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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2605

BEHAVIOR OF VORTEX SYSTEM BEHIND CRUCIFORM WINGS -
MOTIONS OF FULLY ROLLED-UP VORTICES

By Alvin H. Sacks
SUMMARY

The motions of four fully rolled-up vortices répresenting the vortex
system trailing behind cruciform wings are studied by theoretical and
visual-flow methods. The analysis applies throughout the Mach number
range.

Equations are developed for the three-dimensional pathe traced by
the vortices behind a cruciform wing banked 450, and calculations are
made of the distance behind the wing at which the upper two vortices
pass through the lower two. It is found that this "leapfrog" distance
depends upon the 1lift coefficient, aspect ratio, and span loading of the
cruciform wing, and that for low-aspect-ratio cruciform wings leapfrog-
ging may occur within two chord lengths of the trailing edges.

The various types of vortex motion to be expected throughout the
angle-of-attack range are considered in some detail, and the interaction
of the two vortex sheets shed from the cruciform wing is taken into
account. Results of some water~tank studies are also presented and
compared with the theory.

INTRCDUCTICN

The downwash behind plane wings has been studied theoretically by a
number of authors and considerable attention has been given to the
rolling up of the trailing vortex sheet. The analysis of Kaden
(reference 1) predicted the distance behind the wing at which the sheet
may be considered to be fully rolled up into two trailing vortices, and
this work was later used (in reference 2) to demonstrate the usefulness
of the single horseshoe-vortex approximation for the calculation of the
downwash behind wings of low aspect ratio. Since at the present time
cruciform configurations are largely confined to wings of low aspect
ratio, the rolling up of the trailing vortex sheets is again of major
concern, and the behavior of the fully rolled-up vortices is again of
considerable interest. :
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While in the case of the plane wing the vortex sheet became rolled
up into a vortex pair which simply moved downward at a uniform speed at
great distances behind the wing, the analogous problem for cruciform
wings is necessarily more complicated. Instead of the two rolled-up
vortices, there are now presumably four (one from each wing panel) and
their induced effects upon one another are such as to produce quite
intricate paths of motion. The downwash field, of course, may therefore
become extremely involved. This report is concerned with a study of the
motions of the four rolled-up vortices and their effect on the downwash
behind cruciform wings.

SYMBOLS
A aspect ratio (Péi) .
b span of one wing (2s,)
c ~ root chord
CL 1lift coefficie-nt of cruciform wing a%)
C' 1ift coefficient of plane wing <%>
cy section 1ift coefficient for planZLwing
d distance behind wing trailing edge
dy, distance behind wing trailing edge where four rolled-up vortices
are collinear (leapfrog distance)
f . constant of the motion related to distance between centers of

gravity of two vortex systems (y, + y,)

G parameter which depends on initial vortex positions
—————l———e -2
Yol ~ Yo
f f

L 1lift of cruciform wing

L! 1lift of plane wing

M free-stream Mach number

q . free-stream dynamic pressure /L pUQ)

2 ' 2 47 (4-6)
Q parameter used for periodic motion ——

. e
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- . 2
) Qz parameter used for aperiodic motion (-Q° )
RrR2 - PRG
L(G + &)
S area of one wing-
s local semispan of one wing
Sg maximum semispan of one wing
s' semispan of rolled-up vortices from one Wing
t time
U - free-stream velocity
v velocity of vortex center in y direction.
W velocity of vortex center in z direction
X,¥,2 right-hand orthogonal coordinates with x axis in stream
) direction
§~ yo; Zo initial values of y, and z,

Z1,2 Vvertical distance between vortices 1 and 2
(See sketch on page 9.)

a angle of attack of cruciform wing axis
of angle of attack of one wing
B angle of sideslip of one wing
/ Y | ratio of vortex strengths ( FITL)
\ 2
r . eirculation (positive counterclockwise)
p mass density

Subscripts 1, 2, 3, and 4 refer to vortex number. (See sketch on page. 5.)
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GENERAL ANALYSIS

The phenomenon of the rolling up of the vortex sheet behind plane
wings was discussed as early as 1907 by Lanchester (reference 3) and has
gince been the subject of a large number of investigations. As a result
of such investigations, it has been found (reference 2) that, whereas
the vortex sheet behind wings of high aspect ratio may be considered to
remain flat at the tail location, a good approximation to the downwash
geveral chord lengths behind wings of low aspect ratio is often obtained
by considering the sheet to be fully rolled up into two trailing vortices.
In the case of the cruciform wing, as in the case of the plane wing, the
rate of rolling up of the vortex sheets will depend upon the aspect ratio
of each wing. It should therefore be possible to obtain a reasonably
good approximation to the downwash field behind low-aspect-ratio cruci-
form wings by considering the vortex sheets to be fully rolled up; that
is, by replacing the two vortex sheets by four discrete vortices. It is
with this simplified model of the physical problem that the analysis of
this report is concerned at the outset. Subsequently, it will be seen
that the theory can be modified to provide a more accurate representation
of the actual flow field.

With low-aspect-ratio wings in source-free flow the linearized dif-
ferential equation for the perturbation velocity potential @

(1-M2)<pxx + P+, =0 , (1)

can be satisfactorily approximated at all Mach numbers by the two-
dimensional equation

Pyy

+ P,, =0 (2)
since (l-M2)<1>Xx 1s much smaller than @, and ¢,, if J1-M2 A is
small. (See references 4 and 5.) Therefore, the problem of the motions
of the four rolled-up vortices can first be treated by lateral strip
theory as a two-~dimensional problem in planes perpendicular to the
flight direction. For the cruciform wing at 45° angle of bank, where a
vertical plane of symmetry is present, the problem is thus reduced to
that of the motion of two pairs of vortices with a common axis. This
problem was first attacked by Love (reference 6) and later by Hicks
(reference 7), both in connection with the analogous three-dimensional
problem of the motion of vortex rings. Unfortunately, neither of these
authors worked completely the problem of interest here, the former being
concerned only with the relative paths of the vortex pairs about each
other, whereas the latter was concerned chiefly with the actual problem
of the vortex rings.

Since this paper 1is concerned with the three-dimensional paths of
the four rolled-up vortices behind the wing, the paths in transverse
planes will first be determined, and will then be related to the elapsed
time or the distance the wing has traveled in the flight direction.

The analysis will be confined to the case of 45° bank.
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Determination of Vortex Paths

Relative motions in transverse plane.- The motion of ahy system of
two-dimensional vortex filaments is determined by the induced velocity of
each vortex due to all the other vortices of the gystem. It is shown in
reference 8 that the induced velocity of any particular filament can be
obtained from the function :

W= ﬁ; Iyl log (ba—tn) | (3)

where m<n and {y = yy + izy. That is, if one writes
W= 0+ 1y ‘ (L)

then V¥ is a constant of the motion and is analogous to the stream
function in giving the components of the velocity of the particular
vortex. Thus, the path of each vortex can be determined from equa~
tions (3) and (h), provided that the motion of one vortex determines the
motions of all the other vortices of the system. (Such is the case, for
instance, where all the vortices but one are images of the one.) 1In the
present problem, since only two of the four vortices are images, equa-
tions (3) and (4) are not sufficient to describe completely the motion of
the system. However, these equations will be useful in determining the
paths of two of the vortices relative to the other two. It will be seen
later that this information is of considerable interest. ‘

For the cruciform wing banked h5°, the simplified vortex system as

~viewed in the y,z plane consists of two pairs of two-dimensional

vortices having a common plane of symmetry as shown in the sketch.
It is apparent from the symmetry of '
the configuration that :

Further, if each wing of the cruciform
can be considered as a plane wing in
sideslip (as was demonstrated in
reference 9 for the calculation of I
load distribution) it follows that

since the vortex system far behind a : : : S
plane 1lifting wing must consist of two
equal (and opposite) vortices,

although their positions will depend plane of
upon the angle of sideslip while symmetry
their strength will depend upon the
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lift. On this basis, 1t can be concluded that

Actually, since the vortex sheets trailing behind the cruciform wing
must influence one another during the rolling-up process itself, the
assumption that the wings act independently is not strictly applicable
to considerations of the wake as in the present problem. However, this
complication will be deferred to a later section and the analysis will
first be developed on the basis of four vortices of equal strength.
Hence, from this point on, the subscripts will be omitted in reference
to the vortex strengths which will be referred to simply as plus or
minus TI'. :

When the directions of rotation of the four vortices are taken into
consideration, equation (3) can be written for the present problem as:

W= izg [log (£1-82) - log (62-C3) + log (6a-Ca) -

log (81-84) - 1og (81-85) - 1og (§2-§4)} (5)

Noting further that §, and {; are simply the negative complex conju-
gates of §,; and §{,, that is §, = -El, ts = -L,» equation (5) can be
expressed as

ir?
2

[lOg (gl'CZ) - log (cg + Eg) + log (El-zg)-
log (& + §y) - log (¢, + L) - log (¢, + El)}

iP2 (gl‘ge)(gl'zz)
1 = = = r
b2 O [<g2+;2)(c1+c1)<c1+c2)(c2+;1) ]

T

(6)

Due to the symmetry (see sketch on page 5), the vortex system may
also be considered as two groups of vortices with equal and opposite total
circulation (one group on either side of the plane of symmetry). For
guch a pair of groups, the centers of gravityl of the two groups must
remain a fixed distance apart. (See reference 10.) In other words,
the center of gravity of each group must move parallel to the plane Qf
symmetry. Since here the strengths are equal in magnitude, this may be
stated as

Iyili _ r(y;+7,) _ itve = g = constant (7)

Je.g. T TITL or 2

1The center of gravity of a group of vortices is defined as the center
of gravity of a similar field of point masses, the mass of each being
proportional to the strength of the corresponding vortex. Negative
masges correspond to negative circulations.
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With this information, equation (6) can be expressed in terms of the
coordinates y and z and simplified to )

, > 2
W= EI'.E log (Yl-Xg) + (Zl-ZZ) , (8)
ha® ky1y2 [£2+(z, -25)2] |
Now, since W is purely imaginary, equation (k) is simply
| ra (y1-¥2)% + (21-22)° ,
V=it ' 2 (9)
b byyyol £24+(2y -25 )7]

At this point, a moving coordinate system is introduced such that one
pair of vortices always lies on the y axis. This is done by a change
of variable ' : '

z =z, -z, ‘ (10)

Now, noting that“yé =f - y,, equation (9) becomes

l-|2 . [: (ayl -F )2 + zy ‘22 J
= — 1 2 11
v y2 08 hyl(f-yi)(f2+zl,2?) (11)

Setting ¥ of equation (11) equal to a constant then yields an equation
for the paths of vortices 1 and 2 relative to each other. Thus,

(2yy =) + 21,22
¥y (£=3p ) (£2+42, %)

= constant

or S
o e , . _ .
C%-) - (32) |
: ' : —— = constant = G (12)
n(Ln a2 Y| -
s (o3 (22 ]

determines the relative paths of vortices 1 and 2 (and alsoi3 and 4) once
the value of the constant G ig determined. )

In order to evaluate G of equation (12), one must determine the
initial positions of the four vortices. It must be realized, of course,
that initially (i.e., at the trailing edges of the cruciform wings) there.
are not four-discrete vortices but a cruciform system of vortex sheets.
The immediate problem, then, is to replace these sheets by four vortices
properly located in the €(or y,z) Plane. For the present, it will
suffice to observe that the initial locations of the four vortices must
lie on the straight lines formed by the trailing edges of the wings.
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Thus, for 45° bank,

Z1,2 = ¥1 + Y2 =  when y; = y, (13)
-where the subscript o refers to the initial value of y1- The actual
determination of y, will be deferred to a later section of this report
in which the physical problem will be considered in more detail.

With the boundary condition expressed in equation (13), equa~
tion (12) can be written in terms of the initial value of A

(ef o2G-2)- G2
f

l-Gﬁ(l-z'_l

f \ f
‘ 2
where
<é ZQ -‘> + 1 1
kil
= ~= —2

¥y Yy ¥y ¥
5 Yo (| o _°<1-_‘2
f f

f f

It will be shown later that Yo, and hence G, is a function of angle
of attack for the cruciform-wing configuration.

While equation (14) does not completely describe the motion of the
four vortices, it yields some interesting information regarding the types
of motion to be expected. For instance, if the relative path described
by equation (lh) is a closed curve it can be concluded that the motion
is periodic. The relative paths of the vortices are Plotted in
figure 1 for various values of G, and it is found that the motion is
periodic for G 1less than 4 and aperiodic for G greater than 4.

This i1s in agreement with the findings of Love (reference 6) who
showed that the condition for periodic motion is that

r<34+2 2 | (15)

where r = gg at Z),2 = O. That is, r is the ratio of the lateral
1

displacements from the plane of symmetry when the four vortices are

collinear (when one pair is passing through the other). This type of

vortex motion was first discussed by Helmholtz in connection with

vortex rings having the same axis and circulations in the same

direction (reference 11):

"The foremost widens and travels more slowly, the pursuer
shrinks and travels faster, till finally, if their veloc-
ities are not too different, it overtakes the first and
penetrates it. Then the same game goes on in the opposite
order, so that the rings pass through each other alternately."
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Compléte motions in transverse plane.- Since the relative paths of
the vortices on either side of the plane of symmetry are given by equa=~
tion (14), establishing the actual path of any one of the four vortices
will completely determine the motion of the system in the y,z plane.
Therefore, the actual path of vortex 1 will now be calculated.

The determination of any of the individual vortex paths. requires
the solution of the following equation:

dz, z../dt W.
Zn = J[L_B dyn = - dyn = | =& dyn (16)
dy, dy,/dt J vy . |
where vy and w, are the velocity - A

components of the nth vortex in the ' Ty
y and z directions, respectively. (;;"'_'
If equation (16) is evaluated for
one vortex, say vortex 1, then the ‘
path of vortex 2 can be obtained )//
from equations (7), (10), and (1L4),
and the paths of vortices 3 and L //
are found by symmetry. It will be ) L0
seen that this is considerably . : //

- easier than solving four equations // —_—
of the type given by equation (16).
By adding the contributions of all / ! \
the other vortices to the velocity :
components of vortex 1, one finds //

(see sketch): , <]-‘ ‘ £ « £-2y;

lt—— f—yl — ]

vy = - cos 6,5 + cos B4
2nr o 2nr g
and T
Wy = = ———— = ~ sin 62 - sin O3 (17)
2nr, 2nrg 2nry -

Further, from the geometry of the system, it is seen that

cos 62 Z),2 cos 63 Zi,z
B N z1’22 + (f -2y1)2° rg zy, 2% + f2
gin 62 f -2n sin 83 _ f
- 2 2
T, Zh2 +(f—2y)2’ T4 Zy, - + T

and

= 2y1
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The velocity components v, and w, can now be expressed In the following

form: ;
V. = - 2rzl,2 { yl(f"yl) : }
! T [21’22 + (f-2yl)2][zl’22 + 2]
v = - I {j (£2 + 21 27 PP~ 8ry1% (£ - y1) }' (18)
! b Ly (£2 + 2y 2z, .2 + (f - 2y,)?]

If equations (14%) and (18) are used to express v; and w; as functions
of y,, then equation (16) can be integrated directly to give the path
of vortex 1. After algebraic manipulation, equation (16) thus becomes

Y.
t #2403y, (0-1)-0r2y12(c+2) +265 Fy, ° =65y, *
Z1~%25 = dyy

Y (fE—nyl+Gy12)«/E-(G+h)y12+f(G+h)yl-fz][Gylg-nyl+f2% )
19

where 2z, is the initial value of z,.
If now the numerator of the integrand is divided by the rational
factor in the denominator, and the substitution
i — f
yl_n+é

is made, then the quantity (zl - zo) can be expressed as the sum of four
integrals

f f
yl-é yl-é
Z1-Zg = -1 -G\/p n2dn _ QZG\/P dn
/ f 2_.2y(q24n? f 2_ . 2\(n2, .2
'/G(G“‘) Yo 5 »/(R 1) (Q%+1%) Yok ./(R 1%)(Q%+%)
g .5
?i y-l 2 d'f] _ gfsfl 2 7 d.n
Gy - (2413 V(R2-n®)(F+n®) ¢ y-2 (@2+13) ¥/ (B2-1®) (Q%41®)
(20)
| £% £2(L4-G
where R ™ = and Q2 = __i___l .

1(G+) b6

+
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Equation (20) is now in a convenient form if G 1s less than Lk, This
corresponds to the range for periodic motion. On the other hand, if @
'is greater than 4 (aperiodic), a new constant

_ £(c-)

02 _ _n2
Q = Q a

is introduced so that equation (20) becomes

, 1 J1- g 2g .Y1'£ )

Zy=Zg = ——— _?/P . n=an + Q% , n ‘ .

~ G(G+) & M (R®97) (n2-3) ¢ o (R2-17) (n2-G3)
Y073 Yo"3
- £
ﬁ 2 . d'rl 2f3 1 2 m dT]
G f 2_Q2 ~/ 2_.2\(n2_n2 - G 2.052 ~/ 2_.2y(.2_n2 (21)
oz (12-82) ¥ (RE-n2) (n2-03) Yoz (18-85 W/ (R%-n%) (1°-0%)

‘The third possibility is that ¢ is equal to 4, in which case

Q% = §2 = 0. Equations (20) and (21) then both reduce to

f .
y - y - yl—é
2. -2 1 u/‘ T2 4y , _ft u/“ Y2 an £3 dn
1— o T e e—— — S ———————tt———
»/_2_y £ o/ R%-92 16«/3y r 1% RZ-92 8‘/_2-3,0-2‘ N2 RZ-92
. _ o 2 0”3 2

(22)

The three cases corresponding to eguations (20), (21), and (22) will
be treated separately since the integrations will be somewhat different
for each.

For cases where the vortex motion is periodic, that is, when G 1is
less than 4, the determination of the vortex paths requires the evalua-
tion of the integrals of equation (20). It is seen that the fourth
integral of this equation is elementary while ‘the first three are
elliptic. Thus, while the fourth integral can be evaluated simply by

noting that 7 dn = % d(n®), the other integrals require the use of the

elliptic transformations®

2These and subsequent transformations were obtained Ffrom a comprehensive
table of elliptic integrals prepared by Paul Byrd, Ames Laboratory,
NACA.
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sn? u; = sin® @; =
R2
2
(et
sn?® u, = sin® @, = Rg 2
oo B G2 (23)
R® + @ 16

With these transformations the integrals can be evaluated and the-results
expressed in terms of elliptic integrals of the first and second kinds.
The final solution of equation (20), after collection of terms and eval-
uation of the constants, is given in nondimensional form by the expres-
sion :

: G2 . . P,
Z1- L’Ga {E(k, Po)-E(k, cPl):| ' = ;pl cos %1 _ sin Pocos o
£ 16-G , 8(4-G) \W1-k® sin® @; #1-k2 sin2® @,

sin @ sin @
L Ve - —==\+ T (=

8 W1-k2 sin2 ¢,  # 1-k2sin? 9,

where k = % and it is recalled that z, 1s equal to y, due to the

450 confilguration of the initial locations of the vortices. (Note that
®y lies in the second quadrant and that ©@; increases positively from
Po.) Thus, for the case where the motion is periodic, the motion in
the yﬁz plane is completely described by equations (7), (10), (14)
and (24).

If the motion in the y,z plane is not periodic, that is, if G
is greater than 4, then the motion of vortex 1 is described by equa-
tion (21). Here again the first three integrals of this equation are
elliptic, but now the required transformations are

(-2
, RZ- y-—)
sn? u, = sin? 9, = 1 2

2 = 2
8n< u, = sin %

2 R2-32 16
R G
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It should be noted that for this case (aperiodic motlon) when n is
less than G2 , all four integrals become imaginary. That is, z; 1is
imaginary if Y1 1

by 2

<

1 O!

(26)

This condition defines the asymptotes of the vortex paths for the
aperiodic motion. This can be seen from the relative paths shown in
figure 1. ' ' ’

If the integrals of equation (21) are now evaluated for this case,
the resulting expression for the aperiodic path of vortex 1 is

g , |
i} = - G2G16 [E(k,wo)— E(k,9,) } + F(k,¢p) - F(k,9,) +

< tan @, #/1-k= sin2 9o - tan P ¥ 1-k2 gin2 [N >

2(G L)
. 1 G+’+ ‘ Yo
_ 5 /¢ \ten %o --tan ¢1 /+ F
| ; (27)
where k = g The motion is now completely defined by equations (7),

(10), (14), and (27).

For the special case when G 1is equal to 4, all the integrals are
elementary and can readily be evaluated by making use of the trigono-
metric substitutions

Yy L
175 Yo 3
: cosg P = Rz; cos @y = OR2

(28)

The final solution of equation (22) is then

.1 sin (P1 sin P
e (B BA)-

Elog cos Po(1+ sin q)l) gin @ _ g8in @ > +

2 cos @; (1+ sin 9y ) - J2 <cos P,  cos P,

%(1'““1‘ o (29)
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Actually, it can be shown that this result is obtainable from either
equation (24) or (27) by taking the limit as G approaches L. It is
interesting to note that G can assume only positive values and must
lie between 2 and infinity as can be seen from its definition given

with equation (14). Thus, the vortex paths in the y,z plane have been
obtained for the entire range of the parameter G. Figure 2 shows the
paths of vortices 1 and 2 for several values of G. The dashed lines
connect corresponding positions of the two vortices at successive time
intervals.

Complete motions in three dimensions.- In order to complete the
three-dimensional picture of the four vortex filaments trailing behind
the cruciform wings, a relationship must be obtained between the points
of the paths in the y,z plane and the distance the wing has traveled
in the stream direction. This can be done by the relationship

dyl i fd.yl
ﬁt = UfiyJ 7at =% V1 (30)

Equations (14) and (18) can again be used to express vy as a function
of y; so that equation (30) can be integrated. The integral thus
becomes

g 2 2
4 = . 8xCEU ' £ -Gy, (£, ) n (f-n) 4 (31)

2 Y1
P Y WGya(f-yy)-(2y,-0)% | [£2-Gy, (£-y;)]

Again using the substitution
f
Y=+ 7

equation (31) can be simplified into three somewhat different forms,
one for each of the three regimes of the parameter G.

For the case when G 18 less than 4 (periodic motion), equa-
tion (31) can be written as 5
y £2 _ %)
8nfU 1 <)+ L an

d =~ — (32)

rJ/olc + ) ¥-L (Q3+0) ¥ (B2 -n?) (@®41®)

[V ]

where

2 % 2 £ - q)
(G + 4) e
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For the aperiodic case (G greater than 4), equation (31) becomes

f 2
Y173 L—n2] an
Clet) 4 £ (n282) ¥ (RB=) (12-37) o
Yo 2 .
where
QZ - Q2 = f_ﬁg_'u_l
el
while for the special case when G is equal to 4, equations (32)
and (33) both reduce to
. 2
L T 2 .
q=-—2 fyl ) k >dn o (34)
r./G(G+u) £ 34/R2-T]2
o =2

since here Q2= Qe = 0.
The three expressions for the distance behind the wing can now be

solved by use of the proper elliptic transformations. For G less
than 4, the result is :

a quf | 128 [ J 8 [ ]
a_ - - - | F(k F(k,?
T F‘ G(l6-G2) E(k,q’o) E(k:q)]_) + G ( ,cPo) ( » l) +
G sin @, cos ¢O - 8in @, cos ¢1_
(35)
b=G \ /1-k% sin® 90y W/ 1-K° sin® Oy
where

2 2
f
. R2. ( - ) 2_ < _f)
2 2 y R Y. ~=
k2 = R = (_}_’ Sin2 cpl = 1 é. P and Sin2 Cpo = _____9_2_._.
~  R®%Q® 16 R® | R

For G greater than 4, the resulting expression is




16 NACA TN 2605

a _ Ut 32
:- T e [E(k,¢o)-E(k,¢l) J -
G_l-%: tan @ V1-x2 sin? P, - tan @, J1-x2 sin? ?, >} _ (36)
2
where R2- é'_ f z R>- f
R2-32 16 17 5 o~ 2
k2 = = =_ gin® P = ——7——*—, and sin2 Qo= =
rR®  ¢¥ rR%-g2 7 7 %42

~For G equal to k4,

d _ nUf[:Sin % _8in ¥ +1o (1+sin @1)(-cos Po) L1

- cos® @, cos® @ (1+sin qg)(-cos P) 2

sin @ —sin

(37)

2 2
where £
. ) yl— E Jo =
cos® @1 = ——~—§§——— ———

2
and cos® @, = e

] +

With the aid of equations (35), (36), and (37), the positions of
the four rolled-up vortices are completely described® for all distances
behind the cruciform wings. Thus, for G 1less than 4, equations (7),
(10), (14), (24), and (35) completely determine the motion. The other
cagses are given by the corresponding equations. :

APPLICATION TO CRUCIFORM TRIANGULAR WING AT 45° BANK

Determination of Initial Vortex Positions
and Vortex Strengths

The equations thus far developed give the motions of the rolled-up
vortices in terms of their initial positions. In order to relate these
motions to physical cases involving a given cruciform wing at a
specified angle of attack, the initial positions of the four vortices
must be determined as a function of the 1ift coefficient. This amounts

sThe evaluation of the circulation I' will be discussed in the next
section.
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to the determination of the parameter G in terms of the physical
quantities such as 1ift coefficient and aspect ratio. Therefore, this
section will be concerned with the initial locations of the four vortices
for a given cruciform wing (banked 45°) at a given flight condition.

Since the vortices trailing behind the cruciform wing actually leave
the trailing edges as two flat vortex sheets, the initial locations of
the four rolled-up vortices are somewhat fictitious. However, if each
wing of the cruciform is considered as a plane wing in gidesliyp, the
locations of the rolled-up vortices from each wing can be calculated
from the span loading curve. Such a calculation, then, can be considered
as yielding the positions of the four vortices of the cruciform before
any interaction has taken place between the vortices of the two wings,
namely, immediately behind the trailing edges. Hence, in order to calcu-
late the initial positions of the four vortices, the span loadings of the
separate wings must-be determined.

In reference 9, it was shown that the load distribution on each
wing of a pointed low-aspect~-ratio cruciform wing with no body is given
by the expression

<g> Ja' o BZ) | .(38)

where Ap 1is the difference in pressure between corresponding points
on the upper and lower surfaces of the individual wing.

ds
Equation (38) is not valid for angles of sideslip greater than e
The span loading is obtained by integrating this load distribution in
the chordwise direction; that is

.E.
O

(39)
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Equation (39) can be separated into two integrals, and since for trian-
gular wings ds/dx is a constant, the resulting span loading is

N AN I g, LAV 52 (40)
cic = ha g 1 = + s/ s, g
A

IY/sol

or, since ds/dx = i for triangular wings,

/ 2/, 2
cjc = ba's /1 _ jé; + iy log 1+ & 1-y2/54 (41)
o 84 A So Iy/sol

In the case of the unyawed plane wing, it is clear from symmetry
considerations that, if the vortex sheet is to roll up into two
vortices, all the vorticity on one side of the plane of symmetry must
eventually become rolled up into one vortex. This leads to the conclu-
sion that each rolled-up vortex must be of strength equal to the maximum
circulation which in this case is the circulation in the plane of sym-
metry. A corollary of this conclusion is that each rolled-up vortex
contains only vortices of the same sense. This seems to be in acecord-
ance with existing knowledge of the behavior of vortex sheets as well as
with existing theories of the cumulation of vorticity as applied to
turbulence. Tor the wing in sideslip, whereas there is no symmetry, the
wing can again be considered as composed of two segments, each having
vorticity in only one direction and hence each producing one rolled-up
vortex. The dividing line between two such segments is at the spanwise
station of maximum circulation so that such a division leads to the
conclusion that each rolled-up vortex must have a strength equal to the
maximum circulation. Thus, the vortex strength is given by

F'=2X (ci0)max (L2)

(18] [t

Furﬁher, the distance between the vortices is given by the fact that the
1ift impulse must always be that of the wing itself. Thus,

L _ CL's

28' = =
pu I (clc)max

(43)

From equation (h3) it can be seen that the distance 2s8' can be
represented on the span loading curve as shown in the sketch, where the
area under the rectangle is equal to the area under the curve.
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CZC
A
/’///”—7 (CZC)maX
_ | i
"-—'—al Pt a’a —

~So +54

As seen from the sketch, the actual location of each of the vortices
still requires the determination of the distances aj and as, It has
already been argued that all the vorticity on one side of the maximum
circulation must eventually be contained in one rolled-up vortex. Thus
the two areas can be equated on either side of the maximum; that is,

* Jm
(a1 + Ym)(czc)max =.f cyc dy
(ap = ym) (€70) pax =~/P cie dy (4h)
Yo ‘

(Note that ym 1s readily calculated by successive approximations.)’

To apply the above information to the cruciform wing at h5° bank,
one merely needs to note that for this case .
o

J2

and that the initial position of vgftex number 1 in the banked coordi-
‘nate system is now given by yo = —= It i1s further pointed out that

/3

o' =8 =aqa sin 45° =

f=y1 +y2 = Na-a
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Since the 1ift of the cruciform wing can now be expressed as

L=42pUl (a1 +az) = % pUZ Cp S (45)

and the wing area S 1is equal to hsoe/A, it is seen that the circula-
tion I' 1is given by

£ 2 80? C_L> )
U ai+az \A

Sufficient information is now at hand to determine the initial
positions of the four vortices as a function of the angle of attack for
a particular aspect ratio or, more generally, as a function of a/A.
However, since the above span loadings were obtained from low-aspect-
ratio theory, for which Cp, = z Agq,, the results can be considered as a

function of the parameter CL/ﬂAe. It can be shown that this will make
the results more general in that they will now apply with the accuracy
of linearized theory rather than of low-aspect-ratio theory. This may be
seen from the fact that the loadings in linearized theory (see, e.g.,
reference 12) for triangular wings are simply those of low-aspect-ratio
theory multiplied by a constant which depends upon the aspect ratio and
the Mach number.

The theoretical initial positions of vortex 1 have been calculated
and are plotted against CL/nAa in figure 3. From these initial posi-
tions, the values of G were calculated (equation (14)), and are
plotted in figure 4. The limiting angle of sideslip of equations (38)
and (41) has been exceeded somewhat, as indicated by the dashed portion
of the curve in figure 3, in order to permit some interesting observa-
tions regarding the indicated trends. The constants appearing in the
equations for the vortex paths have now been completely determined and
the three-dimensional paths of the four vortices can be calculated for
any 1ift coefficient and aspect ratio. An illustration of such paths
for a typical case is presented in figure 5.

If one recalls the types of motion associated with the various
regimes of G, figure 3 takes on added significance. The passing from
periodic motion to aperiodic motion simply indicates the inward move-
ment of the initial position of the upper two vortices with angle of
attack until their velocity in the =z direction is so great that once
they pass through the lower vortices, the latter never catch up to
complete the eycle. If this inward movement were to continue as the
angle of attack increases (as shown in fig. 3) then at Cp/nA2 = 0.24k
the two upper vortices would have coalesced, leaving only the two lower
vortices which would then travel parallel to the 2z axis as in the case
of a plane wing.
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'Leapfrog Distance

As an indication of the practical importance of the motion of the
four rolled-up vortices in the calculation of downwash, a distance
behind the wing which is characteristic of the motion will be calculated.
This distance is taken as the distance at which the four vortices have
become collinear, that is, the distance behind the wing at which the
upper two vortices are just passing through the lower two. This will be
referred to as the leapfrog distance dL measured from the wing trailing

edges.

The leapfrog distance can be calculated directly from equation (31)
by taking the upper limit of integration to be the value of Y31 in the
collinear configuration. This value of ¥q 1s obtained from equa-
tion (14) by setting Zy.2 equal to zero.  Solution of this equation’

then gives the limit of integration Yy as a function of G only and -

therefore of Cp/mA®. The definite integral of equation (31) has been

.~ evaluated by the methods discussed previously for the entire range of G

and the resulting leapfrog distances are plotted (in terms of chord
lengths) against Cp/xA% in figure 6. For purposes of comparison, as

‘well as to provide a measure of the usefulness of the assumption that

the four vortices are fully rolled up at the trailing edge, the distance
for the vortex sheets to roll up (as calculated by Kaden, reference 1) is
also shown in this figure. Since the distance to roll up as shown in
figure 6 is that for a plane wing, it should be taken as an indication

‘of the average distance for the four vortex sheets to roll up. Actually,

because of the asymmetric span loading, the lower vortices will roll up
somevhat faster, while those from the upper wing panels will roll up
more slowly. '

The outstanding point to be noted from figure 6 is that the phenom-
enon of leapfrogging can occur within a few chord lengths at reasonable -
1ift coefficients for low-aspect-ratio triangular cruciform wings.

The calculations are expected to represent the physical phenomenon most
accurately when the leapfrog distance is considerably greater than the
distance for the vortex sheets to roll up. The curves presented in
figure 6 have been terminated at a value of Cr/nA%® of 0.176, since
above that value (calculated from low-aspect-ratio theory) the upper
leading edges of the cruciform wing become trailling edges and the span
load distributions are no longer given by equation (41).

‘Rolling Up of the Vortex Sheets

As was mentioned at the outset of the analysis, the assumption that
the wings of the cruciform act independently of one another is not
strietly applicable to the present problem because once the bound
vortices of the wings become free (i.e., immediately behind the trailing
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edge) the two vortex sheets influence one another in their subsequent
behavior. Thus, while the foregoing analysis has treated in some detail
the complete motions of the fully rolled-up vortices, it has not
considered the mutual effects of the vortex sheets during the rolling-
up process itself. Although a complete knowledge of the rolling-up
process could be gained only by a detailed numerical analysis, some
important questions regarding the over-all interaction effects can be
answered by examining the nature of the vortex sheets in their initial
cruciform configuration. Illustrated schematically in the sketch is the
initial vortex config-
uration, showing the
gpan loading or circu-
lation distribution,
which is the same on
each wing, and the
resulting vorticity with
directions of rotation
indicated by the arrows.
In view of the arguments
presented earlier, it is
clear from the sketch
y that all the vortices
contained in the dis-
tance A0 will roll up
into a single vortex,
and that all those in
BC will roll up into
another single vortex
with opposite direction
of rotation. Further-
more, the strength of
the latter vortex must
clearly be egual to the

maximum circulation

iy
max"®

On the other hand, it is not clear just what will become of the
vorticity contained in OB. If the wings did, in fact, act independ-
ently, then OB would certainly be combined with A0 to form a single
vortex of strength T . However, the presence of a plane of symmetry
at y = 0 requires at AO and OB now be considered as separate
vortex sheets since the vorticity at O vanishes due to symmetry.

In fact, closer examination of the portion of the sheets near O reveals
that, due to the directions of rotation, the broken-line sheet AOB'

must move away from the sheet A'OB, thus severing AB and A'B' at O.
It is doubtful, then, that the vorticity originally contained in

OB and OB' will ever become entrained as a part of the upper two
vortices. It will, in fact, later be shown, from the experiments con-
ducted for this report, that this amount of vorticity actually forms
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a separate sheet which is not identified ag bart of any of the‘four
vortices treated thus far. :

The foregoing observations suggest a possible improvement on the
four-vortex analysis already carried out; that is, the strengths and
initial positions of vortices 1 and 4 could be modified to take into
account the fact that the vorticity in OB and OB!' actually is not
contained in vortices 1 and 4. The amount of vorticity in OB
(hereafter referred to as TI,) and the resulting modification of ry
is readily calculated from the span load distribution, as shown in the
sketch. The strengths of the three vortices shown are simply given by

cye
[ (cZC)maX
{ege),
I
A
<——al'———>acr<— o
I‘ . .
s (e o W T
-s5 <. T T teg v
Iy re—Ym —=f Tp ‘
Iy=3 (ege)yi Ta = 2 (cye)
1= 1807 2 =35 (C10)puy
and :
I =TzD =g [(clc)max_ - (Czc)o] (¥7)

Thé initial positions of thé vortices are again calculated by equating
the 1ift impulse before and after rolling up, but now 'y is considered

to contain only the vorticity arising from its side of the wing; that is,
o

a1’ (cic)g /=f ce dy
ac (CZC)O +‘(ym-ac)(czc)maX =\/F cic dy
d
+8¢
(azym) (c1¢)max = f cqe dy (48)

Im
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Note that ap is unchanged by the introduction of [g.

With the aid of the foregoing sketch, one can again express the
cruciform-wing 1i{t in terms of the initial vortex positions

L =42 pU {I‘l (21! + ac) + o (ap - ac) —_J = % QUZCLS (49)

and conclude that

o _ «/—é—sé /SI_J> (50)
U [y(a1' + ag) + az — ac) \%

where

The original four-vortex prob-
2 lem has actually now been replaced
1 by the six-vortex problem illus-
trated in the sketch. However, due
to the relatively small strength of

4
.C?\ iZ) I'., as well as to the close prox-
imity of the two opposing vortices

! T'., the influence of these addi-
» ¥ tional vortices on the motions of
Ie (; E} Te the other four is expected to be
small. An iterative approach to
the exact solution can be obtained
by neglecting this influence once
. ; <Sr 1;> r the initial position and strength
3 2 of T'; have been modified to allow
for I'c. Thus the problem is again
simplified to that of the motion of
four vortices, but now they have
unequal strengths. (The ratio of
the strengths I; to Iz 1is plotted against CL/KAZ in fig. 7.)
This fact alone complicates the mathematics to the point that the
integrations can no longer be carried out except by numerical methods.
Therefore, the complete motions will not be determined, but the leapfrog
distance will be recalculated in order to illustrate the effect of the
new assumptions on the results. The leapfrog distance is readily
checked experimentally; as will be shown in the experimental section.




4K NACA TN 2605 | 25
Modified Four-Vortex Calculation

The equations for the relative motion of the four vortices can
again be set up by the use of the general equations (3) and (4) with a
new statement of the center-of-gravity rule in which the vortex
strengths are no longer taken to be equal. That is,

= = = e = constant 1
Je e Iy Pl 4 Fg ‘ (5 )

If it is noted that in the initial configuration

21,2 V1 + Y25 V1= Y05 ya=e (L+7) = - (52)

then equations (3) and (4) can be used as in the original analysis,
resulting in the following expression (in dimensionless form) for the
relative vortex paths: '

) o 2 - (G2 )6

! <’l+7-7 e

ml:ﬁ “’Il--(<

R}

e

/%1, {— <1-7)+1+7f <
(f. P

: . 7/ .
. '2 2 a, al' l
a o
a;. +ap 7+ Y a5t

| h (53)

where

g

W)

N
=+

A
i

o N 2 '7+;
3,' +a, 1+ 7

The velocity vy 1is recalculated in the same manner as before, with
* the result
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(2) - @)
e e
/ 2 ' 2 z 2 <
{\ﬂﬁ> +[y_1_ (1_‘>+1+,} }{(_Lé) {(ﬁ _ ><1+,>] }
e e e / e
L -
" If this expression is now used in equation (30) to determine the

downstream distance d, the resulting (dimensionless) form of the
integral is '

(54)

e X

g nUe
e 2P2

# {1 (2.0 o e (296},
Yo I <z§;2>[7_ %) -<1+7> zel'J J (55

It is readily seen, without substituting the expression for 2z, /e
as given by equation (53), that analytical evaluation of the in%egral
of equation (55) would be extremely difficult. This integration was _
carried out numerically with the definite upper limit as given by the
collinear configuration of the four vortices (i.e., z; o = O) and the
resulting values of the leapfrog distance dj are plo%ted on

figure 6. It is noted that the resulting curve is higher than that
calculated in the original analysis. This is due primarily to the
smaller strengths of the upper two vortices and to the consequently
longer time required for them to pass through the lower two because
of reduced induced velocities of one upon the other.

" WATER-TANK EXPERIMENTS
S
The motions of the vortex sheets behind a triangular cruciform
wing of aspect ratio 2 were observed experimentally by means of a
water tank (fig. 8). The model was mounted on a vertical track which
was driven at uqiform speed into the tank, while photographs of the
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water surface were recorded by a motion picture camera. The traces of
the vortex sheets were made visible by applying fine aluminum powder to
the trailing edges of the model. The model had a span of 8 inches and
was made of 0.050-inch sheet metal. : :

"In general, the purpose of the water~tank studies was simply to
illustrate the motions analyzed in the earlier portions of this report.
(A typical series of photographs enlarged from the moving pictures is
presented in fig. 9.) However, it was a simple matter to obtain
experimental values of the leapfrog distance by means of a tape which
moved with the model track and recorded on the movie film the distance
traveled by the wing. The results of such experiments are presented in
figure 6 for several angles of attack and it is observed that the agree-
ment with the modified four-vortex calculation is remarkably good. ’

The formation of a separate vortex sheet arising from the center
portion of the cruciform wing, as discussed in a previous section, can
be seen in the photographs of figure 9. This is the phenomenon that
has been taken into account in the modified theory. '

It is interesting'to note (fig.9) that the two lower vortices
extend downstream in nearly the free-stream direction as indicated by
their positions relative to the wing-tip markers. This was also true
for the calculated paths of figure 5.

" An important feature of the actual flow field as, distinguished from
the simplified model used for the analysis is the persistence of the
vortex sheets between the rolled-up vortices as seen in figure 9.
Because of this fact, the theoretical paths of the vortices are not
expected to be accurate at distances behind the wing greater than dr,,
since vortices 1 and 4 will then begin to become entrained in the outer
windings of the sheet that constitutes vortices 2 and 3. However, the
" magnitude of this effect will depend upon the rate of rolling-up of
the vortex sheets and it would be expected to be most serious at the
lower 1ift coefficients (or higher aspect ratios) where the motions
being considered are not of practical concern.

CONCLUDING REMARKS

A detailed analysis has been made of the motions of the four fully
rolled-up vortices trailing behind a cruciform wing which is banked 450,
Equations have been developed describing the paths of the four vortices
in three dimensions, and calculations have been made of the distance
behind the wing at which the upper two vortices leapfrog through the
lower two. The latter calculations were confined to wings of triangular
plan form. The simplified analysis presented in the early portions of
the report has been modified to account for the fact that all the
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vorticity shed from the cruciform wing is not actually contained in the
four rolled-up vortices.

It was found that the leapfrog distance decreased with increasing
1ift coefficient and increased with increasing aspect ratio. For angles
of attack up to a certain critical value of CL/nAe, the vortex motion is
periodic with downstream distance, while above the critical value the
motion is aperiodic.

From the fact that the leapfrog phenomenon can occur within two
chord lengths of the wing trailing edges, it is clear that downwash
calculations even at distances less than one chord length behind
low-aspect-ratio cruciform wings must take into account the vortex
motions considered in this report. Once the positions of the vortices
are known, there are methods available for approximating the downwash,
and corrections can be made for the viscous vortex cores by assuming
that they rotate as solid bodies. '

For angles of bank other than h5o, it is doubtful, due to the lack
of symmetry, that calculations of the type presented here could be made
by other than numerical procedures.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Oct. 5, 1951.
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Figure 8.- Water tank with cruciform-wing model.
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d/c = 0.61 , dfe = 1.79

) A-16567
(a) Stations 1 to 6.

Figure 9.- Photographs of wake at various stations behind a triangular
- cruciform wing of aspect ratio 2. Cp % 0.66.
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(v) Stations 7 to 11.
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