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NATIONAL ADVISORY COMI TEE FOR AF20NAUTICS

A TECHNICAL NOTE NO. 1543

EFFECT OF CHORDWISE LOCATION OF MAXIMUM THICKNESS ON THE

SUPERSONIC WAVE DRAG OF SWEPTBACK WINGS

By Kenneth Margolis

SUMMARY

On the basis of the linearized theory of supersonic flow, equations
are derived for the wave drag of sweptback untapered wings at zero lift
with thin double-wedge sections and arbitrary chordwise location of
maximum thickness. Calculations are presented for a representative
supersonic plan form.

The optimum location of maximum thickness for untapered supersonic
wings is found to be at 50 percent chord, a symmetrical variation in
wing wave-drag coefficient being exhibited about this minimum value.
The drag variation is slight when considerable sweep behind the Mach
lines is present and the variation is marked at Mach numbers where the
wing approaches or is swept ahead of the Mach lines.

It is found that for tapered plan forms the sweep of the line of
maximum thickness is an important sweep parameter insofar as drag due to

thickness is concerned.

INTRCDUCTION

A recent application (reference 1) of the linearized theory to the
calculation of supersonic wave drag at zero lift of delta wings indicates
that minimum drag for any double-wedge delta wing with sufficient sweep
behind the Mach lines is obtained with location of xnaximum thickness at
10 to 20 percent chord. (In reference 1 and in the present paper the
conventional definition of "delta plan forms" is modified to include
those with sweptback trailing edges.) For a given delta plan form, a
variation in maximtu-thickness location necessarily implies a var:lation
in the sweep of the line of maxiimun thickness and, therefore, no general
predictions can be made for the drag effects induced by each parameter
considered separately. In fact, there Is evidence (see reference 2) to
suggest that the sweep of the maximum-thickness line may be an important
sweep parameter insofar as drag due to thickness is concerned. Hence,
the problem of isolating the effects of chordwise location of maximun

thickness immediately presents itself.
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This problem is treated in the present paper by applying the method
of reference 3 to derive the geneialized wave-drag equations of sweptback
untapered wings at zero lift having thin double-wedge sections with
arbitrary maximum-thickness location. The wing tips are chosen parallel
to the direction of flight and the range of supersonic Mch number for
which the wing is swept ahead of and swept behind the Mach lines is con-
sidered. Typical distributions of section wave drag and wing wave-drag
calculations are presented. Comparis6ns are made with two-dimensional
theory and with results obtained for tapered wings.

SYMBOLS

x,y,z Cartesian ooordinates

V velocity in flight direction

P density of air

AP pressure increment

q dynamic pressure (lpv2)

disturbance-velocity potential

M Mach number

dz/dx slope of airfoil surface

e half-wedge angle

c chord length, measured in flight direction

h location of maximum thickness, measured from leading edge

t maximum thickness of section

A angle of sweep, degrees

n slope of leading edge (cot A)

b span of wing

m

S wing area
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A aspect ratio (b2 /S

X taper ratio (ratio of tip chord to root chord)

cd  section wave-drag coefficient at spanwise station y
cexclusive of tip effect

Cd increment in section wave-drag coefficient at spanwise
tip station y due to tip

Cd section wave-drag coefficient at spanwise station y
(cc + Cdtip)

CD. wing wave-drag coefficient exclusive of tip effect

CDtip increment in wing wave-drag coefficient due to tip

CD  wing wave-drag coefficient (CD + CDt

ANALYSIS

The analysis is essentially that used in references 2 and 3. For
convenience, a brief outline of the basic equations is presented.

The assumptions of small disturbances and a constancy of sonic
velocity throughout the fluid lead to the linearized equation for the
velocity potential CP

where M Is the Mach number of the flow and the derivatives are taken
with respect to the variables x, y, end z of the Cartesian coordinate
system. On the basis of this linear theory, a solution for a uniform
sweptback line of sources in the pressure field is derived in reference 3.
The pressure field associated with this solution corresponds to that over
a semi-infinite sweptback airfoil of wedge section. The pressure coef-
ficien Ar/q at a spanwise station y and point x along the wedge
for m P Is

2

P = 2 tan e m cosh-1 x - mO y (2a)
q 1- m2 2 fy- (2a



4 NACA TN No. 1543

and for mp>1

2

p =-tan e m nos-1 x - mO y (2b)

q C V 2 2 - ply -x1

where m is the slope of the leading edge of the wing, e Is the half-

wedge angle (tan 0 e since the angle is small), 3 M -i ,

and the origin of the line source is taken at (0,0). In the region

between the leading edge and the Mch cone (that is, x < y <n ex),

the real Tart of cos- 1 X - m 2y is constant and equal to n.
ply - xl

Equation (2b) then reduces to

- = 2 tan e (2c)
q VFm202

The distribution of pressure over sweptback wings of desired plan
form and profile is obtained by appropriate superposition of wedge-type
solutions. In order to satisfy the boundary condition over the surface
of an untapered wing of double-wedge section, semi-infinite line sources
are placed at the leading and trailing edge of the wing and a semi-
infinite line sink is placed along the line of maximum thickness. The
strengths of these lines are proportional to the wedge angles; therefore,
in superimposing solutions of the type given in equations (2), the
appropriate e for each line source and sink must be found. The correct
wedge angles necessary to obtain a double-wedge section of length c,
maximum thickness t, and location of max1iunm thickness h are (see
fig. 1)

I I i
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Leading 2h c

line source

Trailing 2(c - h)(c (3)
line source

eL in C2  (t\
Line sink 2h(c - h)

(It is convenient to express the angles in terms of the section thickness

ratio t as can be seen by reference to the drag integrals,) At the

tip where the wing is cut off in the flight direction, reversed distri-

butions of these sinks and sources are placed so as to cancel exactly the

effects of the original distribution farther spanwise than the tip.

Figure 1 shows the distributions of sinks and sources for an untapered

wing of double-wedge section and identifies the system of axes and symbols

associated with the derivation of the drag equations.

The disturbances caused by the elementary line sources and sinks are

limited to the regions enclosed by their Mach cones; the Mach line con-
figuration is presented in figure 2. For purposes of simplification the

wings considered were restricted to those with no tip effects other than
the effects each tip exerts on its own half of the wing.

The pressure coefficients obtained from superposition of solutions

given in equations (2) are converted into drag coefficients by the

following relations:

C =. fcdcb/2 jb/2 J'TL Ap d z (4)dD f cdc d~y = S u0 L. E q- d ~ (4)

where b is the wing span; S is the wing area; dz/dx is the slope

of the airfoil surface; and L.E. and T.E. denote leading edge and

trailing edge, respectively.

DERIVATION OF MEMERALIZED EQUATIONS

The drag equations are derived for half of the wing since the
drag is distributed sy~netrically over both halves. The induced effects

of the opposite half-wing are represented by the conjugate terms in the
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where D and E, which refer to the pressures resulting from the leading
line sources and from the line sinks, respectively, are as follows:

D = co - --+ cos 1

x2 2

D = C os 0 1 y - x l I o ly + = 1l

E = cos-l x- h- n42y + cos-1 x-h + m2 y
LIO y - m(x - h)l P y + m(x- h)l

It should be noted that equations (5) give the drag for plan forms where
the tip is placed farther spanwise than the points of intersection
between the Mach lines and the leadingf and the trailing edges (see fg. 3).
Deletion of certain integrals and appropriate changes in the y-linits of
other Inte-als may be made for configurations where the tip is placed
nearer the root chord. Equations (5) are evaluated and the resulting
section wave-drag and wing wave-drag formulas for all untapered plan forms
are presented in appendix A.

It was stated previously that the wings considered have no tip effects
other than those each tip exerts on 'ts own half of the wing; that is, the
Mach lines frcm one tip do not enclose any part of the opposite half-wing.
This condition s exrressed mathematically as follows:

For ni r < 1 the asrect ratio

A > 1 (6a)

and for mn> 1, the aspect ratio

A> 2m (6b)

The wave-drag contribution of the tip for m4 S 1 is (see fig. 3)
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Aka 1 M2 02 (4 _m202 b/2 c cd
8m(t/c) Dtip 4m(t/c)2 jmi&(i+m)-mc CdipC d- y

2l +m h

y+ F dxd

2 y+ h dxdm

l+m m
+h(c - h) l+ )- c-h ( d)+ y

y+mc

+ fim )ihyihF dX d

d.d
lh~ - ) jd~lmo-ch f ,o)hy

fl+MCh

where F and G, which refer to the pressures resulting from the leading
line sink and from the line source, respectively, are as follows:

F = cos I  x - d -, W12(Y - Ed)
F~co~hlX -- M

G = cosri x - d - h - m2 (y- id)
Oly - m(x - h)1

For mO> 1, equation (7) Is still valid if \4i - is changed to

1 i and the inverse hyperbolic function coslhI is changed to
4 -i
the inverse cosine function cos .

Equation (7) is evaluated and the results presented in appendix B.
The total wave-drag coefficients are then obtained by the following
relations:
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Cd = C + Cdtip

(8)
CD CD+ Ctip

It is found that CD is identically equal to zero and, hence,

CI= CD for wings satisfying the aspect-ratio limitations imposed in

equations (6).

When the expression for CD  is differentiated with respect to h

in order to find an optimum maximum-thickness location, it is found that

6h /-(9)
)jh= _C=

2

and that the drag function is minimized at this value of h independently
of the other parameters. It is also seen from the drag equations that
the distributions are symmetrical about this minimum point.

RESULTS AND DISCUSSION

For calculation purposes, an untapered plan form of aspect ratio 2
and sweepback of 600 has been used. Equation (9) indicates that the
trends obtained for this representative plan form are equally valid for
all untapered wings with double-wedge profiles. The results may be
assumed to have qualitative application to curved profiles without cusps.

Section wave dra.- Spanwise distributions of section wave-drag

coefficient are shown in figures 4 and 5 for Mach numbers of 1.414 and 3,
respectively. At a Mach number of 1.414 the wing is swept behind the
Mach lines, and at a Mach number of 3 the wing is swept ahead of the
Mach lines. In each figure maximum-thickness locations are varied from
20 percent chord to 80 percent chord. Variations in maximum-thickness
location need actually only be considered up to 50 percent chord; the
results for any arbitrary percent chord k and (100 - k) are equal
because of symmetry considerations. (See drag equations in appendix A.)
When the wing is swept behind the Mach lines (fig. 4), the centroid of
the drag forces on a wing panel moves noticeably inboard with forward
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or rearward shift of the maximum thickness from the midpoint position.
When the wing is swept ahead of the Mach lines (fig. 5), little change
is noted in the centroid.

Wing wave drag.- Variation of wing wave-drag coefficient with Mach

number is shown in figure 6. As was mentioned previously in the
mathematical discussion of the drag equations, the symmetrical section
is seen to be the optimum profile for an untapered plan form insofar as
minimum drag is concerned. The variation of wing wave-drag coefficient
with maximum-thickness location does not appear to be too significant
when the wing is swept far behind the Mach lines; however, as the
"critical" condition is approached (that is, mO = 1) the variation
becomes more noticeable. There is seen to be a marked drag variation
with maximum-thickness location in this region and for Mach numbers where
the wing is swept ahead of the Mach lines.

Figure 7 is, in effect, a cross plot of figure 6 and presents vari-
ation of wing wave-drag coefficient with maximum-thickness location for
Mach numbers of 1.414 and 3. The previous remarks are clearly illustrated
in this figure by the flat curve at the lower Mach number and by the curve
with a well-defined minimum at the higher Mach number.

Comparison with two-dimensional theorv- If m approaches infinity

(that is, a rectangular plan fom), the drag equation reduces to

CD 1 C2 (10)

(t/c)2  M2 - 1 h(c- h)

which is exactly the result obtained by Ackeret for two-dimensional
flow (see reference 4). This result is expected since the plan forms
considered have zero increment in wing wave drag due to the wing tip.
The two-dimensional (Ackeret solution) and three-dimensional (swept-
back wing) results, therefore, exhibit the same qualitative drag effects
due to variation in maximum-thickness location - that is, a drag vari-
ation symmetrical about a minimum value at 50 percent chord. Of course
the quantitative results are quite different, the three-dimensional
value being lower when considerable sweep behind the Mach lines is present
and the two-dimensional value being less for other conditions. Figure 8
presents the variation of two-dimensional drag with Mach number for
different maximum-thickness locations. Comparison with the three-
dimensional result for the wing of aspect ratio 2 and sweepback of 600
is also indicated in this figure.

Comparison with tapered wings.- The results presented in reference 1

for a given delta plan form (X = 0) indicate an optimum maximum-
thickness location at 10 to 20 percent chord when the wing is swept
sufficiently behind the Mach lines. The results obtained in the present
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investigation for untapered wings (X = 1) indicate an optimum maximum-
thickness location at 50 percent chord. Hence, the optimum location for
any arbitrary and conventional tapered wing (0 < X 1) with sufficient
sweep behind the Mach lines approaches the 10-percent to 20-percent value
for small taper ratios (large taper) and the 50-percent value for large
taper ratios (small taper).

For a given delta plan form, the sweep of the maximum-thickness line
varies with the location of maximum thickness and thus no prediction can
be made for the drag effects induced by each parameter considered sepa-
rately. For an untapered wing, however, the effects of maximum-thickness
location are isolated since the sweep of the maximum-thickness line
remains constant. Inasrach as the present results indicate an adverse
drag effect due to shifting the maximum-thickness location forward of the
50-percent location, the optimum location of maximum thickness for the
delta wings of reference 1 of between 10 and 20 percent chord must result
from the increased sweep of the line of maximum thickness at the forward
location. The sweep of the line of maximm thickness thus appears to be
an important sweep parameter for tapered wings insofar as drag due to
thickness is concerned. This inference is further supported in reference 2
in which the section wave-drag coefficient at the root of tapered wings is
found to be a function of the Mach number and the sweep of the maximum-
thickness line and is found to be independent of leading-edge and trailing-
edge sweep.

CONCLUSIONS

The following conclusions refer specifically to nonlifting wings
with double-wedge profiles but may be assumed to have application to
curved supersonic profiles without cusps:

1. The optimum location of maximum thickness for untapered supersonic
wings is at 50 percent chord, a symmetrical variation in wing wave-drag
coefficient being exhibited about this minimum value similar to that found
in two-dimensional supersonic flow.

2. The variation of wing wave-drag coefficient with maximum-thickness
location is slight when the wing is swept far behind the Mach lines and
is marked at Mach numbers where the wing approaches or is swept ahead of
the Mach lines.
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3. The sweep of the line of maximum thickness is an important
sweep parameter for tapered wings insofar as drag due to thickness is
concerned.

Langley Memorial Aeronautical Laboratory
National Advisory CommIttee for Aeronautics

Langley Field, Va., October 31, 1947

'I
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APPENDIX A

EVALUATION OF EQUATIONS (5) FOR SECTION WAVE DRAG AND WING

WAVE DRAG EXCLUSIVE OF TIP EFFECTS < 0.5)

Section Drag for mzn < 1

m *c =A for O0 < lfl h

4m(t/c) 2  -

=A + B m < y < m(c- h)
l- m - l-mo

=A + B + C m(c - h) < Y < mc
l-m = -m

=A+B+C+D m- < <
1-m 3

where

= c3  Fr2v_ cosh-I X(l + m2B2) + mh + h cosh-1 Y(1 - m2 2) +
4h2 (c - h) m mO(2y + mh) m2 hJ

+ C3  coshl I( + m2 62 ) + m(c -h)

4h(c- h)2 f moL2y + M(c - h)]

+ (c - h) cosi-1 y(1 - m2 32) + m(c - h)

m2(c - h)P J

C2  __ cosh-1 y(l + m202 ) + me c cosh 1 y(l m202 ) + mc
4h(c -h) _ m mB(2y + mc) jc -

c2 (c2 - ch + h2) + cos2 1  2

h2(c - h)2 m W

*The equations are symmetrical about the point h = 0.5; for h>0.5 ,

use the same formulas and perform calculations for h w

C
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B=Z h cosh 1l - h coslf-1 w(i - ]

C C3  2- -. M-2- ) cosih1 Yu + m2 p?) - M(C -h'
4h(c -h) 2 L m M[y- m(c - h)]

- (c -h) cosh'- 90- -M2 82) -m(c -h)
m2(c - O

and

D= - 2 r QCOsyh1 YLl + M02) c cosh-1 Y(1 - 2 O2) -mc]
4h(c -h) LmmP(2y -mc) mcp

Section Drag for mo> 1

CI M20t/c) Cd = A+ B +C for 0<y< h

4m~tc)2 O = -, moc-1

= B +C +D Din < y < c-h

= C + 2D m(c-h)<< n
mo-1 1-

mc

where

A ____ = 3 [L+ o-1 yil + M20?) + hi + y(61 - in2 2)
h2c - L) m (2y) h COB' m2h

4h(c -h)2{ mm P + m(c - h)]

+ (c - h) 'O7 V(l - M2 02) + m(c - h)t1
=2 (c - h)O f
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. c+ mc Y(l + m02) + mc +(I_ 2)
4h(c - h) Lm m (2y +mc) m2cp3

and

4h(c - h)

Wing Drag for mP < 1

3TS m282 CD Afo d5 mh
8(t/c)2 <md<

=A + B mh ccE <e(c - h)
1-me = 1- me

= A + B + C m(c - h) < <I
1 m < < mo

= A + B + C + D m < md <
1-mn
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where

A- ic3  4d(l - m2 02 ) +h(W-M 2 02 ) 1 df1..m 2 p2 ) + h

16h(c -h) 1 -m 2 02  iihp

h mo(2d + h)

" [2d + (c - -h)1~2 cOsh71 d(1 + m2 p2 ) + c -hl

c -h mp(2d +c -h)

"4d( - m2 02 ) + (c -h)(3-m 2 02 ) cosh'l d(l _ m2 32) + c-h
1 _202 m(c - h)O

-dl m2 02)'+ c(3 - in202) cosh 1 dl 22

c mp(2d + c)

82 (c2 _ h+h2 ) 11+m2 02

(c - h)ch 2mO

+ 2 [Vd2 (1 m202) +2cd +c2

202

- \Id2(1 - in202) + 2dh + h2- \/d2(l - m2 02) + 2d(c h) + (c -h)2]J

B mc3 cos h) h1 d(1 202)

16h(c - h) h mo(2d - h)

+2\1d2J i~ 2  d + h 2

1-mg

4d(1 - rn2 02) h(3 - m2 02) ch~-d(1 _ m2 02) - h]

1-r2 02 mho
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0= 16~3 (2j _-c coai~ld( 4 m 2 2 c-
1hch)L c-h MO(2d + hc)

2d l- =2 02) 2d(c - h) + (c - hi)2

4d(l - M202) -(c -h)(3 - m2 02 ) coshJ- j~ 22 ch

and

D Me3  4d(1 m2 p2) - c(:0 m2 032) csr
i16h(c -h) M22 cohldlmcp21-mno

~~m(2d - c d1.-m 2 ) - c 2\jd2(1 - m2 02) -2cd + c2 1
c ~~~ m~(d-c - m2 02

Wing Drag for mo3> 1

8m(t/c)2  for0 <-1m

=B +C ml' <~ mdm(c -h)

mc m

-e1 m
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where

A= ____3 h(m 20 2 -3) +4d( 2 02 - 1) o-dlm22+h

16h(c - h) M2 2 -1 mho

+(2d +h) 208 1 d( +M0) + h +2 Vd(lm2 2) +2hd +h
h mp(2d +h)

,r[h(m 202 - 3) + dm22

222

Bm~ (2d+ c -h) 2________+__2__2_)+

16h(c -h){hm(d+ch

+c- 2~(2 
+d 

( 
c-h) d~ h (

2 22 (c-h)

+ - ch(ma0 ) +d(jn2h) +22

m- IX(c - h)

+ [(m2p2 - 3)(h - c) -4d(m

2 02 -

M 2 2)1

C mc3 n[8d( -20 1) + c(m2 0
2  

3l

16hc -h) M2 2

_2: &(- 2 )+ 2cd +c 2  (2d+ C)2 Cos 1 d( + m202 )+ c

Vm2 02  -1cmo(2d + c)

c(m 2 -_3) + 4d(m 2 -1 -1 d1M 282 ) +c

m2 2 -0- ~lVsc
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and

= c3nnx

4ih(c - h)

Wing Drag for m$ = 1

_ S_= mc5/2 r + c - )3/2 oh

8m(t/C) 2 % 6h3/2(c , h)3/2

+ (2d + h)3/2 j c 2 - ch- (2d + c) 3 /  c h -

! ! !| p
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/7/ /

/ /4/

Figure 2.- Mach line configurations for untapered plan forms.

/

/ '%/S>

p i- value P I - va/ue p -va/ue

/#-

p~~, ~'c-h) M~ d4hC _

Figure 3.- Information pertinent to integration limits in equations (5) and (7).
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2b

1.2 0.8

Figure 7.- Variation of wing wave-drag coefficient with maximum-
thickness location. Taper ratio, 1; aspect ratio, 2; sweepback
angle, 600.
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Figure 8.- Two -dimensional variation of wing wave -drag coefficient
with Mach number for various maximum-thickness locations and
comparison with three-dimensional result for untapered wing.
Aspect ratio, 2; sweepback angle, 600.
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