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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1543

EFFECT OF CHORDWISE LOCATION OF MAXTIMUM THICKNESS ON THE
SUPERSONIC WAVE DRAG OF SWEPTBACK WINGS

By Kenneth Margolis
SUMMARY

On the basis of the linearized theory of supersonic flow, equations
are derived for the wave drag of sweptback untapered wings at zero lift
with thin double~wedge sections and arbitrary chordwlse location of
maximim thickness, Calculations are presented for a representative
supersonic plan form,

The optimum location of maximum thickness for untapered supersonic
wings is found to be at 50 percent chord, a symmetrical variation in
wing wave—drag coefficlent being exhibited about this minimm value.
The drag variation 1s slight when considerable sweep behind the Mach
lines 1s present and the variation is marked at Mach numbers where the
wing approaches or is swept aheed of the Mach lines,

It is found that for tapered plan forms the sweep of the line of
maximum thickness is an importent sweep paramster insofar as drag due to
thickness is concerned,

INTRODUCTION

A recent application (reference 1) of the linearized theory to the
calculation of supersonic wave drag at zero 1lift of delta wings indicates
that minimun drag for any double—wedge delta wing with sufficient sweep
behind the Mach lines is obtained with location of maximum thickness at
10 to 20 percent chord. (In reference 1 and in the present paper the
conventional definition of "delta plan forms" is modified to include
those with sweptback trailing edges.) For a given delte plan form, &
veriation in meximunthlickness locatlon necessarily implies a variation
in the sweep of the line of maximum thickness and, therefore, no general
predictions can be made for the drag effects induced by each perameter
considered seperately. In fact, there 1s evidence (see reference 2) to
suggest that the sweep of the maximum—thickness line may be an important
sweep perameter insofer as drag due to thickness 1s concerned. Hence,
the problem of isolating the effects of chordwise location of maximum
thickness immediately presents 1tself,
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This problem is treated in the present paver by applying the method
of reference 3 to derive the generalized wave—drag equations of sweptback
untapered wings at zero 11ft having thin double~wedge sections with
arbitrary msximum-thickness location., The wing tips are chosen parallel
to the direction of flight and the range of supersonic Mach number for -
which the wing is swept shead of and swept behind the Mach lines is con—
sidered. Typical distributions of section wave drag and wing wave—dreag
calculations are presented. Comperisons are made with two-dimensional
theory and with results obtalned for tapered wings.

SYMBOLS
X,¥,2 Cartesian coordinates
v velocity in flight direction
o} density of air
Ip pressure increment
q dynamic pressure <%pV2 >
o disturbance—velocity potential
M Mech number
B =\ -1
dz/dx slope of airfoil surface
6 half-wedge angle |
c chord length, measured in flight direction
h location of maximum thickness, measured from leading edge
t maximum thickness of section
A engle of sweep, degrees
m slopre of leading edge (cot A)
t ~ span of wing
d = bm?_

wing area

)]
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A agpect ratio <b2/S> ‘
)y taper ratio (ratio of tip chord to root chord)
cq section wave—drag coefficient at apanwlse station ¥

bt exclusive of tip effect
Cq increment in sectlon wave—drag coefficient at spanwise

tip station y due to tip
cd section wave—drag coefficlent at spanwise station y

(Cqb + cdtip)
Ci% wing wave—drag coefficient exclusive of tip effect
CDti increment in wing wave~drag coefficlient due to tip
p /
wing wave—drag coefficlent Cp +
CD : g (\ Doo thip >
ANALYSIS

The analysls is essentially that used in references 2 and 3, TFor
convenience, a brief outline of the basic equations 1is presented,

The assumptions of small disturbancses and a constancy of sonic
velocity throughout the fluid lead to the linearized equation for the
velocity potential ©

<1 - >m +o__+0 =0 (1)

xx yy z2

where M 1s the Mach number of the flow and the derivatives are taken
with respect to the variables x, y, and z of the Carteslan coordinate
system., On the basis of this linear theory, a solution for & uniform
sweptback line of sources in the pressure field is derived in reference 3.
Ths pressure field associated with this solution corresponds to that over
e semi—infinite sweptback airfoll of wedge section. The pressure coef-—
ficlent Ap/q at a spanwise station y and point x along the wedge

for mp< 1 1s

2
._.-.:%tane.__.l._.._cosh_l.x;:._—_m.e_z_

(2a)
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and for mfp>1

2
& 24 B glxomBy (2b)
q V2@ — 1 Bly — mx|

where m 1s the slope of the leading edge of the wing, 6 1s the half—

. : 2
wedge angle (tan & ¥ 6 since the angle is small), B = VM -1,
and the origin of the line source is taken at (0,0). In the region

1

between the leading edge and the Mach cone (that is, XSV g mx),

o1 X = mﬁey
Bly — mx|
Equation (2b) then reduces to

the real rart of co is constant and equal to .

m
22 _ o tan @ —— (2¢)

) a \/ mQB2 -1

The distribution of pressure over sweptback wings of desired plan
form and profile 1s obtained by appropriate superposition of wedge—type
solutions, In order to satisfy the boundery condition over the surface
of an untapered wing of double-wedge section, semi—infinite llne sources
are placed at the leading and treailing edge of the wing and a semil-—
infinite line sink is placed along the line of maximum thickness, The
strengths of these lines are proportional to the wedge angles; therefore,
in superimposing solutions of the type given in equations (2), the
appropriate 8 for each line source and sink must be found. The correct
wedge angles necessary to obtain a double—wedge section of length c,
maximum thickness t, and locatlon of meximum thickness h are (see

fig. 1)
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= (%)

8 S — <
Trailing 2(c — h)

line source

®leading
line source

o jck

> ' ’ (3)

Line sink 2h(c - h) c

/

(It is convenient to express the angles in terms of the section thickness

ratio %. as can be seen by reference to the drag integrals,) At the

tip where the wing 1s cut off in the flight direction, reversed distri-
butions of these sinks and sources are placed so as to cancel exactly the
effects of the original distribution farther spanwise than the tip.

Figure 1 shows the distributions of sinks and sources for an untapered
wing of double—wedge section and identifies the system of axes and symbols
associated with the derivation of the drag equations.

The disturbances caused by the elementary line sources and sinks are
limited to the reglons enclosed by their Mach cones; the Mach line con—
figuration is presented in figure 2, For purposes of simplification the
wings consldered were restricted to those with no tip effects other than
the effects each tip exerts on its own helf of the wing.

The pressure coefficients obtained from superposition of solutions
given in equations (2) are converted into drag coefficients by the
following relations:

b/2 fb/a fT.E
2 L Op dz
C. == cdy == = — dx dy
D=FS jg Ca 5 s g @ ()

where b 1s the wing span; S 1s the wing area; dz/dx is the slope
of the airfoil surface; and L,E., and T.,E. denote leading edge and
trailing edge, respectively,

DERTVATION OF GENERALIZED EQUATIONS

The drag equations are derived for half of the wing since the
drag is distributed symmetrically over both halves, The induced effects
of the opposite half-wing are represented by the conjugate terms in the
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where D and E, which refer to the pressures resulting from the leading
line sources and from the line sinks, respectively, are as follows:

2 e)
D = COS—l w + cos—l J...’LPM
Bly — x| Bly + mx|
£ = -1 X—h-—- mBEy ~1 _X=—5h+ mﬁey
BT T Ay —m(x — my ¢ O%F Bly + m(x - h)|

It should be noted thet equations (5) give the drag for plen forms where
the tip is placed farther spanwise than the points of intersection ,
between the Mach lines and the leeding and the trailing edges (mee fig. 3).
Deletion of certain integrales and appropriaste chenges In the y-limits of
other integrals may be mede for configurations where the tip i1s rlaced
neerer the root chord, Equations (5) are evalueted snd the resulting
section wave—drag and wing wave—drag formulas for all untapered plan forms
are vresented in arrendix A. '

It wes stated previously that the wings considered have no tip effects
other than those each tip exerts on its own helf of the wing; that is, the
Moch lines from cne tiv do not enclose any vart of the opposite half—wing,
This condition Is exvressed mathemsticelly as fcllows:?

For mB < 1, the asrect ratio

A?__.é. (€e)
and for mpf>1, the aspect ratio
A2 oy | (€v)

The wave—drag contribution of the tip for mf < 1 is (see fig. 3)
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2.2 / 2.2 pb/f2
7S V1 —m B, s XVl —m
f=omal!

8m(t/c)? DPiip  km(t/c) md (1+mp)—me “dgp° i
1+mB
02 i Z-;-nmh
= - dx dy
Th2 fm 1+m8)—mh f e
Tt a(1+mp)—y8

- g e fﬂi‘;m F dx dy
kh(c - 1) d(1+mB)—yB

1+mB
M y+me
+ j;d(1+mﬁ)—mh j;+mh F dx dy
1+mB m

% Ggdxdy (7)

Jime
L(l+mB)+h—yB

md
Th{c = n)2 j;d§1+g§)—m$:—h)
v 1+mB

vhere F and G, which refer to the pressures resulting from the leading
Jine sink end from the line source, respectively, are as follows:

2
F = cosi-l =8 =m8 (y — md)

Bly — mx|

2
- 1x—d—h—m (y —mi)
G = coslr™ Bly-m(x-h)l

For m8>1, equation (7) 1s st1ll valid if N1 — u°s? 1s changed to
m?B2-— 1 and the inverse hyperbolic function cosi™l 1s changed to
the inverse cosine function cos .
Equation (7) is evaluated and the results presented in appendix B.-

The total wave—drag coefficlents are then obtained by the following
relations:
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Cy = C + C
d deo dtip

(8)
% = O * Oy

It is found that CDti is ldentically equal to zero and, hence,
D _

Cp = an for wings satisfying the aspect—ratio limitations lmposed in
equations (6).

When the expression for CD is differentieted with respect to h
in order to find an optimum maximum-thickness location, it 1s found that

BCD _
<-g£>h= =0 (9)

c
2

and that the drag function is minimized at this value of h independently
of the other parameters. It 1s also seen from the drag equations that
the distrlibutions are symmetrical about this minimum point.

RESULTS AND DISCUSSION

For celculation purposes, an untapered plan form of aspect ratio 2
and sweepback of 60° has been used. Equation (9) indicates that the
trends obtalned for thls representative plan form are equally valid for
all untapered wings with double—wedge profiles., The results may be
agsumed to have qualitative application to curved profiles wlthout cusps,

Section wave drag — Spanwise distributions of section wave—drag
coefficient are shown in figures 4 and 5 for Mach numbers of 1.k1hk and 3,
respectively. At a Mach number of 1.k1l the wing is swept behind the
Mech lines, and at a Mach number of 3 the wing is swept ahead of the
Mach lines, In each figure maximum-thickness locations are varied from
20 percent chord to 80 percent chord. Varilations in maximum-thickness
location need actually only be considered up to 50 percent chord; the
results for any erbitrary percent chord k and (100 — k) are equal
tecause of symmetry considerations. (See drag equations in appendix A,)
When the wing is swept behind the Mach lines (fig. 4), the centroid of
the drag forces on a wing panel moves noticeably inboard with forward
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or rearward shift of the maximum thickness from the midpoint position.
When the wing is swept ahead of the Mach lines (fig. 5), little change
is noted in the centroid.

Wing wave drag.— Variation of wing wave-drag coefficient with Mach

number is shown in figure 6, As was mentioned previously in the
mathematical dlecussion of the drag equations, the symmetrical section

is seen to be the optimum profile for an untapered plan form insofar as
minimum drag is concerned, The variation of wing wave-drag coefficilent
with maximum—thickness location does not appear to be too significant
when the wing is swept far behind the Mach lines; however, as the
"eritical" condition 1s approached (that is, mB = 1) the variation
becomes more noticeable, There is seen to be a marked drag veriation
with maximm-thickness location in this reglon and for Mach numbers where
the wing is swept sahead of the Mach lines,

Figure 7 is, in effect, a cross plot of figure 6 and presents vari—
ation of wing wave—drag coefficient with msximum~thickness location for
Mach numbers of 1,414 and 3, The previous remsrks are clearly illustrated
in this figure by the flat curve at the lower Mach number and by the curve
with a well—-defined minimum at the higher Mach number.

Comparison with two-dimenslonal theory.— If m approaches infinity
(that is, a rectangular plan form), the drag equation reduces to

Cp - 1 G
(t/c)2 VM2 —1 hlc—n)

which 1s exsctly the result obtained by Ackeret for two—dimensional

fiow (see reference L), This result is expected since the plan forms
considered have zero increment in wing wave drag due to the wing tip,
The two—dimensional (Ackeret solution) and three—dimensional (swept—
back wing) results, therefore, exhibit the same qualitative drag effects
due to veriation in mexjmum-thickness location — that is, a drag vari-
ation symmetrical about a minimm value at 50 percent chord, Of course
the quantitative results are quite different, the three—dimensional
value being lower when considerable sweep behind the Mach lines is present
and the two-dimensionsl value being less for other conditions. Figure 8
presents the variation of two—-dimensional drag with Mach number for
different maximum-thickness locations., Comparison with the three—
dimensionsl result for the wing of aspect ratio 2 and sweepback of 60°
is also indicated in this figure,

(10)

Comparison with tapered wings.— The results presented in reference 1
for a given delta plan form (A = 0) indicate an optimm maxImum—
thicxness location at 10 to 20 percent chord when the wing is swept
sufficlently behind the Mach lines. The results obtained in the present
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investigation for untapered wings (A = 1) 1indicate an optimm maximum-
thickness location at 50 percent chord. Hence, the optimum location for
any erbitrary and conventional tapered wing (0 S A S 1) with sufficient
sweep behind the Mach lines approaches the 1O-percent to 20-percent value
for small taper ratios (large taper) and the 50-percent value for large
taper ratios (small taper).

For a given delta plan form, the sweep of the maximum-thickness line
varies with the location of meximum thickness and thus no prediction can
be made for the drag effects induced by each parameter considered sepa—
rately. For an untapered wing, however, the effects of maximum-thickness
location are isolated since the sweep of the meximum~thickness line
remains constant, TInasmuch as the present results indicate an adverse
drag effect due to shifting the mexIimum-thickness location forwerd of the
50-percent locetion, the cptimum location of maximum thickness for the
delta wings of reference 1 of between 10 and 20 percent chord must result
from the increased sweep of the line of maximum thickness at the forward
location, The sweep of the line of maximum thickness thus appears to be
an important sweep parameter for tapered wings insofar as drag due to
thickness is concerned. This inference is further supported ln reference 2
in which the sectlon wave-drag coefficient at the root of tapered wings is
found to be a function of the Mach number and the sweep of the maximum—
thickness line and is found to be independent of leading-edge and trailing—
edge sweepn,

CONCLUSIONS

The following conclusions refer specifically to nonlifting wings
with double~wedge profiles but may be assumed to have application to
curved supersonic profiles without cusps?

1, The optimum location of maximum thickness for untapered supersonic
wings is at 50 percent chord, a symmetricel veriation in wing wave-drag
coefficient being exhibited about this minimum value similar to that found

in two—dimensional supersonic flow,

2. The varlation of wing wave-drag coefficient with maximum-thickness
location is slight when the wing is swept far behind the Mach llnes and
is marked at Mach numbers where the wing approaches or ls swept ahead of
the Mach lines.
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3. The sweep of the line of maximum thickness is ean important
eweep parameter for tapered wings insofar as drag due to thickness is
concerned,

Langley Memorial Aeronsuticel Iaboratory
National Advisory Committee for Aeronsutics
Langley Field, Va., October 31, 1947
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APPENDIX A
EVALUATION OF EQUATIONS (5) FOR SECTION WAVE DRAG AND WING

N £
WAVE DRAG EXCLUSIVE OF TIP EFFECTS| £ < 0.5

Section Drag for mB< 1

/ 2.2
2 d = =l__mB
hm(t/c) ©
=A+3B mh <ysm§c-—h)
1-mB - 1-mB
=A+B+C E(E_:_}}l<y< me
1—mB =1~ mB
=A+B+C+D L < y<w=
l1-mB

where

3 [ 242 2,2
=07 12y +uhocogyl XA 4+ W) +mh , p cognt XL =mB7) + mh
1h2(c - h) [S oo wp(2y +wmh) oo 22he

c3 aL.-x-._mLsz__hl cosh—1 (1 + 2%6%) + mlc = k)

+— <A
Yn(c — h)2 mﬁ[?y + m(c — h)]

+ (¢ - h) coshly(l—m6)+m(c-—h)
w’(c — h)p

2p2
2y +m -1 y(1 + m?B°) + mc -1 y(1 — m“B<) + mc
H_T—Th p— [ € cosh™ 2B (3y + mo + ¢ cosh w2ep

2(c — ¢ch £ 1) x cosh J.__-!:_ALB_E 2
n%(c - n)°

*The equations are symmetrical about the point h = 0.5; for ll>O 5,

use the same formulas and perform calculations for <h o = 1 —%
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3 242 ‘ 2,2
B = c 2y — mh h—ly(l'*'mﬁ)_mh__h h—ll‘l—mﬁ!—mb
in2(c — h) [ m o wp(2y — mh) oo wPrp

c = c3 2y —mlc = h) ;oep) Z(1 + m28?) — m(c — h)
4h(c - h)2 m mB[Qy - m(c - h)]

— (c - h) cosh ¥ {1 = m282 — mlc -h)}

v (c — h)B
and
—2 2,2 - 2
D= o=t |2X=MC cogy? XL+ mPB2) = me _ o con~t X(L = 182) — g¢
4h(c - h) n mB(2y — me) n2cB ]
Section Drag for mf> 1
2,2
cr \VmeBs — 1 mh
c =A+B+C for 0< ¥y <
hm(t/c)e 4, =V 2 -1
=B+C+D mh o ycmc-h
mg -1 = mB -1
=C+ 2D M<y§ me
mf -1 “mp -1
=D me <y-<°°
mg -1
where
A = c3 2y +mh -1 y(1 + meﬁz) +mh -] y(1 - mEBQ) + mh
Yh°(c — h) m mB(2y + mh) 2np

Bee—© J2ramle=h) ol x(l+mB82) +mle - k)
Yh(c — h)% n mB| 2y + m(c — h):]

. (c - h) cos™t y(1 — n°8%) + m(c — h)l
n?(c — h)B
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__i__[zxi_cosly(l+mﬁ) +000311L__f1f_)___2_:]

bn(c -~ 1) mB(2y + mc) mecp

and

.S
bh(c - 1)

Wing Drag for mp < 1

V1 - z82 - A £ 0<ml <22
8m(t/c) °n, = o =T-"op

=A+B mh o < lc = )
1 — mp =71 — mB
=A+B+C _ni(_c__—_hl<md T
1= mp S1-m
=A+B+C+D , lm" <m<e




NACA TN No. 1543 17

where

2,2 2.2
Tén(c - ) ! - 228 mhp

A=

, (24 + n)2 cosp—) &1 + °p°) + h
h mp(2d + h)

N2 )
. [Qd + (c - h)] cosh=L a1 + mzﬁz) +c—-h
c-h mp(24 + ¢ - h)

4d(1 - m?p2) + (c — h)(3 — m2p2) coan-l (1 = m28%) +c - h

1—m252 m(c — h)B

_ e -uP®) + c(3-mP®) a1 -wPp?) s
mef

1 - m2p2

(2d_+ 022 -1 a(l + m232) +C
- cosh
¢ mp(24 + ¢)

2, 2 2
_ 84 (c -—ch+h)cosh_
(c = b)ch 2mp

11 +-m232

+ ol [\/dz(l - m232) + 2cd + c2

\,l - m232

Va2 - n28%) + 2dh + B2 — Va2(1 - u2p2) + 2d(c — b) + (o — h)Q]}

B o mc (24 —n)° o 4@ +07%) —h
16h(c - h) h mp(2d — h)

. o\ a2(1 - n°g°) — 2dh + h°

\,1 - m2B2

2 2 2.0
kd(1 — m“p%) - n(3 — m°p°) cosr-l &L = m8%) —h
1 — m2p2 mhp
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me3 (24 + h — cLQ cosh— a(l + m252) —‘(c - h)
16h(c - h) c-h : mp(24 + h ~ ¢)

C =

. 2\/&2(1 — m2p2) - 2d(c — h) + (¢ — h)2

\, 1l — m2ﬁ2

b1 - o) = (e -0)(3-%) ) a(1 - nPe) - (c - 1)

- 1 — m2p? m(c — h)B
and
D = me3 4a(1 - m2p%) - ¢(3 — m2p°) cosn-l 4 = m2p2) ~ ¢
16h(c - h) 1 - m2p? mcB
_ (22 =¢)? cosn—l 4L+ m2p2) = ¢ 2Va2(1 — nPp?) — 20d + c°
c mp(2d - ¢) \/—1-_m262—

Wing Drag for mB > 1

xS\ m2[32 -1

=A+B+C for 0<md < _mh
8m(t/c)? °n, “mp -1
=B+ C mh o oa gﬂ.?_:._}}l
mg — 1 T mp-1
mg -1 T mB -
=D R <mi < ®»
mg — 1
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where
.. me3 h(nfp® - 3) + Ma(e® ~1) g ey
16h(c — h) m2pe — 1 | mhp

2 22 2 2D 2
, (2d + 1) co_ld(l+mB)+h+2\[d(l m°p°) + 2hd + h

h 2d + h
26(22 + 1) P
ﬂ[h(mabz - 3) + ba(mop® - 1)]
maﬁe -1
3 2 22 _
B = me (24 + ¢ - h) cos.1d(l+ma)+c h
16h(c - h) c-nh mB(2d + ¢ - h)
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2
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m252 -1 mfc
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Figure 2.- Mach line configurations for untapered plan forms.
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Figure 3.- Information pertinent to integration limits in equations (b) and (7).
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Figure 7.- Variation of wing wave-drag coefficient with maximum-
thickness location. Taper ratio, 1; aspect ratio, 2; sweepback
angle, 60°.
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with Mach number for various maximum-thickness locations and
comparison with three-dimensional result for untapered wing.
Aspect ratio, 2; sweepback angle, 60°.
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