STRATEGIC MISSION IMPLEMENTATION: A VALUE FOCUSED APPROACH

Steven F. Baker, Steve G. Green, James K. Lowe
Department of Management,
2354 Fairchild Drive, Suite 6H90
USAF Academy, Colorado 80840
719-333-3670 (voice), 719-333-6880 (fax)
steve.baker@usafa.af.mil

Vernon E. Francis
The SABRE Group
MD 4231 Box 619616
Dallas/Ft Worth Airport, Texas 75261

67th MORS Symposium
Working Group 27
24 June, 1999

ABSTRACT

This paper offers an approach for performance-based decision making and budgeting that objectively orders alternatives according to established mission criteria. We employ a model using Value-Focused Thinking (VFT) to address the contemporary focus on performance and mission-oriented results. The laboratory equipment budget at the US Air Force Academy is used to illustrate how over $1 million of funding was allocated without the divisive claims of departmental inequity. We provide an objective rubric for assessing how well aligned the organization’s decisions are relative to its stated mission. Finally, we note that the approach accommodates the flexibility to allocate initial budget allocation as well as year-end residual. As organizations make significant strides toward implementing performance-based decision and budgeting systems, VFT shows considerable promise for improving strategic mission implementation.

INTRODUCTION

Decision-making that optimally allocates scarce resources has always been a critical management skill. Recently, selecting alternatives that have the most impact on the organization’s mission has also become a paramount concern. Unfortunately, developing objective measures that prioritize alternatives when mission statements are subjective and vague is problematic. However, a renewed focus on mission-oriented results, ushered in by a host of federal legislation and popular management philosophies, has compounded the significance of the challenge (Figura, 1999). In many cases, time-proven analytical approaches do not provide adequate information for decision-makers. More than ever before, decision-makers must temper their
decisions based upon both internal organizational consequences while meeting the demands of external stakeholders. This emerging focus on outputs, outcomes, and results, in the context of strategic mission implementation, is the focus of this paper.

We offer an approach that satisfies the needs of internal and external stakeholders. The approach provides a sound analytical foundation for complex strategic decisions, while offering an objective rubric for assessing how well aligned the decision are to the organization’s mission. The approach may be used for a broad range of situations where allocation of scarce budgetary resources is complicated by competing projects, all of which contribute to organizational performance. This type of performance-based budgeting requirement will undoubtedly drive the decision making landscape for the foreseeable future.

Strategic decision tools that rely upon and assist the development of performance metrics are especially valuable within the DoD and other government agencies. Legislation compliance is compounded by the explicit need to improve taxpayer confidence by holding agencies accountable for achieving results. The 1993 Government Performance and Results Act’s (GPRA) primary purpose is to improve decision making and the internal management of the government. It shifts the focus of federal agencies away from traditional concerns of staffing and activity levels toward a single overriding issue: results (GAO, 1996). While performance promises have accompanied funding requests in the past, GPRA explicitly mandates the financial consequences of not fulfilling stated promises. Organizations must reflect specific results that are visible and reportable to legislators and ultimately taxpayers (Comes and Riley, 1999). If these results are not aligned with the organization’s mission, funding might be adversely affected, and the value the organization provides might come into question. In fact, according to the Office of Management and Budget (OMB), which is responsible for implementing and monitoring the GPRA, “...eventually, the annual performance plan will be integrated with the agency’s budget report.” (OMB, 1998). Goals and outcomes accompanying organizational mission statements must be measurable, and eventually linked to specific budget requests. Observers contend that legislators barely disguise their intentions to use this type of information as ammunition to reduce federal manning levels (Laurent, 1997).

To complicate matters, managers must still make decisions that are sensitive to intra-organizational dynamics. They must make resource allocations that might spark criticisms of shortsightedness or favoritism. If performance of activities cannot be measured or aligned with organization missions or goals, then the value of that activity should come under scrutiny. Ideally, decision-makers can approach situations with a tool that addresses both internal and external stakeholders.

Our approach uses Value Focused Thinking to provide the credible information required to immediately put into action a performance-based decision and budgeting process that considers both internal and external perspectives. It allows an organization to take that first
step toward implementing a mission-oriented budgeting and management system.

VALUE-FOCUSED THINKING

Multi-Attribute Decision Analysis is specifically designed to meet the need for an objective means assessing resource allocation scenarios (Keeney, 1976; Hwang and Yoon, 1981). However, while the methodology helps in efficiently allocating resources between competing objectives, it does not guarantee the “right” objectives were identified and defined. Value Focused Thinking (VFT) focuses attention upon organizational values, which can be translated into objectives. This approach places value on mission effectiveness and objective measures. It prescribes importance, which allows decision-makers to shape the future, and appears to be ideally suited for long-range, guidance-type decisions (Keeney, 1992). VFT requires the judgement of experts regarding future values and interpretation of organizational missions and goals. Because they are mission, as opposed to profit oriented, this methodology seems ideally suited for the public sector.

The United States Air Force recently employed VFT to evaluate the value of future air and space forces in the AIR FORCE 2025 Study. The Foundations 2025 model “...successfully scored 43 futuristic system concepts ... on 134 attributes ... and provided insights about the most promising system concepts and technologies.” (Parnell, et al., 1998). This technique was also successfully employed for Spacecast 2020, a study to identify future space system concepts (Burk and Parnell, 1997). Another recent study involving VFT evaluated the past performance and prescribed future efforts of AFROTC detachments (AFROTC Viability Study; Hague, Newton, and Lowe, 1998). All of these large-scale successful applications of VFT add to the track record of providing a sound analytic foundation for complex, strategic decision-making.

A multi-attribute approach was employed to maximize benefits in the repair of Canadian Forces land-based equipment (Mitchell and Bingham, 1986). Likewise, a hierarchical approach was used to generate objective function weights necessary to support a large-scale goal program model of a multi-year Army Personnel Planning Model (Gass, 1986).

The original hierarchical model described in this paper was motivated by the Analytic Hierarchy Process (AHP), developed and applied by Saaty (1980, 1982, 1990). “The AHP is useful in priority setting (ranking), but it is its extension to planning and resource allocation decisions where it may ultimately have its greatest utility” (Liberatore, 1987[1], p.13). However, for the case study described in this paper, the decision-makers were comfortable using a modified Delphi Process, to directly assess the hierarchy. Within the Delphi Process, they relied upon pairwise comparisons to determine several attribute measures.

Liberatore relied upon the AHP/Optimization approach in creating a decision support system to allocate funds to R&D projects (Liberatore, 1987[2]). While his hierarchical development and attainment of attribute weights were similar to our approach, a difference was that he included financial
considerations (return on investment, market share, etc.) within his value hierarchy and weighted these aspects along with other desirable R&D attributes. Our model kept cost and budget considerations out of the Value Hierarchy, but included these concerns as posteriori constraints. The potential impact of this modeling difference cannot be predetermined (Bernhard, 1990). Both approaches eventually assign a “weight to cost.” However, our model relies upon an optimization to create the “opportunity costs” of constraints (budget) rather than asking decision-makers to make the tradeoff a priori. French (1988, 1989) provided the theoretical basis which guided our modeling strategy (see also Melese, Lowe, and Stroup, 1997).

Finally, sensitivity analysis provides comfort to stakeholders by illustrating the effect upon the final unit rank order of changes to the attribute weights. Vazsonyi (1995) and Kirkwood (1997) present practical examples of performing and presenting sensitivity analysis results. Vazsonyi’s “performance” profile ideas formed the basis of the sensitivity charts used by our approach.

CASE STUDY: THE DEAN’S EQUIPMENT BOARD (DFEB)

The Dean of the Faculty at the United States Air Force Academy is faced with many diverse resource allocation decisions. One such decision involves the disbursement of approximately $1M for laboratory and other equipment. Accordingly, this disbursement requires an “equitable” distribution of budget authority among widely disparate requests. Historically, the process has been emotionally charged due to the reported urgent nature of almost all of the requests and the seemingly constant reduction of available funds. To provide a non-parochial approach, an Equipment Board (the DFEB) was established with representatives from each academic division to equitably allocate funds across the faculty. This allocation was not straightforward; equipment requests came from 19 departments and supporting staff agencies with widely varying requirements.

By the nature of their academic disciplines, the 9 departments in the Social Science and Humanities Divisions were less inclined to have requests that approached the dollar figures of the 10 departments found in the Engineering and Basic Science Divisions. However, organizational climate could be adversely affected if requests were determined by relative dollar size alone. What was required was an objective means of prioritizing the equipment budget allocation that was efficient, credible, traceable, relevant, and considered fair by the competing department heads. Originally, the DFEB considered several factors in allocating funds. To its credit, the DFEB rejected the straightforward but ill-considered method of simply dividing the funds equally across departments. The limitations of this approach are well documented (e.g., Melese and Lowe, 1992).

The DFEB ultimately decided to use a VFT approach, which placed value on objective measures contributing to mission effectiveness and appeared to be ideally suited for this type of strategic decision (Keeney, 1973, 1976, 1992). The approach required the judgment of
experts regarding future values and interpretation of organizational mission and goals. The type of decisions the DFEB typically faces appeared to be a classic budget allocation decision across competing objectives since the departments were so inherently different. Coincidentally, the Academy was in the process of establishing institution, education, and department outcomes (largely in response to accreditation demands). Thus, the time was ripe to adapt these viable targets as metrics for performance. The DFEB would use these metrics to develop a process for funds distribution that would maximize the effect (or value) of the Academy's educational program (or mission).

The original modeling approach supported by the Dean was an Equipment Board Hierarchical Model (Francis, 1989). The fact that the model survived a decade, numerous department heads, and rotating DFEB members lends to its credibility. Our efforts were to validate and update the model to create a closer link to the institutional values and mission (thus the reliance upon the VFT), which had been reviewed and clarified during the intervening decade. Finally, our model had to incorporate the dynamics associated with a government fiscal environment. Of particular interest was its flexibility to not only prioritize initial budget allocation, but also to address year-end budget residual funds when applicable. In either case, deriving an objective metric of how much positive impact each request would have on the mission proved to be a very powerful tool. The fact that this approach was a potential first step toward GPRA compliance and organizational goal congruence provides compelling rationale for other organizations to consider its virtues.

HIERARCHY DEVELOPMENT

Consensus building with respect to equipment selection criteria was essential to the success of the hierarchy development. Recognizing this, the DFEB consisted of a Chairman, a Budget Representative, and a member from each of the four academic divisions: 1) Basic Sciences, 2) Engineering, 3) Social Sciences, and 4) Humanities. Their task was to develop criteria and preference weights which supported the Academy's mission and educational outcomes, as well as to "level" all potential parochial division agendas.

After carefully considering the Academy's mission and educational outcomes, the DFEB agreed on three main criteria for equipment purchases: 1) the intended equipment usage, be it for curriculum, research, or support; 2) whether the equipment type served a new or replacement role; and 3) the individual department's subjective desire for a piece of equipment. When first developed, the board included a fourth criterion: whether the equipment had been planned for in the department's budget. However, this "budget" criterion represented only a procedural issue, and did not reflect the underlying values of the institution. Instead, the board recently updated this criterion to hazard, which reflected the more contemporary issues of workplace safety and environment regulations. Figure 1 depicts the updated hierarchy.

Under the usage criterion, the established sub-criteria of curriculum,
Figure 1 The USAFA equipment selection hierarchy tree reflects the board’s primary selection criteria: 1) intended usage, 2) type, 3) departmental desire, and 4) hazard redress. Below each primary criterion are sub-criteria and measurable attributes. Each piece of proposed equipment is assigned a score for each of the 13 measurable attributes. That score is multiplied by all “parent” criteria and sub-criteria weights. For example, equipment used only in Major’s courses would receive a .0177 score (.277x.45x.43x.33) for the Usage-Curriculum-Breadth criterion. The overall score is then computed by summing each of these 13 components.
research, and support clarified whether the equipment was primarily intended for the classroom, faculty research and enrichment, or whether it fulfilled some need not directly related to academia. Below each sub-criterion, the attributes breadth and depth provided an opportunity to score each equipment request. Depth was scored by the amount of equipment usage, given in hours or lessons. We assigned a breadth score based on how many courses or departments the equipment would be used.

The type criterion was broken into replace and new sub-criteria. In the case of equipment to be replaced, categorical descriptions of the current equipment’s condition and its technological obsolescence as measurable attributes were used. New equipment was measured categorically by its enhancement to existing capability, and by how contemporary the equipment’s technology was with respect to its intended use.

The desire criterion allowed each academic department to prioritize its own equipment requests. This was deemed reasonable, given that DFEB’s charter was to prioritize purchases across diverse disciplines, not within a given discipline. Unlike other value models, departmental flexibility was “built-in.” For example, all board members agreed that autonomy within a department was prudent. Each department received a point allocation for this criterion based on their number of requests. A single request could receive 100 points; two requests could receive only a total of 180 points. However, no request could be assigned more than 100 points, which thwarted the temptation to generate additional requests solely to shift points to a genuine need.

The DFEB decided that fairness across departments could be incorporated into the desire criterion. In a departure from traditional VFT, the DFEB forced each department to rank order their requests (prior to calculating the value function) and considered the top two of each department prior to all others. This “top-two” rule was not arbitrary; it reflected a sense of equity as well as realistic upper bound on the total amount of equipment the budget could support. All additional requests were ranked below the combined “top two” lists from all departments.

Hazard was broken into sub-criteria of Environmental and Safety. These were scored based on the categorical level of redress new equipment provided. Existing violations of law or regulation received the highest priority; impending or potential violations received lower scores.

Throughout the development process, the DFEB carefully considered the Dean of Faculty mission. For example, a primary educational outcome of the Academy is: “Fundamental integrated knowledge: breadth and depth.” The DFEB used this and other mission-oriented statements when designing the value hierarchy and tree.

The levels of the tree depicted in Figure 1 specify the primary criteria, the sub-criteria (if applicable), and the measurable attributes. Figure 1 also shows the weights determined by the method next described.

HIERARCHY WEIGHTING

After reaching consensus on the structure of the tree, the DFEB turned to
establishing the relative weights for the
criteria, sub-criteria, as well as assigning
scores for each measurable attribute.
Rather than utilize the pair-wise
comparisons suggested by AHP, the
DFEB employed a modified Delphi
Process and directly created the
hierarchy’s attribute weights. This
process was possible since board
members thoroughly understood the
hierarchy, the weights assigned to
attributes, and the resulting value
function. (Crawford and Williams, 1985,
discuss the use of subjective weighting
matrices). The resulting Delphi Process
accomplished two goals for the
facilitators. First, the process provided
the vehicle to insure each board member
understood the hierarchical process.
Second, the process allowed members to
voice their opinions without reservation.
Within the Delphi Process, each member
responded by evaluating the relative
importance of each criterion and sub-
criterion. For example, Figure 2 depicts
the worksheet used to establish the
relative importance of curriculum
usage, research usage, and support
usage.

When the DFEB initially
convened, three iterations were
necessary to achieve consensus. Each
iteration consisted of soliciting
individual scores, and meeting as a
group to present those individual results
(based upon Saaty’s AHP method,
1982). More recently, the weight
determination proceeded much quicker,
no doubt due to the face-validity of the
earlier work, as well as the VFT
emphasis upon values leading to
objectives. The DFEB agree on all the
weights after the first iteration of the
Delphi Process.

Once the DFEB decided on the
relative weights, normalizing the values
so that each criterion level of the tree
summed to one was straightforward.
Note in Figure 1 that the attribute scores
(in contrast to the criteria weights) do
not sum to one; the highest score for
each attribute was assigned 1; lower
scores were scaled according to DFEB
members’ assessment.

SURVEY, FINDINGS AND
RESULTS

The DFEB developed a survey
consisting of a question relating to each
sub-criterion, which was scored by
multiple choice response (see appendix).
The academic departments completed a
survey for each of their equipment
requests. As with most surveys, there
was some initial confusion as to how to
complete the questionnaire (particularly
with respect to assigning points under
the desire criterion). Eventually, each
department complied.

Figure 3 lists each equipment
request and its corresponding VFT score.
The first and second priority requests for
each department are sorted separately at
the top; remaining requests are sorted
below the “top two” list.

A few items were removed from
the list administrative reasons (e.g., the
items were unavailable, or were funded
by other sources), but the priority was
unchanged for the remaining ones.
Ultimately, items with a score greater
than 28.0 were funded immediately,
corresponding to just over $1 million.
The remaining items successfully
competed for year-end funds, thanks to
the mission justification offered by this
process.
An example question to each board member:

<table>
<thead>
<tr>
<th>With respect to Usage, please assess the relative importance of Curriculum, Research, and support.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curriculum</td>
</tr>
<tr>
<td>Research</td>
</tr>
<tr>
<td>Support</td>
</tr>
</tbody>
</table>

A sample response:

<table>
<thead>
<tr>
<th>With respect to Usage, please assess the relative importance of Curriculum, Research, and support.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curriculum</td>
</tr>
<tr>
<td>Research</td>
</tr>
<tr>
<td>Support</td>
</tr>
</tbody>
</table>

Figure 2 We established consensus on the appropriate weights for the hierarchy tree by having each board member draw horizontal histograms reflecting relative importance. In this case, the respondent considered curriculum use roughly 5/8 as important as research use, and support use just under 1/4 as important as research use. The entire board was presented with all the respondents' answers; conflicts were resolved by the Delphi method.

SENSITIVITY ANALYSIS

The DFEB was concerned of the effect that their specific preference weights would have upon the final rank ordering of equipment requests. To address this concern, we altered the preference weights of the four primary factors (usage, desire, type, and hazard) first by 10%, then 20%, and evaluated the resulting rank orderings. The sensitivity of each factor was performed independently. For instance, when desire was altered from its original 30% value to 27% (a 10% change), the preference weights of the remaining three factors increased proportionately.

The results were somewhat unexpected. Although the DFEB believed hazard to be an important factor, it had almost no impact upon the final equipment rankings. As seen in Figure 4, only 10% of the equipment items moved within the overall rankings despite an increased preference for hazard from 15% to 25%. Based upon this information, we will initiate efforts to improve the measurement of hazards. Similarly, type sensitivity (Figure 5) did not significantly affect the overall item rankings. Again, future efforts will address the value-added of this dimension (new versus replacement technology) to create a more discriminating metric.

On the other hand, usage and desire (Figures 6 and 7) were influential in their impact on the final rankings. For example, item #33's position was very sensitive to desire preference. Its rank ranged from 30th to 40th, as desire became more important (d-20% to d+20%). This piece of equipment was important, but it was not its department's first choice. Similarly, items #5 and #10
<table>
<thead>
<tr>
<th>Department and Priority Number</th>
<th>Item Description</th>
<th>Number Requested</th>
<th>Unit Cost</th>
<th>Total Cost</th>
<th>Cumulative Cost</th>
<th>Value Tree Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFX</td>
<td>STAND, VID</td>
<td>10</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>63.5</td>
</tr>
<tr>
<td>DFX</td>
<td>DIGITAL OSCILLOSCOPES</td>
<td>11</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>47.2</td>
</tr>
<tr>
<td>DFX</td>
<td>CONTROLS LAB SERVO-MOTORS</td>
<td>14</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>46.7</td>
</tr>
<tr>
<td>DFX</td>
<td>CONVERTER, VID</td>
<td>7</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>46.2</td>
</tr>
<tr>
<td>DFX</td>
<td>VESTIBULAR ILLUSION</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>45.3</td>
</tr>
<tr>
<td>DFX</td>
<td>DEMONSTRATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFX</td>
<td>BENCH TOP POWER SUPPLIES</td>
<td>6</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>44.3</td>
</tr>
<tr>
<td>DFX</td>
<td>FINE ELECTRON BEAM TUBES</td>
<td>2</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>44.3</td>
</tr>
<tr>
<td>DFX</td>
<td>FUNCTION GENERATOR</td>
<td>5</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>44.2</td>
</tr>
<tr>
<td>DFX</td>
<td>SOIL SAMPLING RIG</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>40.2</td>
</tr>
<tr>
<td>DFX</td>
<td>XENOTECH ENGRAVER TABLE</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td>"Top Two" List above, all other requests below</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFX</td>
<td>OVERHEAD PROJECTOR</td>
<td>17</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>55.3</td>
</tr>
<tr>
<td>DFX</td>
<td>STAND, PROJECT</td>
<td>17</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>50.7</td>
</tr>
<tr>
<td>DFX</td>
<td>WALK-IN COLD ROOM UNIT</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>47.1</td>
</tr>
<tr>
<td>DFX</td>
<td>MOTION CONTROLLER</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>46.0</td>
</tr>
<tr>
<td>DFX</td>
<td>CINEMA CLASSICS VIDEODISCS</td>
<td>10</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>42.8</td>
</tr>
<tr>
<td>DFX</td>
<td>FIBER LAUNCH</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>42.5</td>
</tr>
<tr>
<td>DFX</td>
<td>DATA ACQUISITION EQUIPMENT</td>
<td>2</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>42.2</td>
</tr>
<tr>
<td>DFX</td>
<td>FATIGUE TEST MACHINE UPGRADE</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>41.8</td>
</tr>
<tr>
<td>DFX</td>
<td>OPTICAL ISOLATOR</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>41.6</td>
</tr>
<tr>
<td>DFX</td>
<td>FUNCTION GENERATOR</td>
<td>6</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>41.1</td>
</tr>
<tr>
<td>DFX</td>
<td>VIBRATION ISOLATION LEG</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>40.6</td>
</tr>
<tr>
<td>DFX</td>
<td>OSCILLOSCOPE</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>40.5</td>
</tr>
<tr>
<td>DFX</td>
<td>COMPLETE ROTATIONAL SYSTEM</td>
<td>34</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>39.9</td>
</tr>
<tr>
<td>DFX</td>
<td>ELEKTROSTATICS LABORATORY SYSTEM</td>
<td>6</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>38.5</td>
</tr>
<tr>
<td>DFX</td>
<td>VIDEO IMAGING SYSTEM</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>37.8</td>
</tr>
<tr>
<td>DFX</td>
<td>10KIP LOAD CELL</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>37.4</td>
</tr>
<tr>
<td>DFX</td>
<td>EQUIPMENT TRAILER</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>37.1</td>
</tr>
<tr>
<td>DFX</td>
<td>ASPHALT PAVING MACHINE</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>36.2</td>
</tr>
<tr>
<td>DFX</td>
<td>EM-SCAN ANALYSIS SYSTEM</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>35.2</td>
</tr>
<tr>
<td>DFX</td>
<td>HECV LASER</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>31.4</td>
</tr>
<tr>
<td>DFX</td>
<td>SPACE SIM MAGNETIC FIELD CONTROL</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>31.2</td>
</tr>
<tr>
<td>DFX</td>
<td>CW DOUBLED YAG LASER SYSTEM</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>31.1</td>
</tr>
<tr>
<td>DFX</td>
<td>FINE ELECTRON BEAM TUBES</td>
<td>4</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>30.8</td>
</tr>
<tr>
<td>DFX</td>
<td>WAREHOUSE PALLET JACKS</td>
<td>2</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>29.3</td>
</tr>
<tr>
<td>DFX</td>
<td>HYDRAULICS FLOW BENCH</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>29.1</td>
</tr>
<tr>
<td>DFX</td>
<td>UNCONFINED COMPRESSION TESTERS</td>
<td>2</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>28.6</td>
</tr>
<tr>
<td>DFX</td>
<td>SPACE SIM THERMAL CONTROL EQUIP</td>
<td>1</td>
<td>$XXX</td>
<td>$XXX</td>
<td>$XXX</td>
<td>28.2</td>
</tr>
</tbody>
</table>

FUNDING LINE

DFX	DIRECT SHEAR TESTERS	2	$XXX	$XXX	$XXX	27.1
DFX	NUCLEAR DENSIMETER-TROXLER	1	$XXX	$XXX	$XXX	26.7
DFX	SPECTRUM ANALYZER	1	$XXX	$XXX	$XXX	26.6
DFX	PULSED ENERGY METER	1	$XXX	$XXX	$XXX	26.2
DFX	LOCK-IN AMPLIFIER	1	$XXX	$XXX	$XXX	25.3
DFX	THERMO AND STATIS MECHANICS DEMOS	1	$XXX	$XXX	$XXX	24.7
DFX	MICROWAVE OPTICS	1	$XXX	$XXX	$XXX	24.3
DFX	EMISSIONS TESTER	1	$XXX	$XXX	$XXX	23.1
DFX	WEATHER MONITORS	1	$XXX	$XXX	$XXX	22.3
DFX	CARBON MONOXIDE METER	1	$XXX	$XXX	$XXX	20.3
DFX	MAGNETIC TORQUE	5	$XXX	$XXX	$XXX	20.3

Figure 3: The requested equipment for the USAFA Dean of Faculty is prioritized by department desire and total value tree score. The first and second most desired items for each department are given highest priority; remaining items are listed by score only. Items above the funding line received immediate funding, while the remaining items successfully competed for year-end funds (department names and costs have been masked).
Figure 4. The rank order of equipment requests changes as the criterion weights are altered. Each line is an equipment request; intersecting lines indicate changes in the rank order as the weight for hazard varies (higher rankings are less preferable, the best is at the bottom of the chart). Although the leadership of the Academy is concerned about meeting environmental and safety hazards, it is apparent that this emphasis has not reached Department equipment managers. Very few items address hazards, or the proxy measures are not capturing hazard's value as shown by the graph.
Figure 5. Changing the weight of the type criterion did not significantly affect the ranking although it had more effect than changing hazard's weight. Note that the equipment request lines cross each other more frequently than figure 4. Whether an item was new technology or replacing old technology was not significant.
Figure 6. The DFEB considered *usage* a prime attribute contributing to the Academy mission; items not used within the classroom fell to the bottom of the rankings. This effect insures future requests are very classroom-friendly!
Figure 7. This figure is very important to Department Heads. They must support their equipment item requests, and the Board must carefully determine how much power they want the Departments to have. The ranking of several items plummeted as the desire weight increased, indicating the peril of departmental indifference!
scored high based upon the hierarchy, but were not their department’s priority items. These equipment items were victims of DFEB’s decision to consider the top two choices of each department before considering other items. Item #5 was its department’s 3rd choice, even though it was in the top 5 overall. The sensitivity analysis provided information to members of the DFEB that was lost under the “top 2” criteria. The DFEB remedied this inconsistency by funding these items first as “fallout” funds came available. Since the process is intended to avoid tactics which eliminate potentially valuable equipment items, we recommend that the board refine their desire measurement to insure it captures the essence of the “top 2” criteria.

CONCLUSIONS AND FUTURE ISSUES

Value-Focused Thinking (VFT) played the primary role in the Air Force Academy’s equitable distribution of budget authority to widely disparate academic departments. The approach described in this paper provided the DFEB the credible information required to immediately put into action a performance-based decision and budgeting process that considers both internal and external perspectives. It also dramatically reduced the emotionally charged debated that historically accompanied the DFEB’s process.

Through VFT, the DFEB was able to allocate resources with a sound analytical foundation for a complex strategic decision. The model’s criteria were based on the institutional values of education, mission, adherence to regulatory imperatives, and a sense of fairness, rather than “evenly slicing the budget pie.” With institutional values providing the aegis for legitimacy, the model overcame traditional budget contentions. VFT provided a rubric for assessing how well aligned procurement decisions were to the Academy’s values, mission, and objectives. Thanks to the mission impact elucidated by our approach, we did not need to utilize a post-processing optimization. In the future, as others adopt this method, benefit to cost optimizations will be necessary.

The VFT approach incorporated the dynamic fiscal environment and provided the flexibility to not only prioritize initial budget allocation, but to also address year-end budget residual. It allowed this organization to move toward implementing a results-oriented budgeting and management system, rather than focus inappropriately on the cost of each request. Since performance-based budgeting requirements will undoubtedly drive the decision-making landscape for the foreseeable future, the decision process described in this paper could provide insights for improving the decision processes for countless government and commercial organizations.

Opinions, conclusions, and recommendations expressed or implied within are solely those of the authors and do not necessarily represent the views of the United States Air Force Academy, the United States Air Force, the Department of Defense, or any other US government agency.
REFERENCES

Laurent, A., “Results or Else.” Government Executive, June 97, p.18

APPENDIX

DF EQUIPMENT BOARD
EQUIPMENT REQUEST QUESTIONNAIRE

1. How many TOTAL LESSONS per SEMESTER will the requested equipment be used? Count ALL courses however count only once per course. For example; EE350, EE351, and EE352 each use an oscilloscope for 40, 35, and 20 lessons each, totaling 95.
 a. More than 40 Lessons.
 b. More than 30 Lessons.
 c. More than 20 Lessons.
 d. More than 10 Lessons.
 e. Less than 10 Lessons.
 f. Not used in class.

2. In which TYPES of courses will the requested equipment be used?
 a. CORE and MAJOR'S Courses.
 b. CORE Courses
 c. MAJOR'S Courses (include Service Courses for other Departments)
 d. Not used in class.

3. How much will the equipment you are requesting be used to support RESEARCH?
 a. More than 30 hours per week.
 b. Between 21 and 30 hours per week.
 c. Between 11 and 20 hours per week.
 d. Between 5 and 10 hours per week.
 e. Less than 5 hours per week.
 f. Not used in RESEARCH.

4. This equipment will support RESEARCH in how many departments/agencies?
 a. Four or more.
 b. Three
 c. Two
 d. One
 e. Not used in RESEARCH.

5. NOT including use for COURSES and RESEARCH, how much will this equipment be used?
 a. More than 30 hours per week.
 b. Between 21 and 30 hours per week.
 c. Between 11 and 20 hours per week.
 d. Between 5 and 10 hours per week.
 e. Not used for other than CURRICULUM or RESEARCH.

6. NOT including use for COURSES and RESEARCH, how many agencies will use this equipment?
 a. Common use item for most/all of DF, 34TRW, SUPT agencies
 b. More than three departments
 c. Three departments/agencies
 d. Two departments/agencies
 e. One department/agency
 f. Not used other than in the CURRICULUM and/or research

QUESTIONS 7 AND 8 APPLY TO REPLACEMENT EQUIPMENT ITEMS.
QUESTIONS 9 AND 10 APPLY TO NEW EQUIPMENT ITEMS.

FOR REPLACEMENT ITEMS: PLEASE BE SURE TO ANSWER “c” and “d” TO QUESTIONS 9 AND 10.

FOR NEW ITEMS: PLEASE BE SURE TO ANSWER “f” and “c” TO QUESTIONS 7 AND 8.
7. Which best describes the CONDITION of the equipment being REPLACED:
 a. Inoperable, impossible or too expensive to repair
 b. Operable, but performance is significantly degraded
 c. Operable, but frequent repair is required
 d. Operable, but has exceeded expected life cycle
 e. Operable, but the equipment to be purchased is much better
 f. Not a replacement equipment item

8. How would you best describe the technology of the equipment being replaced?
 a. Item being replaced is of outmoded technology; replacement item will significantly upgrade performance.
 b. Item being replaced is of current technology; replacement item will be of approximately the same technology and have approximately the same capabilities.
 c. Not a replacement equipment item.

9. How will the requested NEW EQUIPMENT ITEM improve CAPABILITY?
 a. Provides new capabilities: allows the using agencies to do things they are currently unable to do.
 b. Provides expanded capabilities: allows the using agencies to do more of what they’re doing now, or do it more efficiently.
 c. Not a NEW EQUIPMENT ITEM

10. How would you best describe the ‘technology’ of this NEW EQUIPMENT ITEM?
 a. Current technology: proven performance, pretty much the “standard”
 b. New, proven technology: new on the market, and proven technology, state-of-the-art.
 c. Not a NEW EQUIPMENT ITEM

11. Purpose: In question 11, you are asked to allocate “IMPORTANCE POINTS” to each of your equipment requests. The purpose is for YOU to assess how “IMPORTANT” this request is relative to the others you have submitted. It also serves to help equalize the budget allocation among departments/agencies.
 Instructions:
 1. Determine how many requests your department/agency has submitted.
 2. From the table below, determine how many POINTS/REQUESTS you are allowed.
 3. Determine the TOTAL POINTS you have to allocate by multiplying (POINTS/REQUEST) X (NUMBER OF REQUESTS).
 4. Allocate the TOTAL POINTS among your requests to indicate their RELATIVE IMPORTANCE (or DESIREABILITY). Do not allocate more than 100 POINTS to any single request.

 POINTS/REQUEST TABLE:
 NUMBER OF REQUEST POINTS/REQUEST
 1 100
 2 to 4 90
 5 to 7 80
 8 to 10 70
 11 to 15 60

 Please fill in the blank with the point allocation for this equipment item.
 POINTS=______________
12. The Requested Equipment remedies a:
 a. Direct Violation of NON-WAIVERABLE policy (attach documentation)."
 b. Direct Violation, but presently WAIVERABLE policy (attach documentation)."
 c. Violation of an IMPENDING policy, or regulation (attach documentation)."
 d. Not an environmental concern at this time."

13. The Requested Equipment remedies:
 a. A Documental Safety write-up (attach BASE SAFETY OFFICE documentation)."
 b. A Potential Safety hazard (attach DEPARTMENT or BASE SAFETY documentation)."
 c. No apparent Safety Hazard."

THANK YOU FOR YOUR ANSWERS!
REPORT DOCUMENTATION PAGE

1. REPORT DATE (DD-MM-YYYY) 18 10 1999
2. REPORT TYPE Journal Submission
3. DATES COVERED (From - To) n/a

4. TITLE AND SUBTITLE
Strategic Mission Implementation: A Value Focused Approach

5a. CONTRACT NUMBER n/a
5b. GRANT NUMBER n/a
5c. PROGRAM ELEMENT NUMBER n/a
5d. PROJECT NUMBER n/a
5e. TASK NUMBER n/a
5f. WORK UNIT NUMBER n/a

6. AUTHOR(S)
Lt. Col. Steven F. Baker, Lt. Col. Steve G. Green, Dr. James K. Lowe, Dr. Vernon E. Francis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Lt Col Steven Baker
HQ USAFA/DFM
2354 Fairchild Dr. Ste 6H94
USAF Academy CO 80840

8. PERFORMING ORGANIZATION REPORT NUMBER n/a

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) n/a

10. SPONSOR/MONITOR'S ACRONYM(S) n/a
11. SPONSOR/MONITOR'S REPORT NUMBER(S) n/a

12. DISTRIBUTION / AVAILABILITY STATEMENT
Unclassified, Distribution Unlimited

13. SUPPLEMENTARY NOTES n/a

14. ABSTRACT
This paper offers an approach for performance-based decision making and budgeting that objectively orders alternatives according to established mission criteria. We employ a model using Value-Focused Thinking (VFT) to address the contemporary focus on performance and mission-oriented results. The laboratory equipment budget at the US Air Force Academy is used to illustrate how over $1 million of funding was allocated without the divisive claims of departmental inequity. We provide an objective rubric for assessing how well aligned the organization’s decisions are relative to its stated mission. Finally, we note that the approach accommodates the flexibility to allocate initial budget allocation as well as year-end residual. As organizations make significant strides toward implementing performance-based decision and budgeting systems, VFT shows considerable promise for improving strategic mission implementation.

15. SUBJECT TERMS
Value Focused Thinking, Performance Based Budgeting

16. SECURITY CLASSIFICATION OF:
UNCLASSIFIED a. REPORT UNCLAS
b. ABSTRACT UNCLAS c. THIS PAGE UNCLAS

17. LIMITATION OF ABSTRACT
Distribution Unlimited

18. NUMBER OF PAGES 30
19a. NAME OF RESPONSIBLE PERSON Lt Col Steven Baker
19b. TELEPHONE NUMBER (Include area code) 719-333-3670

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18