entity interactions and dependencies.

Upon data model approval, some requirements were gathered for application
implementation. Application interaction with the database was then tested and
requirement completion verified.

This thesis is organized as follows. Chapter 2 discusses the overall framework of
FBEs, data sources, and collection methodologies. Chapter 3 discusses the data model
developed and its components. Chapter 4 addresses the application created and its
capabilities. The final chapter addresses benefits, shortcomings, and lessons learned and

provides some recommendations for improvements to the system.

II. OVERVIEW OF FLEET BATTLE EXPERIMENTS

A. FRAMEWORK

The Chief of Naval Operations (CNO) established the Maritime Battle Center
(MBC) at the Naval War College (NWC) in Newport, Rhode Island, to serve as the single
point of contact for Navy Fleet Battle Experimentation and participation in Joint
Experiments. This action was the first step in streamlining and invigorating the Navy’s
warfare concept development, doctrine refinement, and warfare innovation process.

The MBC is responsible for designing and planning Fleet Battle Experiments,
coordinating the execution of these experiments in conjunction with the numbered fleet
operational command elements (OCE), and analyzing and disseminating experiment
results. The FBE results are used to accelerate the delivery of innovative warfare
capabilities to the fleet, identify concept-based requirements, and evaluate new
operational capabilities.

The Navy Warfare Development Command (NWDC) was officially established
on 10 August 1998 in Newport, Rhode Island. [Ref. 11]

B. DESCRIPTION

Each FBE has a hypothesis and specific, carefully considered measures of
effectiveness. FBEs produce, new doctrine, new insight into technology in an operational
environment, identification of new required operational capabilities, identification of new
acquisition requirements, ideas for further warfare concepts, and ideas for further
experimentation.

Unlike a war game, a FBE involves real components and assets. Military units
are employed and the exercise is executed in a real-world environment. However, some
computer systems may be used to supplement the real environment by ‘injecting’

synthetic, or virtual, targets into the experiment.

5

C. ORGANIZATIONAL STRUCTURE

Two types of organizational structures can be examined. One is the authorities
and personnel that design, plan, and execute the FBEs and the other is the organizational
structure of the FBE itself. The organizational structure of the experiment is adaptable to
the scenario and objectives addressed by the experiment’s concept of operations.
Therefore, the objectives determine the procedures followed by the personnel taking part

in the experiment and the flow of information during the exercise.
1. Design, Planning, and Execution

The structure of the authorities ruling over the FBE organization and its
procedures begins with strategic level involvement.

The MBC is a CNO sponsored command chartered to conduct FBEs that examine
new technologies and new operational concepts in the context of the Navy of the future.
The results of FBEs are used to accelerate the delivery of innovative warfare capabilities
to the fleet, identify concept-based requirements and evaluate new operational
capabilities. [Ref. 10:p. 2] The MBC is responsible for designing and planning FBE:s, as
well as, coordinating the execution of these experiments in conjunction with the
numbered fleet operational command elements (OCE), and analyzing and disseminating

experiment results.
2. The Experiments

Although FBE architectures may differ due to changing objectives, the basic
structures are similar. This research was based mostly on FBEs E, F, and G, with a
concentration on FBE-G.

The MBC and the Commander, U.S. SIXTH Fleet (C6F) jointly conducted Fleet
Battle Experiment Golf (FBE-G). C6F Staff and the Navy Warfare Development

Command focused on large themes of dynamic sensor management, decentralized

6

operations, and sensor, actor, and decision-maker synchronization. These themes were
chosen to support an investigation of the emerging Network Centric Warfare (NCW)
hypotheses in the pursuit of dynamic attack operations. [Ref. 10:p. 68]

NCW focuses on shortening the Detect-to-Engage timeline. A critical part of
shortening the timeline is being able to respond effectively against emergent high threat
targets, or Time Critical Targets (TCT).

The experiment focused on the Time Critical Targeting process using a dispersed
command, sensors and engagement architecture to allow forces to respond quickly to
fleeting targets and allow them to commit weapons and move sensors with knowledge of
the impact those decisions would have. TCTs are a subset of Time Sensitive Targets.
Time Sensitive Targets are fleeting targets that can only be effectively engaged during
limited periods of time. TCTs are targets requiring immediate response because they pose
(or soon will pose) a clear and present danger to friendly forces or are high-value fleeting
targets of opportunity. [Ref. 9:p. 55]

The primary goal was to apply the concepts of NCW to the Joint Task Force
(JTF) structure. It included Intelligence, Surveillance, and Reconnaissance (ISR) asset
management and allocation of resources, the use of ASW search methodology for land
targets, weapon apportionment and sensor-weapon-target pairing. FBE-G applied a
distributed Command and Control (C2) architecture, in contrast to the centralized C2
architectures of earlier experiments. [Ref. 9:p. 4]

Figure 1 depicts the traditional C2 structure for FBE-G with the inclusion of the
concept of Maritime Control Centers (MCC). It is intended to empower individual units
at various levels in the traditional C2 structure to act autonomously in the engagement of
TCTs. The decentralized network is used to facilitate the process. While the traditional
C2 structure remains in place for deliberate strikes, a network centric approach is
employed in the specific case of TCTs to accelerate the speed of effects. [Ref. 9:p. 15]

A Maritime Control Center is a combined sensor, engagement and command node
that has been allocated and apportioned three key assets: Battlespace; Resources, both in
sensors and weapons; and Autonomy of Action within Commander’s Guidance and Rules

of Engagement. [Ref. 9:p. 16]

CJTF JECG
C6F

White Cells M&S
Execution Cells JTF

—_—— e e = —— — —p 6F Staff JAC
| FOR TCT ENGAGEMENT (LAS) (UK)
| | |
*JSOTF *JFMCC *JFACC
| NSWG-2 CCDG-8 CCDG-5
| (MTO) (IKIE) (MTO)
I I 1
*CVBG *MPA
| CCDG-8 CTF67
I (IKE) (Naples)
| — I I 1 1
% *HART/ *CSG *CVW- ! *ANZ *VSSN || *
MCC CTF-69 L—J 7 (NUWC) | | (Sig)

Figure 1 Command and Control Organization for FBE-G with MCC Concept Included
(MCC Units Designated with Asterisk). After Ref. [9]

Information was disseminated throughout the forces taking part in the exercise
and each unit was granted some autonomy in deciding if they could effectively engage
the targets. [Ref. 9:p. 5-7] This method of tasking was used in hopes of improving
reaction times and effectiveness in engagements.

Figure 2 is a representation of the sensor network for FBE-G. The sensor grid
was composed of decentralized, distributed sensor nodes. Sensor nodes were
controlled/focused using distributed collaborative planning and a shared workspace.
Sensor nodes directly controlled sensors or had access to the controllers for near real time
flexing of assets. Sensor reassignment and geolocation requests were shared through a

common workspace; sensor management chat-rooms. [Ref. 9:p. 9]

SENSOR NET

Figure 2 Sensor Network for FBE-G. After Ref. [9]

D. DATA OF A FBE

The amount of data produced during a fleet battle experiment can be
overwhelming. Although extremely diverse in its types, formats, and sources, the data
extracted from a FBE can be classified under two main categories: quantitative and
qualitative data.

Quantitative data makes up the greater part of the data and is the focus of this
project. Quantitative data is typically raw, unprocessed data such as times, quantities,
and locations. This type of information can be classified, stored, and queried more easily
than qualitative data. It is factual, precise, and indisputable. Few things can be done with
quantitative data except using it for decision support and assessment substantiation. It

“includes information on track, target and platform locations, munitions used, times of
events, and other detailed information.

Qualitative data includes opinions and assessments developed by personnel after

examination of massive amounts of information (quantitative data). Qualitative data is
the result of analysis and is derived by experts based on their examination of the
quantitative data. It may be a determination of the relevance or condition of an event or
action. This kind of data is not always obtained from a specific source and may not be
exact, factual, or precise in nature. It is debatable and irregular in its configuration,
making it very hard to store for future referencing. It is filtered and assessed by

knowledge experts and data collection personnel.

1. Sources and Collection

Fleet battle experiment data is produced at numerous locations by several sources.
Sources of qualitative data include both civilian and military personnel taking part in the
experiment as well as data collection and analysis personnel. Assessments, decisions,
and other factors can be used to determine effectiveness and correctness of actions in
addition to ascertaining if a problem was encountered in a system or process.

Quantitative data is provided by, or can be extracted from, systems such as Land
Attack Weapons System (LAWS) and Global Intelligence, Surveillance, and
Reconnaissance System (GISRS). LAWS and GISRS provide the capability to manage
weapon and sensor nodes real time, respectively. Tables 1 and 2 list the engagement and

sensor nodes (platforms) and assets (weapons, sensors) contained by each.

Platform Weapon
USS Anzio TLAM/TTLAM/ERGM/LASM
USS Cape St. George TLAM/TTLAM/ERGM/LASM
USS Hartford TLAM/TTLAM
NUWC (sim SSN) TLAM/TTLAM
P-3 SLAM-ER
TACAIR from USS Eisenhower | JDAM/JSOW/PGM/SLAM-ER
TACAIR from JFACC JDAM/JSOW/ PGM
SOF Direct Action.

Table 1 Engagement Nodes and Assets for FBE-G.

Systems such as LAWS and GISRS, though they seemingly categorize and sort

10

data, are still reliant upon personnel for data entry. This introduces the possibility of data
input irregularity and inaccuracy. Much information is left blank due to the rapid pace of
activity during the experiment. This introduces the problem of data absence, which must
be handled by the data collection personnel at a later time. They correct these problems
by either inferring actions and results or attempting to gather the information from other

sources, then back logging the information into the systems.

Location Sensors
CJTF (C6F onboard LaSalle) NTM, U-2
JFACC (CCDG 5 on MTO) JSTARS GS, Global Hawk, Rivet Joint, HIRIS
JFMCC (CCDG 8 on USS Eisenhower) | APY-6, TARPS, Predator, EP-3
USS Anzio VTUAV,
USS Cape St. George VTUAV,
CTF-69/USS Hartford ELINT, SOF
CTF-67/TSC Sigonella AlP P-3
JSOTF (cell on MTO) SOF, UGS
JAC Molesworth UK All National and Theater Sensors

Table 2 Sensor Nodes and Assets for FBE-G.

Other sources include records kept by personnel during the execution of the
exercise and interviews or discussions held afterwards. Information gathered from
personnel will tend to be more imprecise and difficult to sort, categorize, and store
appropriately due to variation.

The primary concern for the latest experiments has been track acquisition and
reaction time reduction for assessments. Track acquisition, assessment, and engagement
events produce the majority of the information gathered about the exercise. However,
information concerning weapon utilization and effectiveness, message delays, and
situational awareness is also determined and gathered by personnel.

Manual recording of information by FBE personnel constitutes the bulk of the
information collection effort. Data concerning tracks, targets, platforms, decisions, and
many other factors is recorded on either forms that personnel are afforded or is entered

into data repository systems such as LAWS.

11

Because of this methodology, data collection is inconsistent and the data entered
may vary based on the person recording. This irregularity in data formats produces
another problem at the time of data analysis.

The latest version of LAWS, demonstrated in FBE-G, was utilized with some
problems and many records were incomplete and inaccurate. Time formats were not
clearly defined and fields were frequently left blank. Because of this, few tests could be
run to determine the effectiveness of data analysis concerning the event timeline.

Target Location Error information, provided by mensuration events, was entered
into the remarks fields along with other random, unrelated information. Other
information, such as platform identification and threat types, was formatted improperly
making data filtering very difficult. Data transfer into event entities was also problematic

and complicated because of the varying ways the data was recorded.

2. Storage

The classification of the data is an arduous task. Current methods have personnel
studying this data and then categorizing it by source, subject, and type.

Data storage is of great concern because access to data from past experiments
could be used in designing and performing future experiments as well as providing
decision support to participants. Analysis of data from various experiments is nearly
impossible because of the sheer magnitude of information. Knowledge management
experts and data collection personnel work hand in hand to try to find trends in the data
and to determine difficulties in the processes. Difficulties could be attributed to system
overloads or to human error. By storing data more effectively, the hopes are to make data
access easier and data collection and categorization faster so data comparison and
analysis can be performed more effectively and efficiently.

Databases have been created to store the data from FBEs, but with limited
success. These databases are designed mainly for storage of text strings. The
information is categorized after the experiment is executed. Personnel collect, analyze,

and categorize the data (mostly comments and assessments made by FBE participants)

12

based on the subject matter, the sources, and the conclusions made. This data is labeled
accordingly and stored in a database that can reference it at a later date by those
categories.

This provides few querying options. The data can only be extracted in the form in
which it is entered. Few, if any, conclusions can be drawn from the information and
searches are predetermined to fit a specific request because no real links, other than
categories, can be made between the different pieces of information.

Data provided by systems, such as LAWS, is stored in those systems to be studied
and disseminated by personnel. Associations between data in separate systems can only
be made through human involvement. There is no existing way to manipulate and link
the data across differing systems. Trends and logical relationships are difficult to

determine, if at all possible.
3. Information Flow

The flow of data begins at the time of acquisition. A sensor acquires a track and
information pertaining to the track, sensor, and time of acquisition are all logged. Once
the target has been positively identified, it can be redesignated from a Unidentified
Assumed Enemy (UAE) state to Hostile (HOS). At that point, the HIT will be
redesignated as a target (TGT). This status will be updated in the Digital Track Folder
(DTF) and made available to all engagement cells. [Ref. 9:p. 19]

As shown in Figure 4, the track is then submitted (nominated) as a possible target
by a GISRS terminal. Targets that are being actively prosecuted by a sensor will be
additionally labeled as a High Interest Track (HIT). This will indicate that target
mensuration and refinement are in progress. [Ref. 9:p. 19]

Mensuration is used because some tracks may require more detail, or more
precise information, pertaining to location, altitude, threat type, etc. A request for
mensuration may be sent by the acquiring terminal to a Precision Targeting Workstation
(PTW) or a Joint Targeting Workstation (JTW). Once a nomination is requested and

mensuration information received, the track is determined to be a viable target or not. If

13

evaluated as a viable target, a fire command with pertinent information is sent to all
platforms available. Providing all assets with as much information as possible so that,
through autonomy, the most effective solution can be achieved is the net-centric
ideology. Geosolution is considered complete when the target solution is good enough to

engage with at least one available weapon. [Ref. 9:p. 19]

FBE-G ENGAGEMENT PROCESS

SENSOR COP {

(Yellow): Req Refinement

DETECTS (~~==-¥ oo R
TGT ' 1 Sensor
| ————————, Bid for
1 i
! ' Refinement » Sensor Tasking
Sensor Node or : 1
Ground station ! [] . Target Refined
1 1 >
y | TCT Cell LAWS JTWIPTW+
I
1

a o\ ¥
gR -
@*\

BDA Request
Tasked to Sensor Net

/

TCT Cell LAWS* ___ Engagement
(Green): Criteria Met Decision ** > ENGAG MENT

IRC Chat

* TCT Cell Laws refers to any cell that control weapons.
** Includes ROE, command guidance and opportunity for command by negation.

Figure 3 Detailed Engagement Process. After Ref. [9]

The distinction between tracks and targets hinges on the assignment of a weapon
to a track. FBE-G operations outline that a track was not considered a target until it was
assigned a weapon. A platform to engage a target is assigned upon issuance of a fire
command. Figure 5 displays the engagement net used for FBE-G consisting of the
platforms and the weapons contained within them. For FBE-G all platforms were issued
a fire command upon target acknowledgment. The “Target-Weapon” pairing, as referred

to by FBE personnel, 1s represented in the schema by including the Weapon Type

14

attribute within the Target entity.

Engagement NET

Figure 4 Engagement Network. After Ref. [9]

At this point the autonomy aspect of the experiment is apparent. Once provided
_ with firing information and given the authorization to fire, the individual platforms may
determine if they are to engage the target. Upon engagement, or firing, information is .
continuously exchanged between platforms, sensors, and other systems to determine
impact and assessment of the target after impact.

All this information is time-stamped in order to be able to 'reproduce a time line of
events at a later date and to determine any information bottlenecks, problems, or
variation. This information is also useful in analyzing decision-making skills by the
commanders and other decision-makers involved in the experiment.

The information flow is reproduced in the database schema through the use of key
fields that relate each entity and/or event. Time attributes in each object provide the
timeline information that is crucial to event recreation. Figure 5 provides an overview of

the TCT process from track acquisition to target engagement.

15

Sensor Event

A 4

~ Sensor Net

v
Initial Analysis’ Reject
]
v L 4
2 3
UAE SIPRNET HOS
| DTF]
W
v v
C2Net & Engagement Net®

Figure 5 TCT Process Overview. After Ref. [9]

16

&

Prepare
Options

III. DATA AND APPLICATION DESIGN

 Databases have been utilized to store the data from FBEs, but with limited
success. These databases are primarily used for storage of text, and searches on these
databases are subject-based, not event-based. No practical attempts had been made in
designing a schema that would effectively support storing and querying FBE data and
provide customized results to meet user needs.

Relational databases store data in tables and enable applications written against
this data to retrieve and update data from these tables. In order to maintain an effective
and efficient database, data redundancy and inconsistency is eliminated by ensuring that
fields related to the same category of data are stored in the same table. Relationships
between tables allow for retrieval of related data stored in different tables. The types of
relationships supported by a relational database are One-to-One, One-to-Many, and
Many-to-Many. Many-to-Many relationships are implemented by creating two One-to-
Many relationships and using a third table as an intersection to store the relationship
between the two tables. Some common examples for each relationship are Employee-Job,
Department-Employee, and Students-Classes, respectively.

Normalization is an important concept to relational databases that eliminates
inconsistencies and minimizes inefficiency. A fully normalized database stores each
piece of information in the database once with each entity represented in a table that is
uniquely identified by its own primary key. A primary key is an attribute that uniquely
identifies a record. Normalized tables allow users to reference any piece of information
in other tables by linking them together through the foreign keys. A foreign key is an

attribute in a table that links to the primary key in another table.
A. SCHEMA DESIGN

A schema is a mapping of the database. It diagrams all the tables, fields, and

relationships in the database. The schema for the prototype database was designed to

17

account for all entities and relationships that represent the architecture of the FBE. (See
Figure 6.) This includes personnel, command cells, and roles occupied by personnel.
Although these entities are not the primary points of interest of the prototype system, they
are included in order to provide a complete picture of the structure and to allow for

growth of the system in future development stages.

frach hid e
% - rrseni 2L IR
RouteCourter r t:::?::“'ﬂ FreCommand
Targetld X FreCommandCounter T
LawsTermnal Function FCTmexme G
TmeRowteRequest Transmited —_ FCTimeRevd Fee
TemeRoweRequestReceved = FrerPlatform FreCounter
TmeRokeDate Transmitted [~ {rergetid FireCommend
TmeRokeDXaRecened FireTme
TimelFMMRequestSent |weaponMagStat
LA, e Firerlocation
_ Frerarude
L i o FNTE, T RoundsFeed
Nomination 3 3
N Targetld
NomnationCounter et
NomTimeSent oa | TMmecfDesgnation
o NomTsmeRcvd
Acquiskion et ety i
ensoraton TargetAtitude i
|aisrsTermnal TergetSpeed
|assessment TargetNLTTime
TargetiocatonError Pagsritaaon NG Prionty
e weaponType
ersurstonCouter posedkfiect |weapen ot 2 520
TmeR cquestSent weapaniype
Descrption IritiakQuantity Impact
TimeR equestRecerved Remark RoundsFred 1mpactCounter
Question TimelInfoSent & FiceE
{AddtonDareTime: ImpactTine
‘Acquistion GISRSTermmal
AcquistionCounter PTwTermna
Trackid
oo |AcqTime
ThreatType
AcoPlatform
AcgSensorType
Tracklocation
TrackAlttude
TrackSpeed i
;vad@r:xty ‘ DD Pt |
Remark ARSI | I coPid
Realfln) Roleld ccid
PO ——— o= [Peesonnelld Time
{RoleTypeld 80A
Observation
_ p T ComSat
ThroatType [PrwTenmina Developedinfo
[Description P Recevedinfo
{MissiorySpeciatty Location coPStat
. Function TrackDrop
TrackMerge
RedIntent
BlueLocation
BlueStrategy

Figure 6 Fleet Battle Experiment Database Schema with All Entities Represented.

As previously mentioned, the schema is transaction- (event-) based. The data
model represents the interactions between different systems and information sources by
concentrating on the logical events and the information transferred rather than the

physical objects manipulating the data.

18

Entities represented in the data model represent both logical and physical objects.
Event entities such as track acquisitions, target nominations, firing commands, and target
engagements are events that occur during the experiment and are examples of logical
entities in the data model. Physical entities are those such as platforms, sensors,
weapons, and personnel.

In the remainder of this section we describe the main entities of a FBE and how
they relate to each other. These core entities include Platform Type, Sensor Type, Threat
Type, Weapon Type, weapon, sensor, and mensuration information managers,
Acquisition, Mensuration, Nomination, Target, Route, Fire Command, Fire, Impact, and
Reposition events, operational cell and command center nodes, and personnel.

e The Platform Type entity defines the general types of ship, aircraft, or other
vessels that will participate in the FBE. Information related to a type of
platform is stored in this entity. For example, the USS Dwight D. Eisenhower
is a specific vessel of type CVN. A platform is involved in acquisition,
mensuration, fire command, impact, and reposition events. Since a platform
type can contain other platform types as assets (i.e., a cruiser owns a
helicopter as an asset), a recursive relationship needed to be established for
the Platform Types entity.

e A platform type entity can be related to many Platform entities which
describe specific platforms.

e The Threat Type entity represents the various expected threats that will play
a part in the FBE. A type of threat can be part of many instances of
acquisition events and is therefore a part of the acquisition event definition.

e The Sensor Type entity defines the generic sensor types that will be used in
the FBE. Any type of sensor can be used for multiple acquisition,
mensuration, and impact events.

e Similar to the Sensor Type entity, the Weapon Type entity describes a
generic weapon that will be used in the FBE. A weapon type can be linked to
many platforms and can be used against many targets.

e A Mensuration event is the request for more precise information on a

19

particular track. An acquisition event may produce more than one
mensuration event but a mensuration event is requested by a specific
acquisition event and a GISRS or LAWS terminal. Mensuration requires the
involvement of a platform and sensor, which may or may not be the same as
the acquiring platform and/or sensor, and a PTW terminal. Any platform,
sensor, and PTW terminal may be involved in more than one mensuration
request. The inverse is not true, however.

Weapon, sensor, and mensuration information managers are known as
LAWS, GISRS, and PTW Terminals, respectively. These terminals are
used during mensuration, nomination, and route events.

An Acquisition event defines the acquisition of some threat or the creation of
a track by a sensor. This entity is an intersection of the threat type, sensor
type, and platform entities. It links a threat type with its acquiring sensor and
the platform on which that sensor is located through the use of foreign keys
from those entities. A platform, sensor type, and threat type can be linked to
many acquisition events, but a specific acquisition event may only posses one
platform, sensor type and threat type.

A Nomination event is the recommendation from some GISRS or LAWS
terminal to designate an acquired track as a target. As with the mensuration
event, it is initiated by an acquisition event. The nomination requires
information from the mensuration event in order to arrive at a valid
assessment of the track and determine if it should be considered a target. A
nomination also requires a GISRS terminal for the data analysis.

A Target is a track that has been assigned a weapon by a nomination event
(target-weapon pairing) and designated as a target for engagement. A target
therefore links the track from an acquisition event (by way of a nomination
event) and a weapon type. A specific nomination event can produce
numerous targets if multiple attacks on the track are desired. A weapon type
can be used in many target-weapon pairings and therefore linked to many |

targets. If more than one weapon is assigned to a track then the different

20

assignments are appointed different target ids.

Route events are the product of a LAWS terminal and contain flight and
target information specific to the target-weapon paring of a Tactical
Tomahawk Land Attack Missile to a target.

The Fire Command entity is an event identifying the assignment of a target
to a specific platform (not a platform type). A target could create many fire
commands (be assigned to many platforms), but the data used in this research
only provided examples of one firing command per target id.

A Fire event is the actual firing of a weapon by a platform, or the engagement
of the target. A firing command usually produces only one fire event because
a firing of multiple rounds is recorded as one firing and the number of rounds
is recorded as information for that event.

An Impact event is the result of a firing event. The assessment of the impact
is part of this event and involves the use of a platform and a sensor for
gathering data.

In order to keep information concerning weapon magazine information on
platforms, an entity called Platform-Weapon Status was created. This links
a specific platform with the weapon types used and could help track weapon
usage during FBEs.

The Reposition event is used for information concerning platform movement
during an FBE. Its information is specific to one platform for a specific range
of time and can be used to track asset management and platform availability
after the conclusion of the FBE.

Command Centers represent authority units in the FBE that make critical
decisions and assessments. They control strategic decisions and asset
management. The Common Operating Picture (COP) is in reality an
assessment made by personnel who have studied information about the
environment. It is the product situational awareness. The COP is defined by

Command Centers.

21

e Operational Cells are similar to Command Centers but tend to control
specific actions and platforms. They provide lower-level decision making
power. They are linked to targets because of their influence in determining
the viability of a target and the assignment of platforms to targets.

e The Personnel entity contains information about specific individuals such as
name, rank, and service. These individuals may be assigned many jobs, or
Roles. Many Roles have the same titles because they perform the same tasks
and responsibilities but on different platforms. Therefore, personnel and their
roles are linked through the use of an entity called Role Assignment. This
entity can then be related to specific platforms and cells as necessary.

e The FBE entity was created to store FBE specific information such as dates
and location for the experiment. The entities Acronyms, Data Types,
Initiatives, Objectives, and Questions hold respective information pertaining
to the experiment. They are entities created to store specific information and

have no necessary relationships with any of the other entities.

B. APPLICATION DESIGN

Due to the lack of user defined requirements for application implementation,

some assumptions had to be made regarding querying and reporting capabilities.

1. Querying

Due to the novelty of the concept for this system, FBE personnel had a difficult
time formulating application requirements and provided few suggestions concerning
system-querying capabilities. Several querying options were formulated and presented to
the user. These suggestions were acknowledged as likely and beneficial options so they
were implemented as predefined, or “canned”, queries. In general, these queries extract

information on the main entities based on different arguments or parameters. A detailed

22

description of these queries is presented in the following chapter.
In order to provide some flexibility for users a custom SQL-based query option

was also included in the design of the system.
2. Reporting

The same situation occurred with report specifications. It was determined that
reports should be provided for query results. Due to lack of requirements, reports that the
author felt would be most useful were defined and discussed with the user. A decision
was made to make their design as simple as possible in order to allow for future
modifications. Simplicity was also a benefit in reflecting the information provided on-
screen by the application.

In the next chapter we discuss the implementation of the database and application

designed in this chapter.

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

IV. DATA AND APPLICATION IMPLEMENTATION

A prototype Database Management System (DBMS) was implemented from the
data and application design described in the previous chapter. A coupling of Microsoft®
Visual Basic and Microsoft® Access 97 was chosen in order to combine the power of
Microsoft® Access 97 database processing capabilities with the ease of user interface
development of Microsoft® Visual Basic in order to meet the users’ needs. The
simplicity of connecting the two applications was also an important consideration.

By keeping the database separate from the application, the database could be
migrated to other SQL-based databases without the need to re-write or modify the

application.

A. DATABASE IMPLEMENTATION

The database for the prototype system was implemented in Microsoft Access 97.
It is a relational database management system and was chosen primarily because of its
popularity, flexibility, and wide use. Data produced during the FBE is categorized and
stored by the logical event that produced it.

Since the storing of data from multiple FBEs in a single database could eventually
tax the speed and querying capabilities of the system, it was decided that each FBE would
have its own database. In other words, a database will contain data from only one FBE.
Some reasons for this decision are 1) it keeps the volume of data in a database to a
manageable size so that queries are not slowed and 2) it allows for changes to be made
easily for each experiment. The latter reason addresses the differences in FBE objectives
and the changing information requirements to support those objectives. A third reason is
somewhat related to the latter. If a specific record of an entity is altered between FBEs,
then that record’s information pertaining to the previous FBE will be lost. This makes
the linking of that entity’s information to prior FBEs impossible.

The design and military structure of FBEs assigns discrete names or designations

25

to the units involved, which provides a unique identifier, or primary key, for each entity.
This simplified the task of determining entity classifications and ensuring distinctions
among instances of the same entities.

Twenty-five tables, representing logical events and physical entities in the FBE
architecture, were created in order to accommodate the normalized data. However, other
FBE information pieces specific to the FBE design were necessary so additional tables
were created. These include FBE attributes (such as dates and title), acronyms,
initiatives, objectives, and questions. Two more tables were added to support data import
and filtering from LAWS and other possible sources.

For the implementation of the database schema, twenty-one entities were
concentrated on with fifteen of those having relationships with each other. 1 will now
discuss the implementation of the entities as tables in an Access database. (Figure 7)

e The Platform Type table contains information related to a type of vessel that
is used in the FBE. The primary key for this table is the asset’s generic
acronym used by the military. For example, CVN (aircraft carrier, nuclear),
CG (guided-missile cruiser), and SSN (fast-attack submarine, nuclear).

e The Sensor Type table contains the generic sensor types that will be used in
the FBE. The primary key for this table is the typical name or acronym used
by personnel. Examples include UAV (unmanned aerial vehicle) and RECO
(reconnaissance personnel).

o The Threat Type table contains the various expected threats that will play a
part in the FBE. The primary key used is the generic designator used to
address a threat such as NODONG (a type of ballistic missile), SAMI (a
surface-to-air missile), or MOBRDR (acronym used for mobile radar).

Attributes for threat description and capabilities more clearly define this table.

26

e I | AWSTemina
StartDate o) 2 Locaton N .
e ’ ”: oot Function FireCounter -1
Description NominationCounter
. {Location NomTimeSent :weiornmand
- oo [NomTimeRevd \:e me
f*= |Acquisttion . {weaponMagstat
3 Mensuration FirerLocation
! . FirerAkitude
onym - . I {GISRSTerminal
o i Assessment RoundsFired
+ {Location . TargetLocationError
Function

{5 W
% o : SN
Description . * |MensurationCounter Targetld
et [. {TimeRequestSent TimeofDesignation
R TimeRequestReceived | . [Nomination
Objectiveld - *-[Tmelnfosent ;- [TargetLocation
o | TmelnfoReceived - v TargetAltkude
Acquisition e S - {1argstspeed
MenSensorType WeaponType TargetNLTTime
MenPlatform [Description : Prioriky
- GISRSTerminal - \WeaponType
AcquisitionCounter PTWTerminal DesiredEFfect
Trackld " locid
AcqTime R .
TheeatType oo 335:"’"
AcqPlatform . - .
e tyoe Lo~ . SN, B
TrackLocation) ST I SensorType
TrackAiude ' y . : Description
TrackSpeed R)
TrackPriority . : - g JR EiCHORE e e Y
Red/Blue . . . e [ltform
Remark D . =
: . PlatformType -
Real/Inj . PO e . Name
kK PTWTerminal - | SpeciakyMission
©ipTw [Commander
Location Logger
* {Function Location
- - LAWSFormat

Figure 7 Schema of Entities Implemented in Prototype Database.

e As with the previous tables, the Weapon Type table defines a npnspecific
entity and contains weapons that will be used in the FBE. The primary key is
the military term applied to tﬁe weapon. Examples include: AGM (air-to-
ground missile), AIM (air interceptor missile), and SLAM (Stand-off Land
Attack Missile). Weapon Type also includes a Description attribute.

e LAWS, GISRS, and PTW Terminal tables represent weapon, sensor, and
mensuration information managers, respectively. These terminals are used
during mensuration, nomination, and route events. The LAWS, GISRS, and
PTW Terminal entities all possess like attributes. They are defined by their
location and functionality attributes. For future schema development efforts,
these terminal types could be implemented as one table with a defining
attribute determining the type of terminal as a LAWS, GISRS, or PTW/JTW.

¢ The Platform table contains occurrences of a specific platform type. The

27

primary key for this table is the platform’s designator. For example, the USS
Dwight D. Eisenhower is a specific vessel of type whose designator is CVN-
69. A foreign key from the platform type table provides information specific
to the type of platform. The platforms specific mission or specialty can also
be stored in this table. For data importation from LAWS, a table containing
the LAWS designation for the platform is also included in the table’s
definition.

An Acquisition event table defines the acquisition of a track by a sensor.

This table’s primary key is a concatenation of an abbreviation distinguishing it
as an acquisition event and an AutoNumber counter kept by the database. The
table contains three foreign keys that links a threat type with its acquiring
sensor and the platform on which that sensor is located. Other significant
attributes include the track id determined by the acquiring terminal and track
information such as altitude, speed, and location.

A Mensuration event table is the request for more precise information on a
particular track. The instance of a mensuration event links a platform and
sensor, which may or may not be the same as the acquiring platform and/or
sensor, and a PTW terminal. Its primary key is also a concatenation of an
abbreviation and an AutoNumber counter. Foreign keys from the mentioned
entities help define the event. A foreign key specifying a GISRS terminal as
an information source is also an attribute of this table. Attributes to store data
concerning information request and receipt times are present in this table as
well.

The Nomination event table uses a primary key composed in the same
manner as the acquisition and mensuration primary keys. Because a
nomination requires information from a mensuration event, a foreign key from
the mensuration table is included. A foreign key from the acquisition table is
also an attribute. An assesment field is provided for qualitative information
that may have had a specific influence on the nomination event.

The Target table links the track from an acquisition event (by way of a

28

nomination event) and a weapon type by including foreign keys from both the
nomination table and the weapon type table. The primary key is specified by
GISRS and LAWS terminals. Post-mensuration information including time of
designation as a target, location, speed, and “No Later Than” time are stored
in this table. The “No Later Than” time specifies a time at which, if the target
has not been engaged, it ceases to be a time critical target.

e The Fire Command table primary key is created in the same manner as the
other event primary keys. This table contains the platform and target table
primary keys as foreign keys. It also contains attributes stating the time the
command was sent and received, as well as if a weapon was actually launched
at the target.

e A Fire event table is the actual firing of a weapon by a platform, or the
engagement of the target. Its primary key is a concatenation of an
abbreviation and an AutoNumber. The Fire Command that produced the Fire
event is stored in this table using a foreign key. The number of rounds and
time of firing is also recorded.

e An Impact event table is the result of a firing event. Its primary key
resembles those of the other event tables. The assessment of the impact
involves the use of a platform and a sensor for gathering data. Foreign keys
for both are stored in this table as is the target impact time and the fire event
that led to the impact event.

e The FBE table uses the FBE name (i.e., E, F, G) as its primary key. It
contains the start and end dates and the location of the experiment. The
Acronym, Data Types, Initiatives, Objectives, and Questions tables contain
memo data type fields that hold respective information that can be search as

strings.

Referential integrity requires that records in tables providing information for other
tables must exist prior to the creation of the record in the dependent table. Information

flow dictates which entities need to be created prior to others. The schema follows the

29

Jogical chain of events of the experiment therefore events must be created in the order
dictated by the information flow — acquisition, mensuration, nomination, target, fire
command, fire, impact.

Data types and formats for all attributes were determined by the information
sources and their current formats and usage of the data. Because of the variance in data
types and formats table attributes were weakly defined. Most attributes are of text data
type to allow for manipulation of the data and a broader variety of formats. This is true
of time information. Access and Visual Basic do not recognize time information stored
in Military Date-Time format. Therefore, the times in the database are stored as text
fields. This means that any analysis or comparison on this type of information must be

performed by the application by using string manipulation.

B. APPLICATION IMPLEMENTATION

The application interface for the DBMS was designed and impemented using
Microsoft® Visual Basic 6.0: Professional Edition.

The application involved the creation of twenty-eight graphic user interface (GUI)
forms that allow the user to add, delete, modify and query the data stored in the database.
The application uses both Visual Basic data objects and virtual recordsets in order to
access the database. Controls such as text boxes, dropdown list boxes, command buttons,
and menus are used to facilitate data entry and modification, as well as form and record

navigation.

1. Forms

Upon execution of the application executable program file, a module containing
the Main sub procedure is used to determine the database file to be opened by the
application. An Open File dialog box, as in Figure 8, is displayed where the user can

browse the computer files available for the database file they desire. When the user

30

selects the database file, the filename is stored as the database name and recordsets are
updated by the application to contain the information from the database selected. (Should
the user not choose a database file, the main form will be displayed but no search or
editing options will be available because there is no database selected. The user can still
choose to open a database y using the File menu option.)

The main interface form (Figufe 9) is then displayed. The user can now use the

| application to modify and search the selected database.

e EH|

ke [@w @&l sEE

] dbi
%G
G2

emme T [[(oe
Fiesorbpe [pamesietndl =] Caedd

: ’ e Dpeh as geadbniy

Figure 8 Open Database Dialog Box Displayed at Run-time.

31

. G.mdb Database =]

Add/Delete View Data Help
OpenFBE File Ctl+0

Queries
sQL

Exit Ctl+X

Figure 9 Main Interface Form.

Forms designed for record addition, modification, and deletion (Figure 10) are
available to the user under the Add/Delete menu option on the main form. Forms created
inchjde Acquisition, Mensuration, Nomination, Fire Command, Fire, and Impact Event
Update forms, a Target Record Update form, a Platform Information Update form,
Platform, Sensor, Threat, and Weapon Types forms, and Acronym, Data Types,
Initiatives, Objectives, and Questions forms.

These forms make use of text boxes and dropdown list boxes to ease data entry
and modification as well as displaying update, save, add and delete buttons to manipulate
the records. Data objects, which also serve for record navigation, and virtual recordsets
are all updated at the time of the form’s load event procedure. They provide the data
links between the Visual Basic form and the database.

The Add Event button will enable all the data entry fields and clear their contents
in preparation for addition of a new record. Upon data entry completion the user must
then select the Save Event button to add the record. The Delete Event button will warn

the user before submitting the record deletion to the database.

32

. Acqsition Event Update Form

. Acquistion EvertId: [T
“Trackld <

THreaf»Type: '

Time:
“Platform Id:

Semsor Tope:

RS Track Location:

~ Track Alitude:

 TiackSpeedt

' _"TrackPryi_ority‘ "
Hoste:

. As@ssmgnt N

[14] "_H‘Cqu,is"im EventRecord1of15 M_"_lll_i 'v

st | Gwetir | poebvn|

Figure 10 Example Update Form (Acquisition Event Update Form).

To Update or Edit a previously existing record, the user must select the Update
button. The Update button’s caption will then automatically change to “Submit”. After
completing all edits, the user will select the Submit button in order to commit the
changes.

The user may choose to view all targets stored in the database by selecting the
View menu option and choosing Targets. This will display the Targets window seen in
Figure 11. When the target window appears the user may display the time line of events
corresponding to a specific target by double-clicking the target record they desire. The
double-click action will display another window (Figure 12) with the time data for every

event pertaining to that target from acquisition to impact.

33

File
T argetid [TimeofDesignation _{Nomination [Targetlocation | TargetAhitude [TargetSpeed [TagetNLTTime |4
» [1x0001 *NE00035 :324353.7N 0122710 InFeet in Knots 091241Z4PR2000
GG2024 iNEQOO35 1324353.7N 0122710 in Feet in Knots :091241ZAPR2000
662522 ‘NEQOO35 1324353.0N 0122710 In Feet in Knots :0912412APR2000
Gi1745 'NEOOQ36 .325427.4N 0131517 in Feet in Knots 2
GI1746 {NEOOG36 .325427.4N 0131517 In Feet .in Knots Zz
12090 NEDOO37 :322430.0N 0150556° In Feet .inKnots 0310352APR2000
GI2091 ‘NEOOO37 1322431.0N 0015055. In Feet ‘in Knots 0910352APR2000 |
(12092 ‘NE0D037 {322929.0N 0150551 In Feet :in Knots -0910352APR2000
612093 ‘NEQQ037 :322929.0N 0150551 In Feet inKnots 0910352APR2000 :
(12094 :NEQQ037 1322929.0N 0150551.In Feet ‘in Knots :09103524PR2000 .
(12095 {NEQOO37 :322929.0N 0150551:In Feet in Knots :0910352APR2000
(12096 ‘NED0D37 £322929.0N 0150551:In Feet in Knots .09103524PR2000
(12097 :NEQOD38 1324918.7N 0125737:In Feet .inKnots :091215ZAPR2000
(12098 {NEQOO38 324918.7N 0125737 .In Feet in Knots 0912152APR2000
(12098 :NE00038 :3243818.7N 0125737 In Feet in Knots 0912152APR2000
‘ I f“’\i ﬁﬂ TR ITT OO S M ANA N T A ArEDAT -~ 0 v ’ Lalal Ral N o ¥ Y nﬂ'\nnn’ r

Figure 11 Targets Window.

If the user desires to reduce the number of targets displayed by sorting the records

according to some specific criteria, they can choose the filter option under the File menu

in the Targets window. This will open the Filters window (Figure 13) and allow them to

choose which filters to apply and what criteria to filter with. They can select which

filters to activate by checking the appropriate boxes. Once the box is checked, they can

then enter or select the criteria they wish to filter with.

The Apply button will activate the filters that are checked but will keep the Filters

Window open. The OK button will apply the filters and return the user to the Target

Records Window. The Cancel window will return the user to the Target Records

Window without altering any filter settings.

34

wi. Timeline

‘ Target Descripion: RKTMSL/MDMMSL
{NLT Time: 09103524PR 2000

- 1Acquisition Time: 091108

. IMensuration Bgst:

~_{Mensuration Revd:
" |Mensuration Info Sent:
Mensuration Info Revd:
Nomination Sent:
- {Momination Reovd:

| Target Designation:
Fire Command Xmit:
" |Fire Command Revd:

Figure 12 Target Timeline Window.

35

w. Target Record Filters

I~ Time Range:

x Acquisition Time: {Day/Time] f
After: | r——d Before: r___' r_——' 5

Target NLT Time:

.] o Before:

I~ Location:

. Latitude Range:
| From:

Longitude Range:

From: l To l ‘

Figure 13 Target Record Filters Window.

2. Menus

The application was implemented as a menu driven application with the main
form as the base of form connectivity. By using the main form’s menu options users can
reach the predefined query form, the SQL custom query form, and all entity update
forms. They can also view the list of targets found in the database and even have limited
control of the data importation process. They can do all these things with the use of the

menus available on the main form. Menu options include opening a different database,

36

searching the database using "canned" (previously defined) queries or custom SQL

queries, editing the database records, and/or populating the database with new

information from other systems using text file importation.

. MamForm . J
1
- I s I 1
File Add/Delete Forms J View Targets J Data
= : . 1

Open New File Events ¢ Acronym Update Form Filters ; Sort
*Canned" Queries . Data Types Update Form | Transfer
SQL Custom Query . Platform Update Form Populate Tables

: Other Entity Update Forms...

Query Output Form . Acquisition Update Form

Mensuration Update Form
Nomination Update Form

: 1 Other Event Update Forms...

Figure 14 Hierarchical Chart of Menu Options.

The previously mentioned data import capability is based on a capability offered

by the latest version of LAWS. The export facility takes user-selected fields from the

LAWS system database and exports them to a comma delimited text file. Upon creation

of the text file, the information can be imported to a database table. The table used for

data import was specifically designed for the exported LAWS data fields, therefore

adjustments to the source code would have to be made in order to allow for extra fields or

for the integration other systems as data sources. However, the system is operational

with the LAWS export text file format. (The database table is named LAWS in the

prototype database schema.) Once the table is filled, the data can be sorted and filtered

for completeness and formatting using the Transfer and Sort options available under the

Data menu item on the Main form. After filtering, the information can be separated and

disseminated throughout the database by using the Populate Tables option under the Data

menu item. This feature ensures that all the information is sent to the appropriate tables

in the database and in the appropriate order as dictated by referential integrity.

37

3. Queries

If the user chooses the query option from the main form, then another window
(Figure 15) displaying the provided queries appears. Option buttons allow the user to
select the desired query. When an option button is selected, the appropriate controls will
become enabled. The user selects the criteria and runs the query using a command
button. The Submit Query button’s code module contains a Select Case clause with
predefined SQL statements. The option buttons are actually an array of controls whose
index determines the case to be selected in the source code and therefore the SQL

statement to be used. The form’s controls provide the arguments used in the statements.

. Quenes =]

e

gas]

& Tracks acquired by platform:;] Ll
" Tracks acquired by sensor type: I :_]
" Tracks acquired by senson l _:l

on platform: r _’_'_|

" Weapon lype: I v! used.

€ Thieat type:

ST

¢ Nominations accepted as targets: Submitﬁuery l

" Nominations declined as targets:

i € Targets destroyed (impacts).

Figure 15 “Canned” Queries Form.

38

Query results appear in the window shown in Figure 16. Fields displayed
are predetermined and set in the source code (hard-coded). These queries do not provide
the user with the option of selecting what information is displayed; only the criteria by

which to search the database.

Query Output ' | |E1] X]

.
e .

» Bgcord Acquistion Event] Track Id[Platfomil Time of Acquisition

AEOOC37 G745

AEQ0038 GI2090
AEQOO3S

AE0C40 Gl2104
AEQO04T Gl2111

AEQOO4Z
AEQ0043

Gi2118 GV
Gl2125

~g|lofui|ss ool

Figure 16 “Canned” Query Output Window.

The user selects which query they would like to use by selecting the appropriate
option button. Thevapplicable controls are then enabled and the user chooses the criteria.
They then select the Submit Query button and the Query Output Window is displayed
with the results of the query.

Four of the eight “canned” queries provided filter acquisition events. These
queries filter the acquisitions by the acquiring platform, sensor type, both the acquiring
sensor type and platform, and by the threat type of the acquired track. One query filters
the target records by the weapon type assigned to, or paired with, the target. Two of
queries concentrate on the nomination events — one searching for the nominations
accepted as targets and the other searching for the nominations declined as targets. The
last query on the “Canned” Queries form retrieves all impact events from the database.

The queries are defined in the source code of the application using cases that
contain SQL statements set specifically for the individual querying cases.

For the custom query option, some considerations had to be taken. The biggest

39

difficulty would have been the presentation of the information, but using Visual Basics
Data Bound Grid Control, the fields are updated through the use of a data object that
recognizes the SQL-requested fields.

Should the user select the SQL option from the Main form, the SQL Custom
Query Window will be displayed. (Figure 17) This window contains a text box in which
the user will enter the SQL statement desired. Once the statement is entered, the user
selects the Search button and the information is displayed in the Data Bound Grid at the
bottom of the form.

Using this query method the user has more control over the fields to be displayed
and can alter the criteria to suit their particular needs. However, those who do not fully

understand the database schema may encounter some difficulties.

Wi, Custom Query [_ {O0] X]
Type your SOL statement and click "Search™.
Select * From Acquisttion
Cancel

Acquisiion [Tiackid ~ThcqTime [ThieatType [AocPlatiom

» |AE00036 1CSG324124736 {SAME iCG-7
AE00037 1GI1745 071421 ‘NODONG {CVN-69
AE00038 1212090 0S1108 ALABBA :CV¥N-69
AE00039 1G12097 091227 .FTR {CVN-69
AED0040 1G12104 ‘SSMDEP {CVN-63
AEDC0041 G211 {ALABBA {CVN-69
AE00042 Gl12118 : :SSMDEP ;CVN-69
AE00043 612125 : :CDCM {CVN-6S
AE00044 GJ0001 1SCUDB JFACC
AEQ0045 GJ0008 070626 {SAM2 {JFACC
AE00046 J0064 {NODONG JFACC
AE00047 GJ2001 091104 {ALABBA JFACC
AEQ0048 LAS000 ‘NODONG CG-68
AE00049 LAS010 . 'NODONG {CG-68
AE00050 1LG0029 1SCUDB L7

< | : o

Figure 17 SQL Custom Query Window.

40

When querying the database, the primary and foreign keys of each table provide
links between the tables. Because the database is relational, table joins must be created to
access information from multiple tables.

In order to extract information from a table that is two relationship links away, it
is necessary to include the necessary linking information from the intermediary table.

For example, suppose you want to query information of an impact event and want to
determine either the firing platform or the target fired upon. The links must first relate
the Fire event that created the Impact event through the Fire attribute, or field, within the
Impact event. Then, to retrieve the platform or target ids that reside in the Fire Command
event another link must be made between the Fire event and the Fire Command event by
using the Fire Command attribute, or field, within the Fire event. In Standard Query

Language (SQL) the query would look like this:

SELECT Impact.FireEvent, Fire.Fire, Fire.FireCommand,
FireCommand.FireCommand, FireCommand.Targetld, Fire
Command.FirerPlatform

FROM Impact, Fire, FireCommand

WHERE Impact.Fire = ‘TE00001°

AND Fire Fire = Impact.FireEvent

AND FireCommand.FireCommand = Fire.FireCommand

The SELECT section chooses the fields the user wants to retrieve and/or compare.
The FROM section determines the tables in which to look in for the fields named in the
SELECT portion of the SQL statement. WHERE is the comparison portion of the SQL
statement specifying the criteria by which records will be eliminated or selected.

The example SQL statement will query the database for the Targetld and
FirerPlatform involved in the FirecCommand event that produced the Fire event that led to
the Impact event designated as ‘TE00001°. The statement selects the record in the Impact
table with an id equal to ‘TE00001°. It then compares this instance’s FireEvent attribute
with Fire instances until it finds a match. It will then use the FireCommand attribute of
that instance of the Fire event to find the matching FirecCommand instance and provide

the FirerPlatform and TargetId.

41

A query between tables that lie more than one table away from each other will
require that each link between intermediary entities be represented in the SQL statement.

The most important query for this system is also one of the most complicated —
time queries. The format used for time data poses a significant problem for comparisons.
The data is stored in Military Date-Time fashion. This is expressed as a string
concatenation of the day, the time (24-hour), the time zone (Zulu (Z)), the month, and the
year. In order to be able to compare these times and to perform any calculations, the
string must be segmented into pieces and each portion compared with the appropriate

section of another date-time string using string manipulation code.

4. Reports

It is possible to export database data to Microsoft Office applications from a
Visual Basic application through the use of automation. Automation is a process that
enables applications to communicate and exchange data with each other.

The Visual Basic application sets a reference to the object library of the
Automation server to be used; in this case, Word 97®. An instance of the Automation
server object is created. A recordset object containing the data desired is also created. A
code module within the Visual Basic application instantiates the object variables and
sends the data to Word. The data is then exported from the recordset object to the
Automation server. Word can then be used to produce and edit a document or merely as
a print engine. [Ref. 4] Once the Visual Basic application o‘pens a document in Word
97® the manipulation of data and format of the report is controlled in the Word 97®
application. An example of a report produced and formatted in Word 97® is shown in
Figure 18.

Information retrieved from the database using predefined queries, SQL custom
queries, or data objects (recordsets) can be exported to a report (Word document) by
using the Word 97 automation server. Reporting capability is available on forms

displaying entity information by means of a menu option.

42

5.

Modules

Visual Basic is an event-driven programming language. Event-driven means that

procedures (sections of code intended to perform a singular, specific action) are triggered

by user interactions with the application’s user interface. User actions can vary from

selecting a menu option to selecting a check box in the window. For Visual Basic,

modules are groupings of multiple procedures that provide the functionality of a form.

Consequently, a module exists for each form in the application. The modules that define

the application are provided as Appendix B for this thesis.

Acquisiion. | Trakid | AcgTime ThreafIype | AcqBaifenm | AcgSenserlype | IrackLocafion | TrackAHibude | TrackSpeed | Track Remark
Pioxily
ARN0036 CSG324 SAMS CG71 RPV 324337N n Knots TCT SAMG-CSG324 124736
124736 0122710 6E
AED0037 GI1745 [071421 NODONG | CVN-69 325427 4N +000 m Knots TCT 3 NODONGS GI1745
0131517 9E
AF00033 G090 | 091108 ALABBA | CUN-69 RPV 322430N 109 m Knots TCT ALABBA-GII090
0150556E
AEN0039 G097 | 091227 FIR CVN-69 324918 7N 57 1 Knots TCT FUELING TRUCK-
0125737 4E GI2097
AEDQ040 G104 SSMDEP CVN-69 3254133N +0000 ™ Knots TCT SUB-12104-G12104
0131111 6E
AFN0041 GI2111 ALABBA | CUN-69 3224331 +0063 m Knots TCT ALABBA-GR2111
01505520E
AFD0042 G118 SSMDEP CVN-69 3254022N 6 m Knots TCT SUB-GR2118
0131159 9E
AFDO043 GI2125 CDCHM CVN-69 3200008 +0823 m Knots ICT LOITER W-G12125
0132000E
AEDOC4 GJ0001 SCUDB JFACC 283500N Knots TCT AL JAFRAH OIL
0172800E FIELD-G
AF00045 G008 | 070626 SAM2 JRACC RPY 320639 SN +0025 n Knots TCT SAM2-GI0008
0200417 0E
AFN0046 GI0064 NODONG [JRACC 291841 1N +0607 i Knots TCT NOD ONG- (30064
0161827 3E
AED0O47 672001 | 091104 ALABBA | JFACC RECO 291719 4N 806 n Knots TCT ALABBAS- (72001
. 0173711.1E
AED0048 LAS000 NODONG | CG-68 322800N +075 n Knots TCT LA5000 LOITER
0115730E TTLAMI-
AEDC49 LAS010 NODONG | CG-68 2907008 +1278 m Knots TCT LA5010 LOITER
. 0155730E TTLAM-
AEDOCSD 1.G0029 SCUDB CG-71 283500N +0286 nKnots TCT AL JAFRAH OIL
0172800E FIELD-L

Figure 18 Acquisition Events Report Created in Word 97® by Using Print Option on

Acquisition Event Update Form (Figure 10).

43

C. POST-IMPLEMENTATION

Once the forms were designed and most of the data manipulation code was
implemented, the prototype was demonstrated. Feedback provided some new insight into
application functionality and some requirement modifications.

Difficult at best, application testing was time-consuming and imprecise.
Troubleshooting was an arduous task because of the lack of available of data and the
incompleteness of the little data that was available. However, the export facility
available in the latest version of LAWS provided some data that could be manipulated, or
massaged, into a usable form and used to test the database schema and the interaction of
the application with the database.

Forms properly interact with each other and limited error trapping has been
included to eliminate database error terminations.

Further discussions with FBE personnel and personal data analysis have
demonstrated that the schema developed could be improved by combining some entities
such as the LAWS, GISRS, and PTW terminal entities. Data such as time needs to be
formatted in a different manner to allow for more effective querying. Other data fields
need to be more clearly defined. A lot of fields are defined as text data types, which
produces a lot of wasted memory space. This slows the system down and will be

apparent once more data is entered.

V. CONCLUSION AND RECOMMENDATION

A. CONCLUSION

The database schema and application developed for this thesis are basic, yet
functional. They provide a simple approach for extracting and updating FBE data using
an easy to use graphical interface.

The requirements analysis portion of this project was very frustrating. Users were
not certain of what capabilities they wanted and had little understanding of the
functionality a system such as this could provide. They provided very little input as to
desired queries, reports, and interface design preferences. As a result the author had to
spend a considerable amount of time understanding the application domain in order to
suggest useful query and report options.

The conceptual model should have been more clearly defined and the project’s
implementation postponed, but time constraints required that the schema be implemented
and tested quickly to allow time for the application’s development. This led to
modifications being applied to the schema mid-way through the implementation of the
application.

The Visual Basic and Access coupling is a very effective method of implementing
client/server systems such as this because it allows the programmer more control over the
design of the interface and its interactions with the database. It also provides for
program/data independence thus supporting upward scalability of the database.

However, limitations of relational databases join processing can slow the speed of
searches and other data management processes. Numerous table joins are necessary to
navigate the database and, with large amounts of data in the tables, querying speed is
likely to suffer. We do not however anticipate the volume of data from a single
experiment to overwhelm the system since a database contains information from only one
experiment.

Another potential limitation is that SQL custom queries require the user to

45

understand the data model well and can become complicated and slow when information
from two or more tables is required.

Perhaps the greatest shortcoming of the Visual Basic and Access linkage is the
quantity of error-trapping and data format-validation code that must be created. Data
editing and updating method errors addressed by Access 97 can cause an error that may
terminate the connection between the application data object and the database.

The database schema was initially implemented in Access 2000, but Visual Basic
6.0 does not seem to interface with Access 2000. This required that the database schema

be reconstructed in Access 97.
B. RECOMMENDATION

It is my recommendation that the data model be examined with greater detail. In
my opinion, the conceptual model should be researched independently of any
implementation plans with the intention of defining data types and sources more clearly.
Research should involve input from all data repository systems involved in FBEs, such as
LAWS and GISRS, to determine the data overlap of the systems and the distinguishing
data interests of each.

The application provides limited sorting and filtering capabilities for the tables
defined in the database. The data filtering option needs to be more robust and tested with
sufficient feedback from the usér. For example, the target record viewing filters are basic
and a better format for time data would provide more effective querying capabilities and
‘make the system more stable.

The data “drill-down” functionality is also very basic. Better requirements
definition needs to be the main focus of any follow-on work. With a clearer idea of what
kind of data is wanted, the system functionality can be more focused and provide better
resuits.

The development effort for this system was implemented using an event-based
methodology. Focus was placed on the information and its flow with less attention paid

to the behavior of the system. With future alterations to war-fighting doctrine and FBE

46

architectures, the schema developed here may or may not accurately define the
interactions among the entities involved. This schema should be meticulously tested in a
FBE environment in order to reveal its limitations.

The fourth phase of the larger effort will use an object-oriented approach. It will
look at these relationships as interactions among objects. These objects would contain
attributes (information, data) about themselves and behaviors that would define their
interactions and information flow and manipulation. By focusing on both information
and behavior it is possible to develop systems that are resilient and flexible to changes in
structure and processes.

I would also recommend that the system be migrated to the World Wide Web.
This would increase the amount of input from interested parties and help define
additional requirements. Schema limitations could also be scrutinized and additional

entities and relationships added to supplement the data model.

47

THIS PAGE INTENTIONALLY LEFT BLANK

48

APPENDIX A: GLOSSARY OF TERMS

This appendix contains the definitions of abbreviations used in this thesis.

AO
ANZ
ASM
ASMD
ASW
ATO
BDA

BWC
C2
C2W
C41
C4ISR

CG

. CIC

CINC
CITF
COA
COMSEC
CONOPS
COP
COTS
CSG

CTF

Area of Operations

USS ANZIO

Anti-Ship Missile

Anti-Ship Missile Defense
Anti-Submarine Warfare

Air Tasking Order

Bomb Damage Assessment
Battle Damage Assessment
Battle Watch Captain

Command and Control
Command and Control Warfare
Command, Control, Communications, Computers, and Intelligence
Command, Control, Communications, Computers, Intelligence,
Surveillance and Reconnaissance
Guided Cruiser

Commanders Guidance

Combat Information Center
Commander-in-Chief
Commander Joint Task Force
Course of Action
Communications Security
Concept of Operations

Common Operational Picture
Commercial Off-the-Shelf

USS CAPE ST GEORGE

Combined Task Force

49

CVBG
CVw
DFN
DTG
ERGM
GBS
GCCS
GIS
GPS
GSIRS-C
HARM

HOS
IKE

INTEL
ITO

JAC
JDAM
JECG
JFACC
JFC
JFMCC
JICO
JIPTL
JIMCIS
JOA
JISOW
JSTARS

Aircraft Carrier Battle Group

Carrier Air Wing

Digital Fires Network

Date Time Group

Extended Range Guided Munition
Global Broadcasting System

Global Command and Control System
Global Information System

Global Positioning System

Global ISR System-Capability

High Speed Anti-Radiation Missile
High Interest Track

Hostile

USS EISENHOWER

In-flight Mission Modification Message
Intelligence

Integrated Task Order

Information Warfare

Joint Analysis Center

Joint Direct Attack Munition

Joint Experiment Control Group

Joint Force Air Component Commander
Joint Force Commander

Joint Force Maritime Commander

Joint Interface Control Officer

Joint Integrated Prioritized Target List
Joint Maritime Command Information System
Joint Operations Area

Joint Stand-Off Weapon

Joint Surveillance, Target Attack Radar System

50

JSWS
JTCB
JTF
JTW
JWAC
LAMPS
LAN
LANTIRN
LAS
LASM
LAWS
LOS
LPMP
MBC
MCC
MDS
METOC
MOE

OCE
OIC

JSTARS Work Station

Joint Targeting Coordination Board
Joint Task Force

Joint Targeting Workstation

Joint Warfare Analysis Center

Light Airborne Multipurpose System
Local Area Network

Low Altitude Navigation and Targeting Infrared for Night

USS LASALLE

Land Attack Standard Missile
Land Attack Warfare System
Line of Sight

Launch Point Mission Planner
Maritime Battle Center
Maritime Control Center
Mission Distribution System
Meteorological and Oceanographic
Measure of Effectiveness
Maritime Patrol Aircraft
Mission Planning Request
National Command Authority
Not Later Than

Naval Post Graduate School
National Reconnaissance Office
Naval Surface Fires Support
Navy Special Warfare

Naval Undersea Warfare Command
Naval War College

Officer Conducting Exercise

Officer-in-Charge

51

OOB
OPCON
OPFOR
OPINTEL
OPORD
OPSEC
OTCIXS
PAO
PGM
PLI
POC
RFI
ROE

SA
SAM
SAR

SATCOM
SC
SITREP
SLAM
SLAM-ER
SOF

SOP

SPAWARSYSCEN
SPECWARGRU

SSM
SSN
STOW
TA

Order of Battle

Operational Control

Opposing Forces

Operational Intelligence

Operations Order

Operational Security

Officer-in-Tactical Command Information Exchange System
Public Affairs Office

Precision Guided Munition

Position Location Information

Point of Contact

Request for Information

Rules of Engagement

Situational Awareness

Surface-to-Air Missile

Search and Rescue

Synthetic Aperture RADAR

Satellite Communications

Strike Controller

Situation Report

Stand-off Land Attack Missile

Stand-off Land Attack Missile Expanded Response
Special Operations Forces

Standard Operating Procedure

Space and Naval Warfare Systems Command
Special Warfare Group

Surface-to-Surface Missile

Strike Submarine

Synthetic Theater of War

Target Acquisition

52

TACAIR
TARPS

TCC
TCT

TLAM

TOT

TST
TTLAM

TTWCS
UAE
UAV

USN

Tactical Aircraft

Tactical Air Reconnaissance Pod System
To Be Determined

Time Critical Contact

Time Critical Target

Transporter Erector Launcher
Tomahawk Land Attack Missile

Target Location Error

Time on Target

Time to Fire

Tactics, Techniques, and Procedures
Time Sensitive Target

Tactical Tomahawk

Tactical Tomahawk Weapons Control System
Unidentified Assumed Enemy
Unmanned Aerial Vehicle

United States Navy

53

THIS PAGE INTENTIONALLY LEFT BLANK

54

APPENDIX B: APPLICATION CODE MODULES

This appendix contains the Visual Basic code modules that define the data

management system’s interface and functionality.

FhkkhhkhkkIkrhkhhhkdrhhkhkhkkrdhddhkhkdkhhkhhhdkdbhkhrdrhhkhkhkdddhkhkhrrrdrrdkrhhid

'Module: Modulel.bas

'‘Description: Displays an Open File dialog box upon execution
’ and loads the main form after setting the

’ database file name as a global variable.

- .
'Programmer: Kevin Colédn
IS EEEEE R R R ER SRS SRR RS EE SRS R RS AR S SR SRR R R R XSRS R RS SRR R LR EEE RS

Option Explicit

Public db As Database
Public gstNewDatabase As String
Public gstFBE As String
Public bContinue As Boolean
Public bWord As Boolean
Public bText As Boolean
Sub Main()

On Error GoTo HandleError
gstNewDatabase = GetNewDatabase

Set db = OpenDatabase (gstNewDatabase)

'‘display Main form
With frmMain

. Show

.Caption = .dlgDhatabase.FileTitle & " Database"
End With

Sub_Exit:
Exit Sub

HandleError:

Select Case Err.Number
Case 3004, 3024, 3044
gstNewDatabase = GetNewDatabase
If gstNewDatabase = "" Then
MsgBox "No database was selected.", vbExclamation,
"Database Error"

‘disables options only available when a database is
selected

frmMain.mnuFileQueries.Enabled = False
frmMain.mnuFileSQL.Enabled = False

55

frmMain.mnuUpdate.Enabled = False
Resume Next

Else
Set db = OpenDatabase(gstNewDatabase) ‘new database

location

‘reenables options once a database is selected
frmMain.mnuFileQueries.Enabled = True
frmMain.mnuFileSQL.Enabled = True
frmMain.mnuUpdate.Enabled = True

Resume ‘open the database

End If
Case Else
MsgBox Err.Description, vbOKOnly + vbExclamation,

"Unexpected Error"
End ‘exit the project

End Select

End Sub

Public Function GetNewDatabase() As String
‘allows user to browse for database

Dim iResp As Integer
Dim stMsg As String

stMsg = "Do you want to locate a database file?"

iResp = MsgBox(stMsg, vbYesNo + vbQuestion, "File or Path not
found")

*if user does not want to browse for file
If iResp = vbNo Then

'set database name to "blank"
GetNewDatabase = ""

Else
'if user opts to find database

With frmMain.dlgDatabase
.FileName = App.Path & "\G.mdb" ’gstNewDatabase
.Filter = "Database files (*.mdb)|*.mdb|All files

(*.*) l*'*"

'if error encountered, skip next command
On Error Resume Next

.ShowOpen

If Err.Number = cdlCancel Then
GetNewDatabase = "*"

Else

'set return filename to selected file

56

GetNewDatabase = .FileName
End If
End With
End If

End Function

A AR R LSS EESEEERESEEREEEREEEREEEREESEEEERSEREERSEREERSESESESERLSESESS]

‘Module: frmAbout. frm

. .
' Programmer : Kevin Coldn
IE S E R R RS LTRSS ESEE SRS S SRS RS LSRR S SRR R RS R ER SR ERR SRS LR R ELEE R R R EE S

Option Explicit

' Reg Key Security Options...

Const READ_CONTROL = &H20000

Const KEY_QUERY_VALUE = &H1

Const KEY_SET_VALUE = &H2

Const KEY _CREATE_SUB_KEY = &H4

Const KEY_ENUMERATE_SUB_KEYS = &HS8

Const KEY_NOTIFY = &H10

Const KEY_CREATE_LINK = &H20

Const KEY_ALL_ACCESS = KEY_QUERY_VALUE + KEY_ SET_VALUE +
KEY_CREATE_SUB_KEY + KEY_ENUMERATE_SUB_KEYS + KEY_NOTIFY +
KEY_CREATE_LINK + READ_CONTROL

' Reg Key ROOT Types...
Const HKEY_LOCAL_MACHINE = &H80000002
Const ERROR_SUCCESS = 0

Const REG_SZ =1 ' Unicode nul terminated
string .
Const REG_DWORD = 4 ' 32-bit number

Const gREGKEYSYSINFOLOC = "SOFTWARE\Microsoft\Shared Tools Location®
Const gREGVALSYSINFOLOC = "MSINFO"

Const gREGKEYSYSINFO = "SOFTWARE\Microsoft\Shared Tools\MSINFO"
Const gREGVALSYSINFO = "PATH"

Private Declare Function RegOpenKeyEx Lib "advapi32" Alias
"RegOpenKeyExA" (ByVal hKey As Long, ByVal 1lpSubKey As String, ByVal
ulOptions As Long, ByVal samDesired As Long, ByRef phkResult As Long)
As Long

Private Declare Function RegQueryValueEx Lib "advapi32" Alias
"RegQueryValueExA" (ByVal hKey As Long, ByVal lpValueName As String,
ByVal lpReserved As Long, ByRef 1lpType As Long, ByVal lpData As String,
ByRef lpcbData As Long) As Long

Private Declare Function RegCloseKey Lib "advapi32" (ByVal hKey As
Long) As Long

Private Sub cmdSysInfo_Click()
Call StartSysiInfo
End Sub

57

Private Sub cmdOK_Click()
Unload Me
End Sub

Private Sub Form_Load()

Me.Caption = "About " & App.Title

1blVersion.Caption = "Version " & App.Major & "." & App.Minor & "."
& App.Revision

1blTitle.Caption = App.Title
End Sub

Public Sub StartSysInfo ()
On Error GoTo SysInfoErr

Dim rc As Long
Dim SysInfoPath As String

' Try To Get System Info Program Path\Name From Registry...
If GetKeyValue(HKEY_LOCAL_MACHINE, gREGKEYSYSINFO, gREGVALSYSINFO,
SysInfoPath) Then
' Try To Get System Info Program Path Only From Registry...
ElseIf GetKeyValue (HKEY_LOCAL_MACHINE, gREGKEYSYSINFOLOC,
gREGVALSYSINFOLOC, SysInfoPath) Then
' Validate Existance Of Known 32 Bit File Version
If (Dir(SysInfoPath & "\MSINFO32.EXE") <> "") Then
SysInfoPath = SysInfoPath & "\MSINFO32.EXE"

' Error - File Can Not Be Found...
Else
GoTo SysInfoErr

End If
' Error - Registry Entry Can Not Be Found...
Else

GoTo SysInfoErr
End If

Call Shell(SysInfoPath, vbNormalFocus)

Exit Sub

SysInfoErr:
MsgBox "System Information Is Unavailable At This Time", vbOKOnly

End Sub

Public Function GetKeyValue(KeyRoot As Long, KeyName As String,
SubKeyRef As String, ByRef KeyVal As String) As Boolean

Dim i As Long ’ Loop
Counter

Dim rc As Long ’ Return
Code

Dim hKey As Long * Handle To

An Open Registry Key
Dim hDepth As Long

Dim KeyValType As Long * Data Type
Of A Registry Key
Dim tmpVal As String ' Tempory

58

Storage For A Registry Key Value
Dim KeyValSize As Long * S8ize Of

rc = RegOpenKeyEx (KeyRoot, KeyName, 0, KEY_ALL_ACCESS, hKey) ’ Open
Registry Key

If (rc <> ERROR_SUCCESS) Then GoTo GetKeyError ’ Handle
Error...

tmpvVal = String$(1024, 0) ' Allocate
Variable Space

KeyValSize = 1024 ' Mark

Variable Size

rc = RegQueryValueEx (hKey, SubKeyRef, 0, _
KeyValType, tmpVal, KeyValSize) ’
Get/Create Key Value

If (rc <> ERROR_SUCCESS) Then GoTo GetKeyError ‘ Handle
Errors
If (Asc(Mid(tmpVal, KeyValSize, 1)) = 0) Then ' Win95
Adds Null Terminated String...
tmpVal = Left(tmpvVal, KeyValSize - 1) ' Null
Found, Extract From String
Else ‘ WinNT
Does NOT Null Terminate String...
tmpVal = Left(tmpval, KeyValSize) ’ Null Not
Found, Extract String Only
End If

Select Case KeyValType ’ Search
Data Types...
Case REG_SZ * String
Registry Key Data Type
KeyVal = tmpval * Copy
String Value
Case REG_DWORD * Double
Word Registry Key Data Type
For i = Len(tmpval) To 1 Step -1 * Convert
Each Bit
KeyVal = KeyVal + Hex(Asc(Mid(tmpVal, i, 1))) ’ Build
Value Char. By Char.
Next
KeyVal = Format$("&h" + KeyVal) * Convert
Double Word To String
End Select

59

GetKeyValue = True ' Return
success

rc = RegCloseKey (hKey) * Close
Registry Key

Exit Function ' Exit
GetKeyError: ' Cleanup After An Error Has Occured. ..

KeyVal = "" ' Set
Return Val To Empty String

GetKeyValue = False ’ Return
Failure

rc = RegCloseKey (hKey) ' Close

Registry Key
End Function

private Sub Form_Unload(Cancel As Integer)
Unload Me

End Sub

’***

‘Module: frmaAcgEvents. frm

‘Description: Allows user to access acquisition event
’ records for addition, deletion, and

’ modification.

' Programmer : Kevin Coldn

l***

Option Explicit

Private WordApp As Word.Application
Private Doc As Word.Document
private Sel As Word.Selection

Private Sub cborPlatforms_Click()

If cboPlatforms.ListIndex >= 0 Then
txtPlatformId = cboPlatforms.Text

End If

End Sub
Private Sub cboSensTypes_Click()

If cboSensTypes.ListIndex >= 0 Then
txtSensorTypeld = cboSensTypes.Text

End If

End Sub
' 60

Private Sub cboThreatTypes_Click()

If cboThreatTypes.ListIndex >= 0 Then
txtThreatTypeld = cboThreatTypes.Text

End If
End Sub
Private Sub cmdAdd_Click()
On Error GoTo HandleAddErrors
If cmdAadd.Caption = "&Add Event" Then

datAcgEvents.Recordset . AddNew
cboPlatforms.Enabled = True
cboPlatforms.ListIndex = -1
cboThreatTypes.Enabled = True
cboThreatTypes.ListIndex = -1
cboSensTypes.Enabled = True
cboSensTypes.ListIndex = -1
txtTrackIid = True
txtAssess.Enabled = True
txtAltitude.Enabled = True
txtLocation.Enabled True
txtPriority.Enabled True
txtSpeed.Enabled = True
txtTime.Enabled = True
cndUpdate.Enabled = False
cmdSave.Enabled = True

cmdDel .Enabled = False
cmdAdd.Caption = "&Cancel®
mnuFile.Enabled = False
datAcgEvents.Enabled = False

Else
datAcgEvents.Recordset.CancelUpdate
datAcgEvents.Enabled = True
cboPlatforms.Enabled = False
cboThreatTypes .Enabled = False
cboSensTypes.Enabled = False
txtTracklId = False
txtAssess.Enabled = False
txtAltitude.Enabled = False
txtlLocation.Enabled False
txtPriority.Enabled = False
txtSpeed.Enabled = False
txtTime.Enabled = False
cmdUpdate.Enabled = True
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdAadd.Caption = "&Add Event"
mnuFile.Enabled = True

61

cmdAdd. SetFocus
End If

cmdAadd_Click _Exit:
Exit Sub

HandleAddErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

End Sub
Private Sub cmdDel_Click()

'delete the current record
Dim iResp As Integer

On Error GoTo HandleDelErrors

If datAcgEvents.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Event " & txtAcgEventId & "?", vbYesNo,

"Delete Event")
If iResp = vbYes Then
With datAcgEvents.Recordset

.Delete ‘delete current record
.MoveNext ‘move to following record
If .EOF Then

.MovePrevious

If .BOF Then
, MsgBox "The recordset is empty.",
vbInformation, "No Records"

End If
End If
End With

End If
Else

MsgBox "No records to delete.", vbExclamation _

"Delete Event"

End If

cmdDel_Click_Exit:
Exit Sub

HandleDelErrors:
Dim stMsg As String

stMsg = "Cannot complete operation." & vbCrLf & vbCrLf _
& Err.Description

62

MsgBox stMsg, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

End Sub
Private Sub cmdSave_Click()
'save the current record

On Error GoTo HandleSaveErrors
TIf cboThreatTypes.ListIndex >= 0 And cboSensTypes.ListIndex >= 0
Then _
If val (txtCounter) < 10 Then
txtAcqgEventId.Text = "AE0000" & txtCounter.Text
Else
If Val(txtCounter) < 100 Then
txtAcgEventId.Text = "AE000" & txtCounter.Text
Else
If val(txtCounter) < 1000 Then
txtAcqgEventId.Text = "AEQ00" & txtCounter.Text

Else
If val(txtCounter) < 10000 Then
txtAcgEventId.Text = "AEO" & txtCounter.Text
Else
txtAcgEventId.Text = "AE" & txtCounter.Text
End If
End If
End If

End If

datAcgEvents.Recordset .Update
Else
MsgBox "You must select a threat and sensor before saving." _
, VbExclamation, "Add Acquisition Event"
datAcqEvents.Recordset.CancelUpdate
End If

cboPlatforms.Enabled = False
cboThreatTypes.Enabled = False
cboSensTypes.Enabled = False
txtTrackId = False
txtAssess.Enabled = False
txtAltitude.Enabled = False
txtLocation.Enabled = False
txtPriority.Enabled = False
txtSpeed.Enabled = False
txtTime.Enabled = False
cmdSave.Enabled = False
cmdUpdate.Enabled = True
cmdDel .Enabled = True
cmdAdd.Caption = "&Add Event"
mnuFile.Enabled = True
datAcqgEvents.Enabled = True
cmdAdd. SetFocus

63

datAcgEvents.Enabled = True

cmdSave_Click_Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number
Case 3022 'duplicate key field
stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo O ‘turn off error trapping

Case 3058, 3315 ‘no entry in key field
stMess = "Select a Sensor type and threat before saving."
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

Case Else
stMess = "Record could not be saved." & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
datAcqgEvents.Recordset.CancelUpdate
Resume Next
End Select

End Sub
Private Sub cmdUpdate_Click()

If cmdUpdate.Caption = "&Update" And _
datAcgEvents.Recordset.RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit"
cboPlatforms.Enabled = True
cboThreatTypes.Enabled = True
cboSensTypes.Enabled = True
txtTrackId = True
txtAssess.Enabled = True
txtAltitude.Enabled = True
txtLocation.Enabled = True
txtPriority.Enabled = True
txtSpeed.Enabled = True
txtTime.Enabled = True
cmdSave.Enabled = False
cmdDel .Enabled = False
cmdaAdd.Enabled = False
mnuFile.Enabled = False
datAcgEvents.Enabled = False
datAcgEvents.Recordset .Edit

Else

If datAcgEvents.Recordset.RecordCount > 0 Then
datAcqgEvents.Recordset.Update

64

cboPlatforms.Enabled = False
cboThreatTypes.Enabled = False
cboSensTypes.Enabled = False
txtTrackId = False
txtAssess.Enabled = False
txtAltitude.Enabled False
txtLocation.Enabled = False
txtPriority.Enabled = False
txtSpeed.Enabled = False
txtTime.Enabled = False
cmdDel .Enabled = True
cmdadd.Enabled = True

cmdAdd. SetFocus
cmdUpdate.Caption = "&Update™
mnuFile.Enabled = True
datAcgEvents.Enabled = True

End If
End If

End Sub
Private Sub datAcgEvents_Reposition()
SetAcqgEventsRecordNumber

End Sub

Private Sub FillPlatformCombo ()

Dim iCount As Integer
'£i11 the PlatType combo box
cboPlatforms.Clear

With datPlatforms
.Refresh ‘open database
iCount = .Recordset.RecordCount

'£ill the list
Do Until .Recordset.EOF
If .Recordset!Platform <> "" Then

cboPlatforms.AddItem .Recordset!Platform

End If
.Recordset .MoveNext
Loop
End With

End Sub
Private Sub FillSensTypeCombo ()

Dim iCount As Integer
£ill the PlatType combo box

65

cboSensTypes .Clear

with datSensTypes

.Refresh ropen database
Do Until .Recordset.EOF *£ill the list
1f .Recordset!SensorType <> v Then

cboSensTypes .AddItem _Recordset!SensorType

End If
_Recordset .MoveNext

Loop
End With

End Sub

Private Sﬁb FillThreatTypeCombo ()
Dim iCount As Integer
r£i11 the PlatType combo box
cboThreatTypes.Clear

Wwith datThreatTypes

.Refresh 'open database
Do Until .Recordset .EOF r£i1l the list
If _Recordset !ThreatType <> v Then

cboThreatTypes.AddItem _Recordset !ThreatType

End If
.Recordset .MoveNext

Loop
End With

End Sub

Private Sub Form_Load ()

datPlatforms.DatabaseName = gstNewDatabase
datSensTypes.DatabaseName = gstNewDatabase
datThreatTypes.DatabaseName = gstNewDatabase
datAchvents.DatabaseName = gstNewDatabase

FillplatformCombo
FillSensTypeCombo
FillThreatTypeCombo

Wwith datAcgEvents
.Refresh
If Not _Recordset .EOF Then
.Recordset .MoveLast
_Recordset .MoveFirst

66

End If
End With

SetAcgEventsRecordNumber

End Sub

Private Sub SetAcgEventsRecordNumber ()
Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount

= datAcqgEvents.Recordset.RecordCount
iCurrentRecord =

datAcgEvents.Recordset.AbsolutePosition + 1

If datAcgEvents.Recordset.EOF Then
. datAcqgEvents.Caption = "No more records"
Else
" datAcqEvents.Caption = "Acquisition Event Record " &
iCurrentRecord & __
* of " & iRecordCount
End If

End Sub

Private Sub mnuFileBack_Click()
frmMain.Show
frmMain.Enabled = True
Unload Me
End Sub
Private Sub mnuPrint_Click()
frmPrint.Show
On Error GoTo mnuPrintErrors
If bContinue = True Then
Wwith datAcgEvents.Recordset
If bWord = True Then
Set Wordapp = New Word.Application
WordApp .Documents .Add
Set Doc = WordApp.ActiveDocument

Set Sel = WordApp.Selection

Doc.Tables.Add Range:=Sel.Range, NumRows:=.RecordCount,
NumColumns:=11

67

cell

cell

cell

cell

cell

Sel
Sel

Sel
Sel

Sel
Sel

Sel.
.MoveRight unit:=12

Sel

Sel
Sel

Sel
Sel

Sel

Sel.
.MoveRight unit:=12

Sel

Sel
Sel

Sel
Sel

Sel
Sel

.TypeText Text:="Acquisition™"
.MoveRight unit:=12

.TypeText Text:="TrackId"
.MoveRight unit:=12

.TypeText Text:="AcqgTime"
.MoveRight unit:=12

TypeText Text:="ThreatType"

.TypeText Text:="AcqgPlatform"
.MoveRight unit:=12

.TypeText Text:="AcgSensorType"
.MoveRight unit:=12

.TypeText Text:="TrackLocation"
Sel.

MoveRight unit:=12

TypeText Text:="TrackAltitude"

.TypeText Text:="TrackSpeed"
.MoveRight unit:=12

.TypeText Text:="TrackPriority"
.MoveRight unit:=12

.TypeText Text:="Remark"
.MoveRight unit:=12

Do Until .EOF

Sel
Sel

Sel
Sel

Sel
Sel

Sel
Sel

Sel.
.MoveRight unit:=12

Sel

.TypeText Text:=!Acquisition
.MoveRight unit:=12

.TypeText Text:=!TrackId
.MoveRight unit:=12

.TypeText Text:=!AcgTime
.MoveRight unit:=12

.TypeText Text:=!ThreatType
.MoveRight unit:=12

TypeText Text:=!AcgPlatform

68

‘12=next cell

'12=next cell

'12=next cell

'12=next cell

'12=next cell

'12=next cell

'12=next cell

12=next cell

’12=next cell

'12=next cell

’12=next cell

’12=next

'12=next

'r12=next

'12=next

'12=next

Sel.TypeText Text:=!AcgSensorType

Sel.MoveRight unit:=12 *12=next
cell

Sel.TypeText Text:=!TrackLocation

Sel .MoveRight unit:=12 '12=next
cell

Sel.TypeText Text:=!TrackAltitude

Sel .MoveRight unit:=12 '12=next
cell

Sel.TypeText Text:=!TrackSpeed

Sel .MoveRight unit:=12 '12=next
cell

Sel .TypeText Text:=!TrackPriority

Sel.MoveRight unit:=12 '12=next
cell

Sel.TypeText Text:=!Remark

Sel.MoveRight unit:=12 ’12=next
cell

.MoveNext

Loop

WordApp.Visible = True

Set Wordapp = Nothing

Else
If bText = True Then

Open App.Path & "\AcgEvents.txt" For Output As #1

Print #1, "Acquisition"; Chr(9); "TrackId"; Chr(9):;
"AcgTime"; Chr(9); _
"ThreatType"; Chr(9); "AcgPlatform";
Chr(9); _
"AcgSensorType"; Chr(9);
"TrackLocation"; Chr(9); _
"TrackAltitude"; Chr(9); "TrackSpeed";
Chr(9); _
*TrackPriority"; Chr(9); "Remark";

Chr(9)
Do Until .EOF

Print #1, !Acquisition; Chr(9); _
ITrackId; Chr(9); _
'AcqgTime; Chr(9); _

69

'ThreatType; Chr(9); _
'AcgPlatform; Chr(9);
!AcgSensorType; Chr(9); _
!TrackLocation; Chr(9);
ITrackAltitude; Chr(9);
!TrackSpeed; Chr(9); _
!TrackPriority; Chr(9);
IRemark; Chr(9)

.MoveNext
Loop
Close #1
End If
End If
.MoveFirst
End With
End If
bContinue = False
bWord = False
bText = False
mnuPrintErrors:
Select Case Err.Number
Case 94
Sel.TypeText Text:=""
Resume Next
End Select
End Sub

Private Sub txtPlatformId_Change()

'selects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

datPlatforms.Recordset .MoveFirst
If txtPlatformId <> "" Then
Do Until iIndex = datPlatforms.Recordset.RecordCount Or bFound
If datPlatforms.Recordset!Platform = txtPlatformId Then
cboPlatforms.Text = datPlatforms.Recordset!Platform
bFound = True
Else
datPlatforms.Recordset.MoveNext
iIndex = iIndex + 1

End If
Loop

70

Else
cboPlatforms.ListIndex = -1

End If

End Sub
Private Sub txtSensorTypeId_Change()

'selects correct combo box listing
Dim iIndex As Integer

Dim bFound As Boolean

Dim num As Integer

With datSensTypes
.Recordset .MoveFirst
If txtSensorTypeld <> "" Then

Do Until iIndex = cboSensTypes.ListCount Or bFound
If .Recordset!SensorType = txtSensorTypeId Then
cboSensTypes.Text = .Recordset!SensorType
bFound = True

Else
.Recordset .MoveNext
iIndex = iIndex + 1

End If
Loop

Else
cboSensTypes.ListIndex = -1

End If
End with

End Sub
Private Sub txtThreatTypeId Change()

rselects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

datThreatTypes.Recordset .MoveFirst
If txtThreatTypeId <> "" Then

Do Until iIndex = cboThreatTypes.ListCount Or bFound
TIf datThreatTypes.Recordset!ThreatType = txtThreatTypeld
Then
cboThreatTypes.Text =
datThreatTypes.Recordset ! ThreatType
bFound = True

Else
datThreatTypes.Recordset .MoveNext

iIndex = iIndex + 1

71

End If
Loop
Else
cboThreatTypes.ListIndex = -1
End If

End Sub

’**‘k************

‘Module: frmAcronyms.frm

'Description: Allows user to access acronyms

' records for addition, deletion, and
! modification.

' Programmer : Kevin Coldn

l***

Option Explicit

Private Sub cmdAddAcronym_Click()
On Error GoTo HandleAddAcronymErrors

1f cmdAddacronym.Caption = ngAdd Acronym" Then
datAcronyms.Recordset.AddNew
txtAcronym.Enabled = True
txtAcronym. SetFocus
txtDescription.Enabled = True
cmdaddAcronym.Caption = "&Cancel"
cmdSaveAcronym.Enabled = True
cmdDelAcronym.Enabled = False
cmdUpdate .Enabled = False
mnuFile.Enabled = False
datAcronyms.Enabled = False

Else
datAcronyms.Recordset.CancelUpdate
txtAcronym.Enabled = False
txtDescription.Enabled = False
cmdSaveAcronym.Enabled = False
cmdDelAcronym.Enabled = True
cmdUpdate.Enabled = True
mnuFile.Enabled = True
cmdAddAcronym.Caption = "sAdd Acronym”
cmdAddacronym. SetFocus
datAcronyms .Enabled = True

End If

cmdAddAcronym_Click_Exit:
Exit Sub

HandleAddAcronymErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf _

72

& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

End Sub

Private Sub cmdDelAcronym_Click()
‘delete the current record
Dim iResp As Integer

On Error GoTo HandleDelAcronymErrors

If datAcronyms.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Acronym " & txtAcronym.Text & "?",
vbYesNo, "Delete Acronym")
If iResp = vbYes Then
With datAcronyms.Recordset

.Delete 'delete current record

.MoveNext 'move to following record

If .EOF Then :
.MovePrevious

If .BOF Then
» MsgBox "The recordset is empty.",
vbInformation, "No Records"

End If
End If
End With
End If
Else
MsgBox "No records to delete.", vbExclamation _
, "Delete Acronym"
End If

cmdDelAcronym Click _Exit:
Exit Sub

HandleDelAcronymErrors:
Dim stMsg As String

stMsg = "Cannot complete operation." & vbCrLf & vbCrLf _
& Err.Description

MsgBox stMsg, vbExclamation, "Database Error"

On Error GoTo 0 ‘turn off error trapping

End Sub

Private Sub cmdSaveAcronym_ Click()
'save the current record
Dim iResp As Integer

On Error GoTo HandleSaveAcronymErrors
If txtAcronym <> "" And txtDescription <> "" Then
txtAcronym = UCase(txtAcronym)

73

iResp = MsgBox("Do you want to add " & txtAcronym & _
* to the database?", vbYesNo + vbQuestion,
"add Acronym")
If iResp = vbYes Then
datAcronyms .Recordset .Update

End If
Else
MsgBox "You must enter an acronym and a description before
saving.", vbExclamation _

, "Add Acronym"
datAcronyms.Recordset.CancelUpdate
End If

txtAcronym.Enabled = False
txtDescription.Enabled = False
emdSaveAcronym. Enabled = False
cmdDelAcronym.Enabled = True
datAcronyms.Enabled = True
mnuFile.Enabled = True
cmdAddAcronym.Caption = "&Add Acronym”
cmdAddAcronym. SetFocus
cmdUpdate.Enabled = True

cmdSaveAcronym_Click Exit:
Exit Sub

HandleSaveAcronymErrors:
Dim stMess As String
Select Case Err.Number

Case 3022 'duplicate key field
stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

Case 3058, 3315 ‘no entry in key field
stMess = "Enter a Acronym name before saving."”
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

Case Else
stMess = "Record could not be saved." & vbCrLf
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
datAcronyms.Recordset.CancelUpdate
Resume Next
End Select

End Sub
Private Sub cmdUpdate_Click()

If cmdUpdate.Caption = "sUpdate" And _
datAcronyms .Recordset .RecordCount > 0 Then

74

cmdUpdate.Caption = "Su&bmit"
txtAcronym.Enabled = True
txtDescription.Enabled = True
cmdDelAcronym.Enabled = False
mnuFile.Enabled = False
txtAcronym. SetFocus
cmdAddAcronym. Enabled = False
datAcronyms.Enabled = False
datAcronyms.Recordset.Edit

Else
If datAcronyms.Recordset.RecordCount > 0 Then

datAcronyms.Recordset .Update

txtAcronym. Enabled = False
txtDescription.Enabled = False
cmdDelAcronym.Enabled = True
mnuFile.Enabled = True
cmdAddAcronym. Enabled = True
cmdAddAcronym. SetFocus

cmdUpdate.Caption = "&Update"
datAcronyms.Enabled = True
End If
End If
End Sub

Private Sub datAcronyms_Reposition()
SetAcronymRecordNumber

End Sub

Private Sub Form_ Load()
datAcronyms .DatabaseName = gstNewDatabase

With datAcronyms
.Refresh
If Not .Recordset.EOF Then
.Recordset .MoveLast
.Recordset .MoveFirst
End If
End With

SetAcronymRecordNumber

End Sub

Private Sub Form Unload(Cancel As Integer)
frmMain.Show
frmMain.Enabled = True
Unload Me

End Sub

Private Sub mnuFileBack_Click()
75

frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileSearch_Click()

datAcronyms.Recordset .FindFirst "[Acronym] = '" & _
InputBox("Enter the Acronym", "Acronym Search") & "’'"

If datAcronyms.Recordset.NoMatch Then
MsgBox "Acronym was not found.", vbOKOnly, "Acronym Search"
datAcronyms.Recordset .MoveFirst 'go to first record
End If

End Sub

Private Sub SetAcronymRecordNumber ()
Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount = datAcronyms.Recordset.RecordCount
iCurrentRecord = datAcronyms.Recordset.AbsolutePosition + 1
If datAcronyms.Recordset.EOF Then

datAcronyms.Caption = "No more records"
Else
datAcronyms.Caption = "Acronym " & iCurrentRecord & _
" of " & iRecordCount
End If
End Sub

R R R R Z XX EXEE RS R RS R E SRR SRR R SRS R AR SRR ERER AR SRS ISR

'‘Module: frmpataTypes. frm

'‘Description: Allows user to access the data types
’ records for addition, deletion, and
’ modification.

' Programmer : Kevin Colén

Tk Ak kA A Ak kkk kb hkkkkdkh kA kkhhhkkhhkhkhdkrkrkrkrkdkkddrhrhhhkdrrki

Option Explicit

Private Sub cmdAdd_Click()
On Error GoTo HandleAddErrors

If cmdadd.Caption = "&Add" Then
datDataTypes .Recordset . AddNew
txtDataType.Enabled = True
txtDataType.SetFocus
txtDescription.Enabled = True
cmdAdd.Caption = "&Cancel"
cmdSave.Enabled = True
cmdDel .Enabled = False

76

cmdUpdate.Enabled = False
mnuFile.Enabled = False
datDataTypes.Enabled = False

Else
datDataTypes.Recordset.CancelUpdate
txtDataType.Enabled = False
txtDescription.Enabled = False
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdUpdate.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Add4"
cmdAdd. SetFocus
datDataTypes.Enabled = True

End .If

cmdAdd_Click_Exit:
Exit Sub

HandleAddErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

End Sub

Private Sub cmdDel_Click()
rdelete the current record
Dim iResp As Integer

On Error GoTo HandleDelErrors

If datDataTypes.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete DataType " & txtDataType.Text & "?",
’ vbYesNo, "Delete DataType")
If iResp = vbYes Then
| With datDataTypes.Recordset

‘ .Delete ‘delete current record
.MoveNext 'move to following record

‘ If .EOF Then

| .MovePrevious

If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"
End If
| End If
| End With
‘ End If
Else
MsgBox "No records to delete.", vbExclamation _

77

, "Delete DataType"
End If

cmdDel_Click_Exit:
Exit Sub

HandleDelErrors:
Dim stMsg As String

stMsg = "Cannot complete operation." & vbCrLf & vbCrLf _
& Err.Description

MsgBox stMsg, vbExclamation, "Database Error"

On Error GoTo 0 ‘turn off error trapping

End Sub

Private Sub cmdSave_Click()
'save the current record
Dim iResp As Integer

On Error GoTo HandleSaveErrors
If txtDataType <> "" And txtDescription <> "" Then
txtDataType = UCase (txtDataType)
iResp = MsgBox("Do you want to add " & txtDataType & _
" to the database?", vbYesNo + vbQuestion, _
*aAdd DataType")
If iResp = vbYes Then
datDataTypes.Recordset .Update

End If
Else
MsgBox "You must enter an DataType and a description before
saving.", vbExclamation _

, "Add DataType"
datDataTypes .Recordset.CancelUpdate
End If

txtDataType.Enabled = False
txtDescription.Enabled = False
cmdSave .Enabled = False
cmdDel . Enabled = True
datDataTypes.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Add"
cmdadd. SetFocus
cmdUpdate.Enabled = True

cmdSave_Click_Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number

78

Case 3022 'duplicate key field

stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Exrror"
On Error GoTo 0 ‘turn off error trapping

Case 3058, 3315 'no entry in key field
stMess = "Enter a DataType name before saving."
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo O ‘turn off error trapping

Case Else
stMess = "Record could not be saved.' & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
datDataTypes.Recordset .CancelUpdate
Resume Next
" End. Select

End Sub

Private Sub cmdUpdate_Click()
If cmdUpdate.Caption = "&Update" And _
datDataTypes.Recordset .RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit"
txtDataType.Enabled = True
txtDescription.Enabled = True
cmdDel .Enabled = False
mnuFile.Enabled = False
txtDataType.SetFocus
cmdAdd.Enabled = False
datDataTypes.Enabled = False
datDataTypes.Recordset.Edit

Else
If datDataTypes.Recordset.RecordCount > 0 Then

datDataTypes.Recordset.Update

txtDataType.Enabled = False
txtDescription.Enabled = False
cmdDel .Enabled = True
mnuFile.Enabled = True
cmdAdd.Enabled = True
cmdAdd. SetFocus
cmdUpdate.Caption = "&Update"
datDataTypes.Enabled = True
End If
End If

End Sub

Private Sub datDataTypes_Reposition()
SetDataTypeRecordNumber

End Sub

79

Private Sub Form_ Load()
datDataTypes.DatabaseName = gstNewDatabase

With datDbataTypes
.Refresh
If Not .Recordset.EOF Then
.Recordset .MoveLast
.Recordset .MoveFirst
End If
End With

SetDataTypeRecordNumber

End Sub

Private Sub Form Unload(Cancel As Integer)
frmMain.Show
frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileBack Click()

frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileSearch_Click()

datDataTypes.Recordset.FindFirst "[DataType] = " & _
InputBox("Enter the Data Type", "Data Type Search") &

worw

If datDataTypes.Recordset .NoMatch Then
MsgBox "Data Type was not found.", vbOKOnly, "Data Type Search"
datDataTypes.Recordset .MoveFirst ‘go to first record
End If

End Sub

Private Sub SetDataTypeRecordNumber ()
Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount = datDataTypes.Recordset.RecordCount
iCurrentRecord = datDataTypes.Recordset.AbsolutePosition + 1
If datDataTypes.Recordset.EOF Then
datDataTypes.Caption = "No more records"
Else
datDataTypes.Caption = "DataType " & iCurrentRecord &
" of " & iRecordCount

80

End If

End Sub

B A S S SR LRSS AR R EREE SRR R REE R RS S EEE SR LR EEEEE R R R R R R R X

"Module: frmFBE. frm
‘Description: Allows user to access the FBE information
' for addition, deletion, and modification.
'Programmer: Kevin Coldn

IR S SR ESEEEERE AR EREEREEREREEREERELE S SRR SRR RS R R R TR RS E RN R

Option Explicit

Private Sub cmdAddFBE_Click()
On Error GoTo HandleAddFBEErrors

If cmdAddFBE.Caption = "&Add FBE" Then
datFBE.Recordset . AddNew
txtFBE.Enabled = True
txtFBE.SetFocus
txtDescription.Enabled = True
txtStart.Enabled = True
txtEnd.Enabled = True
cmdAddFBE.Caption = "&Cancel"
cmdSaveFBE.Enabled = True
cmdDelFBE.Enabled = False
cmdUpdate.Enabled = False
mnuFile.Enabled = False
datFBE.Enabled = False

Else
datFBE.Recordset .CancelUpdate
txtFBE.Enabled = False
txtDescription.Enabled = False
txtStart.Enabled = False
txtEnd.Enabled = False
cmdSaveFBE.Enabled = False
cmdDelFBE.Enabled = True
cmdUpdate.Enabled = True
mnuFile.Enabled = True
cmdAddFBE.Caption = "&Add FBE"
cmdAddFBE. SetFocus ’
datFBE.Enabled = True

End If

cmdAddFBE_Click_Exit:
Exit Sub

HandleAddFBEErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 'turn off error trapping

81

End Sub

Private Sub cmdDelFBE_Click()
‘delete the current record
Dim iResp As Integer

On Error GoTo HandleDelFBEErrors

If datFBE.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete FBE " & txtFBE.Text & "?", vbYesNo,
"Delete FBE")
If iResp = vbYes Then
With datFBE.Recordset

.Delete ‘delete current record
.MoveNext ‘move to following record
If .EOF Then

.MovePrevious

If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"

End If
End If
End With

End If
Else

MsgBox "No records to delete.", vbExclamation _

"Delete FBE"

End If

cmdDelFBE_Click Exit:
Exit Sub

HandleDelFBEErrors:
Dim stMsg As String

stMsg = "Cannot complete operation." & vbCrLf & vbCrLf _
& Err.Description

MsgBox stMsg, vbExclamation, "Database Error"

On Error GoTo 0 ‘turn off error trapping

End Sub

Private Sub cmdSaveFBE_Click()
'save the current record
Dim iResp As Integer

On Error GoTo HandleSaveFBEErrors
If txtFBE <> "" And txtDescription <> "" And txtStart <> "" And _
txtEnd <> "" Then
tXtFBE = UCase(txtFBE)
iResp = MsgBox("Do you want to add " & txtFBE & _
" to the database?", vbYesNo + vbQuestion,

82

"Add FBE")
If iResp = vbYes Then
datFBE.Recordset .Update
End If

Else
MsgBox "You must enter an FBE, a description, and dates before
saving.", vbExclamation _
*Add FBE"
datFBE.Recordset.CancelUpdate
End If

txtFBE.Enabled = False
txtDescription.Enabled = False
txtStart.Enabled = False
txtEnd.Enabled = False
cmdSaveFBE.Enabled = False
cmdDelFBE.Enabled = True
datFBE.Enabled = True
mnuFile.Enabled = True
cmdAddFBE.Caption = "&Add FBE"
cmdAddFBE. SetFocus
cmdUpdate.Enabled = True

crmdSaveFBE_Click Exit:
Exit Sub

HandleSaveFBEErrors:
Dim stMess As String
Select Case Err.Number

Case 3022 ‘duplicate key field
stMess = "Record already exists -- could not save>’'"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping
Case 3058, 3315 ‘'no entry in key field
stMess = "Enter a FBE name before saving."
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping
Case Else
stMess = "Record could not be saved." & vbCrLf _

& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
'datFBE.Recordset.CancelUpdate
Resume Next
End Select

End Sub
Private Sub cmdUpdate_Click()

If cmdUpdate.Caption = "&Update” And _
datFBE.Recordset.RecordCount > 0 Then

83

cmdUpdate.Caption = "Su&bmit®
txtFBE.Enabled = True
txtDescription.Enabled = True
txtStart.Enabled = True
txtEnd.Enabled = True
cmdDelFBE. Enabled = False
mnuFile.Enabled = False
txtFBE.SetFocus
cmdAddFBE.Enabled = False
datFBE.Enabled = False
datFBE.Recordset.Edit

Else
If datFBE.Recordset.RecordCount > 0 Then

datFBE.Recordset .Update

txtFBE.Enabled = False
txtDescription.Enabled = False
txtStart.Enabled = False
txtEnd.Enabled = False
crdDelFBE.Enabled = True
mnuFile.Enabled = True
cmdAddFBE. Enabled = True
cmdAddFBE. SetFocus

cmdUpdate.Caption = "&Update"
datFBE.Enabled = True
End If
End If
End Sub

Private Sub datFBE_Reposition{()
SetFBERecordNumber
End Sub

Private Sub Form_Load()
datFBE.DatabaseName = gstNewDatabase

wWith datFBE
.Refresh
If Not .Recordset.EOF Then
.Recordset .MoveLast
.Recordset .MoveFirst
End If
End With

SetFBERecordNumber

End Sub

Private Sub Form_Unload(Cancel As Integer)
frmMain.Show
frmMain.Enabled = True

84

Unload Me
End Sub

Private Sub mnuFileBack_Click()
frmMain.Show
frmMain.Enabled = True
Unload Me

End Sub

Private Sub SetFBERecordNumber ()
Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount = datFBE.Recordset.RecordCount
iCurrentRecord = datFBE.Recordset.AbsolutePosition + 1
If datFBE.Recordset.EOF Then

datFBE.Caption = "No more records"”
Else
datFBE.Caption = "FBE " & iCurrentRecord & _
" of " & iRecordCount
End If
End Sub

R T R RS R E S SR RS SRR S RS SRR R R R EREEEEESEREEEEEEEEREE S

‘Module: frmFilters.frm

‘Description: Allows user to select filters applied to
‘ target recordset parameters.

'Programmer : Kevin Coldn

IR P E TR SRR EEEEE SRR R R R RS R RS E R E St Rt Rt AR EEEE SRR

Option Explicit

Dim rsWeapons As Recordset
Dim stSQL As String
Dim stSQL1 As String
Dim stDesigTime As String
- Dim stDesigDay As String
Dim stNLTTime As String
Dim stNLTDay As String
Dim stlLatDeg As String
Dim stLatDir As String
Dim stLongDeg As String
Dim stLongDir As String

Private Sub chkDescription_Click()

If chkDescription.Value = 1 Then
fraDescription.Enabled = True
Else
fraDescription.Enabled = False

85

End If
End Sub
Private Sub chkLocation_Click()

If chkLocation.Value = 1 Then
fralocation.Enabled = True
Else
fralocation.Enabled = False
End If

End Sub
Private Sub chkTime_Click()
If chkTime.Value = 1 Then
fraTime.Enabled = True
Else
fraTime.Enabled = False
End If
End Sub
Private Sub chkWeapon_Click()
If chkiWeapon.Value = 1 Then
fraWeapon.Enabled = True
Else
fraWeapon.Enabled = False
End If
End Sub

Private Sub cmdApply Click()

If chkTime = 1 And chkDescription

And chkl.ocation = 1 Then

Else

If chkTime = 1 And chkDescription = 1 And chkWeapon
And chkLocation = 0 Then

Else

If chkTime = 1 And chkDescription = 1 And chkWeapon
And chkLocation = 1 Then

Else

If chkTime = 1 And chkDescription = 0 And chkWeapon

And chkLocation

1 And chkWeapon

1 Then

1

Else
If chkTime = 0 And chkDescription = 1 And chkWeapon

=1 _
And chkLocation = 1 Then
Else
If chkTime = 1 And chkDescription = 1 And
chkWeapon = 0 _
And chkLocation = 0 Then
Else
If chkTime = 1 And chkDescription = 0 And
chkWeapon = 1 _

And chkLocation = 0 Then

Else
If chkTime = 0 And chkDescription = 1

il
[oey

And chkWeapon
And chkLocation = 0 Then

stSQL = "Select * from Target " &
"Where Description = " &

txtDescription.Text & "’ " &
*And WeaponType = '" &
cboWeapon.Text & "’"

Wwith frmTargets2.datTargets
.RecordSource = stSQL
.Refresh

End With

Else
If chkTime = 1 And chkDescription =
0 And chkWeapon = 0

And chkl.ocation = 1 Then

Else
If chkTime = 0 And
chkDescription = 1 And chkWeapon = 0 _
And chkLocation = 1 Then
Else
If chkTime = 0 And
chkDescription = 0 And chkWeapon = 1 _
' And chklLocation = 1
Then
Else
If chkTime = 1 And
chkDescription = 0 And chkWeapon = 0 _

87

And chkLocation = 0
Then

Else
If chkTime = 0 And
chkDescription = 1 And chkWeapon = 0
And chkLocation
= 0 Then

stSQL = "Select
* from Target " & _

"Where

Description = ’'" & txtDescription.Text & "’'"

With
frmTargets2.datTargets
.RecordSource = stSQL

.Refresh
End With
Else

If chkTime = 0
And chkDescription = 0 And chkWeapon = 1

And
chkLocation = 0 Then
stSQL =
"Select * from Target " & _
"Where WeaponType = ’'" & cboWeapon.Text & "’'*"
With
frmTargets2.datTargets
.RecordSource = stSQL
.Refresh
End With
Else
If chkTime
= 0 And chkDescription = 0 And chkWeapon = 0 _
And
chklLocation = 1 Then
Else
If
chkTime = 0 And chkDescription = 0 And chkWeapon = 0 _
And

chkLocation = 0 Then

88

stSQL = "Select * from Target'

With frmTargetsZ.détTargets
.RecordSource = stSQL

.Refresh

End

End If
End If

End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If

If chkTime.Value = 1 Then

Else

End If

If chkDescription.value = 1 Then
Else

End If

If chkWeapon.Value = 1 Then

stSQL = "Select * from Target where WeaponType = '" &

cboWeapon.Text & "’'"

With frmTargets2.datTargets
.RecordSource = stSQL
.Refresh

End With

Else
stSQL = "Select * from Target"

89

With frmTargets2.datTargets
.RecordSource = stSQL
.Refresh

End With

End If
If chkLocation.Value = 1 Then

Else

End If

End Sub
Private Sub cmdCancel_Click()

frmTargets2.Enabled = True
Me.Hide

End Sub

Private Sub cmdOK_Click()
cmdApply _Click
frmTargets2.Enabled = True
frmTargets2.Show
Me.Hide

End Sub

Private Sub FillcboWeapons()
With rsWeapons

Do Until .EOF
cboWeapon.AddItem !WeaponType

.MoveNext
Loop
End With
cboWeapon.ListIndex = -1
End Sub

Private Sub Form_Load()
stSQL1 = "Select WeaponType from WeaponType"

Set rsWeapons = db.OpenRecordset (stSQLL)
90

FillcboWeapons
End Sub
Private Sub Form _Unload(Cancel As Integer)

frmTargets2.Enabled = True
Me.Hide

End Sub

IR EEEEE R EERESEEEERSERLESEEEEREEEREEEESERESESEEEEESEESERESERERERESESERESESS

‘Module: frmFireCmdEvent. frm

‘Description: Allows user to access the fire command event
’ records for addition, deletion, and

’ modification.

' Programmer : Kevin Colén

IR S S S E S SRR LR R ESEREEEEEREREEEREEEERS RS SRR R SRR EEEESEEEESEESE RS

Option Explicit

Dim rsNomination As Recordset

Dim rsTarget As Recordset

Dim rsPlatform As Recordset

Dim stSQL1 As String

Dim stSQL2 As String

Dim stSQL3 As String

Private WordApp As Word.Application
Private Doc As Word.Document
Private Sel As Word.Selection

Private Sub cboNomination_Change ()
If cboNomination.ListIndex >= 0 Then
txtNomination = cboNomination.Text
End If
End Sub
Private Sub cboPlatform_Change()
If cboPlatform.ListIndex >= 0 Then
txtPlatform = cboPlatform.Text
End If
End Sub
Private Sub cboTarget_Change()

If cboTarget.ListIndex >= 0 Then
91

txtTarget = cboTarget.Text
End If

End Sub
Private Sub cmdAdd_Click()
On Error GoTo HandleAddErrors
If cmdAdd.Caption = "&Add Event" Then

datFireCommand.Recordset .AddNew
cboTarget.Enabled = True
cboNomination.Enabled = True
cboPlatform.Enabled = True
cboTarget.ListIndex = -1

. cboNomination.ListIndex = -1
cboPlatform.ListIndex = -1
txtTimeSent.Enabled = True
txtTimeRcvd.Enabled = True
txtOCCCId.Enabled = True
chkEngage.Enabled = True
cmdUpdate.Enabled = False
cmdSave.Enabled = True

cmdDel .Enabled = False
cmdAdd.Caption = "&Cancel™
mnuFile.Enabled = False
datFireCommand.Enabled = False

Else

datFireCommand.Recordset.CancelUpdate
cboTarget.Enabled = False
cboNomination.Enabled = False
cboPlatform.Enabled = False
txtTimeSent .Enabled False
txtTimeRcvd.Enabled = False
txtOCCCId.Enabled = False
chkEngage.Enabled = False
cmdUpdate.Enabled = True
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdAdd.Caption = "&Add Event"
mnuFile.Enabled = True
datFireCommand.Enabled = True
cmdAdd. SetFocus

End If

cmdadd_Click Exit:

Exit Sub
HandleAddErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf &

92

Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

End Sub

Private Sub cmdbDel_Click()
Dim iResp As Integer
On Error GoTo HandleDelErrors

If datFireCommand.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Event " & txtFireCommand & "?", vbYesNo,

"Delete Event")
. If iResp = vbYes Then
With datFireCommand.Recordset

.Delete

.MoveNext

If .EOF Then
.MovePrevious
If .BOF Then

MsgBox "The recordset is empty.",
vbInformation, "No Records"

End If
End If
End wWith
End If
Else »
MsgBox "No records to delete.', vbExclamation, "Delete Event"
End If
cmdDel_Click:
Exit Sub
HandleDelErrors:
Dim stMess As String
stMess = "Cannot complete operation.™ & vbCrLf & vbCrLf &

Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0

End Sub
Private Sub cmdSave_Click()

'save current record
On Error GoTo HandleSaveErrors
If cboTarget.ListIndex >= 0 And cboNomination.ListIndex >= 0 And
cboPlatform.ListIndex >= 0 Then
If Val(txtCounter) < 10 Then
txtFireCommand.Text = "FC0000" & txtCounter.Text

93

Else
If vVal (txtCounter) < 100 Then

txtFireCommand.Text = "FC000" & txtCounter.Text
Else
If Val (txtCounter) < 1000 Then
txtFireCommand.Text = "FC00" & txtCounter.Text
Else
If Val(txtCounter) < 10000 Then
txtFireCommand.Text = "FCO" & txtCounter.Text
Else
txtFireCommand.Text = "FC" & txtCounter.Text
End If
End If
End If

End If

_datFireCommand.Recordset .Update
Else
MsgBox "You must select a Nomination Event, a Target, and a
Platform before saving." _
, VbExclamation, "Add Fire Command Event"
datFireCommand.Recordset .CancelUpdate
End If

cboTarget .Enabled = False
cboNomination.Enabled = False
cboPlatform.Enabled = False
txtTimeSent .Enabled False
txtTimeRcvd.Enabled = False
txtOCCCId.Enabled = False
chkEngage.Enabled False
cmdUpdate.Enabled = True
cmdSave .Enabled = False
cmdDel . Enabled = True
cmdAdd.Caption = "&Add Event'
mnuFile.Enabled = True
datFireCommand.Enabled
cmdadd. SetFocus

True

datFireCommand.Enabled = True

cmdSave_Click_Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number
Case 3022 duplicate key field
stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Error”
On Error GoTo 0 ‘turn off error trapping

Case 3058, 3315 ‘no entry in key field
stMess = "Select Nomination Event, Target, and Platform

94

before saving."
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

Case Else
stMess = "Record could not be saved." & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error*
datFireCommand.Recordset.CancelUpdate
Resume Next
End Select

End Sub
Private Sub cmdUpdate_Click()

If cmdUpdate.Caption = "&Update" And _
datFireCommand.Recordset.RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit®
cboTarget .Enabled = True
cboNomination.Enabled = True
cboPlatform.Enabled = True
txtTimeSent.Enabled = True
txtTimeRcvd.Enabled = True
txtOCCCId.Enabled = True
chkEngage.Enabled = True
cmdAdd.Enabled = False
cmdSave.Enabled = False
cmdDel .Enabled = False
mnuFile.Enabled = False
datFireCommand.Enabled = False
datFireCommand.Recordset.Edit

Else
If datFireCommand.Recordset.RecordCount > 0 Then
datFireCommand.Recordset.Update

cboTarget.Enabled = False
cboNomination.Enabled = False
cboPlatform.Enabled = False
txtTimeSent .Enabled = False
txtTimeRcvd.Enabled = False
txtOCCCId.Enabled = False
chkEngage.Enabled = False
cmdDel . Enabled True

cmdAdd. Enabled True

cmdAdd. SetFocus
cmdUpdate.Caption = "&Update®
mnuFile.Enabled = True
datFireCommand.Enabled = True

End If
End If

95

End Sub

Private Sub datFireCommand_Reposition()
SetFireCommandRecordNumber

End Sub

Private Sub Form_Load()

datFireCommand.DatabaseName = gstNewDatabase

stSQL1 = "Select Nomination from Nomination"
stSQL2 = "Select TargetId from Target"
stSQL3 = "Select Platform from Platform"

Set rsNomination = db.OpenRecordset (stSQL1)
Set rsTarget = db.OpenRecordset (stSQL2)
Set rsPlatform = db.OpenRecordset (stSQL3)

‘£ill cboNomination

Do Until rsNomination.EOF
cboNomination.AddItem rsNomination!Nomination
rsNomination.MoveNext

Loop

'£il1l cboTarget

Do Until rsTarget.EOF
cboTarget .AddItem rsTarget!TargetId
rsTarget .MoveNext

Loop

*£i11 cboPlatform

Do Until rsPlatform.EOF
cboPlatform.AddItem rsPlatform!Platform
rsPlatform.MoveNext

Loop

With datFireCommand
.Refresh
If Not .Recordset.EOF Then
.Recordset .MoveLast
.Recordset .MoveFirst
End If
End With

SetFireCommandRecordNumber
End Sub
Private Sub Form_Unload(Cancel As Integer)

frmMain.Enabled = True
96

Unload Me
End Sub
Private Sub mnuFileBack_Click()

frmMain.Enabled = True
Unload Me

End Sub
Private Sub SetFireCommandRecordNumber ()

Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount = datFireCommand.Recordset.RecordCount
iCurrentRecord = datFireCommand.Recordset.AbsolutePosition + 1

If datFireCommand.Recordset.EOF Then
datFireCommand.Caption = "No more records"

Else
datFireCommand.Caption = "Fire Command Event Record " &

iCurrentRecord & _
" of " & iRecordCount
End If
End Sub
Private Sub mnuFilePrint_Click{()
frmPrint .Show
On Error GoTo mnuPrintErrors
If bContinue = True Then
With datFireCommand.Recordset
If bWord = True Then
Set WordApp = New Word.Application
WordApp .Documents.Add
Set Doc = WordApp.ActiveDocument
Set Sel = WordApp.Selection
Doc.Tables.Add Range:=Sel.Range, NumRows:=.RecordCount,
NumColumns: =6
Sel.TypeText Text:="FireCommand"

Sel.MoveRight unit:=12 ’12=next cell

Sel.TypeText Text:="Nomination"
Sel.MoveRight unit:=12 '12=next cell

97

cell

cell

cell

cell

cell

cell

Chr(9);

Sel
Sel

Sel

Sel
Sel

Sel.

Sel

.TypeText Text:="TargetId"
.MoveRight unit:=12

.TypeText Text:="FCTimeXmit"
Sel.

MoveRight unit:=12

.TypeText Text:="FCTimeRcvd"
.MoveRight unit:=12

TypeText Text:="FirerPlatform"

.MoveRight unit:=12

Do Until .EOF

Loop

Sel.

Sel.

Sel.
Sel.

Sel.
Sel

Sel
Sel.

Sel.
Sel.

Sel.
Sel.

TypeText Text:=!FireCommand
MoveRight unit:=12

TypeText Text:=!Nomination
MoveRight unit:=12

TypeText Text:=!TargetId

.MoveRight unit:=12

.TypeText Text:=!FCTimeXmit

MoveRight unit:=12

TypeText Text:=!FCTimeRcvd
MoveRight unit:=12

TypeText Text:=!FirerPlatform
MoveRight unit:=12

.MoveNext

WordApp.Visible = True

Set WordApp = Nothing

Else

If bText

"TargetId";

Open App.Path & "\FireCmds.txt"

= True Then

Print #1, "FireCommand"; Chr(9);
Chr(9); _

98

’12=next cell

r12=next cell

’12=next cell

'12=next cell

'12=next

'12=next

12=next

'12=next

'r12=next

'12=next

For Output As #1

"Nomination";

"FCTimeXmit"; Chr(9); "FCTimeRcvd";

Chr(9); _
*FirerPlatform"; Chr(9)
Do Until .EOF
Print #1, !FireCommand; Chr(9):
INomination; Chr(9); _
ITargetTd; Chr(9); _
IFCTimeXmit; Chr(9); _
{FCTimeRcvd; Chr(9); _
'FirePlatform; Chr(9)
.MoveNext
Loop
Close #1
End If
End If
.MoveFirst
End With
End If
bContinue = False
bWord = False
bText = False
mnuPrintErrors:
Select Case Err.Number
Case 94
Sel.TypeText Text:=""
Resume Next
End Select
End Sub

Private Sub txtNomination_Change ()

‘selects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsNomination.MoveFirst
If txtNomination <> "" Then
Do Until iIndex = rsNomination.RecordCount Or bFound
If rsNomination!Nomination = txtNomination Then
cboNomination.Text = rsNomination!Nomination
bFound = True
Else
rsNomination.MoveNext
iIndex = iIndex + 1

99.

End If

Loop
End If

End Sub
Private Sub txtPlatform Change ()

'selects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsPlatform.MoveFirst

Tf txtPlatform <> "" Then
Do Until iIndex = rsPlatform.RecordCount Or bFound

Tf rsPlatform!Platform = txtPlatform Then
cboPlatform.Text = rsPlatform!Platform
bFound = True

Else
rsPlatform.MoveNext

iIndex = iIndex + 1
End If

Loop
End If

End Sub
Private Sub txtTarget_Change ()

'selects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsTarget .MoveFirst

If txtTarget <> "" Then
Do Until iIndex = rsTarget .RecordCount Or bFound

If rsTarget!Targetld = txtTarget Then
cboTarget.Text = rsTarget !TargetId
bFound = True

Else
rsTarget .MoveNext

iIndex = iIndex + 1
End If

Loop
End If

End Sub

'***

‘Module: frmFireEvent . frm

100

'‘Description: Allows user to access the fire event records
¢ for addition, deletion, and modification.

' Programmer : Kevin Coldn
l***

Option Explicit

Dim rsFireCommand As Recordset

Dim stSQL As String

Private WordApp As Word.Application
Private Doc As Word.Document
Private Sel : As Word.Selection

Private Sub cmdAdd_Click()
On Error GoTo HandleAddErrors
If cmdadd.Caption = "&Add Event" Then

datFire.Recordset .AddNew
cboFireCommand.Enabled = True
cboFireCommand.ListIndex = -1
txtTime.Enabled = True
txtWeaponMagStat .Enabled = True
txtLocation.Enabled = True
txtAltitude.Enabled = True
txtRounds .Enabled = True
cmdUpdate.Enabled = False
cmdSave.Enabled = True

cmdDel .Enabled = False
cmdAadd.Caption = "&Cancel™
mnuFile.Enabled = False
datFire.Enabled = False

Else

datFire.Recordset.CancelUpdate
cboFireCommand.Enabled = False
txtTime.Enabled = False
txtWeaponMagStat .Enabled = False
txtLocation.Enabled = False
txtAltitude.Enabled = False
txtRounds.Enabled = False
cmdUpdate.Enabled = True
cmdSave.Enabled = False

cmdDel .Enabled = True
cmdadd.Caption = "&Add Event"
mnuFile.Enabled True
datFire.Enabled True

cmdAdd. SetFocus

End If

cmdAdd_Click_Exit:
101

Exit Sub

HandleAddErrors:
Dim stMess As String
StMess = "Cannot complete operation. " & vbCrLf & vbCrLf &

Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

End Sub
Private Sub cmdDel_Click()
Dim iResp As Integer
On Error GoTo HandleDelErrors

If datFire.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Event " & txtFire & "?", vbYesNo, _
"Delete Event")
If iResp = vbYes Then
With datFire.Recordset
.Delete
.MoveNext
If .EOF Then
.MovePrevious
If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"

End If
End If
End With
End If
Else
MsgBox "No records to delete.", vbExclamation, "Delete Event"
End If
cmdDel_Click:
Exit Sub
HandleDelErrors:
Dim stMess As String
stMess = "Cannot complete operation." & vbCrLf & vbCrLf &

Err.Description
MsgBox stMess, vbExclamation, "Database Error”

On Error GoTo 0
End Sub
Private Sub cmdSave_Click()

‘save current record

102

On Error GoTo HandleSaveErrors
If cboFireCommand.ListIndex >= 0 And txtRounds <> "" Then
If Val (txtCounter) < 10 Then
txtFire.Text = "FE0000" & txtCounter.Text
Else
If val(txtCounter) < 100 Then
txtFire.Text = "FE000" & txtCounter.Text

Else
If vVal (txtCounter) < 1000 Then
txtFire.Text = "FEOO" & txtCounter.Text
Else
If val(txtCounter) < 10000 Then
txtFire.Text = "FEO" & txtCounter.Text
Else
txtFire.Text = "FE" & txtCounter.Text
End If
End If
End If
End If

datFire.Recordset.Update
Else
MsgBox "You must select an Fire Command Event and enter number
of rounds before saving." _
, VbExclamation, "Add Fire Event"
datFire.Recordset .CancelUpdate
End If

cboFireCommand.Enabled = False
txtTime.Enabled = False
txtWeaponMagStat.Enabled = False
txtLocation.Enabled = False
txtAltitude.Enabled = False
txtRounds.Enabled = False
cmdUpdate.Enabled = True
cndSave.Enabled = False

cmdDel .Enabled = True
cmdAdd.Caption = "&Add Event®

mnuFile.Enabled = True
datFire.Enabled = True
cmdAdd. SetFocus

datFire.Enabled = True

cmdSave_Click_Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number
Case 3022 'duplicate key field
stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 'turn off error trapping

103

Case 3058, 3315 ‘no entry in key field
stMess = "Select Fire Command Event and enter number of
rounds before saving."
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

Case Else
stMess = "Record could not be saved." & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
datFire.Recordset.CancelUpdate
Resume Next
End Select

End Sub
Private Sub cmdUpdate_Click()

If cmdUpdate.Caption = "&Update" And _
datFire.Recordset .RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit"
cboFireCommand.Enabled = True
txtTime.Enabled = True
txtWeaponMagStat .Enabled = True
txtLocation.Enabled = True
txtAltitude.Enabled = True
txtRounds.Enabled = True
cmdAdd.Enabled = False
crmdSave.Enabled = False
cmdDel .Enabled = False
mnuFile.Enabled = False
datFire.Enabled = False
datFire.Recordset.Edit

Else
If datFire.Recordset.RecordCount > 0 Then
datFire.Recordset.Update

cboFireCommand.Enabled = False
txtTime.Enabled = False
txtWeaponMagStat.Enabled = False
txtLocation.Enabled = False
txtAltitude.Enabled = False
txtRounds.Enabled = False
cmdDel .Enabled = True
cmdAdd.Enabled = True

cmdAdd. SetFocus
cmdUpdate.Caption = "&Update”
mnuFile.Enabled = True
datFire.Enabled = True

End If
104

End If

End Sub

Private Sub datFire_Reposition()
SetFireRecordNumber

End Sub

Private Sub Form_Load()
datFire.DatabaseName = gstNewDatabase
stSQL = "Select FireCommand from FireCommand"
Set. rsFireCommand = db.OpenRecordset (stSQL)
'£ill cboFireCommand
Do Until rsFireCommand.EOF

cboFireCommand.AddItem rsFireCommand!FireCommand

rsFireCommand . MoveNext
Loop

With datFire
.Refresh
If Not .Recordset.EOF Then
.Recordset .MovelLast
.Recordset .MoveFirst
End If
End with
SetFireRecordNumber
End Sub
Private Sub Form Unload(Cancel As Integer)

frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileBack_Click()

frmMain.Enabled = True
Unload Me

End Sub
Private Sub SetFireRecordNumber ()

Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

105

iRecordCount

= datFire.Recordset.RecordCount
iCurrentRecord =

datFire.Recordset .AbsolutePosition + 1

If datFire.Recordset.EQF Then

datFire.Caption = "No more records"
Else
datFire.Caption = "Fire Event Record " & iCurrentRecord & _
" of " & iRecordCount
End If
End Sub

Private Sub mnuFilePrint_Click()
frmPrint.Show

On Error GoTo mnuPrintErrors
If bContinue = True Then
With datFire.Recordset
If bWord = True Then
Set WordApp = New Word.Application
WordApp . Documents .Add
Set Doc = WordApp.ActiveDocument
Set Sel = WordApp.Selection
Doc.Tables.Add Range:=Sel.Range, NumRows:=.RecordCount,
NumColumns:=6

Sel.TypeText Text:="Fire"

Sel.MoveRight unit:=12 ’12=next cell

Sel.TypeText Text:="FireCommand"
Sel .MoveRight unit:=12 ‘12=next cell

Sel.TypeText Text:="FireTime"
Sel.MoveRight unit:=12 r12=next cell

Sel.TypeText Text:="FirerLocation"
Sel.MoveRight unit:=12 '12=next cell

Sel.TypeText Text:="FirerAltitude"
Sel .MoveRight unit:=12 ’12=next cell

Sel.TypeText Text:="RoundsFired"
Sel .MoveRight unit:=12 '12=next cell

Do Until .EOF

Sel.TypeText Text:=!Fire
106

Sel .MoveRight unit:=12 '12=next

cell

Sel.TypeText Text:=!FireCommand

Sel .MoveRight unit:=12 '12=next
cell

Sel.TypeText Text:=!FireTime

Sel.MoveRight unit:=12 r12=next
cell

Sel.TypeText Text:=!FirerLocation

Sel.MoveRight unit:=12 ’12=next
cell

Sel.TypeText Text:=!FirerAltitude

Sel .MoveRight unit:=12 r12=next
cell

Sel.TypeText Text:=!RoundsFired

Sel.MoveRight unit:=12 r12=next
cell

.MoveNext

Loop

WordaApp.Visible = True

Set Wordapp = Nothing

Else
If bText = True Then

Open App.Path & "\FireEvents.txt" For Output As #1

Print #1, "Fire"; Chr(9); "FireCommand"; Chr(9);
"FireTime"; Chr(9); _
"pirerLocation"; Chr(9);

vFirerAltitude"; Chr(9); _
"RoundsFired"; Chr(9)

Do Until .EOF

Print #1, !Fire; Chr(9); _
1FireCommand; Chr(9); _
IFireTime; Chr(9); _
IFirerLocation; Chr(9);
IFirexraltitude; Chr(9); _
1RoundFired; Chr(9)

.MoveNext
Loop

107

Close #1

End If
End If

.MoveFirst
End With
End If

bContinue = False
bWord = False
bText = False

mnuPrintErrors:
Select Case Err .Number

Case 94
Sel.TypeText Text:=""

Resume Next
End Select

End Sub

'***

‘Module: frmGISRS. fxrm

'Description: Allows user to access the GISRS terminal
’ records for addition, deletion, and

’ modification.

' Programmer : Kevin Coldn

|***

Option Explicit
Dim rsPlatform As Recordset
Dim stSQL As String
Private Sub cboPlatform_Click()
1f cboPlatform.ListIndex >= 0 Then

txtPlatform = cboPlatform.Text
End If
End Sub

pPrivate Sub cmdadd_click()
On Error GoTo HandleAddErrors

If cmdadd.Caption = 1&add" Then
datGISRS.Recordset.AddNew
txtTerminal .Enabled = True

108

txtTerminal . SetFocus
txtFunction.Enabled = True
cboPlatform.Enabled = True
cmdAdd.Caption = "&Cancel"
cmdSave.Enabled = True
cmdDel .Enabled = False
cmdUpdate.Enabled = False
mnuFile.Enabled = False
datGISRS.Enabled = False

Else
datGISRS.Recordset.CancelUpdate
txtTerminal .Enabled False
txtFunction.Enabled = False
cboPlatform.Enabled = False
cmdSave.Enabled = False
.cmdDel .Enabled = True
cmdUpdate.Enabled = True
mnuFile.Enabled = True
cmdadd.Caption = "&Add"
cmdAadd. SetFocus
datGISRS.Enabled = True

i}

End If

cmdAdd_Click_Exit:
Exit Sub

HandleAddErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

End Sub

Private Sub cmdDel_Click()
'delete the current record
Dim iResp As Integer

On Error GoTo HandleDelErrors

If datGISRS.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Terminal " & txtTerminal .Text & "?",
vbYesNo, "Delete Terminal")
If iResp = vbYes Then
with datGISRS.Recordset

.Delete '‘delete current record
.MoveNext ‘move to following record
If .EOF Then

.MovePrevious

If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"

109

End If
End If
End With
End If
Else
MsgBox "No records

to delete.",

, "Delete Terminal"

End If

cmdDel _Click_Exit:

Exit Sub
HandleDelExrrors:

Dim stMsg As String

stMsg = "Cannot complet

& Err.Descripti
MsgBox stMsg, vbExclama
On Error GoTo 0

End Sub
Private Sub cmdSave_Click()

'save the current recor
Dim iResp As Integer

e operation.
on

vbExclamation _

v & vbCrLf & vbCrLf _

tion, "Database Error"
'turn off error trapping

d

On Error GoTo HandleSaveErrors

If txtTerminal.Text <>
txtTerminal.Text

iResp = MsgBox("Do you want to a
" to the database?",

Then

UCase (txtTerminal.Text)

rminal™)
en

datGISRS.Recordset.Update

*add Te
If iResp = vbYes Th
End If
Else
MsgBox
vbExclamation _

, "Add Terminal®”

datGISRS.Recordset .CancelUpdate

End If

txtTerminal .Enabled = F
txtFunction.Enabled = F
cboPlatform.Enabled = F
cmdSave.Enabled = False
cmdDel .Enabled = True
datGISRS.Enabled = True

mnuFile.Enabled = True
cmdadd.Caption = "&Add"
cmdAdd. SetFocus
cmdUpdate.Enabled = Tru

alse
alse
alse

e

110

dd " & txtTerminal.Text & _
vbYesNo + vbQuestion, _

"You must enter a Terminal before saving.",

cmdSave_Click Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number

Case 3022 ‘duplicate key field
stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo O turn off error trapping
Case 3058, 3315 ‘no entry in key field
stMess = "Enter a location before saving."
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping
Case Else
stMess = "Record could not be saved." & vbCrLf _

& Err.Description
MsgBox stMess, vbExclamation, "Database Erroxr"
datGISRS.Recordset.CancelUpdate
Resume Next
End Select

End Sub

Private Sub cmdUpdate_Click()
If cmdUpdate.Caption = "&Update" And _
datGISRS.Recordset.RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit"”

txtTerminal .Enabled True

txtFunction.Enabled = True

cboPlatform.Enabled = True

cmdDel .Enabled = False

mnuFile.Enabled = False

txtTerminal.SetFocus

cmdadd.Enabled = False

datGISRS.Enabled = False

datGISRS.Recordset.Edit

Else .

If datGISRS.Recordset.RecordCount > 0 Then
txtTerminal = UCase(txtTerminal)
datGISRS.Recordset .Update

txtTerminal .Enabled False
txtFunction.Enabled False
cboPlatform.Enabled = False
cmdDel .Enabled = True
mnuFile.Enabled = True
cmdAdd.Enabled = True

crmdAdd. SetFocus .
cmdUpdate.Caption = "&Update"
datGISRS.Enabled = True

111

n

End If
End If

End Sub
Private Sub datGISRS_Reposition()
SetTerminalRecordNumber
End Sub
Private Sub FillPlatformCombo ()
Dim iCount As Integer
'£ill the PlatType combo box
cboPlatform.Clear
With rsPlatform
iCount = .RecordCount
r£ill the list
Do Until .EOF
If 'Platform <> "" Then
cboPlatform.AddItem !Platform
End If
.MoveNext
Loop
End With
End Sub
Private Sub Form_Load()
datGISRS.DatabaseName = gstNewDatabase
stSQL = "Select Platform from Platform"”
Set rsPlatform = db.OpenRecordset (stSQL)
FillPlatformCombo
with datGISRS
.Refresh
Tf Not .Recordset.EOF Then
.Recordset .MovelLast
.Recordset .MoveFirst
End If
End With
SetTerminalRecordNumber

Eﬁd Sub
112

Private Sub Form Unload(Cancel As Integer)

frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileBack_Click()

frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileSearch_Click()

datCISRS.Recordset.FindFirst " [GISRSTerminal] = """ & _

InputBox (*Enter the GISRS Terminal", "GISRS Terminal
Searchn) & worn N

If datGISRS.Recordset.NoMatch Then
MsgBox "GISRS Terminal was not found.", vbOKOnly, "GISRS
Terminal Search"
datGISRS.Recordset.MoveFirst ‘go to first record
End If

End Sub

Private Sub SetTerminalRecordNumber ()
Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount = datGISRS.Recordset.RecordCount
iCurrentRecord = datGISRS.Recordset .AbsolutePosition + 1
1f datGISRS.Recordset.EOF Then

datGISRS.Caption = "No more records"
Else
datGISRS.Caption = "Terminal " & iCurrentRecord & __
" of * & iRecordCount
End If
End Sub

Private Sub txtPlatform Change ()

'gelects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsPlatform.MoveFirst
If txtPlatform <> "" Then
Do Until iIndex = rsPlatform.RecordCount Or bFound
If rsPlatform!Platform = txtPlatform Then
cboPlatform.Text = rsPlatform!Platform

113

bFound = True
Else
rsPlatform.MoveNext
iIndex = iIndex + 1
End If
Loop
Else
cboPlatform.ListIndex = -1
End If

End Sub

/***

‘Module: frmImpactEvent.frm

'Description: Allows user to access the impact event
' , records for addition, deletion, and

! modification.

' Programmer : Kevin Colédn

'*************************’k***********************************

Option Explicit

Dim rsFire As Recordset
Dim rsPlatform As Recordset

Dim rsSensor As Recordset

Dim stSQL1 As String

Dim stSQL2 As String

Dim stSQL3 As String

Private WordApp ~ As Word.Application
Private DocC As Word.Document
private Sel As Word.Selection

Private Sub cboFire_Change()
1f cboFire.ListIndex >= 0 Then
txtFire = cboFire.Text
End If
End Sub
Private Sub cboSensor_Change()
If cboSensor.ListIndex >= 0 Then
txtSensor = cboSensor .Text
End If
End Sub
private Sub cboPlatform_Change()
If cboPlatform.ListIndex >= 0 Then

txtPlatform = cboPlatform.Text
End If

114

End Sub
Private Sub cmdAdd_Click()
On Error GoTo HandleAddErrors
Tf cmdadd.Caption = "&Add Event" Then

datImpact .Recordset . AddNew
cboFire.Enabled = True
cboPlatform.Enabled = True
cboSensor.Enabled = True
cboFire.ListIndex = -1
cboPlatform.ListIndex = -1
cboSensor.ListIndex = -1
txtImpactTime.Enabled = True
txtBDATime.Enabled = True
txtBDA.Enabled = True
cmdUpdate.Enabled = False
cmdSave.Enabled = True
cmdDel.Enabled = False
cmdadd.Caption = "&Cancel”
mnuFile.Enabled = False
datImpact.Enabled = False

Else

datImpact .Recordset.CancelUpdate
cboFire.Enabled = False
cboPlatform.Enabled = False
cboSensor .Enabled = False
txtImpactTime.Enabled = False
txtBDATime.Enabled = False
txtBDA.Enabled = False
cmdUpdate.Enabled = True
cmdSave .Enabled = False
cmdDel .Enabled = True
cmdadd.Caption = "&Add Event"
mnuFile.Enabled = True
datImpact.Enabled = True
cmdAdd. SetFocus

End If

cmdAdd_Click_Exit:

Exit Sub
HandleAddErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf &

' Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

115

End Sub
Private Sub cmdDel_Click()
Dim iResp As Integer
On Error GoTo HandleDelErrors

If datImpact.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Event " & txtImpact & "?", vbYesNo,
"Delete Event")
If iResp = vbYes Then
With datImpact.Recordset
.Delete
.MoveNext
If .EOF Then
.MovePrevious
If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"

End If
End If
End With
End If
Else
MsgBox "No records to delete.", vbExclamation, "Delete Event"
End If
cmdDel_Click:
Exit Sub
HandleDelErrors:
Dim stMess As String
stMess = "Cannot complete operation." & vbCrLf & vbCrLf &

Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0

End Sub
Private Sub cmdSave_Click()

’'save current record
On Error GoTo HandleSaveErrors
If cboFire.ListIndex >= 0 Then
If vVal (txtCounter) < 10 Then
txtImpact.Text = "IEQ000" & txtCounter.Text
Else
If vVal(txtCounter) < 100 Then
txtImpact.Text = "IE000" & txtCounter.Text
Else
If val(txtCounter) < 1000 Then

116

txtImpact.Text = "IEQ0" & txtCounter.Text
Else '
If val(txtCounter) < 10000 Then
txtImpact.Text "IEO" & txtCounter.Text

Else
txtImpact.Text = "IE" & txtCounter.Text
End If
End If
End If
End If

datImpact.Recordset.Update
Else
MsgBox "You must select a Fire Event before saving." _
, VbExclamation, "Add Impact Event"
datImpact.Recordset.CancelUpdate
End If

cboFire.Enabled = False
cboPlatform.Enabled = False
cboSensor.Enabled = False
txtImpactTime.Enabled = False
txtBDATime.Enabled = False
txtBDA.Enabled = False
cmdUpdate.Enabled = True
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdAdd.Caption = "&Add Event"
mnuFile.Enabled = True
datImpact.Enabled = True
cmdAdd. SetFocus

datImpact.Enabled = True

cmdSave_Click_Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number
Case 3022 ‘duplicate key field
stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

Case 3058, 3315 ‘'no entry in key field
stMess = "Select Fire Event before saving."
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off .error trapping

Case Else
stMess = "Record could not be saved." & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"

117

datImpact.Recordset.CancelUpdate
Resume Next
End Select

End Sub
Private Sub cmdUpdate_Click()

If cmdUpdate.Caption = "&Update" And _
datImpact.Recordset.RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit"
cboFire.Enabled = True
cboPlatform.Enabled = True
cboSensor.Enabled = True
txtImpactTime.Enabled = True
. txtBDATime.Enabled = True
txtBDA.Enabled = True
cmdAdd.Enabled = False
cmdSave.Enabled = False
cmdDel .Enabled = False
mnuFile.Enabled = False
datImpact.Enabled = False
datImpact.Recordset.Edit

Else
If datImpact.Recordset.RecordCount > 0 Then
datImpact.Recordset.Update

cboFire.Enabled = False
cboPlatform.Enabled = False
cboSensor.Enabled = False
txtImpactTime.Enabled = False
txtBDATime.Enabled = False
txtBDA.Enabled = False

cmdDel . Enabled True

cmdAdd. Enabled True

cmdAdd. SetFocus
cmdUpdate.Caption = "&Update"
mnuFile.Enabled = True
datImpact.Enabled = True

End If
End If

End Sub

Private Sub datImpact_Reposition()
SetImpactRecordNumber

End Sub

Private Sub Form_Load()

118

datImpact.DatabaseName = gstNewDatabase

stSQLl1l = "Select Fire from Fire"
stSQL2 = "Select Platform from Platform"
stSQL3 = "Select SensorType from SensorType"

Set rsFire = db.OpenRecordset (stSQL1)
Set rsPlatform = db.OpenRecordset (stSQL2)
Set rsSensor = db.OpenRecordset (stSQL3)

'£ill cboFire

Do Until rsFire.EOF
cboFire.AddItem rsFire!Fire
rsFire.MoveNext

Loop

'£i11 cboPlatform

Do Until rsPlatform.EQOF
cboPlatform.AddItem rsPlatform!Platform
rsPlatform.MoveNext

Loop

*£ill cboSensor

Do Until rsSensor.EOF
cboSensor .AddItem rsSensor!SensorType
rsSensor .MoveNext

Loop

With datImpact
.Refresh
If Not .Recordset.EOF Then
.Recordset .MoveLast
.Recordset .MoveFirst
End If
End wWith

SetImpactRecordNumber
End Sub
Private Sub SetImpactRecordNumber ()

Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount = datImpact.Recordset.RecordCount
iCurrentRecord = datImpact.Recordset.AbsolutePosition + 1

If datImpact.Recordset.EOF Then
datImpact.Caption = "No more records"
Else

datImpact.Caption = "Impact Event Record " & iCurrentRecord & _

" of " & iRecordCount

119

End If
End Sub
Private Sub Form Unload(Cancel As Integer)

frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileBack_Click()

frmMain.Enabled = True
Unload Me

End Sub

Private Sub mnuFilePrint_Click()
frmPrint.Show

On Error GoTo mnuPrintErrors
If bContinue = True Then
With datImpact.Recordset
If bWord = True Then
Set WordApp = New Word.Application
WordaApp .Documents.Add
Set Doc = WordApp.ActiwveDocument
Set Sel = WordApp.Selection
Doc.Tables.Add Range:=Sel.Range, NumRows:=.RecordCount,
NumColumns:=7
Sel.TypeText Text:="Impact"

Sel .MoveRight unit:=12 ’12=next cell

Sel.TypeText Text:="FireEvent"
Sel.MoveRight unit:=12 '12=next cell

Sel.TypeText Text:="ImpactTime"
Sel.MoveRight unit:=12 '12=next cell

Sel.TypeText Text:="BDA"
Sel.MoveRight unit:=12 *12=next cell

Sel.TypeText Text:="BDATime"
Sel.MoveRight unit:=12 '12=next cell

Sel.TypeText Text:="Platform"
Sel.MoveRight unit:=12 . '12=next cell

120

Sel.TypeText Text:="SensorType"
Sel.MoveRight unit:=12 '12=next cell

Do Until .EOF

Sel.TypeText Text:=!Impact .
Sel.MoveRight unit:=12 *12=next

cell
Sel.TypeText Text:=!FireEvent
Sel.MoveRight unit:=12 r12=next
cell
Sel.TypeText Text:=!ImpactTime
Sel.MoveRight unit:=12 ’12=next
cell
Sel.TypeText Text:=!BDA
Sel.MoveRight unit:=12 ’12=next
cell
Sel.TypeText Text:=!BDATime
Sel.MoveRight unit:=12 '12=next
cell
Sel.TypeText Text:=!Platform
Sel.MoveRight unit:=12 r12=next
cell
Sel.TypeText Text:=!SensorType
Sel.MoveRight unit:=12 '12=next
cell
.MoveNext
Loop
WordApp.Visible = True
Set WordApp = Nothing
Else
If bText = True Then
Open App.Path & "\ImpactEvents.txt" For Output As
#1

Print #1, "Impact"; Chr(9); "FireEvent"; Chr(9);
"ImpactTime"; Chr(9); _

"BDA"; Chr(9); "BDATime"; Chr(9);
"Platform"; Chr(9); "SensorType";

Chr(9)

121

Do Until .EOF

Print #1, !Impact; Chr(9);
!FireEvent; Chr(9);
!ImpactTime; Chr(9);
IBDA; Chr{9); _
!BDATime; Chr(9);
!Platform; Chr(9);
!SensorType; Chr(9)

.MoveNext
Loop
Close #1
End If
End If
.MoveFirst
End With
End If
bContinue = False
bWord = False
bText = False
mnuPrintErrors:
Select Case Err.Number
Case 94
Sel.TypeText Text:=""
Resume Next
End Select
End Sub

Private Sub txtFire_Change()

'‘selects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsFire.MoveFirst
If txtFire <> "" Then
Do Until iIndex = rsFire.RecordCount Or bFound
If rsFire!Fire = txtFire Then
cboFire.Text = rsFire!Fire
bFound = True
Else
rsFire.MoveNext
iIndex = iIndex + 1
End If

122

Loop
End If

End Sub
Private Sub txtSensor_Change ()

'selects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsSensor .MoveFirst
If txtSensor <> "" Then
Do Until iIndex = rsSensor.RecordCount Or bFound
If rsSensor!SensorType = txtSensor Then
cboSensor.Text = rsSensor!SensorType
bFound = True
Else
rsSensor .MoveNext
iIndex = iIndex + 1
End If
Loop *
End If

End Sub
Private Sub txtPlatform Change()

‘selects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsPlatform.MoveFirst
If txtPlatform <> "" Then
Do Until iIndex = rsPlatform.RecordCount Or bFound
-If rsPlatform!Platform = txtPlatform Then
cboPlatform.Text = rsPlatform!Platform
bFound = True
Else
rsPlatform.MoveNext
iIndex = iIndex + 1
End If

Loop
End If

End Sub

B EEE SRS EEEEEEREREEREEEEREEERESREE SR LSRR R R R RS R R RS R R R RS

‘Module: frmInitiatives.frm

‘Description: Allows user to access the initiatives
’ records for addition, deletion, and

’ modification.

123

. .
' Programmer : Kevin Coldn
l***

Option Explicit

Private Sub cmdAdd_Click()
On Error GoTo HandleAddErrors

If cmdAdd.Caption = "&Add" Then
datInitiatives.Recordset.AddNew
txtInitiative.Enabled = True
txtInitiative.SetFocus
txtDescription.Enabled = True
cmdAdd.Caption = "&Cancel"
cmdSave.Enabled = True
cmdDel .Enabled = False

. cmdUpdate.Enabled = False
mnuFile.Enabled = False
datInitiatives.Enabled = False

Else
datInitiatives.Recordset.CancelUpdate
txtInitiative.Enabled = False
txtDescription.Enabled = False
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdUpdate.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Add"
cmdAdd. SetFocus
datInitiatives.Enabled = True

End If

cmdAdd_Click _Exit:
Exit Sub

HandleAddErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 'turn off error trapping

End Sub

Private Sub cmdDel_Click()
'delete the current record
Dim iResp As Integer

On Error GoTo HandleDelErrors

If datInitiatives.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Initiative " & txtInitiative.Text & "?",

124

vbYesNo, "Delete Initiative")
If iResp = vbYes Then
wWith datInitiatives.Recordset

.Delete ‘delete current record
.MoveNext ‘move to following record
If .EOF Then

.MovePrevious

If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"

End If
End If
End With

End If
Else

MsgBox “"No records to delete.", vbExclamation _

‘ "Delete Initiative"

End If

cmdDel_Click_Exit:
Exit Sub

HandleDelErrors:
Dim stMsg As String

stMsg = "Cannot complete operation." & vbCrLf & vbCrLf _
& Err.Description .

MsgBox stMsg, VbExclamation, "Database Error"

On Error GoTo 0 'turn off error trapping

End Sub

Private Sub cmdSave_Click()
‘save the current record
Dim iResp As Integer

On Error GoTo HandleSaveErrors
If txtInitiative <> "" And txtDescription <> "" Then
txtInitiative = UCase(txtInitiative)
iResp = MsgBox("Do you want to add " & txtInitiative & __
" to the database?", vbYesNo + vbQuestion,
"Add Initiative")
If iResp = vbYes Then
datInitiatives.Recordset.Update

End If
Else
MsgBox "You must enter an Initiative and a description before
saving.", vbExclamation _

, "Add Initiative"
datInitiatives.Recordset.CancelUpdate
End If

txtInitiative.Enabled = False

125

txtDescription.Enabled = False
cmdSave.Enabled = False

cmdDel .Enabled = True
datInitiatives.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Add"
cmdAdd. SetFocus
cmdUpdate.Enabled = True

cmdSave_Click_Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number

Case 3022 rduplicate key field
stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Erroxr"
On Error GoTo 0 seurn off error trapping

Case 3058, 3315 'no entry in key field
stMess = "Enter a Initiative name before saving."
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 reurn off error trapping

Case Else
stMess = "Record could not be saved." & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
datInitiatives.Recordset.CancelUpdate
Resume Next
End Select

End Sub

Private Sub cmdUpdate_Click()
Tf cmdUpdate.Caption = ngUpdate" And _
datInitiatives.Recordset.RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit”
txtInitiative.Enabled = True
txtDescription.Enabled = True
cmdDel .Enabled = False
mnuFile.Enabled = False
txtInitiative.SetFocus
cmdAdd .Enabled = False
datInitiatives.Enabled = False
datInitiatives.Recordset.Edit

Else
if datInitiatives.Recordset.RecordCount > 0 Then

datInitiatives.Recordset.Update

txtInitiative.Enabled = False
txtDescription.Enabled = False

126

crmdDel .Enabled = True
mnuFile.Enabled = True
cmdadd. Enabled = True

cmdAdd. SetFocus
cmdUpdate.Caption = "&Update"
datInitiatives.Enabled = True

End If
End If

End Sub

Private Sub datInitiatives_Reposition()
SetInitiativeRecordNumber

End Sub

Private.Sub Form_ Load()
datInitiatives.DatabaseName = gstNewDatabase

With datInitiatives
.Refresh
If Not .Recordset.EOF Then
.Recordset .MoveLast
.Recordset .MoveFirst
End If
End With

SetInitiativeRecordNumber

End Sub

Private Sub Form_Unload(Cancel As Integer)
frmMain.Show
frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileBack_Click()

frmMain.Enabled = True
Unload Me

End Sub

Private Sub mnuFileSearch_Click()

’

datInitiatives.Recordset.FindFirst " [Description] = '" & _
InputBox("Enter the Initiative", "Initiative Search") &

nosn

If datInitiatives.Recordset.NoMatch Then
MsgBox "Initiative was not found.", vbOKOnly, "Initiative
Search"

127

datInitiatives.Recordset.MoveFirst ‘go to first record

End If
End Sub

Private Sub SetlInitiativeRecordNumber ()
Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount = datInitiatives.Recordset.RecordCount
iCurrentRecord = datInitiatives.Recordset.AbsolutePosition + 1
If datInitiatives.Recordset.EOF Then

datInitiatives.Caption = "No more records"
Else

datInitiatives.Caption = "Initiative " & iCurrentRecord & _

' " of " & iRecordCount

End. If

End Sub

IEXTEEE S EEEEE SRR E RS REEER SRR RS S R RARE SR R RS EREEEREEESE R EREESEESESE]

‘Module: frmLAWS. frm

'Description: Allows user to access the LAWS terminal
‘ records for addition, deletion, and

’ modification.

' Programmer : Kevin Colén

(ETETETETEL R EE RS EEEEERES AR SRR SRR SRR S s R R RSl a Ean RS R R R R R AR ERESS

Option Explicit
Dim rsPlatform As Recordset
Dim stSQL As String

Private Sub cboPlatform_Click()
If cboPlatform.ListIndex >= 0 Then
txtPlatform = cboPlatform.Text
End If
End Sub

Private Sub cmdAdd_Click()
On Error GoTo HandleAddErrors

If cmdadd.Caption = "&Add" Then
datLAWS.Recordset . AddNew
txtTerminal.Enabled = True
txtTerminal.SetFocus
txtFunction.Enabled = True
cboPlatform.Enabled = True
cmdAdd.Caption = "&Cancel*®
cmdSave.Enabled = True
cmdDel .Enabled = False

128

cmdUpdate.Enabled = False
mnuFile.Enabled = False
datLAWS .Enabled False

Else
datLAWS .Recordset .CancelUpdate
txtTerminal .Enabled = False
txtFunction.Enabled = False
cboPlatform.Enabled = False
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdUpdate.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&AddA"
cmdAdd. SetFocus
datLAWS .Enabled = True

End If

cmdAdd_Click_Exit:
Exit Sub

HandleAddErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLE _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

End Sub

Private Sub cmdDel_Click()
‘delete the current record
Dim iResp As Integer

On Error GoTo HandleDelErrors

If datlLAWS.Recordset.RecordCount > 0 Then

iResp = MsgBox("Delete Terminal " & txtTerminal.Text & "?°",

vbYesNo, "Delete Terminal™))
If iResp = vbYes Then

With datLAWS.Recordset

.Delete ‘delete current recoxrd
.MoveNext 'move to following record
If .EOF Then

.MovePrevious

If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"

End If
End If
End With
End If
Else
MsgBox "No records to delete.", vbExclamation _

129

, "Delete Terminal"
End If

cmdDel_Click Exit:
Exit Sub

HandleDelErrors:
Dim stMsg As String

stMsg = "Cannot complete operation." & vbCrLf & vbCrLf _
& Err.Description

MsgBox stMsg, vbExclamation, "Database Error"

On Error GoTo O turn off error trapping

End Sub

Private Sub cmdSave_Click()
'save the current record
Dim iResp As Integer

On Error GoTo HandleSaveErrors
If txtTerminal.Text <> "" Then
txtTerminal.Text = UCase(txtTerminal.Text)

iResp = MsgBox("Do you want to add " & txtTerminal.Text & _

" to the database?", vbYesNo + vbQuestion,
"Add Terminal")
If iResp = vbYes Then
datLAWS.Recordset.Update
End If

Else
MsgBox "You must enter a Terminal before saving.",
vbExclamation __
"Add Terminal"
datLAWS.Recordset .CancelUpdate
End If

txtTerminal .Enabled False
txtFunction.Enabled = False
cboPlatform.Enabled = False
cmdSave .Enabled = False
cmdDel .Enabled = True
datLAWS.Enabled = True
mnuFile.Enabled = True
cmdadd.Caption = "&Add4"
cmdAdd. SetFocus
cmdUpdate.Enabled = True

cmdSave_Click_Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String

130

Select Case Err.Number

Case 3022 ‘duplicate key field
stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 'turn off error trapping
Case 3058, 3315 ‘no entry in key field
stMess = "Enter a location before saving."
MsgBox stMess, vbExclamation, "Database Error”
On Error GoTo 0 ‘turn off error trapping

Case Else :
stMess = "Record could not be saved." & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
datLAWS.Recordset .CancelUpdate
Resume Next
End Select

End Sub
Private Sub cmdUpdate_Click()

If cmdUpdate.Caption = "&Update" And _
datLAWS .Recordset .RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit"
txtTerminal .Enabled = True
txtFunction.Enabled = True

cboPlatform.Enabled = True

cmdDel .Enabled = False

mnuFile.Enabled = False

txtTerminal . SetFocus

cmdAdd.Enabled = False

datLAWS .Enabled = False

datLAWS .Recordset .Edit

Else

If datLAWS.Recordset.RecordCount > 0 Then
txtTerminal = UCase(txtTerminal)
datLAWS.Recordset .Update

txtTerminal .Enabled False
txtFunction.Enabled False
cboPlatform.Enabled = False
cmdDel .Enabled = True
mnuFile.Enabled = True
cmdAdd.Enabled = True
cmdadd. SetFocus
cmdUpdate.Caption = "&Update"
datLAWS.Enabled = True
End If
End If

n

End Sub

Private Sub datLAWS_Reposition()
131

SetTerminalRecordNumber

End Sub

Private Sub FillPlatformCombo ()
Dim iCount As Integer
fill the PlatType combo box

cboPlatform.Clear

With rsPlatform
iCount = .RecordCount

fill the list
Do Until .EOF
If 'Platform <> "" Then
cboPlatform.AddItem !Platform

End If
.MoveNext
Loop
End With
End Sub
Private Sub Form_Load()

datLAWS.DatabaseName = gstNewDatabase

stSQL = "Select Platform from Platform"
Set rsPlatform = db.OpenRecordset (stSQL)

FillrPlatformCombo
with datLAWS
.Refresh
If Not .Recordset.EOF Then
.Recordset .Movelast
.Recordset .MoveFirst
End If
End With
SetTerminalRecordNumber
End Sub

Private Sub Form_Unload(Cancel As Integer)

frmMain.Enabled = True
Unload Me

End Sub

132

Private

Sub mnuFileBack_Click()

frmMain.Enabled = True

Unload Me
End Sub
Private Sub mnuFileSearch_Click()

datLAWS.Recordset .FindFirst "[LAWSTerminal] = '" &

InputBox ("Enter the LAWS Terminal", "LAWS Terminal

Search“) & "

If datLAWS.Recordset.NoMatch Then

Search"

End
End Sub
Private

Dim
Dim

MsgBox "LAWS Terminal was not found.", vbOKOnly, “LAWS Terminal

. datLAWS.Recordset.MoveFirst ‘go to first record
If

Sub SetTerminalRecordNumber ()
iRecordCount As Integer
iCurrentRecord As Integer

iRecordCount = datLAWS.Recordset.RecordCount
iCurrentRecord = datLAWS.Recordset.AbsolutePosition + 1
If datLAWS.Recordset.EOF Then

datLAWS.Caption = "No more records"
Else
datLAWS.Caption = "Terminal " & iCurrentRecord & _
" of " & iRecordCount
End If
End Sub
Private Sub txtPlatform_Change ()

'selects correct combo box listing

Dim
Dim

iIndex As Integer
bFound As Boolean

rsPlatform.MoveFirst

If txtPlatform <> "" Then

Do Until iIndex = rsPlatform.RecordCount Or bFound
If rsPlatform!Platform = txtPlatform Then
cboPlatform.Text = rsPlatform!Platform
bFound = True
Else
rsPlatform.MoveNext
iTndex = iIndex + 1
End If
Loop

133

Else

cboPlatform.ListIndex = -1

End If

End Sub

Phkdkhhkhk R KT hhkkhhkhkdorkkhkhkrhdhhhkhhkhkdrhkhkdrrhkhkdhkhrkdrdhhhorrrrhdrrhkdxrdrk

'Module: froMain. frm

'‘Description: Allows user to access the forms linked to
’ the database by use of dropdown menus.
'Programmer : Kevin Colédn

I R R R R R R R R R R R E R EEE R R R R R R E R R R R R R R R R RS R LR R EE SRS EREEEEREESESES]

Option Explicit

Dim rsAcquisition As Recordset
Dim rsFire As Recordset

Dim rsFireCommand As Recordset
Dim rsImpact As Recordset

Dim rsMensuration As Recordset
Dim rsNomination As Recordset
Dim rsTarget As Recordset

Dim rsLAWSdata As Recordset
Dim rsGISRS As Recordset

Dim rsLAWS As Recordset

Dim rsPlatform As Recordset
Dim rsSensor As Recordset

Dim rsThreat As Recordset

Dim rsWeapon As Recordset

Dim stSQL1l As String

Dim stSQL2 As String

Dim stSQL3 As String

Dim stSQL4 As String

Dim stSQL5 As String

Dim stSQL6 As String

Dim stSQL7 As String

Dim stSQL8 As String

Dim stSQL9 As String

Dim stSQL10 As String

Dim stSQL1l1 As String

Dim stSQL12 As String

Dim stSQL13 As String

Dim stSQL14 As String

Dim stSearch As String

Dim stMessage As String

Dim bGFound As Boolean

Dim bLFound As Boolean

Private Sub AddAcquisition()
134

rsAcquisition.AddNew
If rsAcquisition!AcquisitionCounter < 10 Then

rsAcquisition!Acquisition = "AE0000" &
rsAcquisition!AcquisitionCounter

Else
If rsAcquisition!AcquisitionCounter < 100 Then

rsAcquisition!Acquisition = "AE000" &
rsAcguisition!AcquisitionCounter

Else
; If rsAcquisition!AcquisitionCounter < 1000 Then

rsAcquisition!Acquisition = "AE00" &
rsAcquisition!AcquisitionCounter

Else .
If rsAcquisition!AcquisitionCounter < 10000 Then

rsAcqguisition!Acquisition = "AEQ0" &
rsAcquisition!AcquisitionCounter

Else
rsAcquisition!Acquisition = "AE" &
rsAcquisition!AcquisitionCounter

End If
End If
End If
End If

rsAcquisition!TrackId = rsLAWSdata!TrackId
rsAcquisition!ThreatType = rsLAWSdata!ThreatType

'get string from LAWS data and use it for platform search to
'fill platform field in Acquisition table from LAWSdata info
If rsLAWSdata!Nominator <> "" Then

stSearch = rsLAWSdata!Nominator

rsGISRS.MoveFirst
rsLAWS.MoveFirst
bGFound = False
bLFound = False

‘checks GISRS table
Do Until rsGISRS.EOF Or bGFound = True
If rsGISRS!GISRSTerminal = stSearch Then

bGFound = True
135

rsAcquisition!AcgPlatform = rsGISRS!Location

Else
rsGISRS.MoveNext

End If
Loop

‘checks LAWS table if search not successful in GISRS table
If bGFound = False Then

Do Until rsLAWS.EOF Or bLFound = True
If rsLAWS!LAWSTerminal = stSearch Then

bLFound = True
rsAcquisition!AcgPlatform = rsLAWS!Location

Else
rsLAWS .MoveNext

End If
Loop
End If
End If

rsAcquisition!TrackLocation = rsLAWSdata!TargetLocation

rsAcquisition!Trackaltitude = rsLAWSdata!Altitude
rsAcquisition!Remark = rsLAWSdata!ThreatDescription

rsAcquisition!AcgSensorType = rsLAWSdata!AcgSensor
If rsLAWSdata'!AcgSensor = Null Then
rsAcquisition!AcgSensorType = "None"

Else
rsAcquisition!AcgSensorType

rsLAWSdata!AcgSensor

End If

If rsLAWSdata!AcgTime <> Null Or rsLAWSdata!AcqgTime <> "" Then
rsAcquisition!AcqgTime = rsLAWSdata!AcqTime

End If

rsAcquisition.Update

End Sub

Private Sub AddFire()

136

rsFireCommand.MoveLast
If rsLAWSdata!RoundsFired <> "" And rsLAWSdata!RoundsFired > 0 Then
rsFire.AddNew
If rsFire!FireCounter < 10 Then
rsFire!Fire = "FEQ000" & rsFire!FireCounter

Else
If rsFire!FireCounter < 100 Then

rsFire!Fire = "FE0OO" & rsFire!FireCounter

Else
If rsFire!FireCounter < 1000 Then

rsFire!Fire = "FEOO" & rsFire!FireCounter

Else
If rsFire!FireCounter < 10000 Then

rsFire!Fire = "FEQO" & rsFire!FireCounter
Else
rsFire!Fire = "FE" & rsFire!FireCounter
End If
End If
End If

End If

rsFire!FireCommand = rsFireCommand!FireCommand
rsFire!RoundsFired = rsLAWSdata!RoundsFired
rsFire!FireTime = rsLAWSdata!FireEventTime
rsFire.Update

AddImpact

End If

End Sub

Private Sub AddFireCommand /()
Dim bPFound As Boolean
rsTarget .MoveLast

rsFireCommand.AddNew

137

If rsFireCommand!FireCommandCounter < 10 Then

rsFireCommand!FireCommand = "FC0000" &
rsFireCommand!FireCommandCounter

Else
If rsFireCommand!FireCommandCounter < 100 Then

rsFireCommand!FireCommand = "FC000" &
rsFireCommand!FireCommandCounter

Else
1f rsFireCommand!FireCommandCounter < 1000 Then

rsFireCommand!FireCommand = "FC00" &
rsFireCommand!FireCommandCounter

Else
If rsFireCommand!FireCommandCounter < 10000 Then

rsFireCommand!FireCommand = "FCO0" &
rsFireCommand!FireCommandCounter
Else
rsFireCommand!FireCommand = "FC" &

rsFireCommand!FireCommandCounter
End If
End If
End If
End If
rsFireCommand!Nomination = rsTarget!Nomination
rsFireCommand!OCCCId = rsLAWSdata!TargetControl
rsFireCommand!TargetId = rsTarget!TargetId
stSearch = rsLAWSdata!FirerPlatform

rsPlatform.MoveFirst

Do Until rsPlatform.EOF Or bPFound = True
If rsPlatform!LAWSFormat = stSearch Then

bPFound = True
rsFireCommand!FirerPlatform = rsPlatform!Platform

Else
rsPlatform.MoveNext

End If
Loop

If bPFound = False Then
rsFireCommand!FirerPlatform = rsLAWSdata!FirerPlatform & "-TAC"

138

End If

If rsLAWSdata!RoundsFired > 0 Then
rsFireCommand!Engage = True

End If
rsFireCommand.Update

End Sub
Private Sub AddImpact ()
rsFire.MoveLast
rsImpact .AddNew
If rsImpact!ImpactCounter < 10 Then

rsImpact!Impact = "IE0000" & rsImpact!ImpactCounter

Else
If rsImpact!ImpactCounter < 100 Then

rsImpact!Impact = "IE000" & rsImpact!ImpactCounter

Else
If rsImpact!ImpactCounter < 1000 Then

rsImpact!Impact = "IE00" & rsImpact!ImpactCounter

Else
If rsImpact!ImpactCounter < 10000 Then

rsImpact!Impact = "IEQ0" & rsImpact!ImpactCounter

Else
rsImpact!Impact

"IE" & rsImpact!ImpactCounter

End If
End If
End If
End If

rsImpact!FireEvent = rsFire!Fire
rsImpact!ImpactTime = rsLAWSdata!ImpactTime

rsImpact.Update

End Sub
139

private Sub AddMensuration ()
rsAcquisition.MoveLast
rsMensuration.AddNew
1f rsMensuration!MensurationCounter < 10 Then

rsMensuration!Mensuration = "MEQOOO" &
rsMensuration!MensurationCounter

Else
If rsMensuration!MensurationCounter < 100 Then

rsMensuration!Mensuration = "MEOOO" &
rsMensuration!MensurationCounter

Else
If rsMensuration!MensurationCounter < 1000 Then

rsMensuration!Mensuration = "MEOO" &
rsMensuration!MensurationCounter

Else
if rsMensuration!MensurationCounter < 10000 Then

rsMensuration!Mensuration = "MEO" &
rsMensuration!MensurationCounter
Else
rsMensuration!Mensuration = "ME" &

rsMensuration!MensurationCounter

End If
End If
End If
End If

rsMensuration!Acquisition = rsAcquisition!Acquisition
¢ rsMensuration!MenSensorType =7
’ rsMensuration!MenPlatform = 7

stSearch = rsLAWSdata!Nominator

rsGISRS.MoveFirst
rsLAWS .MoveFirst
bGFound = False
pLFound = False

'checks GISRS table
Do Until rsGISRS.EOF Or bGFound = True
If rsGISRS!GISRSTerminal = stSearch Then

bGFound = True
140

rsMensuration!GISRSTerminal = rsGISRS!GISRSTerminal

Else
rsGISRS.MoveNext

End If
Loop

'checks LAWS table if search not successful in GISRS table
If bGFound = False Then

Do Until rsLAWS.EOF Or bLFound = True
If rsLAWS!LAWSTerminal = stSearch Then

bLFound = True
rsMensuration!GISRSTerminal = rsLAWS!LAWSTerminal

Else
rsLAWS .MoveNext

End If
Loop
End If

rsMensuration.Update

End Sub

Private Sub AddNomination()
rsMensuration.Movelast
rsNomination.AddNew
If rsNomination!NominationCounter < 10 Then

rsNomination!Nomination = "NE0O0O0" &
rsNomination!NominationCounter

Else
If rsNomination!NominationCounter < 100 Then

rsNomination!Nomination = "NEOOO" &
rsNomination!NominationCounter

Else
If rsNomination!NominationCounter < 1000 Then

rsNomination!Nomination = "NEOO' &
rsNomination!NominationCounter

Else
If rsNomination!NominationCounter < 10000 Then

141

rsNomination!Nomination = "NEO" &
rsNomination!NominationCounter

Else
rsNomination'!Nomination = "NE" &
rsNomination!NominationCounter

End If
End If
End If
End If

rsMensuration!Acquisition
rsMensuration!Mensuration

rsNomination!Acquisition
rsNomination!Mensuration

stSearch = rsLAWSdata!Nominator

rsGISRS.MoveFirst
rsLAWS .MoveFirst

False
False

bGFound
bLFound

‘checks GISRS table
Do Until rsGISRS.EOF Or bGFound = True
If rsGISRS!GISRSTerminal = stSearch Then

bGFound = True
rsNomination!GISRSTerminal = rsGISRS!GISRSTerminal

Else
rsGISRS.MoveNext

End If
Loop

'checks LAWS table if search not successful in GISRS table
If bGFound = False Then

Do Until rsLAWS.EOF Or bLFound = True
If rsLAWS!LAWSTerminal = stSearch Then

bLFound = True
rsNomination!GISRSTerminal = rsLAWS!LAWSTerminal

Else
rsLAWS .MoveNext

End If
Loop
End If

rsNomination!TargetLocationError = rsLAWSdata!TLE

142

rsNomination.Update

End Sub

private Sub AddTarget ()
On Error GoTo HandleTargetError
rsNomination.Movelast

rsTarget . AddNew

rsTarget!TargetId - rsLAWSdata!TargetId
rsTarget!TargetNLTTime = rsLAWSdata!NLTTime

rsTarget !WeaponType = rslLAWSdata !WeaponType
rsTarget!TargetLocation = rsLAWSdata!TargetLocationZ
rsTarget!Description - rsLAWSdata!TargetType
rsTarget !|Remark = rsLAWSdata ! Remark
rsTarget!Nomination = rsNomination!Nomination

rsTarget .Update
AddTarget Exit:

Exit Sub
HandleTargetError:

Select Case Err .Nunber
Case 3022
stMessage = rpargetId repeated. Target " &
rsLAWSdata!TargetId _
& vbCrLf & " not saved as new record.”

MsgBox stMessage, vbOKOnly + vbInformation
rsTarget.CancelUpdate

End Select

Resume

End Sub

Private Sub mnuDataSort_Click()

Dim rsSorted As Recordset
Dim stPrevThreat As String
Dim stPrevTrack As String
Dim stPrevNominator As String
Dim stNowThreat As String
Dim stNowTrack As String
Dim stNowNominator AsS String
Dim stNextThreat As String
Dim stNextTrack As String
Dim stNextNominator As String
Dim stSQL1 As String

143

Dim stSQL2 As String

stSQL1 = "Select * from LAWSSorted"

Set rsSorted = db.OpenRecordset (stSQL1)
With rsSorted

Do Until .EOF
stNowThreat = !ThreatDescription

If !TrackId <> "" Or !TrackId <> Null Then

stNowTrack = !TrackId
Else

stNowTrack
End If

non

If !Nominator <> "" Or !Nominator <> Null Then

stNowNominator = !Nominator
Else
stNowNominator = ""
End If
If stNowTrack = "" Or stNowNominator =

.MovePrevious

If Not .BOF Then

stPrevThreat = !ThreatDescription
stPrevTrack = !TrackId
stPrevNominator = !Nominator

If stPrevThreat = stNowThreat Then

.MoveNext
.Edit
'TrackId = stPrevTrack

tNominator = stPrevNominator

.Update

Else
.MoveNext
.MoveNext

stNextThreat = !ThreatDescription

stNextTrack = !TrackId

stNextNominator = !Nominator
If stNextThreat = stNowThreat Then

.MovePrevious
.Edit
!TrackId = stNextTrack

'Nominator = stNextNominator

.Update

End If

144

End If

Else
.MoveNext
.MoveNext
stNextThreat = !ThreatDescription
stNextTrack = !TrackId
stNextNominator = !Nominator
.MovePrevious
If stNextThreat = stNowThreat Then
.Edit
ITrackId = stNextTrack
INominator = stNextNominator
.Update
End If
End If
End If
.MoveNext
Loop
End With
End Sub

Private Sub mnuDataTransfer_Click()
Dim rsLAWSInfo As Recordset

Dim rsSorted As Recordset

Dim stLAWSInfo As String

Dim stSorted As String

Dim stTLE As String

stLAWSInfo = "Select * from LAWS®
stSorted = "Select * from LAWSSorted"

Set rsLAWSInfo = db.OpenRecordset (stLAWSInfo)
Set rsSorted = db.OpenRecordset (stSorted)

With rsLAWSInfo
Do Until .EOF
rsSorted.AddNew
rsSorted!TargetId = !TargetlId
rsSorted!ThreatDescription = !ThreatDescription
rsSorted!TargetLocation = !TargetlLocation
rsSorted!NLTTime = !NLTTime
rsSorted!Altitude = !Altitude
rsSorted!WeaponType = !WeaponType
rsSorted!PlatLocation = 'PlatLocation
rsSorted!ThreatType = !ThreatType
If !'Remarkl <> "" Then
stTLE = Left (rsLAWSInfo!Remarkl, 2)

145

End If

If stTLE = "CE" Then

rsSorted!TLE = {Remarkl
Else

rsSorted!Remark = tRemarkl
End If
rsSorted!AcgTime = 1AcqgTime
rsSorted!AcgSensor = 1AcgSensor
rsSorted!TargetLocationZ = !TargetLocation2
rsSorted!TargetType = 1TargetType
rsSorted!RoundsFired = 1RoundsFired
rsSorted!FirerPlatform = IFirerPlatform
rsSorted!TargetControl = 1TargetControl
rsSorted!Priority = tPriority
rsSorted! ImpactTime = 1 ImpactTime
rsSorted!Nominator = INominator

If !Remark2 <> "" Then
StTLE = Left(rsLAWSInfo!RemarkZ, 2)
End If

Tf stTLE = "SH" Then

rsSorted!Remark = 'Remark?2
Else
rsSorted!TrackIid = 1Remark?2
End If
rsSorted!FireEventTime = IFireEventTime

rsSorted.Update
rsLAWSInfo.MoveNext

Loop

End With

End Sub
Private Sub mnuFileExit_Click()

‘terminates application
End

End Sub

pPrivate Sub mnuFileOpen_Click()
rgelect a different database (FBE)

On Error GoTo HandleError

146

With frmMain.dlgDatabase
.FileName = gstNewDatabase
_Filter = "Database files (*.mdb)|*.mdb|All files (*.*)|[*.*"

'if error encountered, skip next command
On Error Resume Next

. ShowOpen

If Err.Number = cdlCancel Then
gstNewDatabase = ""

Else

'set return filename to selected file

gstNewDatabase = .FileName
frmMain.Caption = .FileTitle & " Database"
End If
End with

Set db = OpenDatabase (gstNewDatabase)

'‘display Main form
frmMain.Show

Sub_Exit:
Exit Sub

HandleError:

Select Case Err.Number
Case 3004, 3024, 3044

If gstNewDatabase = "" Then
MsgBox "No database was selected.", vbExclamation,

"Database Erroxr"

'disables options only available when a database is

selected
Me.mnuFileQueries.Enabled = False
Me.mnuFileSQL.Enabled = False
Me.mnuUpdate.Enabled = False
Else
Set db = OpenDatabase(gstNewDatabase) ’'new database
location

'reenables options once a database is selected
Me.mnuFileQueries.Enabled = True
Me.mnuFileSQL.Enabled = True
Me.mnuUpdate.Enabled = True

Resume ‘open the database

End If

Case Else

147

MsgBox Err.Description, vbOKOnly + vbExclamation,
"Unexpected Error"

End ‘exit the project
End Select
End Sub
Private Sub mnuFileQueries_Click()
frmQueries.Show
Me.Enabled = False
End Sub

Private Sub mnuFileSQL_Click()

frmSQL.Show
Me.Enabled = False

End Sub

Private Sub mnuHelpAboﬁt_Click()
frmAbout. Show

End Sub

Private Sub mnuPopulate_Click()

stSQLl1 = "Select * from Acquisition”
stSQL2 = "Select * from Fire"
stSQL3 = "Select * from FireCommand"
stSQL4 = "Select * from Impact"
stSQL5 = "Select * from Mensuration"
stSQL6 = "Select * from Nomination”
stSQL7 = "Select * from Target"
stSQL8 = "Select * from LawsSorted2"
*

stSQL9 = "Select from GISRSTerminal"

stSQL10 = "Select * from LAWSTerminal"
stSQL11l = "Select * from Platform*
stSQL12 = "Select * from SensorType"
stSQL13 = "Select * from ThreatType"

*

stSQL14 = "Select from WeaponType"

Set rsAcquisition = db.OpenRecordset (stSQL1)
Set rsFire = db.OpenRecordset (stSQL2)

Set rsFireCommand = db.OpenRecordset (stSQL3)
Set rsImpact = db.OpenRecordset (stSQL4)

Set rsMensuration = db.OpenRecordset (stSQLS)
Set rsNomination = db.OpenRecordset (stSQL6)
Set rsTarget = db.OpenRecordset (stSQL7)

Set rsLawSdata = db.OpenRecordset (stSQLS8)
Set rsGISRS = db.OpenRecordset (stSQL9)

Set rsLAWS = db.OpenRecordset (stSQL10)

148

Set rsPlatform = db.OpenRecordset (stSQL11)
Set rsSensor db.OpenRecordset (stSQL12)
Set rsThreat db.OpenRecordset (stSQL13)
Set rsWeapon db.OpenRecordset (stSQL14)

"

If rsLAWSdata.RecordCount > 0 Then
Do Until rsLAWSdata.EOF 'fix to .EOF
If rsAcquisition.RecordCount = 0 Then

AddAcquisition
AddMensuration
AddNomination
AddTarget
AddFireCommand
AddFire
rsLAWSdata.MoveNext

Else
rsAcquisition.Movelast
If rsAcquisition!TrackId <> rsLAWSdata!TrackId Then

AddAcquisition
AddMensuration
AddNomination
AddTarget
AddFireCommand
AddFire

rsLAWSdata .MoveNext

Else

AddTarget
AddFireCommand
AddFire

rsLAWSdata .MoveNext

End If
End If
Loop
Else
stMessage = "No data to import from table: LawsSorted " &
vbCrLf _
& " in database: " &

Me.dlgDatabase.FileTitle
MsgBox stMessage, vbOKOnly + vbExclamation, "Data Population”

149

End If
End Sub
Private Sub mnuUpdateAcquisition_Click()

frmAcgEvents.Show
Me.Enabled = False

End Sub
Private Sub mnuUpdateAcronyms_Click()

frmAcronyms . Show
Me.Enabled = False

End Sub
Private Sub mnuUpdateDataTypes_Click()

frmDataTypes . Show
Me.Enabled = False

End Sub
Private Sub mnuUpdateFBE_Click()

frmFBE . Show
Me.Enabled = False

End Sub
Private Sub mnuUpdateFire_Click()

frmFireEvent . Show
Me .Enabled = False

End Sub
Private Sub mnuUpdateFireCommand_Click()

frmFireCdevent.Show
Me .Enabled = False

End Sub
private Sub mnuUpdateGISRS_Click()

frmGISRS. Show
Me.Enabled = False

End Sub

150

Private Sub mnuUpdateImpact_Click()

frmImpactEvent . Show
Me.Enabled = False

End Sub
Private Sub mnuUpdateInitiatives_Click()

frmInitiatives.Show
Me.Enabled = False

End Sub
Private Sub mnuUpdateLAWS_Click()

frmLAWS . Show
Me.Enabled = False

End Sub
Private Sub mnuUpdateMensuration_Click()

frmMenEvents. Show
Me.Enabled = False

End Sub
Private Sub mnuUpdateNomination_Click()

frmNomEvents. Show
Me.Enabled = False

End Sub
Private Sub mnuUpdateObjectives_Click()

frmObjectives.Show
Me.Enabled = False

End Sub
Private Sub mnuUpdatePlatforms_Click()

frmPlatforms.Show
Me.Enabled = False

End Sub
Private Sub mnuUpdatePlatTypes_Click()

frmPlatformTypes.Show
Me.Enabled = False

End Sub
151

private Sub mnuUpdateQuestions_Click()

frmQuestions.Show
Me.Enabled = False

End Sub
Private Sub mnuUpdateSensTypes_Click()

frmSensorTypes . Show
Me.Enabled = False

End Sub
Private Sub mnuUpdateTargets_Click()

frmTargetEvents.Show
Me.Enabled = False

End Sub
Private Sub mnuUpdateThreatTypes_Click()

frmThreatTypes . Show
Me.Enabled = False

End Sub
Private Sub mnuUpdateWeaponTypes_Click()

fronWeaponTypes . Show
Me.Enabled = False

End Sub
Private Sub mnuViewTargets_Click()

frmTargets2.Show
Me.Enabled = False

End Sub

I***

‘Module: frmMenEvents. fxrm

'‘Description: Allows user to access the mensuration event
’ records for addition, deletion, and

’ modification.

' Programmer : Kevin Coldn

l***
Option Explicit

152

Dim rsAcquisition As Recordset

Dim rsSensor As Recordset
Dim rsPlatform As Recordset
Dim rsGISRS As Recordset
Dim rsPTW As Recordset
Dim stSQL1 As String

Dim stSQL2 As String

Dim stSQL3 As String

Dim stSQL4 As String

Dim stSQLS As String
Private WordApp As Word.Application
Private Doc As Word.Document

Private Sel As Word.Selection

Private Sub cboAcquisition_Click()
If cboAcquisition.ListIndex >= 0 Then
txtAcquisition = cboAcquisition.Text
End If
End Sub
Private Sub cboGISRS_Click()
If cboGISRS.ListIndex >= 0 Then
£xXtGISRS = cboGISRS.Text
End If
End Sub
Private Sub cboPlatform Click()
If cboPlatform.ListIndex >= 0 Then
txtPlatform = cboPlatform.Text
End If
End Sub
Private Sub cboPTW_Click()
If cboPTW.ListIndex >= 0 Then
tXtPTW = cboPTW.Text
End If
End Sub
Private Sub cboSensor_Click()
If cboSensor.ListIndex >= 0 Then
txtSensor = cboSensor.Text

End If

End Sub

153

Private Sub cmdAdd_Click()
On Error GoTo HandleAddErrors
If cmdAdd.Caption = "&Add Event" Then

datMenEvents.Recordset .AddNew
cboAcquisition.Enabled = True
cboPlatform.Enabled = True
cboSensor.Enabled = True
cboGISRS.Enabled = True
cboPTW.Enabled = True

cboAcquisition.ListIndex = -1
cboPlatform.ListIndex = -1
cboSensor.ListIndex = -1

cboGISRS.ListIndex = -1
. cboPTW.ListIndex = -1

txtTimeRgstSent .Enabled = True
txtTimeRgstRcvd.Enabled = True
txtTimeInfoSent.Enabled = True

txtTimeInfoRcvd.Enabled = True
cmdUpdate.Enabled = False
cmdSave.Enabled = True

cmdDel .Enabled = False
cmdAdd.Caption = "&Cancel"”
mnuFile.Enabled = False
datMenEvents.Enabled = False

Else

datMenEvents.Recordset.CancelUpdate
cboAcquisition.Enabled = False
cboPlatform.Enabled = False
cboSensor.Enabled = False
cboGISRS.Enabled = False
cboPTW.Enabled = False

txtTimeRgstSent .Enabled = False
txtTimeRgstRcvd.Enabled = False
txtTimeInfoSent.Enabled = False
txtTimeInfoRcvd.Enabled = False

cmdUpdate.Enabled = True
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdAdd.Caption = "&Add Event”
mnuFile.Enabled = True
datMenEvents.Enabled = True
cmdAdd. SetFocus

End If

cmdAdd_Click Exit:
Exit Sub

HandleAddErrors:
Dim stMess As String

154

stMess = "Cannot complete operation. " & vbCrLf & vbCrLf &
Err.Description

MsgBox stMess, vbExclamation, "Database Error"

On Error GoTo 0 ‘turn off error trapping
End Sub
Private Sub cmdDel_Click()

Dim iResp As Integer

On Error GoTo HandleDelErrors

If datMenEvents.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Event " & txtMensuration & "?", vbYesNo,

"Delete Event")
If iResp = vbYes Then
With datMenEvents.Recordset

.Delete

.MoveNext

If .EOF Then
.MovePrevious
If .BOF Then

MsgBox "The recordset is empty."',
vbInformation, "No Records"

End If
End If
End With
End If
Else
MsgBox "No records to delete.", vbExclamation, "Delete Event"
End If
cmdDel_Click_Event:
Exit Sub
HandleDelErrors:
Dim stMess As String
stMess = "Cannot complete operation." & vbCrLf & vbCrLf &

Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0

End Sub
Private Sub cmdSave_Click()

’save current record
On Error GoTo HandleSaveErrors
If cboAcquisition.ListIndex >= 0 And cboGISRS.ListIndex >= 0 Then
If val(txtCounter) < 10 Then
txtMensuration.Text = "MEQOOO" & txtCounter.Text

155

Else
If vVal(txtCounter) < 100 Then

txtMensuration.Text = "ME0OOO" & txtCounter.Text
Else
If val (txtCounter) < 1000 Then
txtMensuration.Text = "MEOO" & txtCounter.Text
Else
If vVal(txtCounter) < 10000 Then
txtMensuration.Text = "MEQ" & txtCounter.Text
Else
txtMensuration.Text = "ME" & txtCounter.Text
End If
End If
End If
End If

_datMenEvents.Recordset.Update
Else
MsgBox "You must select an Acquisition Event and a GISRS
Terminal before saving." _
, VbExclamation, "Add Mensuration Event"
datMenEvents.Recordset.CancelUpdate
End If

cboAcquisition.Enabled = False
cboPlatform.Enabled = False
cboSensor.Enabled = False
cboGISRS.Enabled = False
cboPTW.Enabled = False

txtTimeRgstSent .Enabled = False
txtTimeRgstRcvd.Enabled = False
txtTimeInfoSent.Enabled = False
txtTimeInfoRcvd.Enabled = False

cmdUpdate.Enabled = True
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdAdd.Caption = "&Add Event"
mnuFile.Enabled = True
datMenEvents.Enabled = True
cmdAdd. SetFocus

datMenEvents.Enabled = True

cmdSave_Click_Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number
Case 3022 ‘duplicate key field
stMess = "Record already exists -- could not save>’"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

156

MsgBox stMess,

MsgBox stMess,

Case 3058, 3315 ‘no entry in key field

stMess = "Select Acquisition Event and GISRS Terminal
before saving."

Case Else
stMess = "Record could not be

vbExclamation,
On Error GoTo 0 ‘turn off

& Err.Description

Resume Next

End Select

End Sub.

Private Sub cmdUpdate_Click()

vbExclamation,
datMenEvents.Recordset.CancelUpdate

If cmdUpdate.Caption = "&Update" And _

datMenEvents.Recordset .RecordCount > 0 Then

"Database Error"
error trapping

"Database Error"

cmdUpdate.Caption = "Su&bmit®

cboAcquisition.Enabled

cboGISRS.Enabled = True
cboPTW.Enabled = True

True
cboPlatform.Enabled = True
cboSensor.Enabled = True

txtTimeRgstSent .Enabled = True
txtTimeRgstRcvd.Enabled = True
txtTimeInfoSent.Enabled = True
txtTimeInfoRcvd.Enabled = True

cmdAdd. Enabled = False
cmdSave .Enabled = False
cmdDel .Enabled = False
mnuFile.Enabled = False

datMenEvents.Enabled = False
datMenEvents.Recordset.Edit

Else
If datMenEvents.Recordset.RecordCount > 0 Then

datMenEvents.Recordset.Update

cboAcquisition.Enabled = False
cboPlatform.Enabled = False
cboSensor.Enabled = False

cboGISRS.Enabled = False
cboPTW.Enabled = False
txtTimeRgstSent.Enabled
txtTimeRgstRcvd.Enabled
txtTimeInfoSent.Enabled
txtTimeInfoRcvd.Enabled
cmdDel . Enabled True
cmdAdd. Enabled True

False
False
False
False

157

saved." & vbCrLf _

cmdAdd. SetFocus
cmdUpdate.Caption = "&Update"
mnuFile.Enabled = True
datMenEvents.Enabled = True

End If
End If
End Sub
Private Sub datMenEvents_Reposition()

SetMenEventsRecordNumber

End Sub
Private Sub Form_Load()

datMenEvents.DatabaseName = gstNewDatabase

stSQL1 = "Select Acquisition from Acquisition®
stSQL2 = "Select SensorType from SensorType"
stSQL3 = "Select Platform from Platform"

stSQL4 = "Select GISRSTerminal from GISRSTerminal®
stSQL5 = "Select PTWTerminal from PTWTerminal"

Set rsAcquisition = db.OpenRecordset (stSQL1)
Set rsSensor = db.OpenRecordset (stSQL2)

Set rsPlatform = db.OpenRecordset (stSQL3)
Set rsGISRS = db.OpenRecordset (stSQL4)

Set rsPTW = db.OpenRecordset (stSQLS)

'fill cboAcguisition

Do Until rsAcquisition.EOF
cboAcquisition.AddItem rsAcquisition!Acquisition
rsAcquisition.MoveNext

Loop

*£i11 cboSensor

Do Until rsSensor.EOF
cboSensor .AddItem rsSensor!SensorType
rsSensor .MoveNext

Loop

"£ill cboPlatform

Do Until rsPlatform.EOF
cboPlatform.AddItem rsPlatform!Platform
rsPlatform.MoveNext

Loop

‘£ill cboGISRS
Do Until rsGISRS.EOF

158

cboGISRS.AddItem rsGISRS!GISRSTerminal
rsGISRS.MoveNext
Loop

*fill cboPTW

Do Until rsPTW.EOF
cboPTW.AddItem rsPTW!PTWTerminal
rsPTW.MoveNext

Loop

With datMenEvents
.Refresh
If Not .Recordset.EOF Then
.Recordset .MoveLast
.Recordset .MoveFirst
End If
End. With

SetMenEventsRecordNumber

End Sub
Private Sub SetMenEventsRecordNumber ()

Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount

= datMenEvents.Recordset.RecordCount
iCurrentRecord =

datMenEvents.Recordset.AbsolutePosition + 1

If datMenEvents.Recordset.EOF Then
datMenEvents.Caption = "No more records"
Else
datMenEvents.Caption = "Mensuration Event Record " &
iCurrentRecord &

" of " & iRecordCount
End If

End Sub
Private Sub Form_Unload(Cancel As Integer)

frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileBack_Click()

frmMain.Enabled = True
Unload Me

End Sub
159

Private Sub mnuFilePrint_Click()
frmPrint.Show

On Error GoTo mnuPrintErrors
If bContinue = True Then
With datMenEvents.Recordset
If bWord = True Then
Set WordApp = New Word.Application
WordApp.Documents.Add
Set Doc = WordApp.ActiveDocument
Set Sel = WordApp.Selection
Doc.Tables.Add Range:=Sel.Range, NumRows:=.RecordCount,
NumColumns:=10

Sel.TypeText Text:="Mensuration"

Sel.MoveRight unit:=12 ‘12=next cell

Sel.TypeText Text:="Request Sent"
Sel.MoveRight unit:=12 ’12=next cell

Sel.TypeText Text:="Reqguest Rcvd"
Sel .MoveRight unit:=12 *12=next cell

Sel.TypeText Text:="Info Sent"
Sel.MoveRight unit:=12 ’12=next cell

Sel.TypeText Text:="Info Received"
Sel.MoveRight unit:=12 *12=next cell

Sel.TypeText Text:="Acquisition"
Sel .MoveRight unit:=12 *12=next cell

Sel.TypeText Text:="Sensor Type"
Sel .MoveRight unit:=12 *12=next cell

Sel.TypeText Text:="Platform"
Sel .MoveRight unit:=12 ’*12=next cell

Sel.TypeText Text:="GISRS"
Sel.MoveRight unit:=12 *12=next cell

Sel.TypeText Text:="PTW"
Sel.MoveRight unit:=12 *12=next cell

Do Until .EOF

Sel .TypeText Text:=!Mensuration
Sel .MoveRight unit:=12 ’12=next

160

cell

cell

cell

cell

cell

cell

cell

cell

cell

cell

Chr(9);

Sel
Sel

Sel
Sel

Sel
Sel

Sel
Sel

Sel.

Sel

Sel.

Sel

Sel.

Sel

Sel
Sel

Sel
Sel

.TypeText Text:=!TimeRequestSent
.MoveRight unit:=12

.TypeText Text:=!TimeRequestReceived
.MoveRight unit:=12

.TypeText Text:=!TimeInfoSent
.MoveRight unit:=12

.TypeText Text:=!TimeInfoReceived
.MoveRight unit:=12

TypeText Text:=!Acquisition

.MoveRight unit:=12

TypeText Text:=!MenSensorType

.MoveRight unit:=12

TypeText Text:=!MenPlatform

.MoveRight unit:=12

.TypeText Text:=!GISRSTerminal
.MoveRight unit:=12

.TypeText Text:=!PTWTerminal
.MoveRight unit:=12

.MoveNext

Loop

WordApp.Visible = True

Set WordApp = Nothing

Else

If bText = True Then

’12=next

'12=next

'12=next

'12=next

*12=next

'12=next

’12=next

'12=next

’12=next

Open App.Path & "\MenEvents.txt" For Output As #1

Print #1, "Mensuration"; Chr(9); "Request Sent";

"Request Rcvd"®;

Chr(9);

"Info Sent"; Chr(9); "Info Rcvd";

161

Chr(9); _

"Acquisition"; Chr(9); "Sensor Type";
Chr(9); _
"Platform”; Chr(9); "GISRS"; Chr(9); _
"PTW"; Chr(9)
Do Until .EOF
Print #1, !Mensuration; Chr(9); _
!TimeRequestSent; Chr(9); _
!TimeRequestReceived; Chr(9); _
!TimeInfoSent; Chr(9); _
tTimeInfoReceived; Chr(9); _
'AcgSensorType; Chr(9);
tAcquisition; Chr(9); _
!MenSensorType; Chr(9); _
‘MenPlatform; Chr(9); _
!GISRSTerminal; Chr(9); _
{PTWTerminal; Chr(9)
.MoveNext
Loop
Close #1
End If
End If
.MoveFirst
End With
End If
bContinue = False
bWword = False
bText = False
mnuPrintErrors:
Select Case Err.Number
Case 94

Sel.TypeText Text:=""
Resume Next
End Select

End Sub

Private Sub txtAcquisition_Change ()
'‘selects correct combo box listing
Dim iIndex As Integer

Dim bFound As Boolean

rsAcquisition.MoveFirst

162

If txtAcquisition <> "" Then
Do Until iIndex = rsAcquisition.RecordCount Or bFound

If rsAcquisition!Acquisition = txtAcquisition Then
cboAcquisition.Text = rsAcquisition!Acquisition
bFound = True

Else
rsAcquisition.MoveNext
iIndex = iIndex + 1

End If

Loop
End If

End Sub
Private Sub txtGISRS_Change()

‘selects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsGISRS.MoveFirst
If txtGISRS <> "' Then
Do Until iIndex = rsGISRS.RecordCount Or bFound
If rsGISRS!GISRSTerminal = txtGISRS Then
CboGISRS.Text = rsGISRS!GISRSTerminal
bFound = True
Else
rsGISRS.MoveNext
iIndex = iIndex + 1
End If

Loop
End If

End Sub
Private Sub txtPlatform_ Change()

'selects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsPlatform.MoveFirst
If txtPlatform <> "" Then
Do Until iIndex = rsPlatform.RecordCount Or bFound
If rsPlatform!Platform = txtPlatform Then
cboPlatform.Text = rsPlatform!Platform
bFound = True
Else
rsPlatform.MoveNext
iIndex = iIndex + 1
End If

Loop
163

End If

End Sub
Private Sub txtPTW_Change()

'selects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsPTW.MoveFirst

If txtPTW <> "" Then
Do Until iIndex = rsPTW.RecordCount Or bFound

If rsPTW!PTWTerminal = txtPTW Then
cboPTW.Text = rsPTW! PTWTerminal
bFound = True

Else
rsPTW.MoveNext
iIndex = iIndex + 1

End If

Loop
End If

End Sub
Private Sub txtSensor_Change()

rselects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsSensor .MoveFirst

1f txtSensor <> "" Then
Do Until iIndex = rsSensor .RecordCount Or bFound

If rsSensor!SensorType = txtSensor Then
cboSensor.Text = rsSensor!SensorType
bFound = True

Else
rsSensor .MoveNext
iIndex = iIndex + 1

End If

Loop
End If

End Sub

'*********************************‘k***************************

'‘Module: frmNomEvents. fxrm
'Description: Allows user to access the nomination event

’ records for addition, deletion, and
' modification.

164

. .
' Programmer : Kevin Colédn
l***

Option Explicit

Dim rsAcquisition As Recordset
Dim rsMensuration As Recordset

Dim rsGISRS As Recordset

Dim stSQL1 As String

Dim stSQL2 As String

Dim stSQL3 As String

Private WordApp As Word.Application
Private Doc As Word.Document
Private Sel As Word.Selection

Private . Sub cboAcquisition_Change()

If cboAcquisition.ListIndex >= 0 Then
txtAcquisition = cboAcquisition.Text
End If

End Sub
Private Sub cboGISRS_Change()

If cboGISRS.ListIndex >= 0 Then
txtGISRS = cboGISRS.Text
End If

End Sub
Private Sub cboMensuration_Change()

If cboMensuration.ListIndex >= 0 Then
txtMensuration = cboMensuration.Text
End If

End Sub
Private Sub cmdadd_Click()
On Error GoTo HandleAddErrors
If cmdadd.Caption = "&Add Event" Then

datNomination.Recordset.AddNew
cboAcquisition.Enabled = True
cboMensuration.Enabled = True
cboGISRS.Enabled = True
cboAcquisition.ListIndex
cboMensuration.ListIndex
cboGISRS.ListIndex = -1
txtTimeSent .Enabled = True
txtTimeRcvd.Enabled = True

-1
-1

165

txtAssess.Enabled = True
txtTLE.Enabled = True
cmdUpdate.Enabled = False
cmdSave.Enabled = True

cmdDel .Enabled = False
cmdAdd.Caption = "&Cancel”
mnuFile.Enabled = False
datNomination.Enabled = False

Else

datNomination.Recordset.CancelUpdate
cboAcquisition.Enabled = False
cboMensuration.Enabled = False
CboGISRS.Enabled = False
txtTimeSent.Enabled = False

. txtTimeRcvd.Enabled = False
txtAssess.Enabled = False
txtTLE.Enabled = False
cmdUpdate.Enabled = True
cmdSave.Enabled = False

cmdDel .Enabled = True
cmdAdd.Caption = "&Add Event"
mnuFile.Enabled = True
datNomination.Enabled = True
cmdAdd. SetFocus

End If

cmdAdd_Click_Exit:

Exit Sub
HandleAddErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf &

Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo O ‘turn off error trapping

End Sub
Private Sub cmdDel_Click()
Dim iResp As Integer
On Exrror GoTo HandleDelErrors

If datNomination.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Event " & txtNomination & "?", vbYesNo,

"Delete Event")
If iResp = vbYes Then
With datNomination.Recordset
.Delete
.MoveNext

166

If .EOF Then
.MovePrevious
If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"

End If
End If
End With
End If
Else
MsgBox "No records to delete.", vbExclamation, "Delete Event"
End If
cmdDel_Click:
Exit Sub
HandleDelErrors:
Dim stMess As String
stMess = "Cannot complete operation." & vbCrLf & vbCrLf &

Err.Description
MsgBox stMess, vbExclamation, "Database Erroxr"
On Error GoTo 0.

End Sub
Private Sub cmdSave_Click()
'save current record
On Error GoTo HandleSaveErrors

If cboAcquisition.ListIndex >= 0 And cboGISRS.ListIndex >= 0 Then
If val(txtCounter) < 10 Then

txtNomination.Text = "NEOOOO" & txtCounter.Text
Else
If Val(txtCounter) < 100 Then
txtNomination.Text = "NEOOO" & txtCounter.Text
Else
If val(txtCounter) < 1000 Then
txtNomination.Text = "NEOO" & txtCounter.Text
Else
If val(txtCounter) < 10000 Then
txtNomination.Text = "NEO" & txtCounter.Text
Else
txtNomination.Text = "NE" & txtCounter.Text
End If
End If
End If
End If

datNomination.Recordset.Update
Else
MsgBox "You must select an Acquisition Event and a GISRS
Terminal before saving." _

167

, VbExclamation, "Add Nomination Event"
datNomination.Recordset.CancelUpdate
End If

cboAcquisition.Enabled = False
cboMensuration.Enabled = False
CboGISRS.Enabled = False
txtTLE.Enabled = False
txtTimeSent.Enabled = False
txtTimeRcvd.Enabled = False
txtAssess.Enabled = False
cmdUpdate.Enabled = True
cmdSave.Enabled = False

cmdDel .Enabled = True
cmdAdd.Caption = "&Add Event"
mnuFile.Enabled = True
datNomination.Enabled = True
cmdAdd. SetFocus

datNomination.Enabled = True

cmdSave_Click _Exit:
Exit . Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number
Case 3022 ‘duplicate key field
stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

Case 3058, 3315 ‘no entry in key field
stMess = "Select Acquisition Event and GISRS Terminal

before saving."
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo O "turn off error trapping

Case Else
stMess = "Record could not be saved." & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
datNomination.Recordset.CancelUpdate
Resume Next
End Select

End Sub
Private Sub cmdUpdate_Click()

If cmdUpdate.Caption = "&Update" And _
datNomination.Recordset.RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit"
168

True
True

cboAcquisition.Enabled
cboMensuration.Enabled
cboGISRS.Enabled = True
txtTimeSent .Enabled = True
txtTimeRcvd.Enabled True
txtTLE.Enabled = True
txtAssess.Enabled = True
cmdadd.Enabled = False
cmdSave.Enabled = False
cmdDel .Enabled = False
mnuFile.Enabled = False
datNomination.Enabled = False
datNomination.Recordset.Edit

Else
If datNomination.Recordset.RecordCount > 0 Then
datNomination.Recordset.Update

cboAcquisition.Enabled = False
cboMensuration.Enabled = False
cboGISRS.Enabled = False
tXtTLE.Enabled = False
txtTimeSent.Enabled = False
txtTimeRcvd.Enabled = False
txtAssess.Enabled = False
cmdDel . Enabled = True
cndAdd.Enabled = True

cmdAdd. SetFocus
cmdUpdate.Caption = "&Update"
mnuFile.Enabled = True
datNomination.Enabled = True

End If
End If
’End Sub
Private Sub datNomination_Reposition()
SetNominationRecordNumber
End Sub
Private Sub Form_ Load()

datNomination.DatabaseName = gstNewDatabase

stSQL1 = "Select Acquisition from Acquisition"
StSQL2 = "Select Mensuration from Mensuration®
stSQL3 = "Select GISRSTerminal from GISRSTerminal"

Set rsAcquisition db.OpenRecordset (stSQL1)
Set rsMensuration = db.OpenRecordset (stSQL2)

169

Set rsGISRS = db.OpenRecordset (stSQL3)

'£ill cboAcqguisition

Do Until rsAcqguisition.EOF
cboAcquisition.AddItem rsAcquisition!Acquisition
rsAcquisition.MoveNext

Loop

£il1l cboMensuration

Do Until rsMensuration.EOF
cboMensuration.AddItem rsMensuration!Mensuration
rsMensuration.MoveNext

Loop

*£i11 cboGISRS

Do Until rsGISRS.EOF
cboGISRS.AddItem rsGISRS!GISRSTerminal
rsGISRS.MoveNext

Loop

With datNomination
.Refresh
If Not .Recordset.EOF Then
.Recordset .Movelast
.Recordset .MoveFirst
End If
End With

SetNominationRecordNumber
End Sub
Private Sub SetNominationRecordNumber ()

Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount = datNomination.Recordset.RecordCount
iCurrentRecord = datNomination.Recordset.AbsolutePosition + 1

If datNomination.Recordset.EOF Then
datNomination.Caption = "No more records"
Else
datNomination.Caption = "Nomination Event Record " &
iCurrentRecord & _
" of * & iRecordCount
End If

End Sub
Private Sub Form_Unload(Cancel As Integer)

frmMain.Enabled = True
Unload Me

170

End Sub
Private Sub mnuFileBack_Click()

frmMain.Enabled = True
Unload Me

End Sub

Private Sub mnuFilePrint_Click()
frmPrint. Show

On Error GoTo mnuPrintErrors
If bContinue = True Then

_With datNomination.Recordset

Sel .TypeText Text:="Target Location Error"
Sel.MoveRight unit:=12 ’12=next cell

Do Until .EOF

17

)
If bWord = True Then
Set WordApp = New Word.Application
WordApp.Documents.Add
Set Doc = WordApp.ActiveDocument
Set Sel = WordApp.Selection
Doc.Tables.Add Range:=Sel.Range, NumRows:=.RecordCount,
NumColumns:=8
Sel.TypeText Text:="Nomination"
Sel .MoveRight unit:=12 '12=next cell
Sel.TypeText Text:="Nomination Sent"
Sel .MoveRight unit:=12 ’12=next cell
Sel.TypeText Text:="Nomination Rcvd"
Sel .MoveRight unit:=12 ’12=next cell
Sel.TypeText Text:="Acquisition®"
Sel .MoveRight unit:=12 r12=next cell
Sel.TypeText Text:="Mensuration"
Sel .MoveRight unit:=12 ’12=next cell
Sel.TypeText Text:="GISRS"
Sel.MoveRight unit:=12 ’12=next cell
Sel.TypeText Text:="Assessment"
Sel.MoveRight unit:=12 ’12=next cell
s

Sel.TypeText Text:=!Nomination

Sel.MoveRight unit:=12 "12=next
cell
Sel.TypeText Text:=!NomTimeSent
Sel.MoveRight unit:=12 '12=next
cell
Sel .TypeText Text:=!NomTimeRcvd
Sel.MoveRight unit:=12 '12=next
cell
Sel.TypeText Text:=!Acquisition
Sel.MoveRight unit:=12 ’12=next
cell
Sel.TypeText Text:=!Mensuration
Sel.MoveRight unit:=12 '12=next
cell
Sel.TypeText Text:=!GISRSTerminal
Sel.MoveRight unit:=12 '12=next
cell
Sel.TypeText Text:=!Assessment
Sel.MoveRight unit:=12 '12=next
cell
Sel.TypeText Text:=!TargetLocationError
Sel .MoveRight unit:=12 ‘12=next
cell
.MoveNext
Loop
WordApp.Visible = True
Set WordApp = Nothing
Else
If bText = True Then
Open App.Path & "\NomEvents.txt" For Output As #1
Print #1, "Nomination"; Chr(9); "Nomination Sent";
Chr(9); "Nomination Rcvd"; Chr(9); _
"Acquisition"; Chxr(9); "Mensuration";
Chr(9); _
"GISRTerminal"; Chr(9); "Assessment";
Chr(9);

*TargetLocationError"; Chr(9)

Do Until .EOF
172

Print #1, !Nomination; Chr(9);
I NomTimeSent; Chr(9); _
INomTimeRcvd; Chr(9);
'Acquisition; Chr(9); _
'Mensuration; Chr(9); _
!GISRSTerminal; Chr(9); _
tAssessment; Chr(9); _
ITargetLocationError; Chr(9)

.MoveNext
Loop
Close #1
End If
End If
.MoveFirst
End With
End If
bContinue = False
bWord = False
bText = False
mnuPrintErrors:
Select Case Err.Number
Case 94
Sel.TypeText Text:=""
Resume Next
End Select
End Sub

Private Sub txtAcquisition_Change()

‘selects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsAcquisition.MoveFirst
If txtAcquisition <> "" Then
Do Until iIndex = rsAcquisition.RecordCount Or bFound
If rsAcquisition!Acquisition = txtAcquisition Then
cboAcquisition.Text = rsAcquisition!Acquisition
bFound = True
Else
rsAcquisition.MoveNext
iIndex = iIndex + 1
End If

173

Loop
End If

End Sub
Private Sub txtGISRS_Change()

'selects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsGISRS.MoveFirst
If txXtGISRS <> "" Then
- Do Until iIndex = rsGISRS.RecordCount Or bFound
If rsGISRS!GISRSTerminal = txtGISRS Then
cboGISRS.Text = rsGISRS!GISRSTerminal
bFound = True
Else
rsGISRS.MoveNext
iIndex = iIndex + 1
End If

Loop
End If

End Sub
Private Sub txtMensuration_Change ()

‘selects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsMensuration.MoveFirst
If txtMensuration <> "" Then
Do Until iIndex = rsMensuration.RecordCount Or bFound
If rsMensuration!Mensuration = txtMensuration Then

cboMensuration.Text = rsMensuration!Mensuration
bFound = True

Else
rsMensuration.MoveNext
iIndex = iIndex + 1

End If

Loop
End If

End Sub

FhhkhkhhhkdrhkhkAkrrhhhkhhkhkhhdhkdrrhhkddrdrhdhkrddxrhdkhkhkrkdrhhkhdhkdhkkhhkdhdkddkkdkk

‘Module: frmObjectives. frm
'‘Description: Allows user to access the objectives
’ records for addition, deletion, and

174

’ modification.

. .
' Programmer : Kevin Coldn
l***

Option Explicit

Private Sub cmdadd_Click()
On Error GoTo HandleAddErrors

If cmdAdd.Caption = "&Add" Then
datObjectives.Recordset .AddNew
txtObjective.Enabled = True
txtObjective.SetFocus
txtDescription.Enabled = True
cmdAdd.Caption = "&Cancel"
cmdSave.Enabled = True
.cmdDel .Enabled = False
cmdUpdate.Enabled = False
mnuFile.Enabled = False
datObjectives.Enabled = False

Else
datObjectives.Recordset.CancelUpdate
txtObjective.Enabled = False
txtDescription.Enabled = False
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdUpdate.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Add"
cmdAdd. SetFocus
datObjectives.Enabled = True

End If

cmdAdd_Click_Exit:
Exit Sub

HandleAddErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

End Sub

Private Sub cmdDel_Click()
'‘delete the current record
Dim iResp As Integer

On Error GoTo HandleDelErrors

If datObjectives.Recordset.RecordCount > 0 Then

175

iResp = MsgBox ("Delete Objective " & txtObjective.Text & o,
vbYesNo, "Delete Objective")
Tf iResp = vbYes Then
With datObjectives.Recordset

.Delete rdelete current record
.MoveNext 'move to following record
if .EOF Then

_.MovePrevious

If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"

End If
End If
End With
End If
Else
MsgBox "No records to delete.”, vbExclamation _
npelete Objective”
End If

cmdDel_Click_Exit:
Exit Sub

HandleDelErrors:
Dim stMsg As String

.stMsg = "Cannot complete operation." & vbCrLf & vbCrLf _
& Err.Description '

MsgBox stMsg, vbExclamation, "Database Error"

On Error GoTo 0 rturn off error trapping

End Sub

pPrivate Sub cmdSave_Click()
rgave the current record
Dim iResp As Integer

On Error GoTo HandleSaveErrors
1f txtObjective <> ww and txtDescription <> wv Then
txtObjective = UCase (txtObjective)
iResp = MsgBox("Do you want to add " & txtObjective & _
v to the database?", vbYesNo + vbQuestion, _
"add Objective")
If iResp = vbYes Then
datObjectives.Recordset.Update

End If
Else
MsgBox "You must enter an Objective and a description before
saving.", vbExclamation _

"aAdd Objective"
datObjectives.Recordset.CancelUpdate
End If

176

txtObjective.Enabled = False
txtDescription.Enabled = False
cmdSave.Enabled = False

cmdDel .Enabled = True
datObjectives.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Add4"
cmdAdd . SetFocus
cmdUpdate.Enabled = True

cmdSave_Click_Exit:
Exit Sub

HandleSaveExrrors:
Dim stMess As String
Select Case Err.Number

Case 3022 ‘duplicate key field
stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

Case 3058, 3315 ‘no entry in key field
stMess = "Enter a Objective name before saving."
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

Case Else
stMess = "Record could not be saved." & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
datObjectives.Recordset.CancelUpdate
Resume Next
End Select

End Sub

Private Sub cmdUpdate Click()
If cmdUpdate Caption = "&Update" And
datObjectives.Recordset. RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit"
txtObjective.Enabled = True
txtDescription.Enabled = True
cmdDel .Enabled = False
mnuFile.Enabled = False
txtObjective.SetFocus
cmdAdd.Enabled = False
datObjectives.Enabled = False
datObjectives.Recordset.Edit

Else
If datObjectives.Recordset.RecordCount > 0 Then

datObjectives.Recordset.Update

txtObjective.Enabled = False
177

txtDescription.Enabled = False
cmdDel .Enabled = True
mnuFile.Enabled = True
cmdAdd . Enabled = True
cmdAdd. SetFocus
cmdUpdate.Caption = "&Update®
datObjectives.Enabled = True
End If
End If

End Sub

Private Sub datObjectives_Reposition()
SetObjectiveRecordNumber

End Sub

Private Sub Form_Load()
datObjectives.DatabaseName = gstNewDatabase

With datObjectives
.Refresh
If Not .Recordset.EOF Then
.Recordset .MoveLast
.Recordset .MoveFirst
End If
End With

SetObjectiveRecordNumber

End Sub

Private Sub Form_Unload(Cancel As Integer)
frmMain.Show
frmMain.Enabled = True
Unload Me

End Sub

Private Sub mnuFileBack_Click()

frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileSearch_Click()

datObjectives.Recordset.FindFirst " [Description] = '" & _
InputBox("Enter the Objective", "Objective Search") &

msn

If datObjectives.Recordset.NoMatch Then
MsgBox "Objective was not found.", vbOKOnly, "Objective Search"

178

datObjectives.Recordset.MoveFirst ‘go to first record
End If ‘

End Sub

Private Sub SetObjectiveRecordNumber ()

Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount = datObjectives.Recordset.RecordCount
iCurrentRecord = datObjectives.Recordset.AbsolutePosition + 1
if datObjectives.Recordset.EOF Then

datObjectives.Caption = "No more records"
Else
datObjectives.Caption = *Objective " & iCurrentRecord & _
" of " & iRecordCount
End If
End Sub

Phkkkkhkkkhkhkhkohkkdhhk ok gk kk ok ok hkk ok ok ok ok ok ok ok ok ko k ok kok ok ok Kk ok ok ok ok ko ok kb ke ok ok ok kok ke ok ko

’

’

‘Module: frmPlatforms.frm

'‘Description: Allows user to access the platform

’ records for addition, deletion, and
modification.

' Programmer : Kevin Coldn

IETEEEEEEEEEE RS R RS SE SRS RS R AR R R RS R SRS EEREEEREESEEEEESEEEEEEEESESS

Option Explicit

Private Sub cboPlatType_Click()

If cboPlatType.ListIndex >= 0 Then
txtPlatTypeld = cboPlatType.Text

End If

End Sub

Private Sub cmdAddPlat_Click()

On Error GoTo HandleAddPlatErrors
If cmdAddPlat.Caption = "&Add Platform" Then

datPlatforms.Recordset.AddNew
cboPlatType.Enabled = True
cboPlatType.ListIndex = 0
txtPlatform.Enabled = True
txtPlatName.Enabled = True
txtCommander .Enabled = True
txtSpecialty.Enabled = True
txtLocation.Enabled = True

179

txtLogger.Enabled = True
txtPlatTypeId.Enabled = True
cmdSavePlat .Enabled = True
cmdDelPlat .Enabled = False
cmdUpdate.Enabled = False
mnuFile.Enabled = False
cboPlatType.SetFocus
cmdAddPlat .Caption = rgCancel™”
datPlatforms.Enabled = False
Else
datPlatforms.Recordset.CancelUpdate

cboPlatType.Enabled = False
txtPlatform.Enabled = False
txtPlatName.Enabled = False

txtCommander.Enabled = False
txtSpecialty.Enabled = False
txtLocation.Enabled = False
txtLogger .Enabled = False
txtPlatTypeId.Enabled = False
cmdSavePlat.Enabled = False
cmdDelPlat.Enabled = True
cmdUpdate.Enabled = True
mpnuFile.Enabled = True
cmdAddPlat .Caption = vgadd Platform”
cmdaddPlat . SetFocus

datPlatforms.Enabled = True

End If

cmdaddPlat_Click_Exit:
Exit Sub

HandleAddPlatErrors:
Dim stMess As string
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, *Database Error"
On Error GoTo 0 rturn off error trapping

End Sub

Private Sub FillPlatTypeCombo ()
Dim iCount As Integer
+£i11 the PlatType combo box
cboPlatType.Clear
with datPlatType

.Refresh 'open database
iCount = .Recordset .RecordCount

180

r£ill the list
Do Until .Recordset.EOF
If .Recordset!PlatformType <> "" Then
cboPlatType.AddItem .Recordset!PlatformType

End If
.Recordset .MoveNext
Loop
End With

End Sub

Private Sub cmdDelPlat_Click()
'delete the current record
Dim iResp As Integer

On Erxrror GoTo HandleDelPlatErrors

If datPlatforms.Recordset.RecordCount > 0 Then
iResp = MsgBox{"Delete Platform " & txtPlatform & "?", vbYesNo,

"Delete Platform")
If iResp = vbYes Then
With datPlatforms.Recordset

.Delete ‘delete current record
.MoveNext ‘move to following record
If .EOF Then

.MovePrevious

If .BOF Then
: MsgBox "The recordset is empty.",
vbInformation, "No Records"

End If
End If
End With
End If
Else :
MsgBox "No records to delete.", vbExclamation _
, "Delete Event" \
End If

cmdDelPlat_Click_Exit:
Exit Sub

HandleDelPlatErroxrs:
Dim stMsg As String

stMsg = "Cannot complete operation." & vbCrLf & vbCrLf _
& Err.Description

MsgBox stMsg, vbExclamation, "Database Error"

On Error GoTo 0 ‘turn off error trapping

End Sub

Private Sub cmdSavePlat_Click()
181

’save the current record

On Error GoTo HandleSavePlatformErrors
If cboPlatType.ListIndex >= 0 Then
If txtPlatform <> "" And txtPlatName <> "" Then
datPlatforms.Recordset .Update
Else
MsgBox "You must enter a Platform name and id before
saving." _
, VbExclamation, "Add Platform"
datPlatforms.Recordset.CancelUpdate
End If
Else
MsgBox "You must select a Platform Type before saving."
, VbExclamation, "Add Platform®
datPlatforms.Recordset.CancelUpdate

End If

"

cboPlatType.Enabled False
txtPlatform.Enabled False
txtPlatName.Enabled False
txtCommander .Enabled = False
txtSpecialty.Enabled = False
txtLocation.Enabled = False
txtLogger.Enabled = False
txtPlatTypeld.Enabled = False
cmdSavePlat.Enabled = False
cmdDelPlat.Enabled = True
cmdUpdate.Enabled = True
mnuFile.Enabled = True
cmdAddPlat .Caption = "&Add Platform”
cmdAddPlat.SetFocus

1}

datPlatforms.Enabled = True

cmdSavePlat_Click_Exit:
Exit Sub

HandleSavePlatformErrors:
Dim stMess As String
Select Case Err.Number
Case 3022 'duplicate key field
stMess = "Record already exists -- could not save>’"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

Case 3058, 3315 ‘'no entry in key field
stMess = "Select a platform type before saving."
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

Case Else
stMess = "Record could not be saved." & vbCrLf _
& Err.Description
MsgBox stMess, VvbExclamation, "Database Error"

182

datPlatforms.Recordset.CancelUpdate
Resume Next
End Select

End Sub

Private Sub cmdUpdate_Click()
If cmdUpdate.Caption = "&Update" And _
datPlatforms.Recordset.RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit"®
cboPlatType.Enabled True
txtPlatform.Enabled True
txtPlatform. SetFocus
txtPlatName.Enabled = True
txtCommander .Enabled = True
_txtSpecialty.Enabled = True
txtLocation.Enabled = True
txtlLogger.Enabled = True
txtPlatTypeId.Enabled = True
crmdDelPlat .Enabled = False
cmdAddPlat .Enabled = False
mnuFile.Enabled = False
datPlatforms.Enabled = False
datPlatforms.Recordset.Edit

(]

Else .
If datPlatforms.Recordset.RecordCount > 0 Then
datPlatforms.Recordset.Update

cboPlatType.Enabled False
txtPlatform.Enabled False
txtPlatName.Enabled = False
txtCommander .Enabled False
txtSpecialty.Enabled False
txtLocation.Enabled = False
txtLogger.Enabled = False
txtPlatTypeld.Enabled = False
cmdDelPlat .Enabled = True
mnuFile.Enabled = True
cmdAddPlat .Enabled = True
cmdAddPlat . SetFocus
cndUpdate.Caption = "&Update"
datPlatforms.Enabled = True
End If
End If

o

End Sub
Private Sub datPlatforms_Reposition()
SetPlatformRecordNumber

End Sub

183

Private Sub Form_Load()
datPlatforms.DatabaseName = gstNewDatabase
datPlatType.DatabaseName = gstNewDatabase

FillPlatTypeCombo

With datPlatforms
.Refresh
If Not .Recordset.EOF Then
.Recordset .MoveLast
.Recordset .MoveFirst
End If
End With

datPlatType.Refresh
datPlatType.Recordset .MoveFirst

SetPlatformRecordNumber
End Sub
Private Sub SetPlatformRecordNumber ()
Dim iRecordCount As Integer
Dim iCurrentRecord As Integer
iRecordCount = datPlatforms.Recordset.RecordCount

iCurrentRecord = datPlatforms.Recordset.AbsolutePosition + 1
If datPlatforms.Recordset.EOF Then

datPlatforms.Caption = "No more records"
Else
datPlatforms.Caption = "Platform Record " & iCurrentRecord & _
" of " & iRecordCount
End If
End Sub

Private Sub mnuFileBack_Click()
frmMain.Show
frmMain.Enabled = True
Unload Me

End Sub

Private Sub mnuFileSearch_Click()

datPlatforms.Recordset.FindFirst "[PlatformId] = " & _
InputBox ("Enter the Platform Id", "Platform Id Search")
& nwsn
If datPlatforms.Recordset.NoMatch Then
MsgBox "Platform Id was not found.", vbOKOnly, "Platform Id
Search"

datPlatforms.Recordset.MoveFirst ‘go to first record

184

e

End If

End Sub

Private Sub txtPlatTypeId_Change ()

'‘gelects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

datPlatType.Recordset.MoveFirst
If txtPlatTypeId <> "" Then
Do Until iIndex = datPlatType.Recordset.RecordCount Or bFound
If datPlatType.Recordset!PlatformType = txtPlatTypeId Then
cboPlatType.Text = datPlatType.Recordset!PlatformType
bFound = True
Else
datPlatType.Recordset.MoveNext
iIndex = iIndex = 1

End If
Loop
Else
cboPlatType.ListIndex = -1
End If

End Sub

'*********1\'***

’

’

‘Module: frmPlatformsTypes.frm

'Description: Allows user to access the platform types
records for addition, deletion, and
modification.

' Programmer : Kevin Coldn

|***

Option Explicit

Private Sub cmdAdd_Click()

On Error GoTo HandleAddErrors

If cmdAdd.Caption = "&Add" Then
datPlatTypes.Recordset.AddNew
txtPlatformType.Enabled = True
txtPlatformType.SetFocus
txtDescription.Enabled = True
cmdAdd.Caption = "&Cancel®
cmdSave.Enabled = True
cmdDel .Enabled = False
cmdUpdate .Enabled = False
mnuFile.Enabled = False
datPlatTypes.Enabled = False

185

Else
datPlatTypes.Recordset.CancelUpdate
txtPlatformType.Enabled = False
txtDescription.Enabled = False
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdUpdate.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Add"
cmdAdd. SetFocus
datPlatTypes.Enabled = True

End If

cmdAdd_Click Exit:
Exit Sub

HandleAddErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

End Sub

Private Sub cmdDel_Click()
‘delete the current record
Dim iResp As Integer

On Error GoTo HandleDelErrors

If datPlatTypes.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Platform " & txtPlatformType.Text & "?",
vbYesNo, "Delete Platform")
If iResp = vbYes Then
With datPlatTypes.Recordset

.Delete '‘delete current record
.MoveNext ‘move to following record
If .EOF Then

.MovePrevious

If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"

End If
End If
End With

End If
Else

MsgBox "No records to delete.", vbExclamation _

"Delete Platform"

End If

cmdDel_Click_Exit:
186

Exit Sub

HandleDelErrors:
Dim stMsg As String

stMsg = "Cannot complete operation." & vbCrLf & vbCrLf _
& Err.Description

MsgBox stMsg, vbExclamation, "Database Error*

On Error GoTo 0 'turn off error trapping

End Sub

Private Sub cmdSave_Click()
'save the current record
Dim iResp As Integer

On Error GoTo HandleSaveErrors
If txtPlatformType.Text <> "" Then
txtPlatformType.Text = UCase (txtPlatformType.Text)

iResp = MsgBox("Do you want to add " & txtPlatformType.Text & _

" to the database?", vbYesNo + vbQuestion, _
*Add Platform")
If iResp = vbYes Then
datPlatTypes.Recordset.Update
End If

Else
MsgBox "You must enter a Platform type before saving.",
vbExclamation _
, "Add Platform”
datPlatTypes.Recordset.CancelUpdate
End If

txtPlatformType.Enabled = False
txtDescription.Enabled = False
cmdSave.Enabled = False

cmdDel .Enabled = True
datPlatTypes.Enabled = True
mnuFile.Enabled = True
cmdadd.Caption = "&Add"
cmdAdd . SetFocus
cmdUpdate.Enabled = True

cmdSave_Click_Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number
Case 3022 ‘duplicate key field
stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 'turn off error trapping

187

Case 3058, 3315 ‘no entry in key field
stMess = "Enter a Platform type before saving."
MsgBox stMess, vbExclamation, "Database Error'
On Error GoTo 0 ‘turn off error trapping

Case Else
stMess = "Record could not be saved." & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
datPlatTypes.Recordset.CancelUpdate
Resume Next
End Select

End Sub

Private Sub cmdUpdate_Click()
If cmdUpdate.Caption = "&Update" And _
datPlatTypes.Recordset.RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit"
txtPlatformType.Enabled = True
txtDescription.Enabled = True
cmdDel .Enabled = False
mnuFile.Enabled = False
txtPlatformType.SetFocus
cmdAdd.Enabled = False
datPlatTypes.Enabled = False
datPlatTypes.Recordset.Edit

Else
If datPlatTypes.Recordset.RecordCount > 0 Then

datPlatTypes.Recordset.Update

txtPlatformType.Enabled = False
txtDescription.Enabled = False
cmdDel .Enabled = True
mnuFile.Enabled = True
cmdAdd.Enabled = True
cmdAdd. SetFocus
cmdUpdate.Caption = "&Update™
datPlatTypes.Enabled = True
End If
End If

End Sub

Private Sub datPlattypes_Reposition()
SetPlatformRecordNumber

End Sub

Private Sub Form_Load()

datPlatTypes.DatabaseName = gstNewDatabase

188

With datPlatTypes
.Refresh
If Not .Recordset.EOF Then
.Recordset .MoveLast
.Recordset .MoveFirst
End If
End With

SetPlatformRecordNumber

End Sub
Private Sub Form Unload(Cancel As Integer)

frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileBack_ Click()

frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileSearch_Click()

datPlatTypes.Recordset .FindFirst "[PlatformType] = '" & _
InputBox{("Enter the Platform Type", "Platform Type
Search") & "'"

If datPlatTypes.Recordset.NoMatch Then
MsgBox "Platform Type was not found.", vbOKOnly, "Platform Type
Search"
datPlatTypes.Recordset .MoveFirst 'go to first record
End If

End Sub

Private Sub SetPlatformRecordNumber ()
Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount = datPlatTypes.Recordset.RecordCount
iCurrentRecord = datPlatTypes.Recordset.AbsolutePosition + 1
If datPlatTypes.Recordset.EOF Then

datPlatTypes.Caption = "No more records"
Else
datPlatTypes.Caption = "Platform " & iCurrentRecord & _
" of " & iRecordCount
End If
End Sub

189

Tk Ak kXA KA I A Ak ARk k kR kkkdk bk kA kkkkkhkkd Ak kkhkkkhdhhddhrrhhdhhxx

'Module: frmPrint. frm

'‘Description: Allows user to choose to export report to Word
’ or to a text file

' Programmer : Kevin Colédn

R S R L AL AR R R R 2SR R A R R R RS SRR SR EE R R EEEEEE LSS

Option Explicit

Private Sub cmdCancel_Click()
Unload Me

End Sub.

Private Sub cmdOK_Click()
bContinue = True
If Optionl.Value = True Then

bWord = True

Else

If Option2.Value = True Then
bText = True

End If
End If
Unload Me

End Sub

Thkkhkkkkdedkkhrdhkk kA hkhkhkhkdkhkhkhkhrrrrhkxhkdddrkdkkhdhhrdhdrrhrrhhhdhdhd

'Module: frmPTW. frm

'Description: Allows user to access the PTW terminal
! records for addition, deletion, and

' modification.

' Programmer : Kevin Coldn

l***

Option Explicit
Dim rsPlatform As Recordset
Dim stSQL As String
Private Sub cboPlatform_Click()
If cboPlatform.ListIndex >= 0 Then
txtPlatform = cboPlatform.Text

End If

End Sub
190

Private Sub cmdAdd_Click()
On Error GoTo HandleAddErrors

If cmndadd.Caption = "&Add" Then
datPTW.Recordset . AddNew
txtTerminal .Enabled = True
txtTerminal.SetFocus
txtFunction.Enabled = True
cboPlatform.Enabled = True
cmdadd.Caption = "&Cancel"
cmdSave.Enabled = True
cmdDel .Enabled = False
cmdUpdate.Enabled = False
mnuFile.Enabled = False
datPTW.Enabled = False

Else
datPTW.Recordset .CancelUpdate
txtTerminal.Enabled = False
txtFunction.Enabled = False
cboPlatform.Enabled = False
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdUpdate.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Add"
cmdAdd. SetFocus
datPTW.Enabled = True

End If

cmdAdd_Click_Exit:
Exit Sub

HandleAddErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error”
On Exrror GoTo O turn off error trapping

End Sub

Private Sub cmdDel_Click()
‘delete the current record
Dim iResp As Integer

On Error GoTo HandleDelErrors

If datPTW.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Terminal " & txtTerminal .Text & "?",
vbYesNo, "Delete Terminal")
If iResp = vbYes Then
With datPTW.Recordset

191

.Delete ‘delete current record

.MoveNext ‘move to following record
If .EOF Then
.MovePrevious

If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"

End If
End If
End With
End If
Else
MsgBox "No records to delete.", vbExclamation _
, "Delete Terminal"
End If

cemdDel_Click_Exit:
Exit Sub

HandleDelErrors:
Dim stMsg As String

stMsg = "Cannot complete operation." & vbCrLf & vbCrLf _
& Err.Description

MsgBox stMsg, vbExclamation, "Database Erxror"

On Error GoTo 0 ‘turn off error trapping

End Sub

Private Sub cmdSave_Click()
'save the current record
Dim iResp As Integer

On Error GoTo HandleSaveErrors
If txtTerminal.Text <> "" Then
txtTerminal.Text = UCase(txtTerminal.Text)

iResp = MsgBox("Do you want to add " & txtTerminal.Text & _

" to the database?", vbYesNo + vbQuestion,
"Add Terminal®)
If iResp = vbYes Then
datPTW.Recordset .Update
End If

Else
MsgBox "You must enter a Terminal before saving.',
vbExclamation _
*Add Terminal"
datPTW.Recordset .CancelUpdate
End If

txtTerminal .Enabled False
txtFunction.Enabled = False
cboPlatform.Enabled = False
cmdSave.Enabled = False

192

cmdDel .Enabled True
datPTW.Enabled True
mnuFile.Enabled = True
cmdadd.Caption = "&Add"
cmdAdd. SetFocus
cmdUpdate.Enabled = True

cmdSave_Click_Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number

Case 3022 ‘duplicate key field
stMess = "Record already exists -- could not save>’"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping
Case 3058, 3315 ‘no entry in key field
stMess = "Enter a location before saving."
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

Case Else

stMess = "Record could not be saved." & vbCrLf _

& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
datPTW.Recordset.CancelUpdate
_ Resume Next
End Select

End Sub
Private Sub cmdUpdate_Click()

I1f cmdUpdate.Caption = "&Update" And _
datPTW.Recordset .RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit®
. txtTerminal.Enabled = True
txtFunction.Enabled = True

cboPlatform.Enabled = True

cmdDel .Enabled = False

mnuFile.Enabled = False

txtTerminal.SetFocus

cmdAdd.Enabled = False

datPTW.Enabled = False

datPTW.Recordset .Edit

Else

If datPTW.Recordset.RecordCount > 0 Then
txtTerminal = UCase(txtTerminal)
datPTW.Recordset .Update

False
False

193

txtTerminal.Enabled
txtFunction.Enabled

cboPlatform.Enabled = False
cmdDel .Enabled = True
mnuFile.Enabled = True
cmdAdd. Enabled = True
cmdAdd. SetFocus

cmdUpdate.Caption = "&Update”
datPTW.Enabled = True
End If
End If
End Sub

Private Sub datPTW_Reposition()
SetTerminalRecordNumber
End Sub
Private Sub FillPlatformCombo ()
Dim iCount As Integer
*£il11l the PlatType combo box
cboPlatform.Clear
With rsPlatform
iCount = .RecordCount
*£ill the list
Do Until .EOF
If !Platform <> "" Then
cboPlatform.AddItem !Platform
End If
.MoveNext
Loop
End With
End Sub
Private Sub Form_Load()
datPTW.DatabaseName = gstNewDatabase
stSQL = "Select Platform from Platform"
Set rsPlatform = db.OpenRecordset (stSQL)
FillPlatformCombo
With datPTw
.Refresh

If Not .Recordset.EOF Then
.Recordset .MoveLast

194

End

.Recordset .MoveFirst
End If
With

SetTerminalRecordNumber

End Sub

Private

Sub Form_Unload(Cancel As Integer)

frmMain.Enabled = True

Unload Me
End Sub
Private Sub mnuFileBack_Click()

frmMain.Enabled = True

Unload Me
End Sub
Private Sub mnuFileSearch_Click()
datPTW.Recordset .FindFirst " [PTWTerminal] = '" & _
InputBox("Enter the PTW Terminal", "PTW Terminal
Search“) & nsn

If datPTW.Recordset.NoMatch Then

Search"
End
End Sub
Private
Dim
Dim

iRec

MsgBox "PTW Terminal was not found.", vbOKOnly, "PTW Terminal

datPTW.Recordset .MoveFirst ‘go to first record
If

Sub SetTerminalRecordNumber ()
iRecordCount As Integer
iCurrentRecord As Integer

ordCount = datPTW.Recordset.RecordCount

iCurrentRecord = datPTW.Recordset.AbsolutePosition + 1
If datPTW.Recordset.EOF Then

datPTW.Caption = "No more records"
Else .
datPTW.Caption = "Terminal " & iCurrentRecord & _
" of " & iRecordCount
End If

End Sub

Private Sub txtPlatform_Change ()

'‘selects correct combo box listing
Dim iIndex As Integer

195

Dim bFound As Boolean

rsPlatform.MoveFirst
If txtPlatform <> "" Then
Do Until iIndex = rsPlatform.RecordCount Or bFound
If rsPlatform!Platform = txtPlatform Then
cboPlatform.Text = rsPlatform!Platform
bFound = True
Else
rsPlatform.MoveNext
iIndex = iIndex + 1
End If
Loop
Else
cboPlatform.ListIndex = -1
End If

End Sub

A SRS A S LRSS SRR R L AR R EEEEEERESREREESERESEREESEEREEEEEEREEESESESEEESES;]

‘Module: frmQueries.frm

‘Description: Contains predefined queries that filter

’ acquisitions and targets based on a parameter
’ selected by the user.

. -
'Programmer : Kevin Coldn
IR E RS S EEEEEE SR AR E SRS SRR R SRR R R AR R RER R SRR RS RSl AR R R R R R R R RS RS

Option Explicit
Dim Index As Integer

Private Sub cmdCancel_Click()

frmMain.Enabled = True
Unload Me

End Sub
Private Sub cmdSubmit_Click()

frmQueryOutput . Show
Me.Enabled = False

End Sub

Private Sub Form_Load()

datPlatforms.DatabaseName gstNewDatabase
datSensTypes.DatabaseName = gstNewDatabase
datWeaponTypes.DatabaseName = gstNewDatabase
datThreatTypes.DatabaseName = gstNewDatabase

'fill the Platform combo box
Fillprlatforms

196

'£i11 the Sensor combo box
FillSensTypes

'£il1ll the Threat combo box
FillThreatTypes

‘£ill the Weapon combo box
FillWeaponTypes

End Sub
Private Sub FillPlatforms()

cboPlatformsl.Clear
cboPlatforms2.Clear

With datPlatforms

.Refresh ‘open database

'£ill the list

Do Until .Recordset.EOF ‘until no more records in recordset
If .Recordset!Platform <> "* Then

cboPlatformsl.AddItem .Recordset!Platform
cboPlatforms2.AddItem .Recordset!Platform

End If
.Recordset .MoveNext

Loop
End wWith

End Sub
Private Sub FillSensTypes()

cboSensTypesl.Clear
cboSensTypes2.Clear

With datSensTypes
.Refresh ‘open database

*£i11 the list
Do Until .Recordset.EOF
If .Recordset!SensorType <> "" Then
cboSensTypesl.AddItem .Recordset!SensorType
cboSensTypes2.AddItem .Recordset!SensorType

End If
.Recordset .MoveNext
Loop
End With
End Sub
Private Sub FillThreatTypes()

cboThreatTypes.Clear

197

With datThreatTypes
.Refresh ‘open database
£ill the list
Do Until .Recordset.EOF
If .Recordset!ThreatType <> "" Then
cboThreatTypes.AddItem .Recordset!ThreatType
End If
.Recordset .MoveNext
Loop
End with

End Sub
Private Sub FillWeaponTypes()
cboWeaponTypes.Clear
Wiﬁh datWeaponTypes
.Refresh ‘open database

£ill the list
Do Until .Recordset.EOF

If .Recordset!WeaponType <> "" Then
cboWeaponTypes.AddItem .Recordset!WeaponType
End If
.Recordset . MoveNext
Loop
End With

End Sub

Private Sub Form_Unload(Cancel As Integer)
frmMain.Enabled = True
Unload Me

End Sub

Private Sub Labell_Click()
optQuery(0) .Value = True

End Sub

Private Sub Labell0_Click()
optQuery(9) .Value = True

End Sub

Private Sub Labelll Click()
optQuery(2) .Value = True

End Sub

Private Sub Label2_Click()
198

optQuery(l) .Value = True

End Sub

Private Sub Label3_Click()
optQuery(2) .Value = True

End Sub

Private Sub Labeld4_Click()
optQuery(3) .Value = True

End Sub

Privaté Sub Label5_Click()
optQuery(4) .Value = True

End Sub

Private Sub Label6_Click()
optQuery (5) .Value = True

End Sub

Private Sub Label7_Click()
optQuery(6) .Value = True

End Sub

Private Sub Label8_Click()
optQuery(7) .Value = True

End Sub

Private Sub Label9_Click()
optQuery(8) .Value = True

End Sub

Private Sub mnuFileBack_Click()

frmMain.Enabled = True
Unload Me

End Sub

Private Sub optQuery_Click(Index As Integer)
199

Select Case Index
Case 0

cboPlatformsl.Enabled = True
cboSensTypesl.Enabled = False
cboPlatforms2.Enabled = False

cboSensTypes?2.Enabled = False

cboWeaponTypes.Enabled = False
cboThreatTypes.Enabled = False
Case 1
cboPlatformsl.Enabled = False
cboSensTypesl.Enabled = True
cboPlatforms2.Enabled = False
cboSensTypes2.Enabled = False
cboWeaponTypes.Enabled = False
cboThreatTypes.Enabled = False
Case 2
cboPlatformsl.Enabled = False
cboSensTypesl.Enabled = False
cboPlatforms2.Enabled = True
cboSensTypes2.Enabled = True
cboWeaponTypes.Enabled = False

cboThreatTypes.Enabled = False

Case 3
cboPlatformsl.Enabled = False
cboSensTypesl.Enabled = False
cboPlatforms2.Enabled = False
cboSensTypes2.Enabled = False
cboWeaponTypes.Enabled = True

cboThreatTypes.Enabled = False

Case 4
cboPlatformsl.Enabled = False
cboSensTypesl.Enabled = False
cboPlatforms2.Enabled = False
cboSensTypes2.Enabled = False
cboWeaponTypes.Enabled = False
cboThreatTypes.Enabled = True

Case 5
cboPlatformsl.Enabled = False
cboSensTypesl.Enabled = False
cboPlatforms2.Enabled = False
cboSensTypes2.Enabled = False
cboWeaponTypes .Enabled = False
cboThreatTypes.Enabled = False

Case 6
cboPlatformsl.Enabled = False
cboSensTypesl.Enabled = False
cboPlatforms2.Enabled = False
cboSensTypes?2.Enabled = False

cboWeaponTypes .Enabled = False
200

cboThreatTypes.Enabled = False

Case 7
cboPlatformsl.Enabled = False
cboSensTypesl.Enabled = False
cboPlatforms2.Enabled = False
cboSensTypes2.Enabled = False
cboWeaponTypes.Enabled = False
cboThreatTypes.Enabled = False
Case 8
cboPlatformsl.Enabled = False
cboSensTypesl.Enabled = False
cboPlatforms2.Enabled = False
cboSensTypes2.Enabled = False
cboWeaponTypes.Enabled = False
cboThreatTypes.Enabled = False
Case 9
cboPlatformsl.Enabled = False
cboSensTypesl.Enabled = False
cboPlatforms2.Enabled = False
cboSensTypes2.Enabled = False
cboWeaponTypes.Enabled = False
cboThreatTypes.Enabled = False
End Select
End Sub

thhkhkhkkkhkhkhhkhkrkrhhkhkhhhkhkrkhdhhkhkhkhkhhkdkhhdbhkhhrkrhkdrrdhhhhhdhhkhhrdhkddhhddrx

'‘Module: frmQueryOutput.frm

‘Description: Displays the results from the query executed
’ from the Queries form (frmQueries)
'Programmer: Kevin Coldn

Thhkhkhkhkhkhkrkhkhkkdkrhkhhkhkrhrkdbhkdodhhkhkhkhhrhkhbhkhbhkhbdrhkhkhkrbdrhhkhkhkhrdbhkrhbhodrhrhhkhkhhkhdkdxk

Option Explicit

Private Sub Form_Load()

Dim stSQL As String
Dim stPrev As String
Dim RS As Recordset
Dim iIndex As Integer
Dim iRecord) As Integer
Dim rsNominations As Recordset
Dim rsTargets As Recordset
Dim stNoms As String
Dim stTargets As String
Dim bFound As Boolean

datQuery.DatabaseName = gstNewDatabase
201

'Query by platform used for detection
If frmQueries.optQuery(0).Value = True Then
stSQL = "Select * from Acquisition " & _
"Where Acquisition.AcgPlatform = " & _
frmQueries.cboPlatformsl.Text & "'"

Set RS = db.OpenRecordset (stSQL)
FlexOutput.FormatString = "Record|Acquistion Event|Track

Id|Platform|Time of Acquisition "

Do Until RS.EQOF
iRecord = iRecord + 1

FlexOutput.AddItem iRecord & vbTab & RS!Acquisition & vbTab
&

RS!TrackId & vbTab & RS!AcqgPlatform & vbTab &

RS!AcqTime
RS.MoveNext

Loop
End If

‘Query by sensor used for detection
If frmQueries.optQuery(l).Value = True Then

stSQL = "Select * from Acquisition, SensorType " & _
"Where Acquisition.AcgSensorType = " & _
frmQueries.cboSensTypesl.Text & __
"+ And SensorType.SensorType = " & _

frmQueries.cboSensTypesl.Text & "' "
Set RS = db.OpenRecordset (stSQL)

FlexOutput.FormatString = "Record|Acquistion Event|Track
Id|Sensor Type|Time of Acquisition "
Do Until RS.EOF
iRecord = iRecord + 1
FlexOutput.AddItem iRecord & vbTab & RS!Acquisition & vbTab

& RS!TrackId & vbTab _
& frmQueries.cboSensTypesl.Text & vbTab & RS!AcgTime

RS .MoveNext

Loop
End If

'Query by sensor and platform detection
If frmQueries.optQuery(2).Value = True Then
StSQL = "Select * from Acquisition, SensorType " & _
"Where Acquisition.AcgSensorType = " & _
frmQueries.cboSensTypes2.Text & _

202

o

"+ And Acquisition.AcqgPlatform = & _
frmQueries.cboPlatforms2.Text & _

"+ And SensorType.SensorType = ‘" & _
frmQueries.cboSensTypes2.Text & "’"

Set RS = db.OpenRecordset (stSQL)

FlexOutput.FormatString = "Record|Acquistion Event|Track
Id|Platform |Sensor Type|Time of Acquisition "
Do Until RS.EOF
iRecord = iRecord + 1
FlexOutput.AddItem iRecord & vbTab & RS!Acquisition & vbTab
& RS!TrackId & vbTab _
& RS!AcqgPlatform & vbTab &
frmQueries.cboSensTypes2.Text & vbTab & RS!AcqTime
RS.MoveNext
Loop
End If

'Query by weapon used
If frmQueries.optQuery(3) Value = True Then
stSQL = "Select * from Target, WeaponType " & _
"Where Target.WeaponType = ‘" & _
frmQueries.cboWeaponTypes.Text & _
"/ And WeaponType.WeaponType = '" & _
frmQueries.cboWeaponTypes.Text & "’'"

Set RS = db.OpenRecordset(stSQL)
FlexOutput.FormatString = "Record|Target Id|Time Target

Designated|Sensor Type|NLT Time

Do Until RS.EQF
iRecord = iRecord + 1
FlexOutput.AddItem iRecord & vbTab & RS!TargetId & vbTab &

RS!TimeofDesignation _
& vbTab & frmQueries.cboWeaponTypes.Text & vbTab &
RS!TargetNLTTime
RS.MoveNext
Loop
End If

‘Query by threat types detected
If frmQueries.optQuery(4) .Value = True Then
stSQL = "Select * from Acquisition, ThreatType " & _
"Where Acquisition.ThreatType = " & _
frmQueries.cboThreatTypes.Text & _
"+ And ThreatType.ThreatType = '" & _
frmQueries.cboThreatTypes.Text & "' "
Set RS = db.OpenRecordset (stSQL)

FlexOutput.FormatString = "Record|Acquistion Event|Track
Id|Threat Type | Time of Acquisition "

203

Do Until RS.EOF
iRecord = iRecord + 1
FlexOutput.AddItem iRecord & vbTab & RS!Acquisition & vbTab

& RS!TrackId & vbTab _
& frmQueries.cboThreatTypes.Text & vbTab & RS!AcgTime

RS.MoveNext

Loop

End If

‘Average time acquisition to mensuration
If frmQueries.optQuery(5).Value = True Then

End If

‘Average time fire command to fire event
If frmQueries.optQuery(6).Value = True Then

End If

‘Nominations accepted as targets
If frmQueries.optQuery(7).Value = True Then
stSQL = "SELECT Nomination.Nomination, Target.TargetId,
Target.Description, " & _
"Nomination.Acquisition, Nomination.Mensuration " & _
"From Nomination, Target " & _
"WHERE Nomination.Nomination = Target.Nomination"

Set RS = db.OpenRecordset {stSQL)

FlexOutput.FormatString = "Record|Nomination |Target
Id|Description |Acquisition |Mensuration "
FlexOutput.Clear
iRecord =1
Do Until RS.EOF
FlexOutput .AddItem iRecord & vbTab & RS!Nomination & vbTab
&
RS!TargetId & vbTab & RS!Description & vbTab &
vbTab & RS!Mensuration
stPrev = RS!Nomination
RS.MoveNext
If Not RS.EOF Then
If stPrev <> RS!Nomination Then
iRecord = iRecord + 1
End If
End If
Loop

RS!Acquisition &

204

End If

‘Nominations declined as targets
If frmQueries.optQuery(8) .Value = True Then

stNoms = "Select * " & _
"From Nomination *
stTargets = "Select * " & _

"From Target "
Set rsNominations = db.OpenRecordset (stNoms)
Set rsTargets = db.OpenRecordset (stTargets)
datQuery.DatabaseName = gstNewDatabase

rsNominations.MoveFirst

iRecord = 1
.FlexOutput.FormatString = "Record|Nomination
|Acquisition|Mensuration|GISRSTerminal | Assessment "

Do Until rsNominations.EOF
rsTargets.MoveFirst
Do Until rsTargets.EOF Or bFound = True
If rsTargets!Nomination = rsNominations!Nomination

Then
bFound = True
Else
rsTargets.MoveNext
End If
Loop

With rsNominations

If bFound = False Then
FlexOutput.AddItem iRecord & vbTab &
!Nomination & vbTab & _
!Acquisition & vbTab & !Mensuration & vbTab
& !GISRSTerminal & _
vbTab & !Assessment
iRecord = iRecord + 1
End If
End With
bFound = False

rsNominations.MoveNext
Loop

End If

‘Targets fired upon (impacts)
If frmQueries.optQuery(9).Value = True Then
stSQL = "Select Impact.Impact, Target.TargetId,
Target.Description, " & _
"FireCommand.Platform, Fire.RoundsFired, Fire.FireTime,
" &

205

"Impact.ImpactTime, Impact.BDA " & _
"From Impact, Fire, FireCommand, Target " &
"Where Fire.Fire = Impact.FireEvent " & _
"And FireCommand.FireCommand = Fire.FireCommand " & _
"And Target.TargetId = FireCommand.TargetId"

Set RS = db.OpenRecordset (stSQL)

FlexOutput.FormatString = "Record|Impact |Target Id|Description
"Firer Platform |Rounds |Fire Time
"Impact Time | BDA

iRecord = 1

. Do Until RS.EOF

FlexOutput.AddItem iRecord & vbTab & RS!Impact & vbTab & _
RS!TargetId & vbTab & RS!Description & vbTab &

RS!Platform & _

End

End Sub

Private

vbTab & RS!RoundsFired & vbTab & RS!FireTime & vbTab &

RS!ImpactTime & vbTab & RS!BDA
RS .MoveNext
iRecord = iRecord + 1

Loop

If

Sub Form_ Unload(Cancel As Integer)

frmQueries.Enabled = True
Unload Me

End Sub

Private Sub mnuFileBack_Click()

frmQueries.Enabled = True
Unload Me

End Sub

PhdkkkhkkhkhkhkhkhkhkAhkrhkhhhkhrdhkhkkhhkddkdhkdhkhkodhkdkhkhkdhdkdhdhkdhkhkkhkdkdkdhokhkdhkkdkkkkkik

‘Module: frmQuestions.frm

'Description: Allows user to access the questions
! records for addition, deletion, and
’ modification.

'Programmer : Kevin Coldn

IR R RS RS R L SR SRS R RS R EREEREERREERREEREEERESEESESEEERESERSEERERESERSLSSEE]

206

]

Option Explicit

Private Sub cmdAdd_Click()
On Error GoTo HandleAddErrors

If cmdAdd.Caption = "&Add" Then
datQuestions.Recordset .AddNew
txtQuestion.Enabled = True
txtQuestion.SetFocus
txtDescription.Enabled = True
cmdAdd.Caption = "&Cancel"
cmdSave.Enabled = True
cmdDel.Enabled = False
cndUpdate.Enabled = False
mnuFile.Enabled = False
datQuestions.Enabled = False

Else
datQuestions.Recordset.CancelUpdate
txtQuestion.Enabled = False
txtDescription.Enabled = False
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdUpdate.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Ad4"
cmdAdd. SetFocus
datQuestions.Enabled = True

End If

cmdadd_Click_Exit:
Exit Sub

HandleAddErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

End Sub

Private Sub cmdDel_Click()
‘delete the current record
Dim iResp As Integer

On Error GoTo HandleDelErrors

If datQuestions.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Question " & txtQuestion.Text & "?2",
vbYesNo, "Delete Question")
If iResp = vbYes Then
With datQuestions.Recordset

207

.Delete 'delete current record

.MoveNext ‘move to following record
If .EOF Then
.MovePrevious

If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"

End If
End If
End With
End If
Else
MsgBox "No records to delete.", vbExclamation _
, "Delete Question"
End If

cmdDel_Click_Exit:
Exit Sub

HandleDelErrors:
Dim stMsg As String

stMsg = "Cannot complete operation." & vDCrLf & vbCrLf _
& Err.Description

MsgBox stMsg, vbExclamation, "Database Error"

On Error GoTo O ‘turn off error trapping

End Sub

Private Sub cmdSave_Click()
‘save the current record
Dim iResp As Integer

On Error GoTo HandleSaveErrors
If txtQuestion <> "" And txtDescription <> "" Then
txtQuestion = UCase (txtQuestion)
iResp = MsgBox("Do you want to add " & txtQuestion & _
" to the database?", vbYesNo + vbQuestion, _
*Add Question") ’
If iResp = vbYes Then
datQuestions.Recordset .Update

End If
Else
MsgBox "You must enter an Question and a description before
saving.", vbExclamation _

"Add Question®
datQuestions.Recordset.CancelUpdate
End If

txtQuestion.Enabled = False
txtDescription.Enabled = False
cmdSave.Enabled = False

cmdDel .Enabled = True

208

datQuestions.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Ad4"
cmdAdd. SetFocus
cmdUpdate.Enabled = True

- cmdSave_Click_Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number

Case 3022 'duplicate key field
stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 turn off error trapping

Case 3058, 3315 ‘no entry in key field
stMess = "Enter a Question name before saving."
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

Case Else
stMess = "Record could not be saved." & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
datQuestions.Recordset.CancelUpdate
Resume Next
End Select

End Sub

Private Sub cmdUpdate_Click()
If cmdUpdate.Caption = "&Update" And _
datQuestions.Recordset.RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit"
txtQuestion.Enabled = True
txtDescription.Enabled = True
cmdDel .Enabled = False
mnuFile.Enabled = False
txtQuestion.SetFocus
cmdadd.Enabled = False
datQuestions.Enabled = False
datQuestions.Recordset.Edit

Else
If datQuestions.Recordset.RecordCount > 0 Then

datQuestions.Recordset.Update

txtQuestion.Enabled = False
txtDescription.Enabled = False
cmdDel .Enabled = True
mnuFile.Enabled = True
cmdAdd.Enabled = True

209

cmdAdd. SetFocus
cmdUpdate.Caption = "&Update"
datQuestions.Enabled = True
End If
End If

End Sub.

Private Sub datQuestions_Reposition()
SetQuestionRecordNumber

End Sub

Private Sub Form_Load()
datQuestions.DatabaseName = gstNewDatabase

wWith datQuestions
.Refresh
If Not .Recordset.EOF Then
.Recordset .MoveLast
.Recordset .MoveFirst
End If
End With

SetQuestionRecordNumber

End Sub

Private Sub Form_Unload(Cancel As Integer)
frmMain.Show
fymMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileBack_Click()

frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileSearch_Click()

1

datQuestions.Recordset.FindFirst " [Question] = '" & _
InputBox ("Enter the Question", "Question Search") &

wrsn

If datQuestions.Recordset.NoMatch Then

MsgBox "Question was not found.", vbOKOnly, "Question Search"
datQuestions.Recordset.MoveFirst ‘go to first record
End If

End Sub

210

Private Sub SetQuestionRecordNumber ()
Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount = datQuestions.Recordset.RecordCount
iCurrentRecord = datQuestions.Recordset.AbsolutePosition + 1
If datQuestions.Recordset.EOF Then

datQuestions.Caption = "No more records"
Else
datQuestions.Caption = "Question " & iCurrentRecord & _
" of " & iRecordCount
End If
End Sub

'***

'‘Module: frmQuestions. frm

'Description: Allows user to access the questions
d records for addition, deletion, and
’ modification.

' Programmer : Kevin Colén

'***
. ..
Option Explicit

Private Sub cmdAdd_Click()
On Error GoTo HandleAddErrors

If cmdadd.Caption = "&Add" Then
datQuestions.Recordset .AddNew
txtQuestion.Enabled = True
txtQuestion.SetFocus
txtDescription.Enabled = True
cmdAdd.Caption = "&Cancel"
cmdSave.Enabled = True
cmdDel .Enabled = False
cmdUpdate.Enabled = False
mnuFile.Enabled = False
datQuestions.Enabled = False

Else
datQuestions.Recordset.CancelUpdate
txtQuestion.Enabled = False
txtDescription.Enabled = False
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdUpdate.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Add"
cmdAdd. SetFocus
datQuestions.Enabled = True

End If
211

cmdadd_Click_Exit:
Exit Sub

HandleAddErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 "turn off error trapping

End Sub

Private Sub cmdDel_Click()
'delete the current record
Dim. iResp As Integer

On Error GoTo HandleDelErrors

If datQuestions.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Question " & txtQuestion.Text & "?",
vbYesNo, "Delete Question")
If iResp = vbYes Then
With datQuestions.Recordset

.Delete ‘delete current record
.MoveNext 'move to following record
If .EOF Then

.MovePrevious

If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"
End If
End If
End With
End If
Else
MsgBox "No records to delete.", vbExclamation _
, "Delete Question"

End If

cmdDel_Click_Exit:
Exit Sub

HandleDelErrors:
Dim stMsg As String

stMsg = "Cannot complete operation." & vbCrLf & vbCrLf _
& Err.Description

MsgBox stMsg, vbExclamation, "Database Error"

On Error GoTo 0 ‘turn off error trapping

End Sub

212

Private Sub cmdSave_Click()
‘save the current record
Dim iResp As Integer

On Error GoTo HandleSaveErrors
If txtQuestion <> "" And txtDescription <> "" Then
txtQuestion = UCase(txtQuestion)
iResp = MsgBox("Do you want to add " & txtQuestion & _
* to the database?", vbYesNo + vbQuestion, _
"Add Question")
If iResp = vbYes Then
datQuestions.Recordset.Update

End If
Else
MsgBox "You must enter an Question and a description before
saving.", vbExclamation _

, "Add Question"
datQuestions.Recordset.CancelUpdate
End If

txtQuestion.Enabled = False
txtDescription.Enabled = False
cmdSave.Enabled = False

cmdDel .Enabled = True
datQuestions.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Add4"
cmdAdd. SetFocus
cmdUpdate.Enabled = True

cmdSave_Click _Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number

Case 3022 '‘duplicate key field
stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

Case 3058, 3315 'no entry in key field
stMess = "Enter a Question name before saving."
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 'turn off error trapping

Case Else
stMess = "Record could not be saved." & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
datQuestions.Recordset.CancelUpdate
Resume Next
End Select

213

End Sub

Private Sub cmdUpdate_Click()
If cmdUpdate.Caption = "&Update" And _
datQuestions.Recordset.RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit"
txtQuestion.Enabled = True
txtDescription.Enabled = True
cmdDel .Enabled = False
mnuFile.Enabled = False
txtQuestion.SetFocus
cmdAdd.Enabled = False
datQuestions.Enabled = False
datQuestions.Recordset.Edit

Else
If datQuestions.Recordset.RecordCount > 0 Then

datQuestions.Recordset.Update

txtQuestion.Enabled = False
txtDescription.Enabled = False
cmdDel . Enabled = True
mnuFile.Enabled = True
cmdAdd.Enabled = True
cmdAdd. SetFocus
cmdUpdate.Caption = "&Update*
datQuestions.Enabled = True
End If
End If

End Sub

Private Sub datQuestions_Reposition()
SetQuestionRecordNumber

End Sub

Private Sub Form_Load()
datQuestions.DatabaseName = gstNewDatabase

With datQuestions
.Refresh
If Not .Recordset.EOF Then
.Recordset .Movelast
.Recordset .MoveFirst
End If
End With

SetQuestionRecordNumber

End Sub

Private Sub Form_Unload(Cancel As Integer)

214

’————————————————i

frmMain.Show
frmMain.Enabled = True
Unload Me

End Sub

Private Sub mnuFileBack_Click()

frmMain.Enabled = True
" Unload Me

End Sub

Private Sub mnuFileSearch_Click()

datQuestions.Recordset.FindFirst v [Question] = " & _
. InputBox ("Enter the Question", "Question Search") & "’"

If datQuestions.Recordset.NoMatch Then

MsgBox "Question was not found.", vbOKOnly, "Question Search"
datQuestions.Recordset .MoveFirst '‘go to first record
End If

End Sub

Private Sub SetQuestionRecordNumber ()
Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount = datQuestions.Recordset.RecordCount
iCurrentRecord = datQuestions.Recordset.AbsolutePosition + 1
If datQuestions.Recordset.EOF Then

datQuestions.Caption = "No more records"
Else
datQuestions.Caption = "Question " & iCurrentRecord & _
“ of " & iRecordCount
End If
End Sub

l***

‘Module: frmSQL. frm

‘Description: Allows user to enter their own SQL statement
‘ and provides the results in a data bound
control.

. .
'Programmer : Kevin Colén
l***

7

Option Explicit
Private Sub cmdCancel_Click()

frmMain.Enabled = True
215

Unload Me
End Sub
Private Sub cmdSearch_Click()
Dim stMsg As String
On Error GoTo HandleQueryError

datSQL.DatabaseName = gstNewDatabase

datSQL.RecordSource
datSQL.Refresh

txtSQL

cmdSearch_Click Exit:
Exit Sub

HandleQueryError:
Select Case Err.Number
Case 3078
stMsg = "A table you entered is not recognized. Please

verifythat this table exists.™"
MsgBox stMsg, vbOKOnly, "Custom Query Error"
txtSQL.SetFocus

Exit Sub
End Select

End Sub

Private Sub Form Unload(Cancel As Integer)

frmMain.Enabled = True
Unload Me

End Sub

Thhkhkhhhkhkhhkhkhkhkhkhkhkrhrrhkhkhdhrhdrhkhbkhkdrhkhrhkrhrhdhhkdkhkhdrhkhkrohrdkhdhrrdhhhrdkxhx

‘Module: frmTargetEvent. frm

‘Description: Allows user to access the target records
’ for addition, deletion, and modification.
'Programmer : Kevin Colén

IR A S A S SRR SR EREEEEE R SRS E R ERE SRR SRR R R R R RS R ERERERE RS R RS

Option Explicit

Dim rsNomination As Recordset

Dim rsWeaponType As Recordset

Dim stSQL1 As String

Dim stSQL2 As String

Private WordApp As Word.Application
Private Doc As Word.Document

216

Private Sel As Word.Selection

Private Sub cboNomination_Change ()

If cboNomination.ListIndex >= 0 Then
txtNomination = cboNomination.Text
End If

End Sub
Private Sub cboWeaponType_Change()

If cboWeaponType.ListIndex >= 0 Then
txtWeaponType = cboWeaponType.Text
End If

End SubA

Private Sub cmdadd_Click()
On Error GoTo HandleAddErrors
If cmdAdd.Caption = "&Add" Then

datTarget .Recordset . AddNew
cboNomination.Enabled = True
cboWeaponType.Enabled = True
cboNomination.ListIndex = -1
cboWeaponType.ListIndex = -1
txtTimeofDesignation.Enabled = True
txtNLTTime.Enabled = True
txtDescription.Enabled = True
txtLocation.Enabled = True
txtAltitude.Enabled = True
txtSpeed.Enabled = True
txtRemark.Enabled = True
txtTargetId.Enabled = True
txtPriority.Enabled = True
txtDesiredEffect.Enabled = True
crndUpdate.Enabled = False
cmdSave.Enabled = True

cmdDel .Enabled = False
cmdadd.Caption = "&Cancel”
mnuFile.Enabled = False
datTarget.Enabled = False

Else

datTarget .Recordset.CancelUpdate
cboNomination.Enabled = False
cboWeaponType.Enabled = False
txtTimeofDesignation.Enabled = False
txtNLTTime.Enabled = False
txtDescription.Enabled = False

217

txtLocation.Enabled = False
txtAltitude.Enabled = False
txtSpeed.Enabled = False
txtRemark.Enabled = False
txtTargetId.Enabled = False
txtPriority.Enabled = False
txtDesiredEffect.Enabled = False
cmdUpdate.Enabled = True
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdAdd.Caption = "&Add"
mnuFile.Enabled = True
datTarget.Enabled = True
cmdAdd. SetFocus

End If

cmdAdd_Click_Exit:

Exit Sub
HandleAddErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf &

Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping

End Sub

Private Sub cmdDel_Click()
Dim iResp As Integer
On Error GoTo HandleDelErrors

If datTarget.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Target " & txtTargetId & "?", vbYesNo,
"Delete Target")
If iResp = vbYes Then
With datTarget.Recordset
.Delete
.MoveNext
If .EOF Then
.MovePrevious
If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"

End If
End If
End With
End If
Else
MsgBox "No records to delete.", vbExclamation, "Delete Target"

218

End If

cmdDel_Click:

Exit Sub
HandleDelErrors:
Dim stMess As String
stMess = "Cannot complete operation." & vbCrLf & vbCrLf &

Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0

End Sub
Private Sub cmdSave_Click()

’'save current record
On Error GoTo HandleSaveErrors

If cboNomination.ListIndex >= 0 And cboWeaponType.ListIndex >= 0
Then :

datTarget.Recordset.Update
Else
MsgBox "You must select a Nomination Event and a Weapon Type
before saving." _ '
, VbExclamation, "Add Target Event"
datTarget .Recordset.CancelUpdate

End If

cboNomination.Enabled False
cboWeaponType.Enabled = False
txtTimeofDesignation.Enabled = False
txtNLTTime.Enabled = False
txtDescription.Enabled = False
txtLocation.Enabled = False
txtAltitude.Enabled = False
txtSpeed.Enabled = False
txtRemark.Enabled = False
txtTargetId.Enabled = False
txtPriority.Enabled = False
txtDesiredEffect.Enabled = False
cmdUpdate.Enabled = True
cmdSave.Enabled = False

cmdDel .Enabled = True
cmdAdd.Caption = "&Add"
mnuFile.Enabled = True
datTarget.Enabled = True

cmdAdd. SetFocus

datTarget.Enabled = True
219

cmdSave_Click_Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number
Case 3022 ‘duplicate key field
stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Exror"
On Error GoTo 0 ‘turn off error trapping

Case 3058, 3315 ‘no entry in key field .
stMess = "Select Nomination Event and Weapon Type before
saving."
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 'turn off error trapping

Case Else
stMess = "Record could not be saved." & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
datTarget .Recordset.CancelUpdate
Resume Next
End Select

End Sub
Private Sub cmdUpdate_Click()

If cmdUpdate.Caption = "&Update" And _
datTarget .Recordset.RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit"®
cboNomination.Enabled = True
cboWeaponType.Enabled = True
txtTimeofDesignation.Enabled = True
txtNLTTime.Enabled = True
txtDescription.Enabled = True
txtLocation.Enabled = True
txtAltitude.Enabled = True
txtSpeed.Enabled = True
txtRemark.Enabled = True
txtTargetId.Enabled = True
txtPriority.Enabled = True
txtDesiredEffect.Enabled = True
cmdAdd.Enabled = False
cmdSave.Enabled = False

cmdDel .Enabled = False
mnuFile.Enabled = False
datTarget.Enabled = False
datTarget .Recordset.Edit

Else
If datTarget.Recordset.RecordCount > 0 Then

220

datTarget .Recordset .Update

cboNomination.Enabled = False
cboWeaponType.Enabled = False
txtTimeofDesignation.Enabled = False
txtNLTTime.Enabled = False
txtDescription.Enabled = False
txtLocation.Enabled = False
txtAltitude.Enabled = False
txtSpeed.Enabled = False
txtRemark.Enabled = False
txtTargetId.Enabled = False
txtPriority.Enabled = False
txtDesiredEffect.Enabled = False
crdDel .Enabled = True
cmdAdd.Enabled True

cmdAdd. SetFocus
cmdUpdate.Caption = "&Update"
mnuFile.Enabled = True

datTarget .Enabled = True

End If
End If

End Sub

Private Sub datTarget_Reposition()
SetTargetRecordNumber

End Sub

Private Sub Form_Load()

datTarget .DatabaseName = gstNewDatabase

stSQLl
stSQL2

"Select Nomination from Nomination"
"Select WeaponType from WeaponType"

Set rsNomination db.OpenRecordset (stSQL1)
Set rsWeaponType = db.OpenRecordset (stSQL2)

£ill cboNomination

Do Until rsNomination.EOF
cboNomination.AddItem rsNomination!Nomination
rsNomination.MoveNext

Loop

'fill cboWeaponType

Do Until rsWeaponType.EOF
cboWeaponType .AddItem rsWeaponType!WeaponType
rsWeaponType .MoveNext

221

Loop

Wwith datTarget
.Refresh
If Not _Recordset .EOF Then
_Recordset .MovelLast
.Recordset.MoveFirst
End If
End With

SetTargetRecordNumber
End Sub
private Sub SetTargetRecordNumber()

Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount = datTarget.Recordset.RecordCount
iCurrentRecord = datTarget.Recordset.AbsolutePosition + 1

If datTarget.Recordset.EOF Then
datTarget.Caption - "No more records"

Else
datTarget .Caption = nTarget Record " & iCurrentRecord & _
v of " & iRecordCount
End If
End Sub

Private Sub Form_Unload(Cancel As Integer)

fymMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileBack_Click()

frmMain.Enabled = True
Unload Me

End Sub

private Sub mnuFilePrint_Click()
frmPrint.Show

On Error GoTo mnuPrintErrors
1f bContinue = True Then
With datTarget .Recordset

1f bWord = True Then
222

NumColumns: =8

cell

cell

cell

Set WordApp = New Word.Application
WordApp . Documents.Add

Set Doc = WordApp.ActiveDocument
Set Sel = WordApp.Selection

Doc.Tables.Add Range:=Sel.Range, NumRows:=.RecordCount,

Sel.TypeText Text:="TargetId"
Sel.MoveRight unit:=12 '12=next cell

Sel.TypeText Text:="Designation Time"
Sel.MoveRight unit:=12 ’12=next cell

Sel.TypeText Text:="Nomination"
Sel.MoveRight unit:=12 '12=next cell

Sel.TypeText Text:="Location"
Sel .MoveRight unit:=12 '12=next cell

Sel.TypeText Text:="Altitude")
Sel.MoveRight unit:=12 ’12=next cell

Sel.TypeText Text:="Speed"
Sel.MoveRight unit:=12 ’12=next cell

Sel.TypeText Text:="NLT Time"
Sel.MoveRight unit:=12 '12=next cell

Sel .TypeText Text:="Priority"
Sel.MoveRight unit:=12 '12=next cell

Sel.TypeText Text:="Weapon Type" _
Sel.MoveRight unit:=12 r12=next cell

Sel.TypeText Text:="Remark"
Sel.MoveRight unit:=12 '12=next cell

Do Until .EOF
Sel.TypeText Text:=!TargetId

Sel .MoveRight unit:=12 '12=next

Sel.TypeText Text:=!TimeofDesignation
Sel.MoveRight unit:=12 '12=next

Sel.TypeText Text:=!Nomination
Sel .MoveRight unit:=12 ' '12=next

Sel.TypeText Text:=!TargetLocation
Sel.MoveRight unit:=12 '12=next

223

cell

Sel.TypeText Text:=!TargetAltitude

Sel .MoveRight unit:=12 r12=next
cell

Sel.TypeText Text:=!TargetSpeed

Sel .MoveRight unit:=12 '12=next
cell

Sel.TypeText Text:=!TargetNLTTime

Sel.MoveRight unit:=12 ’12=next
cell

Sel.TypeText Text:=!Priority

Sel .MoveRight unit:=12 '12=next
cell

Sel.TypeText Text:=!WeaponType

Sel.MoveRight unit:=12 ’12=next
cell

Sel.TypeText Text:=!Remark

Sel.MoveRight unit:=12 '12=next
cell

.MoveNext

Loop

WordApp.Visible = True
Set WordApp = Nothing
Else
If bText = True Then
Open App.Path & "\NomEvents.txt" For Output As #1

Print #1, "TargetId"; Chr(9); "Designation Time";
Chr(9); "Nomination"; Chr(9);

"Location"; Chr(9); "Altitude"; Chr(9);

"Speed"; Chr(9); "NLTTime"; Chr(9);
"Priority"; Chr(9); "WeaponType";

Chr(9); _
"Remark"; Chr(9)

Do Until .EOF

Print #1, !TargetId; Chr(9); _
tTimeofDesignation; Chr(9); _
INomination; Chr(9); _
'TargetLocation; Chr(9); _

224

tTargetAltitude; Chr(9); _
|TargetSpeed; Chr(9); _
'TargetNLTTime; Chr(9); _
IPriority; Chr(9);
WeaponType; Chr(9); _
IRemark; Chr(9)

.MoveNext
Loop
Close #1
End If
End If
.MoveFirst
End With
End If
bContinue = False
bWord = False
bText = False
mnuPrintErrors:
Select Case Err.Number
Case 94
Sel.TypeText Text:=""
Resume Next
End Select
End Sub

Private Sub txtNomination_Change ()

'gselects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsNomination.MoveFirst

If txtNomination <> "" Then
Do Until iIndex = rsNomination.RecordCount Or bFound

If rsNomination!Nomination = txtNomination Then
cboNomination.Text = rsNomination!Nomination
bFound = True

Else
rsNomination.MoveNext

iIndex = iIndex + 1
End If

Loop
End If

225

End Sub
Private Sub txtWeaponType_Change ()

‘selects correct combo box listing
Dim iIndex As Integer
Dim bFound As Boolean

rsWeaponType .MoveFirst
If txtWeaponType <> "" Then
Do Until iIndex = rsWeaponType.RecordCount Or bFound
If rsWeaponType!WeaponType = txtWeaponType Then
cboWeaponType.Text = rsWeaponType!WeaponType
bFound = True
Else
rsWeaponType.MoveNext
iIndex = iIndex + 1
End If

Loop
End If

End Sub

P A L 2 22 222222 R R XX E SRR R AR SRR R SRR R R RIS RS

'Module: frmTargets2.frm

'Description: Allows user to view all target records. Uses
’ ‘ the filters form to reduce the number of

! records displayed.

' Programmer: Kevin Coldn
l***

Option Explicit

Private Sub FlexTargets_DblClick()
frmTimeline.Show

End Sub

Private Sub dbgTargets_DblClick()
frmTimeline. Show

End Sub

Private Sub Form_Load()
Dim stSQL As String

Dim iRecord As Integer

stSQL = "Select * from Target"

226

datTargets.DatabaseName = gstNewDatabase

stSQL

datTargets.RecordSource
datTargets.Refresh

End Sub

Private Sub Form_Resize()
dbgTargets.Width = Me.Width

End Sub

Private Sub Form_Unload(Cancel As Integer)

frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileBack_Click()

frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFilters_Click()
frmFilters.Show

Me.Enabled = False

End Sub

'***‘k‘k************

'Module: frmThreatTypes. frm

'‘Description: Allows user to access the threat types
’ records for addition, deletion,

’ modification.

' Programmer : Kevin Colén

'***

Option Explicit

Private Sub cmdAdd_Click()
On Error GoTo HandleAddErrors

If cmdAdd.Caption = "&Add" Then
datThreatTypes.Recordset . AddNew
txtThreatType.Enabled = True
txtThreatType.SetFocus

227

txtDescription.Enabled = True
txtMission.Enabled = True
cmdAdd.Caption = "&Cancel”
cmdSave.Enabled = True

cmdDel .Enabled = False
cmdUpdate .Enabled = False
mnuFile.Enabled = False
datThreatTypes.Enabled = False

Else
datThreatTypes.Recordset.CancelUpdate
txtThreatType.Enabled = False
txtDescription.Enabled = False
txtMission.Enabled = False
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdUpdate.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Add4"
cmdAdd. SetFocus
datThreatTypes .Enabled = True

End If

cmdAdd_Click_Exit:
Exit Sub

HandleAddErrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf _ -
& Err.Description
MsgBox stMess, vbExclamation, "Database Exror"
On Error GoTo 0 rturn off error trapping

End Sub

private Sub cmdDel_Click()
'delete the current record
Dim iResp As Integer

On Error GoTo HandleDelErrors

if datThreatTypes.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Threat " & txtThreatType.Text & "?",
vbYesNo, "Delete Threat")
If iResp = vbYes Then
With datThreatTypes.Recordset

.Delete 'delete current record
.MoveNext 'move to following record
If .EOF Then

.MovePrevious

If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"
End If

228

End If

End With
End If
Else
MsgBox "No records to delete.", vbExclamation _
"Delete Threat"
End If

cmdDel_Click_Exit:
Exit Sub

HandleDelErrors:
Dim stMsg As String

stMsg = "Cannot complete operation." & vbCrLf & vbCrLf _
) & Err.Description

MsgBox stMsg, vbExclamation, "Database Error"

On Error GoTo 0 ‘turn off error trapping

‘End Sub

Private Sub cmdSave_Click()
rsave the current record
Dim iResp As Integer

On Error GoTo HandleSaveErrors
If txtThreatType.Text <> "" Then
txtThreatType.Text = UCase(txtThreatType.Text)
iResp = MsgBox("Do you want to add " & txtThreatType.Text & _
" to the database?", vbYesNo + vbQuestion,
"Add Threat")
If iResp = vbYes Then
datThreatTypes.Recordset.Update
End If

Else
MsgBox "You must enter a Threat type before saving.",
vbExclamation _
"Add Threat"
datThreatTypes.Recordset.CancelUpdate
End If

txtThreatType.Enabled = False
txtDescription.Enabled = False
txtMission.Enabled = False
cmdSave.Enabled = False

cmdDel .Enabled = True
datThreatTypes.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Ad4"
cmdAdd . SetFocus
cmdUpdate.Enabled = True

229

cmdSave_Click_Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number

Case 3022 ‘duplicate key field
stMess = "Record already exists -- could not save>’"
MsgBox stMess, VvbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping
Case 3058, 3315 ‘no entry in key field
stMess = "Enter a Threat type before saving."
MsgBox stMess, vbExclamation, *"Database Error"
On Error GoTo O ‘turn off error trapping

. Case Else
stMess = "Record could not be saved.® & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
datThreatTypes.Recordset.CancelUpdate
Resume Next
End Select

End Sub

Private Sub cmdUpdate_Click()
If cmdUpdate.Caption = "&Update" And _
datThreatTypes.Recordset.RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit"
txtThreatType.Enabled = True
txtDescription.Enabled = True
txtMission.Enabled = True
cmdDel .Enabled = False
mnuFile.Enabled = False
txtThreatType.SetFocus
cmdAdd.Enabled = False
datThreatTypes.Enabled = False
datThreatTypes.Recordset.Edit
Else ‘
If datThreatTypes.Recordset.RecordCount > 0 Then
datThreatTypes.Recordset.Update

txtThreatType.Enabled = False
txtDescription.Enabled = False
txtMission.Enabled = False
cmdDel .Enabled = True
mnuFile.Enabled = True

cmdAdd. Enabled = True

cmdAdd. SetFocus

cmdUpdate.Caption = "&Update®
datThreatTypes.Enabled = True
End If

End If
230

End Sub
Private Sub datThreatTypes_Reposition()
SetThreatRecordNumber
End Sub
Private Sub Form_Load()
datThreatTypes.DatabaseName = gstNewDatabase
With datThreatTypes
.Refresh
If Not .Recordset.EOF Then
.Recordset .MovelLast
.Recordset .MoveFirst
End If
End With

SetThreatRecordNumber

End Sub
Private Sub Form_Unload(Cancel As Integer)

frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileBack_Click()

frmMain.Enabled = True
Unload Me

End Sub

Private Sub mnuFileSearch_Click{()

datThreatTypes.Recordset.FindFirst " [ThreatType] _
InputBox("Enter the Threat Type", "Threat Type Search")

& n’n

If datThreatTypes.Recordset.NoMatch Then

MsgBox "Threat Type was not found.", vbOKOnly,

Search"
datThreatTypes.Recordset .MoveFirst
End If

End Sub

"Private Sub SetThreatRecordNumber ()
231

"Threat Type

‘go to first record

Dim
Dim

iRecordCount = datThreatTypes.Recordset.RecordCount
iCurrentRecord = datThreatTypes.Recordset.AbsolutePosition + 1
If datThreatTypes.Recordset.EOF Then

Else

End

End Sub

AR ASE SRR R RS SRR EE SRS SRS R EERE R E R R R R L R R R R R R R I PRI e

iRecordCount As Integer
iCurrentRecord As Integer

datThreatTypes.Caption = "Threat " & iCurrentRecord & _
& iRecordCount

datThreatTypes.Caption = "No more records"
(1] Of "
If

tion: Displays the event timeline from acquisition
to impact for a selected target

‘Module: frmTimeline.frm
'‘Descrip
'Programmer : Kevin Colédn

IR AR SR AR SR RS XS E R R R R R R R R R R R R R RS

Option E

Private
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

xplicit

Sub Form_Load()

stSQL As String

stTarget As String

iTabs As Integer

rsTimes As Recordset
stSQL1 As String

stSQL2 As String

stSQL3 As String

stSQL4 As String

stSQLS5 As String

stSQL6 As String

stSQL7 As String
rsAcquisition As Recordset
rsMensuration As Recordset
rsNomination As Recordset
rsTarget As Recordset
rsFireCommand As Recordset
rsFire As Recordset
rsImpact As Recordset

frmTargets2.dbgTargets.Col = 0

stTarget = frmTargets2.dbgTargets.Text

stSQL4 = "Select * from Target where Target.TargetId = '" &
stTarget & "'*"

Set

stSQL3 =

rsTarget = db.OpenRecordset {stSQL4)

"Select * from Nomination where Nomination.Nomination

232

L

& rsTarget!Nomination & "’"
Set rsNomination = db.OpenRecordset (stSQL3)

stSQL2 = "Select * from Mensuration where Mensuration.Mensuration
‘v & rsNomination!Mensuration & "'"
Set rsMensuration = db.OpenRecordset (stSQL2)

stSQLl = "Select * from Acquisition where Acquisition.Acquisition
‘" & rsNomination!Acquisition & "’"
Set rsAcquisition = db.OpenRecordset (stSQL1)

StSQL5 = "Select * from FireCommand where FireCommand.TargetId = ‘"
& stTarget & "'"
Set rsFireCommand = db.OpenRecordset (stSQLS5)

stSQL6 = "Select * from Fire where Fire.FireCommand = ‘" &
rsFireCommand!FireCommand & "'"
Set rsFire = db.OpenRecordset (stSQL6)

If rsFire.RecordCount > 0 Then
stSQL7 = "Select * from Impact where Impact.FireEvent = '" &
rsFire!Fire & "'"
Set rsImpact = db.OpenRecordset (stSQL7)
End If

lstTimeline.AddItem "Target Id: " & stTarget
l1stTimeline.AddItem "Target Description: &
rsTarget !Description
lstTimeline.AddItem "*
lstTimeline.AddItem "NLT Time: " &
rsTarget ! TargetNLTTime
lstTimeline.AddItem *"

lstTimeline.AddItem "Acquisition Time: " &
rsAcquisition!AcqgTime

lstTimeline.AddItem "Mensuration Rgst: " &
rsMensuration!TimeRequestSent

lstTimeline.AddItem "Mensuration Rcvd: " &
rsMensuration!TimeRequestReceived .

lstTimeline.AddItem "Mensuration Info Sent: " &
rsMensuration!TimeRequestReceived

lstTimeline.AddItem "Mensuration Info Rcvd: v &
rsMensuration!TimeRequestReceived

lstTimeline.AddItem "Nomination Sent: " &
rsNomination!NomTimeSent

1lstTimeline.AddItem "Nomination Rcvd: " &
rsNomination!NomTimeRcvd

lstTimeline.AddItem "Target Designation: " &
rsTarget !TimeofDesignation

lstTimeline.AddItem "Fire Command Xmit: " &
rsFireCommand!FCTimeXmit

1stTimeline.AddItem "Fire Command Rcvd: " &

rsFireCommand!FCTimeRcvd

If rsFire.RecordCount > 0 Then

233

lstTimeline.AddItem "Fire Event: " & rsFire!FireTime
If rsImpact.RecordCount > 0 Then
lstTimeline.AddItem "Impact: " & rsImpact!ImpactTime
End If
End If

frmTargets2.Enabled = False

End Sub
Private Sub Form_Unload(Cancel As Integer)

frmTargets2.Enabled = True
Unload Me

End Sub

IRAEEEE R SR SIS SRS RS SR SRR A S SR REREEREREREEEEEEREREESEESESRSEESSESS,]

'Module: frmWeaponTypes.frm

'Description: Allows user to access the weapon types
! records for addition, deletion, and

! modification.

' Programmer : Kevin Colén

IR R T EEEEEEEEEE RS RS E SR SR RS S R RS R E RS RS RRERESERESEEERRERRERERRES]

Option Explicit

Private Sub cmdadd_Click()
On Error GoTo HandleAddErrors

If cmdAadd.Caption = "&Add" Then
datWeaponTypes.Recordset . AddNew
txtWeaponType.Enabled = True
txtWeaponType.SetFocus
txtDescription.Enabled = True
cmdAdd.Caption = "&Cancel"
cmdSave.Enabled = True
cmdDel .Enabled = False
cmdUpdate.Enabled = False
mnuFile.Enabled = False
datWeaponTypes.Enabled = False

Else
datWeaponTypes.Recordset .CancelUpdate
txtWeaponType.Enabled = False
txtDescription.Enabled = False
cmdSave.Enabled = False
cmdDel .Enabled = True
cmdUpdate.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Add4"
cmdAdd. SetFocus
datWeaponTypes.Enabled = True

234

End If

cmdAdd_Click _Exit:
Exit Sub

HandleAddErxrors:
Dim stMess As String
stMess = "Cannot complete operation. " & vbCrLf & vbCrLf _
& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 'turn off error trapping

End Sub

Private Sub cmdDel_Click()
'delete the current record
Dim iResp As Integer

On Error GoTo HandleDelErrors

If datWeaponTypes.Recordset.RecordCount > 0 Then
iResp = MsgBox("Delete Weapon " & txtWeaponType.Text & "?",
vbYesNo, "Delete Weapon')
If iResp = vbYes Then
With datWeaponTypes.Recordset

.Delete ‘delete current record
.MoveNext ‘move to following recoxrd
If .EOF Then

.MovePrevious

If .BOF Then
MsgBox "The recordset is empty.",
vbInformation, "No Records"
End If
End If
End With
End If
Else
MsgBox "No records to delete.", vbExclamation
., "Delete Weapon"

End If

cmdDel_Click_Exit:
Exit Sub

HandleDelErrors:
Dim stMsg As String

stMsg = "Cannot complete operation." & vbCrLf & vbCrLf _
& Err.Description

MsgBox stMsg, vbExclamation, "Database Error"

On Error GoTo 0 ‘turn off error trapping

End Sub
235

Private Sub cmdSave_Click()
‘save the current record
Dim iResp As Integer

On Error GoTo HandleSaveErrors
If txtWeaponType.Text <> "" Then
txtWeaponType.Text = UCase(txtWeaponType.Text)
iResp = MsgBox("Do you want to add " & txtWeaponType.Text &
" to the database?", vbYesNo + vbQuestion, _
"Add Weapon")
If iResp = vbYes Then
datWeaponTypes .Recordset .Update
End If

Else
. MsgBox "You must enter a weapon type before saving.',
vbExclamation _
"Add Weapon"
datWeaponTypes.Recordset.CancelUpdate

End If

txtWeaponType.Enabled = False
txtDescription.Enabled = False
cmdSave.Enabled = False
cmdDel . Enabled = True
datWeaponTypes.Enabled = True
mnuFile.Enabled = True
cmdAdd.Caption = "&Add"
cmdAdd. SetFocus
cmdUpdate.Enabled = True

cmdSave_Click Exit:
Exit Sub

HandleSaveErrors:
Dim stMess As String
Select Case Err.Number

Case 3022 ‘duplicate key field
stMess = "Record already exists -- could not save>'"
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 ‘turn off error trapping
Case 3058, 3315 ‘no entry in key field
stMess = "Enter a weapon type before saving.'
MsgBox stMess, vbExclamation, "Database Error"
On Error GoTo 0 'turn off error trapping
Case Else
stMess = "Record could not be saved." & vbCrLf _

& Err.Description
MsgBox stMess, vbExclamation, "Database Error"
datWeaponTypes .Recordset.CancelUpdate
Resume Next

236

End Select
End Sub

Private Sub cmdUpdate_Click()
If cmdUpdate.Caption = "&Update" And _
datWeaponTypes.Recordset.RecordCount > 0 Then

cmdUpdate.Caption = "Su&bmit"
txtWeaponType.Enabled = True
txtDescription.Enabled = True
cmdDel .Enabled = False
mnuFile.Enabled = False
txtWeaponType.SetFocus
cmdAdd.Enabled = False
datWeaponTypes.Enabled = False
.datWeaponTypes.Recordset .Edit

Else
If datWeaponTypes.Recordset.RecordCount > 0 Then

datWeaponTypes.Recordset .Update

txtWeaponType.Enabled = False
txtDescription.Enabled = False
cmdDel . Enabled = True
mnuFile.Enabled = True
cmdAdd. Enabled = True
cmdAdd. SetFocus
cmdUpdate.Caption = "&Update"
datWeaponTypes.Enabled = True
End If
End If

End Sub
Private Sub datWeaponTypes_Reposition()
SetWeaponRecordNumber
End Sub
Private Sub Form_Load()
datWeaponTypes.DatabaseName = gstNewDatabase
wWith datWeaponTypes
.Refresh
If Not .Recordset.EOF Then
.Recordset .Movelast
.Recordset .MoveFirst
End If
End With

SetWeaponRecordNumber

237

End Sub
Private Sub Form_Unload(Cancel As Integer)

frmMain.Enabled = True
Unload Me

End Sub
Private Sub mnuFileBack_Click()

frmMain.Enabled = True
Unload Me

End Sub
Private. Sub mnuFileSearch_Click{()

datWeaponTypes.Recordset.FindFirst " [WeaponType] = '" & _
InputBox("Enter the Weapon Type", "Weapon Type Search")
& noen

If datWeaponTypes.Recordset.NoMatch Then
MsgBox "Weapon Type was not found.", vbOKOnly, "Weapon Type
Search”
datWeaponTypes.Recordset .MoveFirst ‘go to first record
End If

End Sub

Private Sub SetWeaponRecordNumber ()
Dim iRecordCount As Integer
Dim iCurrentRecord As Integer

iRecordCount = datWeaponTypes.Recordset.RecordCount
iCurrentRecord = datWeaponTypes.Recordset.AbsolutePosition + 1
If datWeaponTypes.Recordset.EOQOF Then
datWeaponTypes.Caption = "No more records"
Else
datWeaponTypes.Caption = "Weapon " & iCurrentRecord &
" of " & iRecordCount

End If

End Sub

238

o
E ey

5o AL R

it

.

LIST OF REFERENCES

1. Boggs, M. and Boggs, W., Mastering UML with Rational Rose, Sybex, 1999.

2. Jennings, R., Using Access 97 Second Edition, Que, 1997.

3. Levin, S., GDIS, “Land Attack Warfare System Employment in FBE Golf .” 24 May
2000.

4. McManus, J.P., Database Access with Visual Basic, pp. 262-265, Sams, 1998.

5. Naval Postgraduate School, [IWA, Fleet Battle Experiment Echo Data Capture and
Analysis, 9 March 1999.

6. Naval Postgraduate School, IWA, Fleet Battle Experiment Echo Data Capture and
Analysis Report, 1 October 1999.

7. Naval Postgraduate School, WA, Fleet Battle Experiment Foxtrot Experiment Plan,
23 Nov 1999.

8. Naval Postgraduate School, IWA, Fleet Battle Experiment Golf: Appendix E, pp. 1-
21, March-April 2000.

9. Naval Postgraduate School, UWA, Time Critical Targeting Concept of Operations
(CONOPS) for Fleet Battle Experiment Golf: MBC-Final Draft, pp. 1-89, 2 March
2000.

10. NWC Public Affairs, “New Thinking, New Building, Showcased at Last Naval War
College Wargame of Century."” [http://www.nwdc.navy.mil]. September 1999.

11. NWC Public Affairs, “Maritime Battle Center.” ,
[http://www.nwdc.navy.mil/navagation/mbc.htm]. Date not available.

12. Tracy, P.A. (VADM), “Military Education for 21% Century Warrior,”
[http://web.nps.navy.mil/FutureWarrior/Presentations/Tracey/tsld001.htm.]. 1997.

THIS PAGE INTENTIONALLY LEFT BLANK

240

INITIAL DISTRIBUTION LIST

Defense Technical Information Center2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 2200-6218

Dudley Knox Librarycoooviiiiiii 2

Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

Prof. Kishore SEnguptaccoeenemveniniiiiiiiiiniiniiieieeeeineienenneeennnil

Naval Postgraduate School

589 Dyer Rd.

Ro-237

Monterey, California 93943-5001

Prof. Magdi N. Kamel.........coooiiiii e 1

Naval Postgraduate School

589 Dyer Rd.

Ro-233

Monterey, California 93943-5001

Shelley Gallup.....couoeiniii i 1

Naval Postgraduate School

589 Dyer Rd.

Ro-227

Monterey, California 93943-5001

S R0 s 0 £ s 3o 1= oS
Naval Postgraduate School

589 Dyer Rd.

Ro-204A

Monterey, California 93943-5001

(@113 [0 1 N 171 11 PP
Naval Postgraduate School

1 University Circle, Code PH

Sp-102A

Monterey, CA 93943-5001

VACLOT VL COLOM e e, 1

1998 Sun Valley St.
Titusville, Florida 32780-6800

241

