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Abstract

The goal of this research was to develop a new approach to solve the inverse problem of thermal
remote sensing of the Earth. This problem falls under a large class of inverse problems that are
ill-conditioned because there are many more unknowns than observations. The approach is based
on a multivariate analysis technique known as Canonical Correlation Analysis (CCA). By collecting
two ensembles of observations, it is possible to find the latent dimensionality where the data are
maximally correlated. This produces a reduced and orthogonal space where the problem is not
ill-conditioned. In this research, CCA was used to extract atmospheric physical parameters such as
temperature and water vapor profiles from multispectral and hyperspectral thermal imagery. CCA
was also used to infer atmospheric optical properties such as spectral transmission, upwelled radiance,
and downwelled radiance. These pfoperties were used to corﬁpensate images for atmospheric effects
and retrieve surface temperature and emissivity. Results obtained from MODTRAN simulations, the
MODerate resolution Imaging Spectrometer (MODIS) Airborne Sensor (MAS), and the MODIS and
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (MASTER) airborne
sensor show that it is feasible to retrieve land surface temperature and emissivity with 1.0 °K and

0.01 accuracies, respectively.
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Abstract

The goal of this research was to develop a new approach to solve the inverse problem of thermal
remote sensing of the Earth. This problem falls under a large class of inverse problems that are
ill-conditioned because there are many more unknowns than observations. The approach is based
on a multivariate analysis technique known as Canonical Correlation Analysis (CCA). By collecting
two ensembles of observations, it is possible to find the latent dimensionality where the data are
maximally correlated. This produces a reduced and orthogonal space where the problem is not
ill-conditioned. In this research, CCA was used to extract atmospheric physical parameters such as
temperature and water vapor profiles from multispectral and hyperspectral thermal imagery. CCA
was also used to infer atmospheric optical properties such as spectral transmission, upwelled radiance,
and downwelled radiance. These properties were used to compensate images for atmospheric effects
and retrieve surface temperature and emissivity. Results obtained from MODTRAN simulations, the
MODerate resolution Imaging Spectrometer (MODIS) Airborne Sensor (MAS), and the MODIS and
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (MASTER) airborne
sensor show that it is feasible to retrieve land surface temperature and emissivity with 1.0 °K and
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Chapter 1

Introduction

Man must rise above the Earth—to the top of the atmosphere
and beyond—for only thus will he fully understand the world
in which he lives.

Socrates (500 B.C.)

One of the greatest scientific endeavors of our time is understanding the Earth’s ecosys-
tem at a global scale. Recent global phenomena, such as El Nifio, ozone depletion, and the
much debated global warming, demonstrate the powerful effect climate can have on people
and the economy. For example, the record-setting 1997-1998 El Nifio caused the deaths
of about 2100 people and resulted in more than 33 billion dollars (U.S.) worth of prop-
erty damage (Suplee 1999). Accurate forecasting of these major events, and all associated
weather phenomena, could potentially save people’s lives. To this end, it is necessary to
characterize the thermal radiation processes that govern the heat exchange between the
surface and the atmosphere, which play a large role in climate.

The Earth’s radiation budget illustrated in Figure 1.1 provides a framework for ana-
lyzing the distribution of energy and heat exchange that influences the environment. The
principal source of energy is the Sun. The thermodynamic state of the atmosphere and the

Earth’s surface plays a key role in how the energy is distributed. The incoming energy is



Figure 1.1: The Earth’s radiation budget is the categorization of energy paths in the at-
mosphere. The blue arrows are solar radiation components. The red arrows are emission
components due to temperature and emissivity.

either reflected or absorbed by the atmosphere and the surface. On average, about 70%
of the solar energy is absorbed by the Earth (Seinfeld and Pandis 1998). This absorbed
energy must be balanced by emission to maintain equilibrium. The distribution of energy
and the coupling between the atmosphere and the Earth’s surface directly influence the
global climate.

Many years of research and atmospheric observations have led to the creation of General
Circulation Models (or Global Climate Models-GCM). These models yield weather and
climate predictions based on past observations and the current state of the atmosphere.
The state of the atmosphere can be represented with several physical parameters such as
vertical profiles of temperature and concentration of constituents. Because of the strong
coupling between the atmosphere and the Earth’s surface, surface temperature is also an
important parameter to climate models. The accuracy of the models is driven by two

major factors: 1) the resolution of the measurements (i.e., the temporal and spatial interval



between observations); and 2) the accuracy of the inputs. Remote sensing of the Earth from
aircraft or satellites provides the synoptic view needed to satisfy the measurement resolution
requirements. The accuracy of the model inputs depends largely on the quality of the
system hardware and processing algorithms deployed with these remote sensing platforms.
The goal for accuracy set forth by the scientific community is to retrieve land surface
temperature (LST) within 1 °K and sea surface temperature (SST) within 0.3 °’K (Wan
1999; Wan and Li 1997). To address this need, technological advances have resulted in
imaging systems that capture an unprecedented amount of data with much higher fidelity
than ever before. Consequently, specialized processing algorithms are needed to exploit the
information content potentially contained in these large data sets.

Another major scientific effort focuses on remote sensing of the Earth’s surface for
geological applications. Of great interest is the monitoring of volcanic activity, pollution,
vegetation health, urban and agricultural development, etc. For these applications, accu-
rate thermography of the Earth’s surface is also required. An additional requirement is the
accurate estimation of the surface spectral emissivity. The emissivity serves as a signature
that may be used to identify materials. Spectral classification algorithms use this informa-
tion to generate thematic maps from remotely sensed images. Frequently, this involves the
allocation of pixels to a particular material class (e.g., deciduous forest).

Yet another application where accurate thermography and emissivity retrievals are
important is in tactical surveillance. Future military conflicts will rely heavily on intelligence
gathered via remote sensing measurements. Knowing the temperature of targets can provide
information about its current thermodynamic state. The emissivity provides a method for
accurate identification. Both measurements can be used to identify targets that need to be
engaged or to provide battle damage assessments.

All of these applications benefit from observations made in the thermal infrared region
of the electromagnetic spectrum. Passive acquisition of thermal radiation provides daytime

and nighttime monitoring capability without the need for external illumination sources.



Sensor:

Atmosphere: gé kL’\I
AN

Target:

Figure 1.2: The radiation reaching the sensor is the result of a complex interaction between
the Earth’s surface and the atmosphere.

This increases the number of observations available for a given location on the Earth.
Unfortunately, there is a strong coupling between the thermal emission of the surface and
the atmosphere. In addition, the amount of atmospheric radiation observed by a sensor
strongly depends on the emissivity of the Earth’s surface. Finally, the surface emission
is the result of a nonlinear interaction between temperature and emissivity. Figure 1.2
illustrates this problem. To satisfy the requirements of many applications, the effects of
the atmosphere and the surface must be estimated and separated. Over the years, this has
proven to be very difficult, particularly over land surfaces where temperature and emissivity
vary and there is considerable spatial heterogeneity (Prata et al. 1995).

The advent of thermal multispectral and hyperspectral technology provides reason for
hope. Modern multispectral sensors typically provide relatively high spatial resolution im-
agery with moderate spectral resolution (i.e., a few broad spectral bands). Hyperspectral
sensors acquire images with high spatial and spectral resolution. The resulting image is

often called a “hypercube” as illustrated in Figure 1.3. The sensor is responsive to incom-




Figure 1.3: Illustration of a hypercube.

ing radiation over discrete wavelength bands. Thus, an image is generated for each sensor
band and stacked over one another to form the hypercube. Each pixel can then be used to
obtain the observed spectral radiation at a given location in the image. The large amount
of spectral and spatial data contained in these images may provide enough information
to characterize the atmosphere adequately, thus allowing compensation for its effects and
determination of surface emission components. The efficient manipulation of these data,
however, presents its own challenges. In addition, the nature of radiative transfer makes it
impossible to exactly determine the parameters of interest based on the observational data
alone. Each spectral and spatial measurement is the result of a complex interaction of many
parameters.

One approach to solve this problem is to use a forward model of radiative transfer.
Figure 1.4 is a schematic showing the flow of input and output parameters from a generic

physical model. The observed radiance is shown by itself because it is the only parameter
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Figure 1.4: Schematic of infrared forward model.

measured by a remote sensor. The atmospheric effects may be characterized by assuming
certain input parameters are known. These inputs may be obtained from ancillary data
such as radiosonde measurements. Radiosondes are balloon-borne sensors launched at ap-
proximately the same time and place as the image acquisition. The radiosondes measure
temperature, pressure, wind speed, and humidity during the balloon’s ascent. This results
in vertical profiles that can be used to model the optical properties of the intervening at-
mosphere between the sensor and the ground. Unfortunately, radiosondes are susceptible
to drift during their ascent and may not accurately represent the actual composition of the
atmosphere for a given column of air. Furthermore, the logistics of successfully launching
a coincident radiosonde for every remote sensing acquisition over the planet is impractical.
One approach that uses the forward model without ancillary data is to dynamically change
the input parameters until the difference between the model output and the observed ra-
diance is minimized based on some criterion. This “model matching” approach requires
a good parameterization of the inputs that must be developed a priori for each specific
application. Also, unless properly constrained, this approach may not converge or may lead
to unrealistic atmospheric parameters.

Another approach is to reverse the arrows of the forward model diagram. This inverse
problem is said to be ill-conditioned or ill-posed because there are more unknowns than

observations and, therefore, no exact solution. The best that we can do is to obtain the best
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or most likely solution. Several methods for doing this have been developed. Atmospheric
sounding techniques retrieve vertical profiles of temperature and constituent concentrations
from multi-angle or spectroscopic observations (Houghton 1984; King 1956; Kaplan 1959).
The profiles are inferred directly from the sensor radiance. Unfortunately, the sounding
approach usually needs many narrow spectral bands along an absorption feature, making
it difficult to observe the Earth’s surface. Also, it is increasingly difficult to maintain
an adequate signal-to-noise ratio (SNR) as the spectral resolution increases because fewer
photons are detected in each narrow band. To compensate, the detector elements must
be large resulting in very low spatial resolution imagery. Finally, numerical algorithms for
physical sounding often need a good initial estimate of the solution. Other approaches exist
and are discussed in Chapter 2.

Even if the atmospheric effects are properly compensated, the problem of temperature
and emissivity separation still remains. The problem is complicated because the surface
radiation is the product of the temperature and the emissivity. For a given radiance mea-
surement, an infinite number of temperature and emissivity solutions exist. Therefore, the
accuracy of the temperature measurement is directly related to the accuracy of the es-
timate of the target emissivity. Research has shown that the emissivity must be known
with an accuracy of 0.02 or less to obtain adequate estimates of temperature (Wan and Li
1997). When measuring temperature over water, the task is simplified because the infrared
emissivity of water is well known and spectrally flat. Thus, it is possible to measure the tem-
perature accurately with a radiometer that has a limited number of broad bands. Because
of this, operational systems measuring ocean temperature have been successful for years.
However, when applying these algorithms to land the result is not the same. Prata et al.
(1995), present an excellent review of the complications that arise from measuring LST as
opposed to sea surface temperatures (SST). The most popular algorithm for temperature
estimation is the split-window technique. Prata et al. demonstrated that although several

variations of the technique are feasible for LST estimation, they are seriously limited due to




lack of knowledge of the atmosphere and surface emissivity. The latter confounds the for-
mer because the emissivity of land objects vary considerably with wavelength. In addition,
the emissivities in a land image are spatially heterogeneous. That means that unless the
emissivity effects are considered, the atmosphere will appear to be changing spatially and
may be represented inaccurately by a less sophisticated algorithm. Finally, the emissivity
varies with the angle of incidence formed by the sensor-target geometry. Unless a priori
knowledge of the target exists, the emissivity of a particular pixel in a remotely sensed
image is unknown. Empirical solutions based on laboratory data have been implemented
in order to take the emissivity effect into account. These results, however, are coarse in the
spectral sense and rely on often-violated assumptions.

As mentioned previously, many applications require accurate estimates of the emissivity
for target identification. Classification algorithms use a library of spectral curves that
correspond to each material of interest. The measured emissivity is compared to the curves
in the library and the curve that leads to the best match is selected. The problem is
complicated by the fact that the measurement is limited by the sensor’s spectral and spatial
resolution. Low spectral resolution limits the absorption features that can be observed
by the sensor. Thus, a narrow feature that uniquely distinguishes two similar materials
may not be detected. If the spatial resolution is limited, each pixel will consist of a mix
of “pure” surface components called end-members (Sabol et al. 1992). Thus, it would
be necessary to perform some type of “unmixing.” Clearly, the amount of mixing can be
reduced when high spatial resolution is available. If the target size is bigger than the ground
sampled distance (GSD) then the pixel effective emissivity is sufficient. The requirement
for accurate absolute emissivity values is less stringent for classification algorithms. In
general, classification algorithms depend only on the relative spectral features present in
the retrieved emissivity. However, they do require that the atmospheric features be removed

from the derived emissivities.



The goal of this research is to develop a technique that solves the inverse problem by
finding the best or most probable solution. This is done by considering both atmospheric
and surface effects on the radiance reaching the sensor. Using a multivariate analysis tech-
nique known as Canonical Correlation Analysis (CCA), it is possible to develop a unified
approach that optimally predicts surface and atmospheric parameters. Unified is empha-
sized because the approach accounts for the joint effects of the surface and the atmosphere
on the observed radiation. To do this, the surface and atmospheric parameters are varied
and the outputs from the forward model are recorded. CCA is then used to build a linear
“inverse model” from the database of model runs. The model is based on the latent or
inherent relationships between the observed radiance and the parameters of interest. These
latent relationships exist in a lower-dimensional orthogonal space making the problem more
tractable and better conditioned. This orthogonality property aids the separability of sur-
face and atmospheric effects. The inverse model can be designed to directly predict surface
temperatures, or to predict transmission, upwelled radiance, and downwelled radiance for
atmospheric compensation. To obtain spectral emissivity estimates, the resulting surface-
leaving radiance is processed with a variation of the ASTER Temperature and Emissivity
Separation (TES) algorithm. CCA can also be used to retrieve atmoépheric physical pa-
rameters such as temperature and water vapor profiles.

Several databases were built using MODTRAN as the forward model. The databases
included variations in atmospheric profiles, elevation, time of day, date, geographical co-
ordinates, surface temperature, and surface emissivity. The CCA inverse model was then
applied to the MODTRAN observations and the results compared to the model inputs.
This was done at various spectral configurations and resolutions. Also, the inverse model
was tested with MAS and MASTER thermal imagery. The results show that it is feasible
to retrieve the surface temperature and emissivity with high accuracy using multispectral
or hyperspectral sensors. The results also confirm that higher spectral resolution, assum-

ing constant signal-to-noise ratio, can lead to better estimates of atmospheric and surface



parameters. A pragmatic question then follows: how many sensor bands are necessary and
where should these bands be placed? The CCA approach provides insight into this problem
through the analysis of the “pathways” that map the observed data and the latent canonical
space. Results of a case study performed in the Midwave Infrared (MWIR) region of the
spectrum show how it is possible to determine the least number and placement of bands for

the retrieval of temperature and water vapor vertical profiles with reasonable accuracy.

1.1 Notation

I have made an effort to be consistent with the notation used in this dissertation. I have
also tried to conform to standard notation used in the literature. Unfortunately, these two
goals are often contradictory and there are bound to be some inconsistencies. However,

certain general guidelines are followed:

e Vectors are bold face and lower case (e.g., x) and assumed to be column vectors unless

otherwise noted.

e Matrices are bold face and upper case (e.g., A). Multivariate matrices are column-
oriented so that the variables are defined along the column dimensions and the number

of observations along the rows.
e Estimates of a variable are noted with the “symbol (e.g., § is an estimate of y).

e A “known” variable that is used to estimate or predict another parameter is generically
represented by x. The parameter to be estimated (i.e., the predictand) is y. It is
important to emphasize this because the role of the physical and optical parameters
change depending on whether the analysis is in the context of a forward or inverse
model. Consequently, the values that the generic variables z and y represent also

change.
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1.2 Scope and Limitations

This section identifies related technical areas that are not covered by this research. The
section is included for the benefit of researchers who already have a background in thermal
remote sensing and are looking for work done on a particular issue. There are many com-
plications that will not be addressed here. These are delineated in terms of the two major

tasks: (1) atmospheric characterization and, (2) temperature and emissivity estimation.

1.2.1 Atmospheric Characterization

The layered-structure of the atmosphere is assumed to be in local thermodynamic equilib-
rium. This limits the characterization of the atmosphere between the surface and an altitude
of about 100 km (Houghton 1984). When extending these techniques to spaceborne sen-
sors, the breakdown of thermodynamic equilibrium must be addressed if the interest is
in the characterization of the atmosphere. This limitation is irrelevant if the goal is the
characterization of the Earth’s surface.

The effect of clouds on the observed radiation are not considered in this research. The
geometrical aspects of accounting for significant cloud cover are complicated and would
detract from the main purpose of this research. The automated identification of clouds and
the compensation of their effects is a topic of considerable research. The test imagery used
in this research were acquired on relatively clear days, thus ensuring that the presence of
clouds did not affect the analysis.

Geometrical effects due to the view angle of the sensor are also not characterized. As
the viewing angle of the sensor changes, the length of the propagation path also changes.
However, the CCA inverse models were all defined to a nominal sensor altitude and assume
a nadir-viewing configuration. In an operational environment, the viewing geometry should

be determined first and then incorporated into the design of the CCA inverse model.
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It is assumed that the atmospheric constituent absorption characteristics and band
models implemented by the radiative transfer code are true and accurate. Alternatively,

any errors in the physical forward model will translate to errors in the inverse model.

1.2.2 Temperature and Emissivity Estimation

Viewing angle can also affect the apparent reflectance of a surface target. It was not
the goal of this research to characterize the bidirectional reflectance distribution function
(BRDF) of surface emissivities. In general, reflectances in the LWIR region of the spectrum
tend to be Lambertian so this is not a gross assumption. However, there are instances
when a particular material will have a significant specular component. These cases are not
specifically addressed here but should be considered in an operational setting. In addition, a
complete characterization of heterogeneity effects due to surface geometry (i.e., orientation
of the targets with respect to the sensor viewing geometry) will not be presented.

Adjacency effects are also not included. Here, “adjacency” refers to radiation emitted
or reflected by surrounding targets that enter the sensor’s Field-of-View (FOV). Typically,
this is a negligible effect in the LWIR. However, if the effect is expected to be significant in a
particular scene or application, then contextual information about the target’s surroundings
must be included in the analysis.

Finally, it is not the intent of this research to address issues involving the extent of
spectral mixing given the spatial resolution of a given sensor. This is more of a concern
when implementing target detection or classification algorithms. Thus, only effective tem-
peratures and emissivities were derived for a given Ground Instantaneous Field of View

(GIFOV). Any errors due to spectral mixing are grouped into the overall error in the esti-

mated parameters.
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Chapter 2

Background

The important thing in science is not so much to obtain new
facts as to discover new ways of thinking about them....

Sir William Bragg

A science is any discipline in which the fool of this genera-
tion can go beyond the point reached by the genius of the last
generation.

Max Gluckman

No scientific endeavor should be undertaken without first exploring past research. The
literature research presented in this dissertation summarizes previous work on the charac-
terization of the Earth’s surface and atmosphere from remote sensing platforms. Previous
work has largely resided in two separate communities: atmospheric physicists and Earth
scientists. Here, “Earth scientists” are researchers with a focus on remote sensing of the
Earth’s surface. This includes geologists, ecologists, environmentalists, etc. Atmospheric
physicists focus on remote sensing of the atmosphere and are interested in its physical
chemistry and effects on climate. Generally, both fields have been developed independently.
This is unfortunate, because the strong coupling of atmospheric and surface radiation effects

demands a unified and comprehensive analytical approach. At the very least, we should
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attempt to minimize the duplication of research efforts. One of the goals of this research
was to find a common ground and develop a technique that would be useful in both fields.

In this chapter, the underlying theory of this research is presented in two major sections.
The first section covers the physics of atmospheric radiation and propagation relevant to
remote sensing. It starts with a general overview of mathematical models for the forward
propagation of energy. Based on these models, three methods for developing an inverse
model are described: model-matching, atmospheric sounding, and the In-Scene Atmospheric
Compensation (ISAC) algorithm. The goal of these methods is to compensate for the
atmospheric effects to obtain a good estimate of the surface radiance. The second section
covers current algorithms available to separate surface temperature and emissivity from the
surface radiance. The chapter ends with a general discussion that compares the advantages
and disadvantages of all of the reviewed techniques. The discussion provides a framework

for the development of the approach used in this research (see Chapter 3).

2.1 Atmospheric Radiation and Propagation

2.1.1 The Atmosphere

The state of a static atmosphere is described in terms of the parameters of the ideal gas
law:

P = nkgT (2.1)

where P is the atmospheric pressure, n is the number density, kg is Boltzmann’s constant,
and T is the temperature. The atmosphere is commonly represented as a stack of layers,
each having uniform temperature, composition, mixing, or ionization distribution. For the
purpose of this research, we are concerned with the temperature distribution characteristics
of the atmosphere, which happens to be the primary method for classification. In this
scheme, a layer is labeled with the suffix “sphere” and a boundary with the suffix “pause”.

Figure 2.1 illustrates this scheme. The lowest layer is the troposphere which extends from
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Figure 2.1: Vertical temperature profile for the 1976 U.S. Standard Atmosphere.

the Earth’s surface to an altitude of about 10-12 km where it is bounded by the tropopause.
In the troposphere, the temperature decreases at a rate of approximately 10°K/km or less.
This is true everywhere except just over the surface of the Earth where diurnal cycles cause
a temperature inversion. When this occurs, temperature increases with height over the
first kilometer or so and then decreases with altitude at a steady rate. This change in
temperature with altitude is known as the lapse rate (Saucier 1989). The region above the
tropopause is the stratosphere, which exhibits a negative lapse rate (i.e., the temperature
actually increases with height) up to a max.imum at about 50 km due to ozone heating.
This region is bounded by the stratopause. The next region is the mesosphere where the
temperature decreases with altitude until reaching the mesopause at about 85 km. The
temperature at the mesopause is the coldest in the atmosphere: approximately 180°K.
The last region is the thermosphere, where the temperature increases dramatically due to
heating from direct solar ultraviolet radiation. The temperature reaches a maximum of

about 1000°K and then levels off into an isothermal state (Hargreaves 1992).
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Figure 2.2: Infrared Spectrum

2.1.2 The Infrared Spectrum

To characterize the effects of the atmosphere on the propagation and emission of infrared
radiation, it is necessary to understand the characteristics of the infrared spectrum. Fig-
ure 2.2 shows the prominent infrared features of the atmospheric emission. The continuum
and absorption features of the spectrum result from contributions of the species present in
the atmosphere. The most prominent features of the spectrum are driven by the amount
of water vapor, carbon dioxide, and ozone (Liou 1980). These gases are key players in the
greenhouse effect observed in the atmosphere. Other gases also absorb thermal radiation,
such as methane, sulfur dioxide, nitrous oxide, and carbon monoxide. For the purposes of

this research, we shall concentrate on the primary absorbers.




Water Vapor

Water vapor is the most influential atmospheric absorber due to its wide spectral cover-
age and concentration. On average, the concentration of water vapor is greatest in the
troposphere and drops off considerably above an altitude of 12 km. One of the greatest
challenges in dealing with water vapor, however, is that its concentration deviates consider-
ably from this average depending on time and location (Smith 1993). Water vapor exhibits
strong vibrational-rotational bands centered around 1.4 pm, 1.9 pgm, 2.7 ym, and 6.3 um
(in wavenumbers, 7143 cm™!, 5263 cm™!, 3704 cm ™1, and 1587 cm ™). Most of the infrared
radiation between 20 um to about 1 mm ( < 500 cm™?) is absorbed by the rotational state
of water vapor (Houghton and Smith 1966).

The “atmospheric window” between the 6.3 ym band and the rotational band is key to
thermal remote sensing. This is because the peak values of the Planck curves derived from
surface and tropospheric temperatures are located within this spectral range. Although the
atmosphere is highly transmissive in this region, about 10% of the energy is absorbed by the
water vapor continuum. Furthermore, weak high-J lines from the 6.3 pm and the rotational
bands are superimposed on the continuum. These lines are due to transitions between
molecular energy levels defined by the angular momentum quantum number (Goody and
Yung 1989). The exact nature of the continuum and line absorption characteristics of water
vapor are still a matter of much research and debate (Prata et al. 1995; Goody and Yung

1989; Wan and Li 1997).

Carbon Dioxide

In contrast to water vapor, carbon dioxide is uniformly concentrated up to an altitude of
80 km with little spatial or temporal variation (Smith 1993). However, COy concentration
increases in the spring and decreases in the late summer/early fall. There is also a yearly
increasing trend in COq as shown in Figure 2.3 (Keeling and Whorf 1999). COg has two

strong fundamental vibrational bands at 4.3 pm and 15 um (Houghton and Smith 1966).
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Figure 2.3: Carbon Dioxide Seasonal and Yearly Variation

The continuum effects of CO2 are negligible in the thermal region of the spectrum. There
are, however, several weak lines in the atmospheric window bounded by the water vapor

and the 15 ym CO2 bands (Smith 1993).

Ozone

The concentration of ozone has been of considerable interest due to the theorized depletion
near the poles. These studies typically deal with ozone’s absorption of ultraviolet radiation.
Ozone is also of great importance in the thermal region of the spectrum. Unlike water vapor
and carbon dioxide, it is present mostly in the stratosphere and has a strong absorption

band at 9.6 pum (Houghton and Smith 1966).

2.1.3 The “Forward” Model

The mathematical description of the radiation propagation and emission processes that lead
to the radiance observed by a remote sensing platform is often referred to as the “forward”
model. The model is deterministic and the term “forward” is used to differentiate it from

“inverse” models that are not exact and require the use of inference. The basic premise
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Figure 2.4: Radiation propagation paths for reflective and thermal regions (Courtesy of
Kevin Ayer and DIRS Lab).

is that the observed radiance is a function of the scene in view and the composition and
thermodynamic state of the intervening atmosphere.

The radiometric formulation of radiative transfer is fairly standard across the literature
with the exception of the notation used. I will mostly use the notation introduced by Schott
(1997). The radiance reaching a sensor is the sum of the contributions from different
propagation paths as shown in Figure 2.4. The propagation paths depend on the region
of the electromagnetic spectrum of the radiation. In the reflective (or solar) region, the
dominant paths are: (A) direct sunlight hits a target and reflects, (B) sunlight scatters
in the atmosphere and reaches a target and is then reflected, (C) sunlight scatters in the
atmosphere and reaches the sensor, and (G) sunlight reflects off the background, reaches the
target, and is then reflected. In the emissive (or thermal) region, the dominant paths are:
(D) thermal photons emitted by a target reach the sensor, (E) thermal radiation from the
atmosphere reaches the target and is reflected, (F) thermal photons from the atmosphere
reach the sensor, and (H) thermal photons from the background reach a target and are
reflected. In this research, we shall look at radiation between 4 um and 15 um so that we

can neglect the reflective region components of radiative transfer. This separation is well
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illustrated in Figure 2.5. The left curve is the radiation associated with solar temperatures
while the curve on the right is associated with terrestrial temperatures. Thus, for certain
Midwave Infrared (MWIR) and all Longwave Infrared (LWIR) cases, the radiation at the
sensor is simply due to the path radiation emitted by the atmosphere and the surface. If
the surface has a low emissivity, the reflectivity is large and it is necessary to include the
reflected downwelled term (Jun 1994). The impact of the reflected downwelled radiance
depends on the contrast of temperature between the sky and the surface of the earth.

The relationship between the erﬁissivity and the reflectivity is obtained from Kirchhoff’s
Law, which states that the spectral absorption of an opaque object at thermal equilibrium

is the same as the spectral emissivity. Thus,
e+r=1 (2.2)

where € is the emissivity and r is the reflectivity. The emissivity determines how much
radiation will be given off by an object given its current temperature. It is really a measure

of the radiation emitted by a particular object compared to a blackbody. The blackbody
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radiation distribution is described by Planck’s Law:

C1 A
LBB(T) = )5 [CCZ/AT _ 1:’ cmrﬁsr-um (23)

where ¢; = 1.19104 x 104 W.um*/cm? - st and ¢ = 1.43877 x 10*um - K are the Planck
radiation constants. The radiation units are often referred by the shorthand microflicks (uf).
The temperature 7 is specified in Kelvin and wavelengths in gpm. The amount of spectral
radiation emitted by an object is the product of the emissivity and Planck’s blackbody
function.

The infrared spectral radiance reaching the sensor is then described by the radiative

transfer equation
LX) =7(N)e(N) Lea(A\, T) + 7(A) [1 — e(N)] La(A) + Lu(N) (2.4)

where 7()\) is the transmission along the upwelling path (i.e., the atmosphere between
the target and the sensor), Lg(A) is the downwelling radiance from the sky, L,(\) is the
upwelling radiance, and €(\) is the spectral emissivity. Hereafter, the notation will be
simplified by dropping the explicit reference to wavelength A except when needed for clarity.
Equation (2.4) can be simplified by collecting terms containing 7. The spectral radiance

reaching the sensor can then be defined as

L = 71[eLpp(T)+ (1 —¢)Lg)+ Ly,

= 7L+ Ly (2.5)

This simple linear form of the radiative transfer equation suffices for the development of
the In-Scene Atmospheric Compensation (ISAC) algorithm (see section 2.1.6). However,
in order to develop the framework for the atmospheric sounding and model-matching algo-
rithms, it is necessary to further analyze the atmospheric radiation components of equation
(2.4) (i-e., the upwelled and downwelled radiance terms). I shall do this by deriving the

equation of radiative transfer from first principles.
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Schwarzchild’s Equation

The derivation of radiative transfer follows the approach presented by Goody and Yung
(1989) and by Liou (1980) with the addition of comments and detailed steps. First, consider
the simple case of a beam of monochromatic radiation propagating through a homogeneous
layer of the atmosphere. At any given wavelength, the propagating radiation L will be
attenuated by the intervening air mass depending on the concentration of constituents,
their size, and the thickness of the layer. Thus, the change in radiation due to propagation

in a layer of thickness ds is
dL = —mCeth ds = _/Be:z:tL ds (26)

where m is the effective number density of constituents in the layer [m=3], C,; is the effective
extinction cross-section of the constituents [m?], and SBe, is the extinction coefficient [m™1],
which may vary with altitude depending on vertical homogeneity. For a thin layer ds, it
is reasonable to assume that the layer is homogeneous and that Bey: is constant. At this
point, it is important to note that this formalism implicitly assumes that the extinction of
radiation is only due to absorption and single scattering phenomena. Fortunately, multiple
scattering effects are negligible in the infrared. The radiation propagation over an entire
atmospheric column is obtained by integrating the effects of each layer. After rearranging

and integrating, equation (2.6) yields

| T = [ pents)as @)

where z is the altitude. Because the integral is over the entire atmospheric column, the
extinction coefficient dependence on altitude is explicitly shown. To be concise, this explicit
dependence is dropped whenever the extinction coefficient is used in a differential equation.

After integrating the left side the radiance at altitude z is

L(2) = L(0) exp [~ | et ds] (28)
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This is the Beer-Lambert Law (Schott 1997; Liou 1980). The transmission is the ratio of

the emerging radiation L(z) and the input radiation L(0):

7(2) = ﬁggi = exp [“ /OZ Bext(s) ds} = %) (2.9)

where 6(z) is the optical depth for the path of length z. The optical depth is a measure
of the apparent thickness of a medium. Now consider the radiative transfer in the infrared
region of the spectrum. The atmospheric extinction coefficient is approximately equal to the
absorption coeflicient assuming scattering is negligible at these wavelengths. Furthermore,
each atmospheric layer will emit radiation proportional to that absorbed as dictated by

Kirchhoft’s Law. Adding the self-emission of the layer, eq. (2.6) becomes
dL = —BusLds + ELBB(TS) ds = —BupsLds + ﬁabsLBB(Ts) ds (2.10)

where T is the temperature for the layer ds. Rearranging we get

dL
ﬁabs ds

This is Schwarzschild’s equation of radiative transfer. In this case, the Planck function is

= ~L + Lpp(Ts) (2.11)

the source function as described in the literature (Liou 1980; Goody and Yung 1989). To
simplify the formulation, it is assumed that the radiation propagation is along a zenith angle
of 0° (i.e., nadir viewing). Otherwise, a correction factor for the length of the propagation
path would have to be introduced.

The total radiation propagation through the atmosphere is obtained by integrating the
effects of each atmospheric layer. This gives rise to an integral form of Schwarzschild’s
equation. Figure 2.6 is a schematic of an atmosphere with length 2. The height index
7' denotes an arbitrary lower boundary layer. Figure 2.6 also shows that the reference
origin for the optical depth is at the top of the atmosphere. This definition is typical in
the literature and is due to its origins in the astronomical community (Stephens 1994).
The optical depth is defined with respect to incoming radiation so that as the propagation

path increases downward, the total optical depth increases. The upward arrows denote the
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integration path, which also corresponds to the outgoing radiation propagation of interest
in remote sensing.

Recall from eq. (2.9) that the optical depth and the transmission are related exponen-
tially. From this relationship and from the Beer-Lambert Law, the optical depth for a layer

with lower boundary layer 2’ is
z
§(2',2) = / Baps(s)ds = —In [1(2, 2)] (2.12)
ZI

Thus, a transmissive atmosphere has a small (thin) optical depth. In the limit, a completely
transmissive atmosphere (i.e., 7 = 1) will have zero optical depth. A small change in optical
depth is

5, = | [ fus ds} = Papeds (2.13)
The change in optical depth is negative because the optical depth decreases with altitude.
Hereafter, the indices for § are dropped and implied except when needed for clarity. Sub-
stituting eq. (2.13) into eq. (2.11) results in

dL
—% =—-L+ LBB(TS) (2.14)

and the problem reduces to solving a nonhomogeneous linear differential equation. First

multiply through by e™% and dé to get

—dLe™® = —Le™%dé + Lpp(T,)e % d§ (2.15)
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Rewriting in terms of transmission yields
—(dL)r = L(d7) + Lpp(Ts)e~ dé (2.16)
After rearranging, applying the chain rule, and substituting eq. (2.13), we obtain:
~[(dL)7 + L(dr)] = ~d|[L7] = ~Lpp(Ts)Bavs(s)e ™’ ds (2.17)

Now integrating both sides yields
/ d[ (#)e*¢") / Babs(5) Lpp(Ts)e ™) ds (2.18)
0

= L(z’)e‘5(z"z)

fo ,Babs LBB( ) =8(s:2) ds (2.19)

Solving for the spectral radiance results in
z
L(z) = L(0)e™*®?) + / Bass(s) LB (Ts)e 27 ds (2.20)
0

When applying this equation to a propagation path beginning at the surface (z = 0) of the
Earth up to some distance z where the sensor is located, L(0) = L, and eq. (2.20) becomes

identical to eq. (2.5) where

z
Lu= [ Bun(o)Lop(T)e 562 ds (2.21)
0

—6(0,2)

and7=¢ For an atmosphere stratified in discrete layers, the upwelled radiance term

becomes
Ly = ZﬁzLBB N Tir1 — ) (2.22)

where there are IV discrete layers and Ti+1 — Ti is the difference in the effective transmission
of adjacent layers. This expression for upwelled radiance is common in the literature (Schott
1997).

The downwelled radiance term Ly in equation (2.5) can be derived in the same manner
as the upwelled radiance except the propagation path is reversed. The integral form of the

downwelled radiance is

Lg= / ,Babs LBB(T ) 5(s:2) ds (2'23)
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Again, the propagation path will be longer than z for off-nadir viewing and a correction
factor must be included. Alternatively, we can think of z as being the propagation path

length instead of the altitude.

Band Models and Absorption

While the radiative transfer model is fairly standard, the implementations of band models
and line absorption features are not. The absorption coefficient was introduced in equation
(2.10). However, the spectral structure of this parameter was only implied. This section
addresses the implications of the spectral width of the absorption coefficient.

In reality, the shape of a molecular absorption feature has a finite width. Thus, the
center position of the absorption feature, the strength of the absorption, and the shape of
the band are all needed to fully characterize molecular absorption. In general, the shape
of an absorption band is defined by a shape factor (Stephens 1994). The shape factor is a
function of frequency that best matches laboratory spectra. Typically, the shape factor is
based on some probability density function. The absorption coefficient is then represented

Blv —w) =Sf(v—1y) (2.24)

where S is the strength of the absorption, f is the shape factor, v is the radiation frequency,
and 1 is the center frequency of the absorption band. The uncertainty principle causes a.
natural broadening of absorption features. In general, the broadening of line absorptions in
the upper-atmosphere are attributed to this effect. In the lower atmosphere, the broadening
of absorption features is due to pressure and Doppler effects resulting from collisions and
molecular motion. These broadening effects are stronger than natural broadening and dom-
inate atmospheric transmittance spectra. The understanding of these atmospheric effects

is important for the interpretation of the atmospheric sounding scheme.
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Figure 2.7: Lorentz line shape for an absorption band.

Pressure Broadening. A heuristic approach to the modelling of absorption broadening
due to molecular collisions is based on a phase-shift model of molecular oscillatory mo-
tion. Consider a simple molecule represented by a dipole oscillator. Upon collision by
another molecule, the phase of the oscillation is shifted randomly. When there are many
collisions, the thermal energy associated with the molecular absorption and the electrical en-
ergy associated with the oscillation are equal. In other words, there is local thermodynamic
equilibrium. A mathematical description of collision broadening based on this phase-shift

model and Fourier analysis is

ay, 1

filv—w) = 7m (2.25)

where fy, is the Lorentz line shape factor and «y, is the Lorentz half width (Stephens 1994).
The Lorentz shape factor can also be derived from the theory of absorption and dispersion

(Liou 1980). An example absorption band is shown in Figure 2.7.

The Lorentz half width is ay, = 1/27¢ where ¢ is the mean time between collisions (Houghton

and Smith 1966; Stephens 1994). From kinetic theory, the half width of a spectral line can
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be approximated as

p [T
~ 5 2.6
ap ™ ars 7 (2.26)

where p; = 1000 millibar (mb) and T = 273° K are standard temperature and pressure (stp)
and ay, ¢ is the half-width at stp. The relationship between the half width and the ambient
pressure and temperature is crucial. As the pressure decreases relative to the standard pres-
sure, the width of the Lorentzian curve decreases and the absorption at the center frequency
increases. Conversely, as the pressure increases, the curve broadens and the absorption at
the center frequency decreases. The line shape dependence on temperature is typically ig-
nored, though this introduces some errors in the band model (Stephens 1994). Fortunately,
the error is negligible for infrared radiation propagation because pressure changes are much

larger than temperature changes (Liou 1980).

Doppler Broadening. When a molecule is moving either away from or towards an “ob-
server”, this causes a Doppler frequency shift in the emitted radiation. The Doppler shift has
a Gaussian distribution because of the range of velocities and the Central Limit Theorem.
Therefore, the resulting Doppler broadening is also of the Gaussian form. The magnitude
associated with Doppler broadening is much smaller than for pressure broadening in the
lower atmosphere. In the upper atmosphere, the Doppler broadening effect is more domi-
nant and appropriate changes to the band model must be made. The Gaussian shape factor
for Doppler broadening depends on the half width which originates from Maxwell’s Laws

and the distribution of molecular velocities. The shape factor is

where ap = upp/c is the Doppler half width, u,, is the RMS molecular velocity, and c is

fo(v—w) = (2.27)

the speed of light. The average molecular velocity is

upy = 1| 22BT (2.28)
m
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where m is the molecular mass and kg is Boltzmann’s constant. The average velocity is

obtained from the Maxwell distribution of velocities:

m ' mu?
p(u) = <2kaT) exp <_2kBT> (2.29)

The half width depends on the square root of the ambient temperature. Thus, the tem-

perature may be inferred from an accurate measurement of the absorption line if Doppler
broadening is the dominant effect (Stephens 1994).

In the region where both Doppler and pressure broadening are equally important,
the Voigt line shape is used (Stephens 1994). The Voigt shape factor is a convolution of
the pressure broadening shape factor with the probability distribution of the molecular
velocities (Goody and Yung 1989). That is,

+00
frw=m)= [ fu(v-1-"2) pu)du (2.30)

c

Band Transmission Functions At the beginning of this section, the theory of radiative
transfer considered monochromatic radiation only. That is, the transmission was evaluated
at a single wavelength. In practice, the radiation is measured over a spectral bandpass that
is defined by the spectral response of the detector. This spectral response has the effect of

“blurring” the monochromatic spectrum. The band transmission is then defined as

T(2) = (Vz 1 Vl) /:2 R(]/)e'"fozﬂ(ll,s) dsdll/<y2 i Vl) /: R(v)dv (2.31)

where R(v) is the spectral response function of the detector, v and vy define the bandpass

of the detector, the exponential term in the numerator represents the monochromatic trans-
mission, and the denominator is the normalization term (Liou 1980; Schott 1997; Stephens

1994). The constants in front of the integrals cancel and equation (2.31) simplifies to

/Vz R(v)e~ Ig Blw.s)ds g,
T(z) = =24

/,, IVZ R(v)dv
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Figure 2.8: Effects of spectral resolution on band transmission functions.

Thus, the band transmission function is the convolution of the spectral response with the
monochromatic transmission. Note that the absorption coefficient is defined in terms of
a shape factor (see eq. (2.24)). Figure 2.8 is an example of how the band transmission
function changes depending on the spectral resolution of the sensor. Strong line absorption
features are still resolvable but have less intensity in the transition from high to medium
resolution (1101 to 128 bands). Several features completely disappear in the low-resolution

transmission function (10 bands).

Radiative Transfer Models

The radiative transfer depicted by eq. (2.4) is often implemented to some degree in computer
models that use databases containing molecular and particulate absorption and scattering
characteristics. Various models exist with different degrees of spectral resolution, number
of atmospheric constituents, cloud models, etc. Computer models can be broken down into

two major classes: line-by-line transmittance and band transmittance models.
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Line-by-line Models Line-by-line models are very high resolution radiative transfer
models that use a large database of molecular absorption and scattering measurements.
The most widely used database is HITRAN96, which contains over 1 million absorption
lines for 35 molecules (HITRAN 2000). The model FASCODE, developed by the U.S. Air
Force, taps into this database to generate transmittance calculations at high spectral reso-
lution. The radiation propagation is performed on a line-by-line basis so that the radiation
is monochromatic and the Beer-Lambert Law holds. Unfortunately, this requires long com-
putation times which are often impractical. Other “faster” line-by-line models have been
built, such as PLOD and OPTRAN, which are derivatives of the GENLN2 model. These
are usually tailored to a particular sensor and account for a smaller set of atmospheric

constituents.

Band Transmittance Computer Models These models are designed to lower the re-
source cost of computing the radiative transfer of monochromatic radiation through an
inhomogeneous path in the atmosphere. This is done by using band transmittances in the
radiative transfer computation. The most widely used model is MODTRAN developed
by the Air Force Research Laboratory (AFRL) (originally the Air Force Geophysics Labo-
ratory). MODTRAN4 is the current version which includes significant improvements like
updated cloud and water vapor models, spectral emissivity inputs, all-sky downwelling radi-
ance calculations, etc. MODTRAN computes band transmittances using a statistical model
which integrates Voigt absorption lines over a spectral range of 1 cm™!. The band trans-
mittance model is parameterized with pressure, temperature, absorption coefficient, and
average line width and strength (Kneizys et al. 1996). MODTRAN uses the Curtis-Godson
approximation for radiative transfer to determine an effective band absorption model for
an inhomogeneous atmosphere. The approximation is based on the assumption that the
effective absorption band can be represented by the integrated values of the band model pa-

rameters over the radiation path (Liou 1980; Berk et al. 1999). Thus, an effective Lorentz
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band may be computed from a mean line strength and width given by

I

_ 1 u
5= /0 S(T) du (2.33)

and

/u S(T)a(p,T) du
a =20 (2.34)

/ " S(T) du

0

where the integrals are over a path described by a variation of absorber amount du, S is
the mean strength associated with a total absorber amount u, and & is the mean line width
that depends on pressure p and temperature 7. This approximation is particularly useful
in the infrared except when dealing with the 9.6 um Og band. This is because ozone exists
in larger concentrations at higher altitudes where the pressure is low (Liou 1980; Goody

and Yung 1989).

2.1.4 Model-Matching

Now that we have a good understanding of the radiative process, we wish to find a way
to use it so that the atmospheric radiation can be characterized and compensated. From
the “BEarth scientist” perspective, the atmosphere introduces structured noise that must
be removed to properly analyze the Earth’s surface. To estimate the atmospheric effects,
computer models such as those described in Section 2.1.3 are used to obtain the atmo-
spheric spectra in the radiative transfer equation (2.4). Once these values are obtained, the
surface radiance may be calculated. Unfortunately, this requires a priori knowledge of the
atmospheric conditions.

Another approach that uses forward models is to dynamically vary the model inputs
until the output best “matches” the observed radiance based on some criterion (e.g., least-
squares). The solutions are obtained by iterations that are often nonlinear. To achieve
convergence, it is necessary to apply physical constraints. In addition, a parametric scheme

for the model inputs must be devised. These parameters can be thought of as knobs in a
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machine that “tweak” the process until the desired output is obtained. Finally, a “good”
estimate of the solution is required to initialize the algorithm. The atmospheric conditions
used to match the observed spectra are then used in the radiative transfer equation to solve
for the surface radiance.

Green et al. (1993) established this method for the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) to estimate aerosol content, pressure elevation, water vapor con-
tent, and surface reflectance using MODTRAN2. After estimation of these parameters, a
“correction” vector can be generated to compensate the observed radiance for atmospheric
effects and obtain surface radiance (Green et al. 1996).

The model-matching approach is normally implemented using a numerical nonlinear
least-squares fitting technique. Green (1993) and Young (1998) used the downhill simplex
regression method. This numerical technique works in an N-dimensional space spanned
by the parameters in the model. It finds the minimum of a function (e.g., the squared
error) with a geometrical simplex that expands and contracts in the parameter space until it
converges to a minimum (Press et al. 1992; Sanders 1999). Figure 2.9 is a schematic showing
the changes a three-dimensional simplex could take at each iteration. The advantage of this
approach is that it does not need analytical function derivatives which may be too complex
for high-dimensional parameter spaces. Sanders (1999) has successfully implemented this
technique in the Interactive Data Language (IDL) using the amoeba.pro routine. One
of the greatest challenges in the implementation is the presence of local minima in the
parameter space. There is a tradeoff between rate of convergence and susceptibility to local
minima which must be assessed for each particular situation. However, a search for a global
minimum may be done by executing the algorithm again using the first solution as the
initial estimate. The minimum is more likely to be global if the algorithm converges to the
initial estimate (Sanders 1999). Also, recent numerical methods, such as simulated surface
annealing, provide an effective methodology for the search of a global minimum (Press et al.

1992). Unfortunately, these techniques can be very computationally intensive.
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(b) reflection and expansion

(c) contraction (d) multiple contraction

Figure 2.9: Schematic of downhill simplex regression method. The top diagram is the
simplex at the beginning of the iteration. The simplex can then (a) reflect away from the
high point, (b) reflect away from the high point and expand along one dimension to a new
high point, (c) contract toward the low point along one dimension, and (d) contract toward
the low point along all dimensions. A combination of these steps over several iterations
leads to convergence (Press et al. 1992). (Reprinted with the permission of Cambridge
University Press.)

Another advantage of the model-matching approach is the flexibility in the choice of
model parameters. For example, Johnson and Young (1998) developed a model-matching
technique for infrared applications using data from the Spatially-Enhanced Broadband Ar-
ray Spectrograph System (SEBASS). The technique involves using the 1976 U.S. Standard
Atmosphere in MODTRAN as an initial estimate of the atmosphere. The spectral trans-
mittance of the Standard Atmosphere was varied in the regression by changing the column
densities of water vapor and ozone. The relationship between the transmittance and the

column densities was given by

T()\) B TH,0 ()‘;f’_oz;i((i))7'03 ()\) T;IZI%)O ()\)T;%Lzo ()\)7323 (}\) (235)

where v is the column density and the subscripts denote the contribution of ozone, water
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vapor line absorption, and continuum absorption. This parameterization stems from as-
suming that the total optical depth is the sum of individual constituent contributions. This
translates to the total transmission being a product of the individual contributions. Thus,
the absorption follows the Beer-Lambert Law. The column density of water is squared when
applied to the transmission contribution by the water continuum. This is done to scale the
parameter down because of the relatively high transmission of the continuum compared to
the water vapor and ozone line absorptions. The other active constituent in this region of
the spectrum is carbon dioxide. However, the concentration is maintained fixed because
CO3 is well-mixed. Two more physical parameters were allowed to change in the regression:
the surface temperature and effective atmospheric temperature.

A practical aspect of the regression technique was that the MODTRAN output ra-
diance had to be resampled to match the spectral response of the SEBASS sensor. The
spectra is resampled by averaging the MODTRAN output over the spectral response of
the sensor defined by the full-width at half-max (FWHM) and a triangular detector func-
tion. Furthermore, there was a spectral misregistration between the SEBASS data and the
MODTRAN output so that a spectral shift had to be introduced for some of the SEBASS
bands. The spectral shift and resampling parameters were also adjusted in the regression.

The optimization criterion was to minimize the RMS difference between the modelled
radiance and the SEBASS observed radiance. The reported case resulted in RMS differ-
ences of 0.01 uf. Despite the coarseness of this regression model, the resulting surface
temperatures for four different cases were underestimated by only 2 °C. The “coarseness”
of the model refers to the number of physical parameters that were changed to acquire a
match between the observed and modelled radiances. Even for physically coarse models,
the model-matching approach may require a parameter-rich scheme because of other effects
(e.g., spectral misregistration).

Implicit in this discussion is the assumption that an appropriate radiative transfer

model is available “online” during processing. That is, the model must be executed during
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each iteration to calculate a new spectral radiance observation based on the current value of
the model parameters. For hyperspectral image cubes, this can lead to prohibitive compu-
tational costs. One approach is to build look-up tables (LUT’s) based on results obtained
with past runs of the radiative transfer model. These LUT’s are then indexed appropriately
and an interpolation scheme is used to fit the LUT outputs to the observed radiances. This
can significantly reduce run times and conditions the problem so that convergence can be

more easily achieved (Sanders 1999).

2.1.5 Atmospheric Sounding Techniques

The theory of infrared radiation propagation and emission through the atmosphere was
presented in section 2.1.3. In the present section, the concept, basic theory, and implemen-
tation of atmospheric sounding are presented. The atmospheric sounding approach is to
directly invert the forward physical model. The term “sounding” is synonymous to “prob-
ing”. The basic premise is that the spectral radiance reaching a sensor is a function of the
temperature of the atmosphere and the concentration of constituents. If the constituent
concentration is known, then the spectral radiance reaching a sensor is a function of the
temperature of the atmosphere alone. Thus, it should be possible to infer the temperature
of the atmosphere based on the observed radiation. The notion of using spaceborne infrared
sensors for atmospheric sounding was first introduced by King in 1956. King’s method for
atmospheric sounding depended on the “limb-darkening” effect, and was thus based on the
measurement of the atmospheric emission at different angles. In 1959, Kaplan demonstrated
that the atmospheric temperature could be inferred from measurements of the atmospheric
emission at different wavelengths. Since then, several radiometers and interferometers have
been developed to do atmospheric sounding (Houghton 1984). V

A big benefit of atmospheric sounding is that it provides a temperature profile of
the atmosphere rather than only an effective atmospheric temperature. Thus, the vertical

structure of the atmosphere can be defined and more accurate estimates of the atmospheric
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Figure 2.10: MODTRAN default vertical profiles for six model atmospheres: (a) tempera-
ture, (b) relative humidity, and (c) Os.

emission can be made. These vertical profiles are not only useful for climatology, but they
can be used as initial estimates in a model-matching atmospheric compensation approach.
However, the vertical resolution of the temperature profile is limited to the number of
spectral measurements available. Historically, infrared sounders have consisted of moderate-
resolution radiometers and high-resolution interferometers. The tradeoff between the two
is a classical one: the higher the spectral resolution, the lower the spatial resolution. For
atmospheric research, spectral resolution has traditionally been preferred. Therefore, the
temperature profiles measured by previous sensors were averaged over several kilometers of a
horizontal grid. While atmospheric temperatures may be constant over large areas, the same
is not true for land surface temperatures (LST). The measurement of LST spatial variation
is crucial for many applications. With the advent of modern hyperspectral sensors, it is
becoming feasible to obtain reasonably high spectral and spatial resolution, thus overcoming

this limitation.
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In addition to obtaining the vertical temperature profile of the atmosphere, it is possible
to infer the vertical concentration profiles of atmospheric constituents such as water vapor
and ozone (see Figure 2.10 for typical profiles). As will be shown shortly, the determina-
tion of other atmospheric constituents is more complicated than obtaining the temperature
profile. Because the temperature of the atmosphere and the constituent concentration are
correlated, the solution of each profile must be obtained simultaneously or through the im-
plementation of some iterative numerical method. High spatial resolution may also improve
the retrieval of constituent concentration profiles because the spatial variation of concen-
tration is higher than for atmospheric temperatures. The contextual information in the
image may then be used to augment the spectral information and aid in the separation of
the constituent concentration and temperature effects.

The determination of atmospheric temperature and constituent concentration profiles
from “in-scene” data is extremely valuable. If the solutions to the inverse problem are
physically meaningful, then compensation of the infrared hyperspectral imagery can be
performed without using any ancillary data. Moreover, the compensation is likely to be
more accurate. The compensation can also be done on a per-pixel basis such that the spatial
heterogeneity of the atmosphere and the surface is accounted for in the solution. Finally,
atmospheric sounding achieves the secondary goal of extracting information about the state
of the atmosphere, which is also very useful. Unfortunately, accurate retrievals require
many narrow spectral bands located in regions of high absorption. Therefore, considerable
resources must be allocated to bands that are not useful for imaging the Earth’s surface.

The physical and mathematical framework of atmospheric sounding will be demon-
strated with the retrieval of vertical temperature profiles. Practical issues with the im-
plementation of a sounding approach are then discussed. Finally, the sounding concept is

expanded to the retrieval of temperature and constituent concentrations.
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Figure 2.11: Planck curves superimposed on atmospheric radiation.

Temperature Profiles

The retrieval of temperature profiles from spectral radiance observations can be qualitatively
understood by considering the emitted atmospheric radiation over a range of wavelengths
associated with the absorption of a particular gas. For illustrative purposes, consider a
strong absorption band where the transmission is zero at the center of the band. A good
example is the 15 pm COy absorption band shown in Figure 2.11. Any radiation reach-
ing the sensor at the 15 um wavelength must have originated in the upper layers of the
atmosphere. This is because the transmission is effectively zero and all radiation from the
Earth’s surface is absorbed. The opposite extreme is to consider radiation at wavelengths
with high transmission. At these wavelengths, very little of the radiation is coming from
the atmosphere. Thus, the spectral measurement of radiance corresponds to radiation orig-
inating from different altitudes. As we move along the wing of the absorption band, the

radiation reaching the sensor at each wavelength corresponds to a different altitude in the
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atmosphere. If Planck curves are laid over a plot of the absorption band, then the points of
intersection represent the temperature of the corresponding altitude. Four such curves are
shown in Figure 2.11. These curves are calculated using eq. (2.3) for the given temperatures.
The colder temperatures correspond to regions with large absorption. This makes sense if
we recall that the temperature decreases with altitude in the troposphere. The sharp peak
in the center of the absorption band is due to the temperature increase in the stratosphere
(see Figure 2.1). This qualitative analysis demonstrates that a sensor with many narrow-
band channels over the spectral range of the absorption band will provide the best vertical
resolution of the estimated atmospheric profiles. The exact altitude to which each spec-
tral band corresponds is obtained from the relationship between wavelength, transmission,
optical depth, and altitude.

The vertical temperature profile is mathematically related to the observed spectral

radiance by eq. (2.5). As shown in section 2.1.3, the observed spectral radiance is
z
L(A\) = 7(M)Ls(X) + / Bavs(5; ) Lpp(Ts)e 0 ds (2.36)
0

where the dependence on wavelength is explicitly noted. For now, it is assumed that the
wavelength range is narrow enough that the Planck function is approximately independent
of wavelength. Using the definition for optical depth in eq. (2.12), the radiative transfer

equation can be rewritten as
0
L(X) = 7(A)Ls(A) - / Lpp(Ts)e™ ds (2.37)
é

Note that the sign convention for the integral follows from the definition of the optical

depth. Subtracting the surface radiance contribution results in

L(A) = L(A) —7(A\)Ls(A) = — /50 Lpp(Ts)e™®ds (2.38)

For cases when the atmosphere is optically thick (i.e., the transmission is effectively zero),

the surface radiance term contributes very little to the total radiance reaching the sensor
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and L ~ L. Otherwise, the effects of the surface emission must be considered. Rewriting

the radiative transfer equation in terms of the transmission once again results in

L) = /50 LBB(TJ)W dé (2.39)

Thus, the observed spectral radiance is related to the integral of the vertically distributed
Planck function weighted by the derivative of the transmission. The transmission is noted
as dependent on optical depth and wavelength even though the optical depth includes this
wavelength dependence. This is done to separate the effects of altitude and wavelength.
Thus, the optical depth refers to the vertical (path) dimension only. Because of its action
on the Planck function, the derivative term in this equation is traditionally referred to as
the weighting function and represented as K (A, ). From a linear systems perspective, we

see that the resulting equation

0
i) = /6 Ls(T3)K(\, 8) db (2.40)

is a convolution. Thus, the resulting spectral radiance is “blurred” by the weighting function.
The extent of this blurring depends on the width of the weighting function. This concept
will be described in more detail later in this section. Thus, if the weighting function is
known, then it is theoretically possible to infer the vertical distribution of temperature in

the atmosphere as defined by the Planck function.

Implementation

Certain issues must be considered to implement a realistic atmospheric sounding scheme.
These include: assumptions about atmospheric physics, the nature of the inverse problem,

and the spectral response of the sensor.

A. Atmospheric Physics. In the previous discussion, it was assumed that the weight-
ing functions were known. Since the weighting functions are the vertical derivative of

the spectral transmissions, it follows that the vertical concentration and absorption of the
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atmospheric constituents are known. This is true only if a well-mixed gas with known con-
centration is used as a reference. Furthermore, it is necessary to evaluate the weighting
functions over a spectral range where the absorption by the atmosphere is not caused by
a combination of constituents. That way, the radiation effects can be isolated to the ref-
erence gas only. Although there are some isolated bands for COs and Oj in the infrared
region of the spectrum, there is always some amount of water vapor absorption contribution
throughout the infrared spectrum. This problem is complicated by the uncertainty in water
vapor concentration. In addition, the exact nature of the water vapor continuum is not
completely understood, as was discussed in section 2.1.2. Despite these effects, the 4.3 and
15 pm CO; bands have been successfully used for temperature profile retrievals (Houghton
1984).

An implicit assumption is that the atmosphere is in local thermodynamic equilibrium
(LTE). This physical state allows the accurate depiction of an atmospheric layer with a
homogeneous temperature field. Also, the population of excited molecular energy states
follows the Boltzmann distribution when the layer is in LTE (Stephens 1994). As described
in Section 2.1.3, this is a key parameter in the description of absorption band models.
For the troposphere, LTE is a reasonable assumption because the atmosphere is dense
and there are enough molecular collisions to ensure equilibrium. At higher altitudes, the
molecular concentration decreases exponentially with respect to pressure depth and the
thermodynamic state of the atmosphere must be considered more rigorously. Fortunately,
this research focuses on the characterization of the lower atmosphere from which most of
the atmospheric radiation originates.

Although the band model dependence on temperature is commonly ignored, the al-
titude dependence must be taken into account. Section 2.1.3 showed how molecular ab-
sorption bands are susceptible to pressure broadening. Because the weighting function

depends on the absorption coefficient, it too is affected by pressure broadening. Using the
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relationship given by eq. (2.9), the weighting function is

0 % Z (s

5,7 2) = (2 ) [ / B(z; \) dz] e~ Jo Az dz (2.41)
z 0

Substituting the Lorentz line shape model in egs. (2.24) and (2.25) for the absorption

coefficient ((z;A) and changing the notation to refer to wavelengths instead of frequency

results in
_SG) aul?)
T (A—=X0)? + ap(z)?

where the strength and width of the absorption depend explicitly on altitude. Substituting

Bz A) (2.42)

eq. (2.26) for ar(z) yields

S(z) or p(2) Ts
T 8 s T(z
Bz A) = £ © - (2.43)

p(z) Ts
(A= 2o) + [OéL,s v\ T

A weighting function created using this model is shown in Figure (2.12). The pressure
broadening can lead to a sharpening of the weighting functions as shown. The solid line
corresponds to the weighting function with respect to altitude. The dotted line is the same
weighting function but plotted against — Inp(z) (with a bias added to it to bring it to the
same scale). The temperature can cause either broadening or sharpening of the weighting
functions (Goody and Yung 1989).

As shown previously, eq. (2.39) appears to be the convolution of the Planck function and
the weighting function. However, this linear relationship arises from the assumption that
the Planck function is independent of wavelength and the weighting function is independent
of temperature. Neither of these are theoretically true. The Planck function becomes more
dependent on wavelength as the atmospheric and surface temperature increases and as the
spectral region of interest widens. For example, the Planck curve for 300 °K shown in
Figure 2.5 clearly changes with wavelength over the extent of the CO5 band while the 225

°K is relatively constant. Equation (2.43) clearly demonstrates that the weighting functions
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Figure 2.12: Weighting function arising from pressure broadening phenomenology

depend on temperature. Therefore, the Planck and weighting functions have a nonlinear
relationship. In general, however, the Planck function varies more rapidly with altitude than
with wavelength. Thus, it is often reasonable to disregard its dependence on wavelength.
The omission of the weighting function’s dependence on température, however, may be less

appropriate (Goody and Yung 1989).

B. The Inverse Problem. Earlier, I stated that the temperature profile could be inferred
from a set of known weighting functions and the measured spectral radiance. This seemingly
simple task is complicated by the nature of the inverse problem. In its linear form, eq. (2.39)
is a Fredholm integral equation of the first kind. The problem is complicated further by the
nature of the weighting function. The weighting function is exponential and resembles the

kernel in a Laplace transform. As the optical depth increases, the value of the weighting

44



function approaches zero. Thus, a large change in the vertical Planck distribution translates
to a small change in the observed radiance. This leads to an unstable inverse solution
because a small change in the observed radiance must be “amplified” to match a large
change in the Planck function. Therefore, small errors can be amplified in the estimate
of the temperature vertical profile (Twomey 1996). Also, the weighting function has the
effect of “blurring” the Planck function distribution, which has the effect of destroying
information. This can be illustrated by considering the limiting case where the weighting
function is a Dirac delta function. In that case, the spectral radiance and the Planck function
can be matched one-to-one and there is no blurring nor loss of information. As will be seen
later, this is not the case and the sharpness of the weighting function will vary. Finally,
we are restricted to a finite number of spectral samples. This leads to a finite number of
vertical samples in the retrieved profiles. The act of taking a physical problem from the
continuous domain to the discrete domain is often called discretization. This introduces
further complexities to the inverse problem because the discrete profile is an estimate of
the true continuous profile and therefore not exact. The result is that the inverse problem
is ill-posed because the solutions are not unique. To solve the problem, it is necessary to
constrain as many degrees-of-freedom as possible.

Solutions to eq. (2.39) involve the use of linear or nonlinear methods. These methods
can also be either statistical or physical. The statistical approach assumes that enough
a priori information about the statistics of the atmosphere are known to constrain the
solution. Physical approaches are based entirely on the physics of the radiative transfer
equation and are often constrained by the judicious use of an initial profile and by arriving
to a solution iteratively (Goody and Yung 1989; Menzel and Gumley 1999). The goal of all
of these approaches is to make the problem “well-posed”. The act of turning the ill-posed
problem into a well-posed or solvable problem is often called regularization. The rest of
this section will illustrate some regularization schemes. For now, it is sufficient to know

that there are optimal and suboptimal algorithms used to implement linear and nonlinear
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methods. The appropriate choice of implementation is largely governed by the application
and available resources. The interested reader is referred to the large literature on numerical

methods. A good starting point is Numerical Recipes (Press et al. 1992).

i. A Linear Approach. Equation (2.39) can be approximated as linear since the
Planck function varies more with temperature (and indirectly with altitude) than with wave-
length. The implications of this assumption will be illustrated shortly. The transmission
can also be assumed to be independent of temperature, although this approximation is less
accurate than the previous (Goody and Yung 1989). Finally, realizing that only discrete

values of spectral radiance measurements are available, equation (2.39) can be rewritten as
0
= / Lin, (Ts)Ki(6) d6 (2.44)
s

where ¢ denotes the discrete spectral band. Using the approximation that the Planck
function does not depend on wavelength, let Lgg = Lppg,;. Given this assumption, the

altitude-dependent Planck function can be expressed as a sum of basis functions such that
_ M

Lpp(6) =) =;f;(5) (2.45)
j=1

where f;(8) are the basis functions, z; are unknown coefficients, and M defines the number
of vertical layers. Conceptually, the simplest basis function is the rect function. In theory,
any basis function can be used. In practice, however, the basis functions are chosen to

satisfy some optimality criterion. Substituting eq. (2.45) into eq. (2.44) results in

M
ii = Zai]’l’j (2.46)
j=1
where
0
s = [ Ko (05 (2.47)
é

This is the linear form of eq. (2.39). This equation can be represented in matrix notation
as

L=Ax (2.48)




where a;; are the coefficients of the matrix A, and x is a column vector. This can be

expanded to

Li = anz +apzs+azzs+---+ oy
Ly = aniz1+ axnrs+ases+ -+ oy (2.49)
Ly = awni®1+an2za+an3zs+ - +anmTy

This expansion illustrates that the inverse problem can be reduced to the solution of a
simultaneous set of equations. If the number of vertical layers and the number of spectral
measurements are equal, and the N equations are linearly independent, then it is possible
to solve for the coefficients z; with a simple technique like Gauss-Jordan elimination. The
z; coefficients can then be used with eq. (2.45) to estimate the vertical profile. In matrix

notation, the solution is

x=A"'L (2.50)
or
N ~
= a;} L (2.51)
=1

where a,;jl are the coefficients of the matrix A~'. Substituting these values into eq. (2.45)

results in
Lpp(6) =) [Za } £3(8) (2.52)
7j=1 Li=1

Using the linear property of the summation operation

N
Lpa(d) = Z Za ) Li =) Di(5)L (2.53)
i=1 | j=1 i=1
or in matrix notation
Lpg(d) = f'(§)x = f'(§)A™'L = D(S)L (2.54)

The function D;(6) is commonly referred to as the contribution function since it defines the

contribution of the spectral radiance measurement to the vertical distribution of the Planck
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function. The contribution function also defines how much of the error in the spectral
measurement contributes to the error in the estimate of the vertical profile of the Planck
function. Assuming that the noise variances of each spectral measurement are equal and
that they are statistically independent, the noise variance in the estimate of the Planck

function is

N
opp(8) =0 D?(8) = 0 D*(4) (2.55)
=1

The term D?(§) is called the noise amplification factor. The magnitude of this term is an
indication of the conditioning of the matrix A (Goody and Yung 1989).

The approach that has just been outlined is often called the direct linear approach
because the vertical profile is derived from a direct and linear operation. So far, we have
assumed that the inverse of the matrix A exists. In practice, however, there are often
less spectral measurements than desired vertical levels. This leads to an underdetermined
system of equations and the matrix A is said to be rank-deficient. Even if the number
of measurements is equal to the number of vertical levels, the radiance measurements are
typically correlated so that not all of the rows of the matrix A are linearly independent. In
this case, the matrix is ill-conditioned. One approach is to design a spectrograph so that
there are more spectral radiance measurements than the number of desired vertical levels.
This results in an overdetermined system of equations. All of these cases result in a matrix
A that cannot be inverted directly.

One approach is to use the Moore-Penrose pseudoinverse such that
A '~ (A'A)PA = AT (2.56)

This satisfies the requirement of the inverse of a matrix since ATA = I where I is the

identity matrix. Thus, the profile coefficients can be estimated by
%= (A'A)AL (2.57)

For an underdetermined matrix A, the matrix (A’A) cannot be inverted directly because

it has zero eigenvalues (and eigenvalues less than one actually become smaller!). However,
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the inversion may still be possible if a technique such as the spectral decomposition of
A’A or the singular value decomposition (SVD) of A is used (see Appendix B). For an
overdetermined matrix, this technique performs the inverse computation exactly, provided
that there are no errors in the measured vector L. In reality, measurements always have

noise and X is equal to the solution that minimizes
~12
jAfc - L’ (2.58)

This is the least-squares solution because it minimizes the squared error in the estimated
radiance. This regression is optimal in the sense that it minimizes the error in the spec-
tral radiance. This does not imply that the solution optimally estimates x. In fact, it
is possible to obtain a better estimate of x if the least-squares criterion is appropriately
constrained (Twomey 1996). One method is the Twomey-Tikhonov regularization which
modifies eq. (2.57) to

% =[(A'A) + vH[*A'L (2.59)

where 7y is a constant and H is chosen so as to select the “best” solution of x given a
specified constraint. One example of a constraint would be to select the smoothest solution

as the most probable solution. Equation (2.59) arises from the minimization of
-2
lA)‘c _ L’ + 7¢(%) (2.60)

where ’A)”c - I:‘Q corresponds to the least-squares criterion and ¢(X) is a measure of the
smoothness of the solution X. For example, this measure may be obtained from the first or
second “differences” (i.e., the discrete derivatives) of X or from the variance of X. In the
limit v — oo, the solution would be based on the smoothness criterion only and would be
independent of any measured values of L. Alternatively, in the limit v — 0, the solution is
based solely on the least-squares criterion. Thus, the ~ factor allows “fine-tuning” of the
solution based on the noise characteristics of L and the conditioning of A.

A fundamental difficulty with this procedure is that « will vary depending on the

problem and must be determined a priori. This is due to the fact that we do not know
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Figure 2.13: Effect of 7y on residual error of estimates obtained from the regularized inverse.

the true vector x and therefore cannot compute the residual error |x — %|2. One solution is
to compute the residual error for known values of x as a function of v and find the ~ that
minimizes the error. Figure 2.13 shows hypothetical regularized root-mean-square (RMS)
residual errors between the observed L and the estimated L and between the true x and %
as a function of 7. The problem was regularized by letting ¢(X) = var(X) (i.e., the constraint
was to choose the solution with the minimum variance). These RMS curves are compared
to the constant least-squares regression RMS for L and x. When ~v = 0, the regularized
solution is equal to the least-squares solution. The plot indicates that v = 0.2 is optimal
for the estimation of x. It also illustrates that the optimal value of v cannot be determined
from an analysis of the errors in L. How well the estimated ~ value does when it is applied
to new observations depends on how well the measurement noise was characterized. Also,
the optimal « value may depend on the shape of the true x.

One final comment should be made about the Twomey-Tikhonov regularization ap-

proach. The more ill-conditioned A is, the larger the v value will have to be in order to
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make the inverse solution stable. This means that less information in L is used to estimate
x. In certain cases, particularly when A is rank-deficient, another approach may be more
suitable. For instance, a calculation of (A’AY™* with a reconstruction based on a truncated
SVD may lead to significantly better results. Another alternative is to use the SVD in the
calculation of the Twomey-Tikhonov inverse.

The least-squares, Twomey-Tikhonov, and SVD solutions can result in lower noise
amplification factors than the direct linear solution. In addition to implementing these
techniques, the noise amplification factor may be reduced by the proper selection of the
basis functions f;(4) used to represent the Planck vertical profile. According to Goody
and Yung (1989), the noise amplification factor is minimized when the weighting functions
are used as the set of basis functions, assuming the noise in the observations is identical
and independently distributed (iid). Consequently, this set of basis functions is planned for

implementation in the sounding algorithms for MODIS (Menzel and Gumley 1999).

ii. A Statistical Approach. In the previous section, a linear approach for solving
equation (2.48) was introduced. This approach assumed that the radiative transfer was a
linear transformation of a vector x to the observed value L. To solve the inverse problem,
it was found that a constrained least-squares solution might be able to handle errors in
the measurement as well as ill-conditioning of the matrix A. The choice of a constraint
to the least-squares solution is arbitrary, and it was shown that using a minimum variance
constraint can lead to improvements in the retrieval of x. There was, however, no particular
reason based on the physics of the problem for establishing this constraint; rather, it orig-
inated from the desire to avoid numerical instabilities in the solution due to measurement
errors. It may be more appropriate to choose a constraint based on a priori knowledge of
the atmosphere. One simple technique uses a climatological mean as a constraint in the

Twomey-Tikhonov regularization method (Houghton 1984). Thus, the solution is based on

a departure from the mean.
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Figure 2.14: Mapping of state space to measurement space.

A more general use of statistics involves an understanding of the multivariate nature
of the problem. Figure 2.14 shows a simplistic schematic of the problem at hand. The
radiative transfer through the atmosphere represents a mechanism for mapping the thermo-
dynamic state and character of the atmosphere to a set of spectral observations. The vector
x is a multivariate random variable of size M, originating from a multivariate probability
distribution P(x). This is the state space and the vector x is a source vector. Similarly,
the observation y = L is a random variable in the measurement space having a multivari-
ate probability distribution P(y). The two are related by a joint multivariate probability
distribution P(x,y). Bayes’ rule provides the structure through which these distributions
are related:

P(x)P(y|x) = P(x,y) = P(y)P(xly) (2.61)

where P(x|y) and P(y|x) are conditional probabilities that describe a posteriori knowledge
of the variables x and y. Thus, knowledge of the “source” distribution P(x) and the joint
distribution P(x,y) is all that is needed to describe the mapping. These values can also
determine the amount of information that a measurement y carries about x. That is, an
optimal mapping from the measurement to the state space exists.

When a new observation y resulting from a state vector x is made, the a posteriori
probability P(x|y) changes. One method for determining x from y is to use the Mazimum
Likelihood rule, which finds x such that P(x|y) is maximized. This is an intuitive approach

and provides an optimality criterion. When the source and joint probability distributions
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are symmetric, the maximum likelihood solution is the same as the expected value given by

%= E(x|y) = /xP(x|y) dx (2.62)

where X is the most likely (and expected) estimate of the true x given the observation
y (Rodgers 1998). The uncertainty in X is obtained from the covariance matrix Xg, which

is the expected value of the squared deviations from X:
S =E[x-%)% = / (x — %)2P(x|y) dx (2.63)

An analytical expression of X can be obtained by assuming that the a priori distribution
P(x) is multivariate Gaussian:

1

P(x) = —(27‘(')N/2 |2x|1/2

exp [—%(x — ) I (X — i) (2.64)

where px and X are a priori maximum likelihood estimates. The a posteriori probability
for y is also assumed to be Gaussian distributed. This can be expressed in terms of the
radiative transfer mapping established in equation (2.48) perturbed by some random error
€ so that

y=Ax+e (2.65)

and

In P(y[x) = ——;—(y — AX)'S7 (y — Ax) +In [(20)" [ Se[ ] (2.66)

The second term on the right hand side of the equation is a normalization constant and does
not provide any information about the how the state and measurement spaces are related;
therefore it is omitted from the subsequent analysis. Solving equation (2.61) for P(x|y)

and taking the natural logarithm results in
In P(x|y) = In P(y|x) + In P(x) — In P(y) (2.67)

Because the observation y has been made, P(y) = 1 and In P(y) = 0. Substituting egs.
(2.64) and (2.66) into eq. (2.67) results in

InP(xly) = —(y = Ax) B (y — Ax) = 20x— m) "SR (x ) (268)
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This expression has the general quadratic form
Lo 't X (2.69)
i(x %)E0(x - %) .

Thus, the a posteriori probability of x is Gaussian distributed because it is the result of
a linear mapping of Gaussian-distributed random variables. Therefore, X is the maximum
likelihood estimate of x. Rodgers (1998) shows that %X can be solved for in terms of the
observation, weighting functions, and a priori statistics by equating the quadratic and linear

terms in eqgs. (2.68) and (2.69) such that
fo= (A'SA + 37) 7 A'Sy + B ) (2.70)

This seemingly complex expression has a relatively simple interpretation. The first term
A'S'A + 33! is simply the sum of the variances due to the error in the observed value y
and px. This overall variance scales the second term, which is nothing more than the sum
of the two random variables: the contribution to the estimate of x from y and ux scaled
by their appropriate variances. This result should be an improvement over other linear
approaches because the multivariate statistics of the problem are used to obtain the most
probable solution. The main drawback is that the form of the probability distributions are
assumed to be Gaussian, which may not necessarily be a correct assumption.

Statistics may also be used to minimize the error made by selecting a particular x
as X. This is done by constraining the solution to have minimum variance (i.e., squared
error between the true and estimated x) . The variance of the solution is the maximum
likelihood estimate ¥y. This term can be minimized by setting the derivative with respect
to X equal to zero. When the joint probability distribution is symmetric, the estimate of x
that leads to minimum variance is equal to the maximum likelihood estimate of x obtained
with eq. (2.62).

The minimum variance concept may also be used to relate a set of measured y to
a set of atmospheric states x empirically. This technique is particularly useful because it

makes no assumptions about the shape of the probability distributions and does not require
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rigorous characterization of the sensor and the atmosphere. Thus, the matrix A does not
need to be created. This method, however, does require a large ensemble of representative
data to exist. The ensemble may be generated from previous observations or simulations.
The a priori expected values of x and y are estimated by calculating the means of the x and
y ensembles. The resulting mean vectors fix and fi, are averages over all of the observations

in the ensembles. The method assumes that x and y may be related linearly by

X — pix = D(y — py) (2.71)

where x — pix is a ¢ X 1 matrix, D is a ¢ X p matrix, and y — py is a p X 1 matrix. If there

are n observations in the ensemble, then the covariance between the two sets is

Sy =2 3 (= m)(y — by (2.72)
k=1

Assuming that the error in the measurement is additive, the covariance of the y observations

is given by

-~

Zyy = Byy + 2 (2.73)
The matrix D that yields the minimum variation of x is
D = 3,3} = X'Y(Y'Y)"! (2.74)

where X and Y are the n x ¢ and n x p ensembles, respectively, and are mean-centered and
scaled by the number of observations. Thus, D is the solution to the least-squares criterion.

This may be more apparent by defining the coefficients in terms of D’ such that
=D =(Y'Y)Y'X (2.75)

and

X=Yp (2.76)

The difference between this scheme and the one described in the context of direct linear

solutions is that the regression is defined to predict x instead of L.
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There are no constraints to the relative dimensionality of the vectors x and y. That
is, p does not have to be equal to ¢q. It might then be tempting to make ¢ > p. However,
this leads to ill-conditioning or rank-deficiency in the matrix 3, which raises the practical

issues associated with inverse problems discussed earlier in this section.

iii. A Nonlinear Approach. Nonlinear solutions to eq. (2.39) are typically iterative.
The main advantage of this approach is that it does not introduce errors associated with
linear radiative transfer assumptions. Furthermore, a priori knowledge of the statistics
of the atmosphere is not required. Chahine’s relaxation method is a good example of a
nonlinear iterative solution (Goody and Yung 1989). It tends to converge quickly and is
more likely to yield correct solutions given an appropriate set of weighting functions exists.
The algorithm is based on approximating eq. (2.39) by noting that a typical weighting
function has a maximum at some ;. Because the weighting function dominates at this

value, equation (2.39) can be rewritten as
~i ~ CKi((si)LBB,- (T(;i) (2.77)

where L; is the fized observed radiance and C is an unknown constant that must be de-
termined from empirical results. If an estimated temperature distribution profile is used to

initialize the algorithm, the resulting estimated radiance field is given by
I ~ CKi(6:)Lpp (1) (2.78)

where the superscript (0) represents the zeroth iteration. The vertical temperature profile
of the first iteration is determined by the following ratio

L (1) L
LBBi(Ta(? y IO

(2.79)

The temperature profile obtained from the first iteration is an improved estimate that is used
in the next iteration. The algorithm converges when the change between the temperature

profiles between two iteration steps is less than some specified threshold (typically of the
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same magnitude as the sensor noise). Chahine’s method strongly depends on the sharpness
of the weighting functions. Therefore, convergence is not always guaranteed (Goody and
Yung 1989).

The method described here is also known as nonlinear relazation. Note that the “non-
linear” operation described so far is the determination of a new atmospheric profile after
each iteration. In order to account for the nonlinearities in the radiative transfer, new
weighting functions must be generated using the new temperature profile estimate at each
iteration step. The same is true for any nonlinear sounding method. For example, a non-
linear sounding method may consist of simply solving the linear inverse problem with some
initial weighting functions, using the solutions to build new weighting functions, and solving
the “new” linear inverse problem at the next iteration step. This would be done several
times until convergence. As with any nonlinear technique, there must be a suitable set of

constraints in order to obtain an adequate solution.

C. Sensor Response. So far, the development of the theory of atmospheric sounding
assumed monochromatic radiation. Since realistic measurements are made with a detector
that has a finite-width spectral response, it is necessary to use band transmission functions.

Thus, equation (2.39) must be rewritten:

. & T5(6
Is= / Lpp(T5) g(g ) ds (2.80)
0

where the subscript A denotes the spectral bandpass of the detector. For a detector with
many channels, this spectral bandpass would be specified for each channel. This averaging
of the transmission function broadens the calculated weighting function. Thus, the spectral
response of the system will determine how absorption features will contribute to the observed
radiance. This may actually be a desirable condition when a broad temperature sounding
band (e.g., CO2 15 pm band) is overlapped with narrow absorption features due to other

atmospheric constituents (e.g., water vapor). On the other hand, we have seen that the
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sharpness of the weighting function may lead to a more numerically stable solution of the

inverse problem. A prudent system design analysis should consider this tradeoff.

Water Vapor Profiles and Other Constituents

The determination of the concentration of water vapor and other constituents as a function
of altitude is more complicated than obtaining just the temperature profile using known
weighting functions. The total transmittance through the atmosphere is the product of the

individual transmission contributions of each constituent and is represented by
r=]]= (2.81)
i

where 7; is the transmission of the i** constituent. In concept, we should be able to build
weighting functions and infer an effective temperature profile for each constituent. This
effective temperature profile can then be used to determine the constituent concentration
profile. This logic fails, of course, because we cannot build weighting functions unless we
know the constituent concentration profiles. However, we can use initial estimates of the
weighting functions and use these to solve for an effective change or perturbation about the
initial estimate of temperature. To do so requires a modification to eq. (2.39) to include
the contributions from each constituent of interest (Huang 1989).

The modified radiative transfer equation results in a perturbed radiance observation
about some initial estimate. The goal then is to relate this perturbation to a perturbation
of the temperature and constituent profiles using “known” initial weighting function esti-
mates and profiles. This equation is then used to solve for the temperature perturbation
for all the constituents of interest. The solutions are effective temperature profiles for each
constituent, which can then be related to the absorber concentration based on the hydro-
static equation. This results in a simultaneous retrieval of temperature and concentration
profiles. A rigorous mathematical development is provided in Appendix C and follows that

of Smith et al. (1991) with some minor additions and changes.
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This method was implemented for the analysis of Visible Infrared Spin Scan Radiome-
ter (VISSR) Atmospheric Sounder (VAS) data. This sensor is onboard the operational
Geostationary Operational Environmental Satellites (GOES) (Hayden 1998). The same
technique is used for the TIROS Operational Vertical Sounder (TOVS) (Houghton 1984).
The technique will also be implemented with the planned Advanced Infrared Radiation
Sounder (AIRS), which has an unprecedented high spectral resolution (Smith et al. 1991).
Proper implementation requires the use of a line-by-line radiative transfer code for the Beer-
Lambert Law and eq. (2.81) to hold. Smith et al. demonstrated that temperature retrieval
errors for the AIRS sensor are expected to be around 1.5 °K RMS. Water vapor mixing
ratio profiles have RMS errors between 0.2 and 0.5 g/kg and ozone retrievals have errors of

about 3%.

2.1.6 The In-Scene Atmospheric Compensation Method

The ISAC algorithm was developed by Hackwell, Johnson, and Young of the Aerospace Cor-
poration for the analysis of hyperspectral imagery from the Spatially-Enhanced Broadband
Array Spectrograph System (SEBASS) (Johnson and Young 1998). The method makes
use of eq. (2.5) and image statistics to define unscaled spectral transmission and upwelled
radiance curves. The use of the image statistics assumes that there is no variation of the
atmospheric parameters over the image. These curves are then scaled to “true” values by

assuming a known value at a reference wavelength or by scaling to output spectral radiance
curves from MODTRAN.
Unscaled Parameters

Consider the case of a blackbody imaged by a remote sensor. From eq. (2.5) we find that
there is no contribution from the reflected downwelled radiance because € = 1. Thus, the

surface-leaving radiance is solely defined by the Planck function and the equation of transfer
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greatly simplifies to
L =71Lpp(Ts)+ Ly (2.82)

where T is the surface temperature. If the transmission and upwelled radiance are es-
timated, then the temperature of the blackbody can be determined by rearranging the

previous equation, substituting in the Planck function, and solving for Tj:
-1
C1
2\ (L — Lu)
T

where Ty is the temperature of the blackbody. For targets that are approximately blackbod-

Te=cy |A{In +1 (2.83)

ies in the far infrared (such as water), the surface temperature retrieval problem is solved
at this point. For targets that are not blackbodies, an approximation is necessary.

First, let the brightness temperature be the temperature that an object appears to have
if it is assumed to be a blackbody. For this reason, the brightness temperature is also
known as the apparent temperature. The brightness temperature can also be thought of
as the temperature necessary for the Planck equation to generate a radiance equal to that
observed by the sensor. The brightness temperature at the top of the atmosphere can be

obtained by rewriting eq. (2.83):

T'(\) = ¢ [A {m [E%(T)] + 1}] - (2.84)

where T7()) is the “at-sensor” brightness temperature and L()) is the observed spectral

radiance. The radiance reaching the sensor can then be described as
L(\) = Lps(\,T") (2.85)
Substitution into eq. (2.82) yields
Lep(\,T") = 7(X) Lep(\ Ts) + Lu(N) (2.86)

This relationship is exact for blackbodies. Unfortunately, objects in an infrared image are

not always blackbodies. However, most natural objects have fairly high emissivities in the
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LWIR so that it can be reasonably assumed that there will be several pixels corresponding to
blackbodies at some reference wavelength ., in any given image. An appropriate reference
can be determined by finding the wavelength at which the brightness temperature is a
maximum for the largest number of pixels in the image. The radiation at these pixels is
then assumed to be from blackbody emitters. This approach is known as the “maximum
hit” criterion for finding blackbody targets in a hyperspectral image. Now assume that k

pixels are selected by this procedure. Equation (2.86) then becomes
Lpp(A, T,';) =7(Ar) LeB(M\r, Tx) + Lu(Ar) (2.87)

This relationship is valid within the error resulting from estimating the blackbody pixels.
However, there will be a bias €(\) introduced at wavelengths other than the reference due
to emissivity effects. Thus, an approximation of equation (2.87) for all wavelengths can be

expressed as

Lpp(\ T;) = T(\) Lea(\, Ti) + Lu(Ar) +€(N) (2.88)
where the transmission and upwelled radiance values are evaluated at the reference wave-
length only. Solving for the emitted surface radiation we get

1
7(Ar)

This equation is an estimate of the true surface-leaving radiance. Thus, it is appropriate to

Les(\T) = L\ TL) — Lu() — €(N)] (2.89)

evaluate 7(A) and Ly, (A) only at A\, where the atmosphere is assumed to be least influential.
This assumption stems from the fact that the largest number of pixels have a maximum
brightness temperature at A, implying that the atmosphere is most transmissive at A,. An
implicit assumption is that the temperature of the Earth’s surface dominates the detected
radiance. While this condition is not unrealistic, it can be easily violated. For instance, a

large cloud area may dominate the scene and skew the reference wavelength.
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Substituting eq. (2.89) into eq. (2.86), and using the relationship in eq. (2.85), results

LK) = () | 5 Ean (T = Lu(h) = )] + LY
() o)
= T(/\r)LBB(A’ 1) — TOu) [Lu(Ar) + €(A)] + Ly(N) (2.90)
= 7'(\) LA\, Tg) + Ly (M)
where
o T
"N =755 (2.91)
and
L) = % Lu(hr) + )] + Lu(V) (2.92)

Equation (2.90) is similar to the simple radiative transfer equation for blackbody targets.
The main difference is that the transmission and upwelled radiance values are now unscaled
or biased by emissivity effects and residual errors in the procedure.

At this point, it is necessary to emphasize we have been using the maximum brightness
temperature at the reference wavelength as the best estimate of the surface brightness
temperature. This value changes for each pixel but it is constant with respect to wavelength.
Consider the relationship between the observed radiance and the surface-leaving radiance
at some arbitrary wavelength A,. If the atmosphere was perfectly transmissive, then there
would be a straight “one-to-one” mapping of the surface-leaving radiance and the radiance
measured at the sensor. (In fact, this is the case for A, because of the way the relationship
was defined.) Any deviations from this mapping are due to atmospheric effects. Thus,
the unscaled parameters may be obtained from a scatter plot of the observed radiance and
the estimated surface-leaving radiance values. The slope and intercept are then 7/(),) and

L’,(Ap) respectively (Figure 2.15). To find the complete spectrum of unscaled transmission
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Figure 2.15: Scatter plot for the determination of blackbody pixels

and upwelled radiance, the slope and intercept must be found for all of the bands of the
sensor. The slope and intercept may be calculated using a standard least-squares regression.
Finally, note that a larger range of surface-leaving radiance values leads to a more accurate
estimation of the unscaled parameters. The spread is dictated by the surface temperature
distribution of a given scene and by the atmospheric transmission.

An alternative approach is to construct a scatter plot of all of the pixels in the image.
The Kolmogorov-Smirnov goodness-of-fit test can then be used to fit a line across the top
of the scatter of points. The basic premise behind this method is that for a given brightness
temperature and wavelength, the pixels that generate the largest values of observed radiance
are the most likely to be blackbodies. The unscaled parameters are then the slope and
intercept of this line. The advantage of this method is that the sensor noise can be accounted
for by fine-tuning the test statistic. Furthermore, there will be a correspondingly larger
spread of temperature values because all pixels are used. This results in a more robust
line fit. The drawback is that the atmospheric spectra retrievals are more prone to errors

induced by surface emissivity effects.
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Scaled Parameters

Although the unscaled parameters are representative of the spectral structure of the actual
atmospheric parameters, it is necessary to scale the parameters to true values when accurate
radiometric studies are needed. Johnson and Young (1998) present several methods. The
simplest assumes that the transmission is known at a given wavelength. The unscaled
transmission is then scaled to these values. The upwelled radiance can then be found
by using the scaled transmission spectrum and by assuming the true effective atmospheric
temperature is accurately estimated from the unscaled upwelled radiance. This relationship

is derived from the approximation
LA~ 1 -7 (N))Les(\,T.) (2.93)

where T}, is an effective atmospheric temperature based on the unscaled parameters. A

similar relationship holds with the scaled parameters so that
Ly(A) = [1 = 7ML\, Tu) (2.94)

where T; is the effective atmospheric temperature derived from the scaled parameters.
Johnson and Young claim that numerical analysis can be used to show that T ~ T, so that
setting egs. (2.93) and (2.94) equal yields

L)) _ _Ly(A)
1—-7(0)  1-=7()\)

(2.95)

This equation can then be used to solve for L,,. However, it is numerically unstable because
it requires division by 1 — 7/(\), which approaches zero in regions of interest where the
atmosphere is highly transmissive—particularly when using the unscaled transmission.

A similar approach requires that both the true transmission and upwelled radiance be
known at a wavelength A\g. The relationship between the scaled and unscaled parameters

is built by equating egs. (2.90) and (2.86). This results in
(AN Lep(\,T') + Ly,(A) = 7(\) L\, T) + Ly () (2.96)
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Substituting A for Ay and solving for T yields

T=T, {)\0, I:;ziT)TI(/\O)LBB (/\0, T’) + L;()\o) - Lu()\o)} } (2.97)

Two observed brightness temperatures 77 and T7 can then be chosen and substituted into
this equation to yield two independent estimates of the “true” temperatures T; and T5. This
assumes that 7(\g) is not close to zero. These “true” temperatures can then be reinserted
into eq. (2.96) to form a linear system of two equations. These can then be used to solve
for the scaled parameters 7(A\) and Ly ().

Another technique involves the use of MODTRAN to calculate transmission and up-
welled radiance values at a given wavelength and then scaling the parameters to these
values. The wavelength used for this procedure is that for which the unscaled upwelled
radiance is a minimum. This reduces errors associated with transmission through the at-
mosphere and downwelled radiance. Another method, also involving MODTRAN, is to use
the relationship between the slope of the water vapor continuum and the strength of the
absorption in the vicinity of the 11.7 um water absorption band. The hypothesis was that
this relationship was correlated to certain parameters such as surface temperature, effective
atmospheric temperature, and the transmission for that band. Several look-up-tables were
generated varying these parameters, which were then used as inputs into MODTRAN. The
MODTRAN-predicted radiances were then related to the input parameters. This relation-
ship was then used to infer these input parameters from the observed data. The estimated
parameters were then processed with MODTRAN to obtain estimates of the atmospheric
transmission, upwelled radiance, and downwelled radiance. This approach is similar to the

model-matching techniques described in Section 2.1.4

2.2 Temperature and Emissivity

The surface temperature and emissivity are important parameters in several applications.

In this section, current techniques used for the separation of temperature and emissivity
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effects are presented. These techniques rely on successful compensation of atmospheric ef-
fects. Thus, errors in the estimate of surface radiance will strongly impact the ability to
accurately measure surface temperature and emissivity. Another challenge with this prob-
lem is that the spectral surface radiance consists of N measurements, while the unknown
spectral emissivity and temperature add up to N + 1 unknowns. Therefore, this is an
underdetermined mathematical problem. This section covers three separate techniques for
the measurement of surface temperature and emissivity given that the atmosphere is well

characterized and an estimate of surface radiance exists.

2.2.1 Split-Window Algorithms

The split-window method is the most popular algorithm for measuring surface tempera-
ture from a remote platform. The main reason for its popularity is that it is simple to
implement and consistently yields reasonably accurate measurements. The technique was
originally developed for determination of Sea Surface Temperatures (SST). For this ap-
plication, the split-window method works very well since the emissivity of the water is
well-known. However, complications arise from its implementation over land, especially
for arid land surfaces that may contain materials with emissivities that have substantial
spectral contrast (Pieters and Englert 1993). For these situations, the estimate of surface
temperature could have substantial errors. A great deal of effort has been directed at mod-
ifying existing split-window algorithms to compensate for emissivity effects. Unfortunately,
the lack of knowledge and measurements of emissivities at the required spatial scales limits
the utility of this algorithm for land surface temperature measurements (Prata et al. 1995;
Goita and Royer 1997; Caselles et al. 1997a). Still, it is valuable to understand the basic
theory behind this technique since it may be extended to applications in which more than
two spectral bands are available. Finally, the split-window algorithm is a suitable baseline
method for cases where a limited number of bands are available.

The main assumption of the split-window technique is that the ratio of radiances mea-

sured in two spectral bands is proportional to the ratio of the absorption coefficients for
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the same bands. The theoretical basis for this technique is summarized from that presented
by Schott (1997). The split-window algorithm works best when the target is a blackbody.
Using this simplified case, the linear representation of the radiative transfer equation can
be written as

L) =7(N)Les(\ Ts) + [1 = 7(A)]Lee (A, Ta) (2.98)

where Lpp(T,) is the radiance emitted by the atmosphere for an effective atmospheric
temperature T,. The second term on the right side of the equation is equivalent to the
upwelled radiance L.

The transmission can be represented with a first-order Maclaurin series. From eq. (2.9),
the series expansion is

7(2) = 7P m 1 — Bz (2.99)
Substituting this equation into eq. (2.98) results in
L(A\) = Lgp(\,Ts) = [Lep(\, Ts) — Lea(\, Ty)] Bextz (2.100)

This equation can be rewritten in terms of the brightness temperatures to yield an approx-
imate relationship

Ty = Ty — [Ts — Tu)Beat, (2.101)

where T; is the brightness temperature at the i*» sensor band, T is the surface tempera-
ture, and [ey, is the extinction coefficient in the ith spectral bandpass. Thus, the surface
temperature is the intercept of the regression line through the scatter plot of 7; against
Beat;z. A practical consideration is that the extinction coefficients used over the range of
spectral bands must sufficiently vary to allow an accurate linear regression fit. Thus, the
sensor must have spectral bands located along the wings of atmospheric absofption features
or where the continuum changes rapidly. This is the same requirement needed for atmo-
spheric sounding. When there are only two windows available, the surface temperature can
be obtained from eq. (2.101):

T — T4 Beaty — ToBeaty (2.102)

ﬁea:tz - ﬁemtl
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where 17 and T3 are the brightness temperatures for the selected windows. Recall that
so far we have neglected to consider the case where the surface is not a blackbody radia-
tor. The effects of emissivity are difficult to compensate. To do this, eq. (2.102) can be
generalized and represented in terms of three coefficients that are derived empirically for
a set of atmospheric and surface conditions (Prata et al. 1995). The general form of the

split-window temperature is then
Ts=al1+bl5+c (2.103)

The coefficients a, b, and ¢ typically depend on emissivity and transmission effects. Because
the true emissivity values are not known, the accuracy of the split-window temperature is

limited.

2.2.2 Alpha-Derived Emissivities

This technique uses the concept of alpha residuals developed by Kealy and Gabell (Kealy
and Hook 1993). The goal of this technique is to separate the contribution of temperature
and emissivity to brightness by the use of Wien’s approximation of the Planck equation.
From this, a mathematical manipulation of the parameters yields a quantity—the alpha
residual-that can be obtained from direct measurements and knowledge of the spectral
response of the sensor. The alpha residual has a spectral shape associated with the actual
emissivity. The actual emissivity can then be derived from the alpha-residual because the
statistical properties of the alpha-residual are associated empirically with the statistical
properties of the emissivity.

To derive the form of the alpha residual, we begin with Wien’s approximation to the

Planck function:
C1

Les(\ 1) ~ A3 exp [ca/AT]

(2.104)

where the coefficients ¢; and ¢y are the same as for the Planck function. The radiance from
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an object is

LINT)=¢e(A\)Lps(\,T) (2.105)

Now consider the case where there are N discrete spectral-radiance measurements indexed

by j. After taking the natural logarithm of both sides and multiplying by A; we get

C2

/\j h’l(Lj) = >‘j ln(ej) + Aj ln(cl) - 5)\] ln()\J) - T (2.106)
The expected value of this equation yields
ENIn(L;)] = EPjIn(ej)] + E[Aj] In(er) — 5E[; In(A;)] — -‘;:-F% (2.107)

and subtracting from eq. (2.106) we get

AjIn(L;) — E[N\jIn(L;)] = Ajln(e;) — E[AjIn(e;)] + AjIn(er) — B[] In(cr)

—5X;In(A;) + 5E[Aj In(Aj)] (2.108)

which effectively removes the dependence on temperature. All of the terms on the right
side that do not include the spectral emissivity are either constants or are known from the
detector spectral response. Thus, these can be grouped into a band-dependent value Kj.

After rewriting the previous equation, we obtain the alpha residual:
o = AjIn(L;) — E[N In(Lj)] + K; = AjIn(e;) — E[)jIn(g;)] (2.109)

Equation (2.109) shows that the alpha residuals can be directly calculated from our knowl-
edge of the surface radiance and the detector’s characteristics. From this equation, the

emissivity is

(2.110)

&j = exp a; + E[/\J ln(é"j)]:l

Aj
To estimate this parameter, it is necessary to estimate or approximate the expected-value

term on the right side of the equation. Kealy and Hook (1993) report that the variance of

the alpha residual is empirically related to the expected value term in eq. (2.110) by

]l/M (2.111)

By In(e;)] = X = ¢ [0

aj
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Figure 2.16: Plot of alpha-residuals and emissivity.

where the coefficients ¢ and M are obtained from a nonlinear least-squares fit (2.110). The
coefficients vary depending on the type of material (e.g., igneous rocks, soils, etc.) although
the variation is not great and the classes are fairly broad. Also, the optimum coefficients
will vary depending on the configuration of the sensor.

Figure 2.16 shows an example of an alpha residual and an alpha-derived emissivity.
Subplot (a) is the emissivity of pine tree obtained from the John Hopkins University spectral
library included with the Environment for Visualization (ENVI) package (Better Solutions
Consulting LLC 1998). Subplot (b) is the alpha-residual based on a modeled radiance.
The modeled radiance is simply the product of the emissivity and the Planck function at a
temperature of 300 °K. Note the slight difference in “tilt”, which is due to bias introduced by
Wien’s approximation to the Planck function. Subplot (c) is the alpha-derived emissivity.
In this example, the expected value in eq. (2.110) used is the true expected value from the

original emissivity curve. Therefore, any errors in the estimate emissivity are due to Wien’s
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Figure 2.17: Bias due to Wien’s approximation.

approximation. Subplot (d) is the difference between the true and alpha-derived emissivities
and shows that the error due to Wien’s approximation tends to bias the longer wavelengths
more strongly. The magnitude of the error is 1-2 %, which is too high for a simple case with
no other sources of error. Figure 2.17 is a plot of the ratio of the Planck blackbody function
and Wien’s approximation against temperature and wavelength. Although the wavelength
dependence is known for a particular sensor, the temperature dependence is not unless some
estimate of the surface temperature is used. If this is known, then an appropriate correction
can be implemented. However, the goal of the alpha residual technique is to be independent

of temperature. Thus, the implementation of a correction factor negates the entire basis of

the alpha-residual technique.



2.2.3 Temperature and Emissivity Separation (TES) Algorithm

The TES algorithm has been developed to support the generation of standard data products
for the ASTER sensor. The sensor is onboard the NASA Terra satellite that was launched
in December, 1999. The algorithm is a combination of other techniques developed for the
separation of temperature and emissivity effects. To summarize, the algorithm starts with
an initial estimate of the maximum value in the emissivity spectrum and performs a series
of iterations to find the best estimate of surface temperature and emissivity. The inputs
required are the surface-leaving radiance and the total downwelled radiance. One of the
key features of this algorithm is that it compensates for downwelled radiance. The next
three sections briefly describe the main modules of the algorithm. Gillespie et al. (1999)
provide an extensive description of the algorithm and its performance as implemented for
ASTER. The algorithm has also been successfully implemented for the Thermal Infrared
Multispectral Scanner (TIMS) sensor and tested extensively in the HAPEX-Sahel field

campaign (Schmugge et al. 1997).

Normalized Emissivity Method (NEM) Module

The NEM module begins with an initial estimate of the maximum emissivity value. Since
most materials have a high emissivity, the initial maximum emissivity &g, is set to 0.96.
This value is then used to compute an estimate of the surface radiance which includes the

downwelled radiance term and is given as follows:

N

B\ = Ls(\) = (1 — emaz) La(N) (2.112)

where R()) is the interim estimate of the surface radiance due to emission only. In this
formulation, it is assumed that the surface-leaving radiance was calculated without consid-
ering the downwelled radiance term. The NEM temperature is then defined as the largest
brightness temperature associated with R()\). This NEM temperature 7" is then inserted

into the Planck function to get the blackbody radiance. The new spectral emissivity can
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then be found by
RO\
é) = )
Lpgp(T)

The entire spectral emissivity curve (instead of just emqz) is then used with eq. (2.112) to

(2.113)

calculate a new R()\). This process is then repeated until R(}) is less than or equal to some
threshold. As implemented for ASTER, the algorithm uses the noise-equivalent radiance
difference as the threshold. The final spectral emissivity and temperature are then used in
the Ratio Module.

Ratio (RAT) Module

This is the simplest step of the algorithm. It merely involves calculating the average emis-
sivity from the spectral curve obtained with the NEM module. The spectral emissivity is

then scaled to this mean value giving
BN = —* (2.114)

Minimum-Maximum Difference (MMD) Module

The 3 spectrum from the RAT module can then be used to define an empirical relationship

between the observed spectrum and the actual emissivity. The MMD is defined as
MMD = max(f) — min(f) (2.115)

Using laboratory emissivity spectra, an empirical relationship between this MMD value and

the minimum emissivity €, was found to be
Emin = 0.994 — 0.687 - MM D7 (2.116)

where the minimum emissivity was chosen because it resulted in a higher correlation. In
contrast to the empirical relationship found for the alpha-derived emissivity, this empirical

relationship is valid for a relatively wide variety of target types as shown in Figure 2.18.

73



Fitted Model Plot
T T !

)
12 T

Minimum Emissivity

| R
024 02 04 06 08 1
MMD
000 Data Points
— Fitted Model
-~ Upper Confidence Band

~~ Lower Confidence Band

Upper Prediction Interval
Lower Prediction Interval

Figure 2.18: Determination of Empirical Relationship Between MMD and &,,;,.

The TES emissivities are then calculated from this empirical relation such that

e(A) = B(/\)% (2.117)

The maximum of TES spectral emissivity and R are then used to calculate the TES temper-
ature by using equation (2.84). Using the maximum emissivity minimizes errors introduced

by ambiguities in the estimate of the downwelled radiance term.

Final TES Temperature and Emissivities

The TES temperature and emissivities calculated by the MMD module are then used as
inputs to the NEM module for one single final pass through the NEM, RAT, and MMD
modules. This final pass is non-iterative, and can lead to refinement of TES emissivities by
as much as 0.01 (Gillespie et al. 1999). Testing for the ASTER sensor has shown that there

is little gain in doing this final pass more than once (Gillespie et al. 1999).
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2.2.4 Other Methods

There are many temperature and emissivity estimation techniques described in the litera-
ture. Caselles et al. (1997b) provide a good survey of these and make some comparisons. In
addition to the survey, a geometric model for estimating emissivity is described which ac-
counts for the heterogeneity of land surface. Although the inclusion of heterogeneity effects
in emissivity calculations should theoretically yield better estimates, it introduces another
unknown quantity to the problem; namely, the location and amount of heterogeneity that
must be determined before an estimate of the emissivity can be made. Thus, the method
relies on scene classification analysis which may introduce other errors and complexities.

Some techniques for simultaneous measurement of temperature and emissivity have
been developed within the metallurgy community. These techniques were applied to mea-
surements made with multispectral pyrometers (Hunter et al. 1985). Because the spectral
shape of emissivities tend to be smooth, it is reasonable to parameterize the emissivities
in terms of linear, polynomial, or exponential curves. The parameters representing the
emissivity are then determined from a regression fit to observed radiances.

More recently, methods for estimating emissivities based on the smoothness criterion
have been proposed. One method uses the decorrelation number as a measure of the smooth-
ness of the emissivity curves (Borel 1998). By using an iterative algorithm with an initial
temperature estimate, the smoothest emissivity curve is selected as the best estimate. An-
other method decomposes the spectral emissivity into a truncated Fourier series (Liang
1998). Only a small set of components need to be retained in the series because emissivities
are smooth. The coefficients of the Fourier series are then solved by an iterative process
with proper constraints. One potential improvement derived from this approach is that
the set of unknown parameters needed to determine the emissivity can be considerably less
than those required by traditional processing algorithms. In this case, it is possible to end
up with an overdetermined system of equations which could potentially reduce the error in

the estimate of the emissivity.
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With the exception of the split-window algorithm, it has been assumed thus far that a
relatively high spectral resolution sensor is available for the determination of temperature
and emissivity. The general form of eq. (2.101) suggests that it may be possible to deter-
mine the temperature and emissivity to some degree of accuracy with a moderate-resolution
multispectral sensor. One approach that can be used to overcome the limitation of having
few spectral bands is the day-night method proposed by Becker and Li (1993) and recently
planned for implementation for MODIS (Wan 1999; Wan and Li 1997). This method as-
sumes that the platform is able to visit the same scene twice within a period of 24 hours.
One collection is performed during the day while the other is done at night. This dou-
bles the spectral measurements provided that the inherent surface properties do not change
(i-e., emissivity). Furthermore, if the sensor has a spectral band in the Shortwave Infrared
(SWIR) where both reflectance and emission are present during the day, the radiance can be
compared directly to the emission at night to estimate the reflectance/emissivity. Certain
practical issues must be considered when implementing this method. One is the directional
property of emissivity for the surfaces being imaged. If a target has a specular character
to it, the daytime radiance measurement will have a bias associated with it if the charac-
teristics of the surface are not compensated. This problem is somewhat ameliorated by the
fact that most materials are approximately Lambertian for SWIR wavelengths. Another
complication is that the reflectance in the SWIR is a more dominant factor than in the
thermal infrared. Thus, special considerations for downwelled radiance are critical. Finally,
the algorithm assumes that the surface conditions of the scene do not change considerably

between collection times and that the images can be spatially-registered accurately.

2.3 Summary and Discussion

This chapter described the fundamental theory of infrared radiation and propagation through
the atmosphere. It also introduced the difficulties related to atmospheric effects and the

combination of temperature and emissivity effects. Several techniques for atmospheric com-
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pensation, as well as temperature and emissivity separation, were introduced. This section
summarizes the methods discussed in this chapter with a discussion of the advantages and
disadvantages of each approach. Table 2.1 highlights key points in this discussion. Common
to all of the atmospheric compensation techniques is the inability to determine the reflected
downwelled radiance component of the observed radiation. Common to all of the temper-
ature and emissivity separation algorithms is the need for an empirical scaling relationship
between biased estimates of the emissivity and the “true” emissivity.

The ISAC algorithm is attractive because it requires no ancillary or a priori information
to obtain reasonable estimates of the surface-leaving radiance. It is also able to obtain scene-
derived parameters without requiring the sensor to have high spectral calibration fidelity.
However, it requires a wide spatial distribution of temperature and a stationary atmosphere
across the scene. These two requirements are contradicting because a larger scene is needed
to increase the spread of surface temperatures, which makes the assumption of a stationary
atmosphere less appropriate. This is particularly the case for a scene without much thermal
contrast and with high water vapor variability. Finally, it is difficult to retrieve absolute
radiometric measurements because of the ambiguity in the atmospheric parameter retrievals.
To scale the parameters appropriately requires the use of ancillary or a priori information,
thus negating the algorithm’s main advantage.

The statistical minimum-variance sounding algorithm is versatile, in the sense that it
can be used to build a statistical relationship between any atmospheric parameter and the
observed radiation. The method can also perform retrievals on a per-pixel basis, thus ad-
dressing spatial variability in the atmosphere. To build the relationships, it uses a priori
knowledge-represented by atmospheric statistics-rather than image spatial statistics. Un-
fortunately, the accuracy of these statistics depends on the number of observations in the
ensembles used to estimate them. Therefore, it may be necessary to build large ensembles,
particularly for hyperspectral sensors. This becomes an issue when computational, time,

and storage resources are limited. Also, as the spectral resolution of the sensor increases,

7



Method Advantages Disadvantages
ISAC Simple; does not require accurate | Assumes same atmosphere over
spectral calibration; completely | spatial scale of image ; requires
in-scene method (unscaled param- | temperature spread for regression;
eters); fast requires ancillary information for
scaling
Statistical | Does not require weighting func- | Not “physical”; requires large en-
Sounding tions; simple; numerically sta- | semble database to build corre-
ble; versatile; handles spatially- | lation matrices; may suffer from
varying atmosphere; fast rank-deficiency or ill-conditioning
Linear Yields profiles for tempera- | Requires weighting functions; does
Sounding tures and constituents; handles | not account for nonlinearities in
spatially-varying atmosphere; | radiative transfer; requires many
“physics-based” narrow bands in absorption re-
gions
Nonlinear Same as linear sounding + ac- | Requires weighting functions at
Sounding counts for nonlinear radiative | each iteration step; not guaran-
transfer teed to converge on a solution;
needs good initial estimate
Model- Versatile; handles  spatially- | Not guaranteed to converge; com-
Matching varying atmosphere; accounts for | putationally intensive; suboptimal
nonlinear radiative transfer estimation of atmospheric param-
eters
Split Simple; does not require many | Low accuracy; does not estimate
Window spectral bands surface emissivity
Alpha Simple; works well in classification | Bias from Wien’s approximation;
residuals applications; does not require esti- | difficult to obtain accurate esti-
mate of surface temperature mates of true emissivities
TES Compensates for reflected down- | Assumes relationship between
welled radiance estimate; solves | variability and true emissivity
for temperature and emissivity si-
multaneously; works with many
material types;

Table 2.1: Summary Table of Atmospheric Correction and Temperature and Emissivity

Methods
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the ensembles may become more ill-conditioned. Finally, there is no guarantee that the
relationship will work with observations that are not part of the a priori ensembles because
the solutions may not be physical.

Linear sounding algorithms may be used to obtain atmospheric temperature and con-
stituent profiles simultaneously. The solutions are based on a direct inversion of the radiative
transfer equation and are therefore physical. Regularization methods can be implemented
to make the inverse problem better conditioned. However, this method does not account
for nonlinearities in the radiative transfer. It also requires the use of weighting functions,
which are built with radiative transfer models and are based on specific atmospheric condi-
tions. Thus, the weighting functions could be inaccurate if the actual conditions are much
different than those used in the model. Perhaps of greater concern is that the weighting
functions are very “sensor-specific” and may not yield accurate profiles if the sensor is not
designed to optimize the weighting functions. That is, the weighting functions may be too
broad if the sensor has low spectral resolution. While the accuracy of low-resolution sensors
is inherently limited, physical sounding schemes may be more severely affected than others.

Nonlinear sounding techniques share the same advantages as linear sounding techniques
and also account for nonlinearities in the radiative transfer. Through the implementation of
an iterative algorithm, it is possible to refine a solution at each step. The solutions are likely
to be more accurate than linear solutions if convergence is achieved. However, convergence
is never guaranteed and is not likely if the sensor is not optimally designed for sounding. A
good initial estimate of the profiles is also required.

Model-matching techniques are also able to account for nonlinear effects in radiative
transfer. These techniques can also account for nonlinearity effects due to coupling be-
tween the atmosphere and the surface. Like the statistical sounding approach, it is versatile
because the number of possible parameter retrievals is limited only by the outputs of the
forward model. Model-matching requires a parameterization of the model inputs. Con-

vergence problems may arise depending on the complexity of the input parameter scheme.
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Perhaps the biggest drawback of this technique is that it is suboptimal because the con-
vergence criterion is based on how well the “at-sensor” radiance is matched by the model
output and not on how accurate the atmospheric parameters are. That is, unless appropri-
ately constrained an optimal match of the radiances does not imply an optimal match on
the atmospheric parameters. This was demonstrated in section 2.1.5 with the comparison
of least-squares and Twomey-Tikhonov regularized solutions (Figure 2.13).

The split-window technique provides a viable solution for a sensor with a limited num-
ber of bands. It is also simple and efficient. However, its accuracy is limited for land surface
retrievals because the emissivity is unknown. Furthermore, it cannot be used to estimate
spectral emissivity curves.

Alpha residuals are attractive because an estimate of the surface temperature is not
required to derive a spectral curve that is related to the emissivity. This is particularly
useful when absolute thermography is not needed (e.g., a classification or target detection
application). However, a bias is introduced by Wien’s approximation of the Planck function.
This bias is temperature-dependent, making it difficult to correct unless the temperature is
known.

Finally, the TES algorithm has the unique ability to use an estimate of the downwelled
radiance in its calculation of the surface temperature and emissivity. Also, both temperature
and emissivity are obtained simultaneously. Unfortunately, the accuracy of the results
depend on the validity of the algorithm’s main assumption: that the variability of the
emissivity curve is related to a true minimum emissivity value for all targets of interest.

Clearly, no particular technique provides a suitable solution to the problem at hand.
They do, however, provide enough theoretical and practical background to determine a
suitable approach. Chapter 3 describes a unified and comprehensive approach that combines
the advantages of some of these techniques, and introduces considerations that minimize the
effect of their disadvantages. The goal is to determine the feasibility of this new algorithm

for the exploitation of infrared hyperspectral data obtained from air and space.
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Chapter 3

Approach

Simplicity, simplicity, simplicity! I say, let your affairs be as
two or three, and not a hundred or a thousand; instead of a
million count half a dozen, and keep your accounts on your
thumbnail.

Henry David Thoreau, Walden, (1854)

The radiance reaching a remote sensor is the result of complex interactions between
the inherent properties and thermodynamic state of the Earth’s surface and atmosphere.
Chapter 2 introduced the physics that govern radiative transfer and emission. From this
analysis, a mathematical model describing a mapping from the atmospheric state space to
the sensor measurement space was developed. From the perspective of classical physics,
this mapping is deterministic. In reality, the laws of uncertainty cannot be avoided and
the problem is stochastic. Regardless of the mechanism, the result is the same: each
measurement is the combination of several-often indistinguishable—effects.

The remote sensing scientist really gets the raw end of the deal. While years of research
have led to a good understanding of radiative processes, the same cannot be said about the
inverse problem. This is mainly due to the unavoidable loss of information in the mapping

from state space to measurement space. We attempt to circumvent this unfortunate state



of affairs by armihg ourselves with as much a priori and ancillary information as possible.
That is, we hope that other sources of information can replace the information lost in
the radiative transfer. Finally, we turn to the old adage: “more is better”; and design
instruments that make many more measurements than ever before. Hence, the recent
proliferation of hyperspectral sensors.

However, it may be prudent to heed Thoreau’s advice and strive for “simplicity”. Here,
“simplicity” does not mean oversimplifying the problem by making too many assumptions.
Rather, we seek to cast the problem onto a framework where hundreds of variables can

effectively be summarized by a few. There are several advantages gained with this approach:

e The ill-conditioning of the inverse problem may be avoided by working with a smaller

set of variables.

o Nonlinear interactions can be avoided by working in a space where variables are in-

dependent.
e Resources are not wasted on redundant information.

e The mechanism used to cast the problem onto a more manageable framework may

provide insight into the physics of the problem.
e An optimality criterion can be more easily implemented.

To understand how such a scheme may be developed, consider a set ¢ parameters of
interest that give rise to p observations. We wish to identify the inherent or latent relation-
ships between the two sets. The relationships can be characterized by how a change in one
set translates to a change in the other set. These related variations, or correlations, are a
first order summary statistic that effectively describe how the parameters and observations
are related. Rather than computing all the possible correlations, we are interested in the

latent correlations that summarize all of the correlations. Furthermore, we wish to find

82



correlations that are orthogonal or independent so that redundancy is minimized. Depend-
ing on the nature of the mechanism relating the ¢ parameters and the p observations, it
is possible for a small number of latent correlations to summarize a large number of cor-
relations between the data sets. Canonical Correlation Analysis (CCA) is a multivariate
method that defines how these latent correlations can be obtained. By letting ¢ represent
atmospheric parameters of interest and p the number of spectral radiance values measured
by p channels in an imaging system, we can begin to develop an analytical framework for
the solution of the inverse problem in remote sensing.

This chapter outlines the theory of CCA and its implementation. Section 3.1 derives
CCA and shows how it can be used to find optimal solutions of the inverse problem. It is
also shown that CCA can be used to gain an understanding of what physical variables lead
to the highest correlations between two data sets. In fact, CCA can be used to find the
least number and optimal placement of spectral bands. A case study demonstrating this is
presented in Chapter 4. Section 3.2 describes how CCA can be used to infer atmospheric
and surface parameters directly from the observed radiance. This section also covers how
CCA and TES can be used together to estimate surface temperature and emissivity. Finally,

Section 3.3 describe the data and methodology used to test and validate the approach.

3.1 Theoretical Basis and Development

Consider the p x 1 vector x which contains p variables (e.g., spectral radiance values at
p wavelengths) and comes from a population with a multivariate probability P(x). Now
consider the g X 1 vector y which contains ¢ variables (e.g., atmospheric temperature at ¢
altitude levels) and comes from a population P(y). If there is any relationship between the

populations, Bayesian statistics may be used such that

P(ylx) = P(y)P(x|y)/P(x) (3.1)




yields the optimal solution for y given x. Thus, the probabilities provide a pathway between
the observation and the object or process that most likely caused the observation. The
difficulty with this approach is in defining the multivariate probability distributions which

describe the populations where x and y come from.

3.1.1 Ordinary Least Squares and Principal Components

In the absence of known multivariate probability distributions, the best estimate of y given
x can be obtained by building an ensemble of n x p observations X and n x ¢ dependent
variables Y and finding the linear combination of X that results in predictions Y such that

the squared error
n

=397 2)

i=1

is minimized. This is the approach of Ordinary Least Squares (OLS) regression. The

corresponding optimal linear combination of X is
B=XXy'X'Y (3.3)

where 3 is a p X ¢ matrix representing a projection of X onto an ezplanatory space where
the information in X about Y is maximally exploited. The regression coefficients are also
the generalized inverse of X. The arrows in Figure 3.1 denote the contribution of each
variable in X to the prediction of a given variable in Y. The contributions are weighted
by the values of the regression coefficients. For this reason, the regression coefficients are
often referred to as weights. The arrows are unidirectional because OLS implicitly assumes
a causal relationship between X and Y (i.e., the model is not symmetric). The estimate of
Y is given by Y = X3.

Sometimes, it is appropriate to mean-center the data. Typically, this is done with
respect to the variables represented by the columns of X and Y. Thus, the mean of each
column (i.e., variable) are computed over all n observations. The mean-centering is done by

subtracting each observation in X and Y by its corresponding variable mean. The easiest
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Figure 3.1: Path model for ordinary least-squares.

way to implement this is to compute the (p x 1) row mean vector X and form a mean
matrix X by replicating the vector X n times. The mean-centered data are then calculated
by simple subtraction (e.g., X — X). This is typically done for both X and Y. Now, the

covariance matrix of X is defined as

—— (X - X)(X-X) (3.4)

Therefore, when X and Y are mean-centered and scaled by the number of observations,
X'X = X4 and Y'Y = 3y, are the covariance matrices. This gives rise to an often over-
looked interpretation of the least-squares regression coefficients of eq. (3.3). The coefficients
are simply the projections of X onto Y scaled by the variances of X. Thus, the variations
in B are emphasize the variations in Y.

The problem with OLS is that when p is large, the covariance matrix becomes ill-
posed or rank-deficient and the inverse becomes impossible to calculate. Thus, the OLS

solutions become unstable. A common approach is to decompose the covariance matrix
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into principal components. The principal components are simply the eigenvectors of the X
covariance matrix and result from

S A = AA (3.5)

where A is a p x p diagonal matrix containing the eigenvalues and A is a p X p matrix
whose columns are the orthogonal eigenvectors. This analysis is referred to as Principal
Components Analysis (PCA). The word “principal” is very appropriate, because the analysis
finds the components (eigenvectors) that account for most of the variation in X. That is,
the eigenvectors point along the dimensions of maximum variance in X.

If the original matrix is rank-deficient with rank r < p, then it is possible to condition
the problem by retaining r eigenvectors and discarding the rest. The X data are then

projected onto the truncated principal component space such that
U=XA (3.6)

In this orthogonal space, the transformed matrix U (known as scores) is of full rank and
suitable for OLS regression onto the dependent set Y as done in eq. (3.3) (Jackson 1991).
This method is known as Principal Components Regression (PCR) and is shown via a path
diagram on Figure 3.2. If Y is also rank-deficient, a two-block PCR may be implemented.
That is, the X and Y data are transformed via independent principal components and the

regression is done on the resulting scores.

3.1.2 Canonical Correlation Analysis

The underlying assumption in PCR is that the principal components of X will lead to a good
prediction of Y. However, the analysis is based on Xy« alone and there is no guarantee that
the significant variance in X carries information about Y. In Canonical Correlation Analysis
(CCA) the joint structure between X and Y is considered and an optimal orthogonal space
is created where the projections of X and Y are maximally correlated. This orthogonal

space can be used for the same purpose as in PCR and provides a mechanism for dealing with
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Figure 3.2: Path model for principal components regression.

rank-deficient matrices. In addition, the analysis can yield insight about which variables in
X carry the most information about Y. Finally, CCA is symmetric so that the distinction
between predictor and dependent sets is not necessary.
The canonical correlations are the eigenvalues of
Y Exy Xy SyxA = AW
5} Dy Ty By B = BY (37)
where W is the k x k diagonal matrix of the squared canonical correlations and k = min(p, g).
The eigenvectors defining the transformation of X are the columns of A. Similarly, B
contains the eigenvectors for the transformation of Y such that
U=XA
V=YB (3.8)
where U, ) and V() are the canonical variables (or scores) whose k squared correlations

are defined by the diagonal entries of ¥. Three properties are worth mentioning: (1) the
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Figure 3.3: Path diagram for CCR

canonical variables are orthogonal (the variables U and V lie in an orthogonal canonical
space spanned by the basis vectors in A and B, respectively); (2) the canonical correlations
are the maximum linear correlations that exist between the two data sets and are arranged
in descending order of magnitude (the diagonal elements of ¥ are p? > p2 > ... > p?); and
(3) the canonical weights are normalized so that A’3¥yxA = B'X,yB = I, where Iy is a
k x k identity matrix (i.e., the canonical variables have unit variance). Other properties are
given by Anderson (1984) and Johnson and Wichern (1992).

The flow between the original “observed” space X and the predictand space Y can
be described via a path diagram as shown in Figure 3.3. The mapping from X to U is
obtained from the canonical weights A. Similarly, V is obtained from applying B to Y.
The inverse transformations going from the canonical to the original space are known as the
loadings. The loadings are exact when the canonical dimensionality is the same as that of the
original space. Otherwise, the loadings are the least-squares regression coefficients relating
the canonical and original spaces (see proof in Section 3.1.3). In general, the loadings are

smoother than the weights and are therefore more interpretable.
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The regression is performed by applying eq. (3.3) to the canonical variables so that
V = UBcc = U(U'UYIU'V (3.9)

where Bcc is the matrix of regression coefficients for the canonical variables and is equal

to ®. To find Y from V, let V~ V =YB and use Property 3 such that
Y =VB'S,, ~ YBB'S,, =YI, =Y (3.10)

A detailed proof is given in Section 3.1.3.

As in PCR, the orthogonal space may be reduced to dimensionality » < k in order to
stabilize the regression solution and prevent “overfitting” the data. This implementation
of CCA, called Canonical Correlation Regression (CCR), is not widely used in the natural
sciences with the exception of some implementation in climate modelling (Yaglom 1990;
Yu et al. 1997). This is probably because its main use has been in econometrics and
psychometrics where the emphasis is in the study of latent factors that are not physically
measurable (e.g., intelligence, consumer preference, etc.). It has been typically shunned as
a prediction tool because the optimality criterion is based on the latent variables and not
on the observed variables. Therefore, it is possible that the canonical structure does not
optimally explain the variance in Y. However, the derivation in Section 3.1.3 demonstrates
that the variability in Y is optimally predicted (in the least-squares sense) subject to the
constraint that the canonical variables are maximally correlated. One of the goals of this
research is to demonstrate that the CCR emphasis on the latent variables constrains the
remote sensing problem adequately, leading to solutions that are physically interpretable.
In other words, the CCR model is physics-based. This is because the model lies in a
truncated lower-dimensional space made up of the highest correlations found between the
two data sets. Assuming that the magnitude of physical correlations is larger than incidental
“ensemble-dependent” correlations, this truncated space effectively summarizes the physics
of radiative transfer. Thus, we can think of the CCR model as an “inverse model” of

radiative transfer. This emphasis on physics ensures that the CCR inverse model is robust
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and can be used for the estimation of parameters based on observations not used in the
regression data.

Another hypothesis is that the CCR inverse model does not amplify sensor noise. This
hypothesis stems from how the canonical variables are formed. When the data is projected
onto the canonical space, the values leading to meaningful correlations are amplified. Con-
versely, uncorrelated variability across the data sets is suppressed. This is similar in concept
to the Orthogonal Subspace Projection (OSP) background suppression method (Harsanyi
and Chang 1994). In the worst case, noise in the observations will be linearly propagated
through the model leading to an uncertainties in the estimated parameters that is propor-
tional to the noise in the observations.

The CCR inverse model has the advantage of being symmetric. That is, there is no bias
toward the prediction of Y or X. Typical regression models are biased toward predicting
Y based on X. By doing so, it is implicitly assumed that the values in X are absolutely
known. As will be shown in Section 3.2.1, neither X and Y are absolutely known in this

application. Therefore, CCR is a suitable regression model for remote sensing.

3.1.3 Derivation of Canonical Correlation Analysis and Regression

The development presented in this section is divided in two parts. The first part derives the
eigenvalue equation used for determining the canonical correlations and coefficients. The

second part shows how canonical correlations can be cast into a predictive framework.

Eigenvalue Equation

The transformation for the first canonical variables is defined as u = Xa and v = Yb,
where u and v and one-dimensional column vectors with n observations. CCA attempts to

find

max {corr(u,v)} ax { u'v } { aX'Yb } (3.11)
,V)} = max{ ————— 3 = max :
viuvv'y Va'’X'Xavb'Y'Yb
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where a and b are canonical coefficients or weights. The problem is constrained by requiring
that the canonical variables have unit variance. Thus, u'u = v'v = 1. Subject to this

constraint, the correlation to be maximized becomes
corr(u,v) = a’X'Yb (3.12)

Following Phatak (1993), the method of Lagrangian multipliers may be used to construct

the objective function
1
L=aX'Yb+ -;—v,bz (a'X'Xa — 1) + 54, (b'Y'Yb — 1) (3.13)

Where the parameters to be solved are a,b, and the Lagrangian multipliers ¢, and 1.
Clearly, the function is at a maximum when a’X’Yb is maximized and a’X'Xa = b’Y'Yb =
1. The parameters are solved by setting the partial derivative of the objective function with

respect to a’ and b’ equal to zero so that

oL _ X'Yb+ ¢, X'Xa = 0 (3.14)
oa’
oL , ,

Premultiplying 3.14 by a’ and 3.15 by b’ yields

a' (X'Yb+¢,X'Xa) = aX'Yb+y, = 0 (3.16)

b (Y'Xa+¢,YYb) = bY'Xa+,= 0 (3.17)
where the unit variance constraint was applied. Now rearranging results in

aX'Yb = -,

b'Y'Xa = -ty (3.18)
Since a’X'Yb is a scalar then it is also equal to b"Y’Xa and
aX'Yb=—¢, =—¢y =1 (3.19)
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Now substituting 1, for —f, in 3.15 yields
Y'Xa=¢1Y'Yb (3.20)

and solving for b

b= (YY) 'Y'Xa (3.21)
1

Substituting b in 3.14 and letting v, = 1) results in

1
X'Yb = ¢—X'Y(Y'Y)“1Y’Xa =1 X'Xa (3.22)
1
and rearranging
(X'X)'X'Y(Y'Y)'Y'Xa = ¢la (3.23)

This is the eigenvalue equation used to solve for the canonical correlations and the linear
combinations of X. The same approach can be used to find the eigenvalue equation giving
the linear combinations of Y by solving for a first using eq. (3.14) and then substituting

into eq. (3.15) so that

a = (X'X)X'Yb (3.24)
(4!
and
%Y’X(X'X)‘lx’Yb — YYD (3.25)
Rearranging
(YY) 'Y'X(X'X)'X'Yb = 4?b (3.26)

If X and Y are mean-centered and scaled by the number of observations then X'X = 3,4,

Y'Y = 8y, X'Y = %y, and Y'X = Xy, Thus,

TR IR a = ¢fa (3.27)

T T T Eyb = ¢ib (3.28)

In general, the combinations of covariance matrices used in eq. (3.27) and eq. (3.28) are

not symmetric. To simplify the implementation of this eigenvalue problem in a computer,
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it is desirable to represent the problem in terms of symmetric matrices. This allows an SVD
routine to compute “left” and “right” eigenvectors (i.e., the eigenvectors associated with
the row and column spaces) that are identical. The matrices can be made symmetric by
“factoring” out a square root matrix and redefining the eigenvectors. A square root matrix

is defined as one where A*2A'2 = A. For the case of the X canonical coefficient solutions,

ST S T T a = Yla (3.29)

Multiplying both sides by 3% yields

Sy T3 By = Y12 (3.30)

Now let e = ¥¥2a and a = >3/ %e so that the new eigenvalue equation becomes

2R Sl S 2%e = qple (3.31)

xy “lyy “yx“xx
Similarly for b
INIED D b YN Yl SRy § (3.32)
where b = 2;}/*f.
So far, we have only discussed one canonical variable. In principle, there can be up to

k = min(p, q) canonical variables and associated correlations. Fortunately, the eigenvalue

analysis provides this readily:

T8 NlS SIU2E = EU (3.33)

XYy =Yy TYyXTXxX

DITED YD ot YD Sl A O (3.34)

YX“xx Hxy “yy
where ¥ contains the k canonical correlations along the diagonal and
A = XPE
B = 2;,;,/ F (3.35)

A and B are matrices comprised of the k canonical weights. The canonical variables are

then computed by
U=XA V=YB (3.36)
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The eigenvector solutions E and F are orthonormal such that
EE=FF=1; (3.37)

We can use the relationships in eq. (3.35) to express this property in terms of the canonical
weights:
A'SA =B'S,,B=1; (3.38)

By virtue of this property, the canonical variables are themselves orthonormal so that
UU=(XA)XA =AXXA=A'S,A=1, (3.39)

as long as X is appropriately centered and scaled. The same applies to Y and B so that
B'X,yB = I). This property becomes very useful when using CCA for prediction because it

ensures that the multivariate regression of the canonical variables will be well-conditioned.

Canonical Correlation Regression

In this section, CCA is put into a predictive framework. The advantage of using CCA
for regression is that it works in a reduced and orthogonal space where correlations are
maximized. The reduction of dimensionality conditions the inverse problem so that it is
not ill-posed and provides a robust model that does not overfit the data. Thus, Canonical
Correlation Regression (CCR) can be a powerful rank-reduced multivariate regression tool.

Before we can describe the regression approach, it is necessary to develop the inverse
transformations from the canonical variables to the original variables. That is, we need to
define the rotation that maps U to X and V to Y. The simplest approach is to use the

inverse of the forward rotations A and B such that
X=UA"' Y=VB! (3.40)

Unfortunately, this is only applicable when the rank of A and B is £k = p = ¢q. If the

dimensionality is reduced, as it is likely the case when p and q are large, then the canonical
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weights are not directly invertible. To get around this, it is possible to use the orthogonality

property
A'Y =A7? B'Eyy =B (3.41)

This gives a method for computing the inverse rotation without explicitly finding the inverse.
However, the relationship is exact only when the rank is £k = p = ¢q. Otherwise, the

transformation is the least-squares solution such that

A'S, = (UU)'U'X
B'S,, = (VV)VY (3.42)
Proof. First substitute U = XA in equation 3.42 to get
(U'U'U'X = [(XA)XA] (XA)X
= [A'X'XA] (XA)X (3.43)
= [A'X'XA]TA'X'X

Consider the case when X is mean-centered and scaled by the number of observations such

that X'X = 3, so that 3.43 becomes
[A'S A A'S (3.44)

By applying the orthonormality property of 3.38 and I'! = I, 3.43 becomes TA'3,y =

A’3,«. The same approach can be used for the inverse transform of V to Y. O

The implication of the definition of the inverse CCA transform as defined in eq. (3.42)
is that it provides a mapping from the canonical to the original space that can be per-
formed even when the dimensionality of the canonical space is smaller than the original
space. When this is the case, the mapping is no longer exact and becomes the coefficients of

the least squares regression between the canonical and the original variables. The regression
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coefficients are also the correlations between the canonical variables and the original vari-
ables that they were derived from. These coefficients are known as loadings because they
describe how the canonical values load the original space with the inverse transformation.
In cases where the dimensionality has been reduced, the loadings tend to be smoother than
the canonical weights, thus making interpretation of the CCA results much easier.

Now that the inverse transformations have been developed, the regression framework
may be built. The mapping from X to U is obtained from the canonical weights A. Simi-
larly, V is obtained from applying B to Y. The mapping between the canonical variables
U and V is obtained through multivariate least-squares regression. To predict V from U,

the least-squares solution to the regression coefficients is
Bce = (U'UY'U'V (3.45)

so that V = UpBcc. The regression coefficient matrix Bgoc is a diagonal matrix with the

canonical correlations along the diagonal (i.e., Scc = ¥).

Proof. The correlations between the canonical variables are given by eq. (3.11). However,
because of the unit variance constraint, U'U = V'V = I and the correlation definition is
simplified to

corr(U, V) =U'V = ¥ (3.46)

Applying the unit variance constraint to eq. (3.45) results in
Bcc=L;UV=UV=9¥ (3.47)
O

Thus, the predicted canonical variables are V.= U¥ = XAW. The final step is to

apply the inverse transform to the estimates of V such that

Y = VB'S,, = XA¥B'S,, (3.48)
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Since the entire process is linear, the “cascaded” transformations may be represented by a
single operation

Bccr = AYB'Zyy (3.49)

and

Y = Xfccr (3.50)

The major criticism about CCR is that it does not appear to satisfy a global opti-
mization of the prediction of Y based on X. However, since the process is a cascaded set
of optimal linear transformations, then it follows that CCR optimally predicts Y. The

cascaded process can be divided in three optimal linear rotations:
1. An optimal rotation from X to U that ensures U is maximally correlated to V.

2. An optimal least-squares mapping between U and V which is equal to the canonical

correlations.

3. An optimal inverse transformation from V to Y that is exact when the dimension-
ality is not reduced and becomes a least-squares solution when the dimensionality is

reduced.

Equation (3.50) shows that these linear transformations can be redefined as a single trans-
formation from X to Y. Since the individual transformations are optimal, the “overall”

transformation Bccor is also optimal.

3.1.4 Interpretation and Observations

Canonical Correlation Analysis may be interpreted in different ways. In its basic form,
it is a method for data reduction and exploration of relationships between latent factors.
Analysis of the canonical weights and loadings can provide insight into the nature of the

factors and interpretation of the canonical variables.
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The visual interpretation of CCA shown in Figure 3.3 is a path analysis that resembles
a neural network diagram. Indeed, there is a close relationship between CCA and neural
networks because they are both regression models based on indirect paths. However, there
are also major differences. Neural networks are basically nonlinear regression models. The
architecture of the neural network is very dependent on the application and is sometimes
chosen to emulate some biological or physical process. In many cases, the architecture has
no interpretation at all and is full of hidden layers and activation nodes. The activation
nodes introduce the nonlinearity in the model. In contrast, CCR is a linear regression
model. The canonical space can be thought of as a hidden layer but without any activation
nodes. The architecture is simple and generally interpretable. There has been some research
in the implementation of CCA as a neural network (Lai and Fyfe 1999). The predictive
skills of neural networks and CCA have also been compared in the context of climate
modelling (Tang et al. 2000). In the latter study, the neural network introduction of
nonlinearity did not improve the parameter estimation significantly.

CCA can also be interpreted from an information theory perspective. In information
theory, entropy is a measure of information and an optimal communication channel seeks to
maximize the amount of information throughput (Shannon 1997). The maximization may
be accomplished through Bayesian statistics if the probability distributions are known. The
probabilities can then be used to build a channel that maximizes the mutual information
between the source and the receiver. The CCA paths are analogous to communication
channels. If the distribution of the variables is Gaussian, then the correlation is a measure
of mutual information (Kullback 1997; Akaho et al. 1999; Becker 1996). Therefore, CCA is

optimal from an information theory perspective if the variables are normally distributed.
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3.2 Implementation

3.2.1 CCR Inverse Model

The CCR inverse models were built using mean-centered data. This is an extra conditioning
step because it removes the mean value as an uncertain parameter. Therefore, the CCR
inverse model is used to estimate deviations from the mean. That is, we assume that
the climatological mean estimated in the ensemble does not change appreciably. This is
a reasonable assumption if many samples are used or if the samples used are known to
span the range of expected values. To implement the CCR inverse model, the mean of the
ensemble X is subtracted from a new observation x. The CCR coefficients are applied and
the estimated y results. However, this estimate is also mean-centered so that the mean of
the Y ensemble must be added to get the actual estimate of y.

Inspection of eq. (3.7) reveals that the inverse of the covariance matrices must be
calculated in CCR. As mentioned previously, the inverse may not exist depending on the
rank r of the data. When r < k, it is necessary to perform a Singular Value Decomposition
(SVD) of the covariance matrices and reconstruct these matrices using a truncated sequence
of r singular values (Appendix B). The inverse matrix is a linear combination of the
eigenvectors weighted by the reciprocal of the singular values. This truncation does not
affect CCR because the number of significant correlations r, is bounded by the “true” or
“latent” rank (i.e., rs < r). The practical difficulty is finding the appropriate truncation
dimension. In this research, the sequence is truncated when the running sum of singular
values totals 99.99% of the sum of all singular values. Finally, the significant correlations are
determined by keeping the correlations (starting with the maximum and going in sequence
towards the minimum) whose running sum is 85% of the total correlation in the data. These
values were determined empirically by plotting the sum of squared errors against the kept
number of dimensions and seeing where it began to level off. This is akin to analyzing a

scree plot of PCA eigenvalues. An example plot is shown in Figure 3.4.
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Figure 3.4: Plot of sum of squared error. In this example, the benefit of maintaining more
than 3 dimensions is minimal.

The remaining issue is finding an appropriate ensemble of observations that can be
used to build the CCR inverse model. This ensemble can be thought of as a training set.
In this research, no attempt was made at finding an “optimal” ensemble. However, we can

list a few ensemble traits that would be ideal:

1. There are no errors in the observations. Uncorrelated errors in the observations
introduce variability within each data set that does not carry information. This leads
to a classic signal-to-noise ratio (SNR) problem. This error introduces uncertainties in
the estimated parameters and decreases precision. If there is too much noise, it may be
impossible to predict a parameter of interest with any reasonable amount of certainty.
Errors that are correlated (in the sense that the variables within a single data set
are biased or modulated by structured noise) will skew the canonical correlations and

decrease accuracy.

2. There are an infinite number of observations. The larger the ensemble, the more
accurate the statistics. This is a consequence of the Law of Large Numbers. Also, the
multivariate probabilities will tend to a Gaussian distribution because of the Central

Limit Theorem. The normal distribution makes the mean and the covariance matrix
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Figure 3.5: CCA implementation block diagram

sufficient statistics. Also, larger ensembles are more likely to have observations that
span the range of expected physical conditions. If the database is too small, then the

inverse model may not be able to extrapolate to an appropriate solution.

3. All of the cross-set variabilities are correlated. If all of the variability in the data sets
are correlated, then the inverse mapping would be exact. Unfortunately, radiative
physics ensures that some loss of information will occur in the mapping from the
atmospheric state space to the measurement space. Therefore, some of the variability
in the atmospheric and surface parameters of interest will not be correlated to the

observations.

The first ideal situation could be achieved if a synthetic ensemble is used to build the
CCR inverse model. That is, fictitious input parameters can be used in a forward model
to generate simulated observations. A CCR inverse model can then be built relating the
noiseless data sets. The other ideal situations are not realistic and the best we can do is
approach the ideal condition as much as possible.

Figure 3.5 is a block diagram of how the algorithm is implemented. Radiosonde data

are used as inputs to the MODTRAN forward model. MODTRAN was chosen because it
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has been extensively validated over the course of the last 30 years. Furthermore, recent
enhancements in MODTRAN allow the user to enter spectral surface emissivities, scale
atmospheric profiles with a column factor, estimate hemispherical downwelled radiance from
a single run more accurately, etc. Several input parameters to MODTRAN were varied to
generate many observed radiance spectra. The goal of the CCA inverse model was to
relate these observed radiance spectra to the MODTRAN-predicted atmospheric spectra
(i.e., 7(A), Ly(X), and L4(N)) or the atmospheric profiles used as inputs to MODTRAN.
The estimate of the vertical profiles could then be used as a final product or as an input to
MODTRAN to estimate the atmospheric spectra. In some cases, the CCA inverse model
was used to estimate surface temperatures directly.

The CCR inverse models used in this research were built with three different atmo-
spheric databases (with the exception of one of the experiments where synthetic profiles were
used). These databases were generated with MODTRAN using radiosonde measurements
obtained from the Forecast System Laboratory (FSL) of the National Climactic Data Center
(NCDC), the CAMEXS field campaign of the National Polar-orbiting Operational Environ-
mental Satellite System (NPOESS) Aircraft Sounder Testbed-Interferometer (NAST-I) at
Wallops Island, and the Space Science and Engineering Center (SSEC) at the University
of Wisconsin-Madison. Figure 3.6 shows the geographic coverage of these measurements.
These data were used because they provided different climates, thus allowing testing of the
inverse model under various conditions. Choosing actual radiosonde profiles over synthetic
profiles was an attempt at characterizing the “natural” variability in the atmosphere as
measured by real data. Conversely, a synthetic database runs the risk of not being truly
representative of the atmosphere.

The radiosonde databases included variations in temperature and water vapor profiles,
surface elevation, time of day, date, and geographical coordinates. The only two parameters
explicitly handled by the CCR inverse model (with respect to the atmospheric database)

were the temperature and water vapor profiles. The rest of the variation acts as “noise”.
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Figure 3.6: Geographic coverage of radiosonde measurements used to build the inverse
model.

Thus, changes in the propagation path length due to changes in.surface elevation introduce
uncertainty in the retrieved parameters. Changes in solar geometry are not significant
for LWIR and some MWIR observations. Finally, ozone measurements were not available
with the radiosonde databases. Thus, cases implementing CCR inverse models built with
radiosonde data do not account for changes in ozone concentration. This also introduces

errors in the retrieved parameters.

3.2.2 Temperature and Emissivity Separation

The Temperature and Emissivity Separation (TES) algorithm was implemented as discussed
in Section 2.2.3 with one difference: a new empirical relationship between the maximum-
minimum difference (MMD) and the minimum emissivity e, was derived. The empirical
relationship reported by Gillespie et al. (1999) was obtained from 86 laboratory reflectance
measurements of rocks, soils, vegetation, snow, and water. These reflectance measurements
were resampled to match the spectral response of the ASTER sensor. The empirical rela-
tionship is very much dependent on the data set and the sensor for which it was generated.

Because the reported relationship is optimized for ASTER and for certain target classes,
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Table 3.1: JHU spectral library reference table.

Group | Class Filename Number of Number of
Class Spectra | Total Spectra
1 Igneous (coarse) IGN_CRS.SLI 34 34
2 Igneous (fine) IGN_FN.SLI 33 67
3 Lunar LUNAR.SLI 17 84
4 Manmadel MANMADE1.SLI 14 98
5 Manmade2 MANMADE2.SLI 19 117
6 Metals (coarse) META_CRS.SLI 25 142
7 Metals (fine) META_FN.SLI 29 171
8 Meteor METEQOR.SLI 59 230
9 Mineralsl MINERALS.SLI' 54 284
10 Minerals2 MINERALS.SLI 43 321
11 Minerals3 MINERALS.SLI 45 372
12 Minerals4 MINERALS.SLI 51 423
13 Minerals5 MINERALS.SLI 59 482
14 Minerals6 MINERALS.SLI 63 545
15 Minerals7 MINERALS.SLI 11 556
16 Sediments (coarse) | SED_CRS.SLI 15 571
17 Sediments (fine) SED_FN.SLI 13 584
18 Snow SNOW.SLI 4 588
19 Soils SOILS.SLI 25 613
20 Vegetation VEG.SLI 3 616
21 Water WATER.SLI 3 619

it was necessary to implement the TES algorithm with a new empirical relationship that
had a broader scope. The new relationship was determined from a larger data set of labo-
ratory spectra. The John Hopkins University spectral library included with ENVI contains
619 spectra of natural and man-made objects-including those used for ASTER, (Table 3.1).
These spectral measurements were made by J.W. Salisbury and are considered a standard
in the geology and remote sensing communities. The larger data set was used to make

the relationship more robust and not limited to a particular set of materials. No spectral

tClass file split into seven groups for data handling purporses.

resampling of the reflectance curves was performed in this analysis.
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The relationship was built using a similar model to that implemented for ASTER. The

model is

Y=0+5X+5X"+e (3.51)

where € is some random error assumed to come from the unit normal distribution. This
model retains a linear component in addition to the power law term. These parameters can
be estimated by

Y = by + b1 X + b X9  (352)

where by, b1, bp, and g are estimates of By, (1, B2, and v, respectively. To perform a
linear regression using this equation, the value for g must be determined. This was done
iteratively, starting with the value 0.737. A linear regression was then performed for each
intermediate estimate of g. Estimates were varied until the lack of fit was minimized.

The rest of this section describes the analysis and resulting empirical relationship that is
implemented in the TES algorithm. It is assumed that the reader has some familiarity with
regression analysis. For more background information, refer to Draper and Smith (1998).
The initial results obtained from the regression using the value of g = 0.737 and the model
used by Gillespie are shown in Figure 3.7. While there appears to be a relatively good fit,
several points fall outside the prediction intervals. There are also points that appear to be
extreme outliers (circled on the plot). Table 3.2 shows the analysis of variance (ANOVA),
t-tests, standard error, and multiple squared correlation coefficients for the regression. It
is clear that the regression and the regression parameters are significant. On the other
hand, the lack of fit is also significant. This is probably due to the fact that the estimate
of pure error is not an accurate one since there are only 10 degrees of freedom compared to
607 degrees of freedom associated with the lack of fit. The conclusions from the ANOVA
were validated with an analysis of the residuals. The residuals are shown in Figure 3.8.
Considering the results from the ANOVA, it is not surprising that the residuals do not
appear to be normal, which indicates that the F-statistic calculations in the ANOVA are

not accurate. There were also several large values for the residuals (all the way to 0.5!).
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Figure 3.7: Plot of data and regression fit of the original empirical relationship.

Source DF SS MS F P
Regression 1 | 13.404 | 13.404 | 9020.38 | 0.000
Residual Error | 617 | 0.917 | 0.001
Lack of Fit 607 | 0.917 | 0.002 | 3911.51 | 0.000
Pure Error 10 | 0.000 | 0.000
Total 618 | 14.320
Predictor | Coef StDev T P
bo 1.00487 | 0.00129 | 781.01 | 0.000
b1 -0.09876 | 0.03071 | -3.22 | 0.001
b -0.68456 | 0.02925 | -23.41 | 0.000

S =0.03855 R? = 93.6%

R2%(adj) = 93.6%

Table 3.2: Regression results using g = 0.737 and no repeats.

106



Residual Plots for Power-MMD

Normal Plot of Residuals | Chart of Residuals
05 -
w e © 0512005231
:a 0.0 — — -5 ?;?3%1305231
8 - 3
ﬂ: - m
0.5 —
T T T T T T T T T T T T T T
3 2 4 0 1 2 3 0 100 200 300 400 500 600
Normal Score Observation Number
Histogram of Residuals Residuals vs. Fits
600 — 0.5 —
500 —|
3 400 - =
C : 0 O _ * *
8 300 o o Wﬁ‘@"
8 200 4 .0 '
Lt o .
100
o- = -0.5 .
T ] T ] T
-0.5 0.0 0.5 0 1
Residual Fit

Figure 3.8: Residual plots for the original empirical relationship.

To obtain better estimates, the six observations that resulted in the largest errors were
taken out of the data. The removed observations corresponded to the following materials

in the spectral library:

e Point 101: Aluminum metal (Metal 0384UUUALM)

Point 116:
Point 382:
Point 393:
Point 473:

Point 482:

Copper metal (Metal 0682UWCOP)

Kyanite Al12SiO5 (Neosilicates (Isolated Tetrahedra)(AlSiO5 Group)k.1

Magnitite Fe4-2Fe2+304 (Spinel Group; magnet.1)

Pyrite FeS2 (pyrite.1)

Pyrrhotite Fe(1-x)S (Pyroph.1)

107



—] Aluminum Metal (Meta
Copper Metal {(Metal O
Kycnite AI25105 (Neso

r 1 Magnetite Fe+2Fe2+3
0.8

E ~{ Pyrite FeS2 ( pyrite.T;
I ;W\ | Pyrhotite Fe(1-x)5 (

3\0.6—
= r
(] t
.2
£ L
w04t 4
0.2 B
—_— A
\\\‘HA——_,_&A_/\
N I E U ST EE S S B
8 10 12 14
Wavelength

Figure 3.9: Spectral emissivity of extreme outliers.

The point number (e.g., Point 101) refers to the spectrum number assigned in Table 3.1.
The emissivity curves of these materials are shown in Figure 3.9. Three of these materials
exhibit very low emissivities. Also, the spectrally flat curves have relatively low emissivities
(compared to a blackbody). Thus, the observations that do not fit the model correspond
to materials that have a low minimum emissivity and a spectrally flat emissivity curve.
These materials are “unusual” in the sense that they do not conform to the typical phys-
ical characteristics assumed when the model was devised. Deviations from these physical
characteristics explain why the relationship between the minimum emissivity and the MMD
do not fit the model. Further analysis indicated that up to 23 observations needed to be
removed from the data set. (The observations removed from the data set were: 89, 100,
101, 111, 116, 273, 287, 297, 312, 315, 336, 342, 345, 354, 360, 382, 391, 393, 473, 480,
482, and 485 as referenced in Table 3.1). All of these observations came from manmade,

minerals, and metal sources, which are the most likely to deviate from the model.
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Source DF SS MS F P
Regression 2 | 9.9256 | 4.9628 | 45461.86 | 0.000
Residual Error | 593 | 0.0647 | 0.0001
Lack of Fit 537 | 0.0604 | 0.0001 1.46 0.040
Pure Error 56 | 0.0043 | 0.0001
Total 595 | 9.9903
Predictor | Coef StDev T P
bo 1.00487 | 0.00129 | 781.01 | 0.000
b1 -0.09876 | 0.03071 | -3.22 | 0.001
by -0.68456 | 0.02925 | -23.41 | 0.000

S =0.01045 R? = 99.4% R?*(adj) = 99.3%

Table 3.3: ANOVA results for the new fitted model.

'To get a better estimate of the pure error, the independent variable (MMD) was
rounded to 4 decimal places. This introduced some approximate repeats in the regression
data. In addition, the linear term was added to the model as shown in eq. (3.51).

The next step was to obtain an appropriate estimate of g. The iteration was in the form
of a binary search on the exponent. The search was constrained to values for g between
1.000 and 0.737 with the objective of minimizing mean-squared error (MSE) and F(lack
of fit) and maximizing R?. This approach lead to an exponent of 0.818. Figure 2.18 on

page 74 shows the fit with this model. The fitted equation was:

Emin = 1.005 — 0.099M M D — 0.685M M D818 (3.53)

Note that the fit is generally better and that there are no major outliers. However, there
are still points that fall outside the 95% prediction intervals.

The ANOVA and other quantitative results for the new model are shown in Table 3.3.
All of the parameters in the linear regression were found to be significant. The lack of fit
is considerably lower, but it is still significant at a risk level of 0.04. The standard error is

lower by more than a factor of 3, and the adjusted multiple squared correlation coefficient
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is higher at 99.3%. Unfortunately, the validity of the ANOVA is slightly questionable. The

residual plots shown on Figure 3.10 show that the residuals still deviate from a normal
distribution. Attempts at fitting the data to both quadratic and exponential models did
not reduce this pattern, and actually resulted in larger errors. Also, there is still a pattern
in the residuals as shown in the residuals vs. fits plot. This pattern is due to the large
concentration of materials that have high emissivities (and low MMD). Because the model
fits well in this region, the residuals are generally lower than those corresponding to lower
fitted values of emissivity. The “Run Chart” shows that there is a relatively large number of
extreme values, which is partly due to the large amount of data used in this analysis. This
makes extreme values much more likely. The serial correlation of the residuals was tested
using the Durbin-Watson statistic. The value for these data was 1.538, which is lower than
dy at a risk level of 2.5% (this is a two-tailed test so 2.5% is used so that the total risk is
5%). This suggests that there is positive serial correlation in the data. Figure 3.11 shows
a Lag-1 plot of the residuals. This plot, however, does not reveal any apparent correlation
in the data. The disparity may be due to the fact that the value for dy was obtained by
extrapolating the value at 200 samples to 596. Because of this large extrapolation, the
Durbin-Watson statistic may be biased and inferences about the serial correlation should
probably be made based on the Lag-1 plot. In conclusion, there does not appear to be a
significant correlation in the residuals that would alter the conclusions obtained from the
other residual plots.

The 95% confidence intervals for the linear regression coefficients are:

1.002 < By < 1.007
—0.159 < 51 £ —0.038 (3.54)

—-0.742 < By < —0.627

The (31 parameter exhibits the largest variation. This is consistent with the regression

analysis results showing that (; is the least significant of the parameters. These confidence
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Figure 3.10: Residual plots for the new fitted model (with approximate repeats).
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Figure 3.11: Lag-1 plot showing no correlation in the residuals.
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intervals are based on independent estimates of the parameters and t-values. Thus, these
intervals form a three-dimensional cube in the parameter space. The volume of this cube is
the actual confidence region bounded by these intervals. In general, this is an overestimated
figure. The ratio of the rectilinear region to the true (more ellipsoidal) region is given by
the square root of the determinant of the variance-covariance matrix of the parameters. the

variance-covariance matrix of the parameters is obtained from
Spp = (XTX)"IMSE (3.55)
For this data, the ratio of the true confidence region to the rectilinear region is

V|Zbb| = 3.392-1078 (3.56)
which indicates that the parameters are highly correlated, thus defining a very narrow region
in the 3-D parameter space.

The quantification of confidence intervals about a nonlinear parameter can be per-
formed in a way similar to that used for linear parameters. The main difference is in the
resulting sum-of-squares function. In general, the sum-of-squares function for a nonlinear
model is

SB) = _nly: — f(xi; B (3.57)
where (3 is a vector of the parameters ili:tlhe model, n is the number of observations, and x
and y are the (possibly multivariate) predictor and response variables, respectively (Draper
and Smith 1998). In the TES nonlinear model, the predictor and response variables are
univariate (note that the way the regression was carried out, the linear model had mul-
tiple predictor variables; mainly MM D and MMD?). The confidence intervals may be

constructed by finding all the values of the model parameters 8 that satisfy

5(8) = S0) {1+ 2= F@pn-p1-0)| =5, (3.58)
where b are the estimates of 3, F(v1, 2, 1 — ) is the single-sided F-statistic, p is the number

of model parameters, and « is the risk factor. For a 95% confidence interval, we would use

a = .05.
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There are p = 4 parameters in the TES nonlinear model. Thus, the confidence interval
about [ is really a four-dimensional region. To make the problem more tangible and easier
to illustrate, it is possible to work with the projection of the multidimensional confidence
region onto a two-dimensional space. The simplest way to do this is to hold two parameters
constant and build a two-dimensional ellipsoid confidence region for the other two param-
eters. Since the parameter of interest is y (hereafter referred to as f3), this will be one of
the parameters of the two-dimensional region. The other parameter that will be allowed
to vary is 1. This parameter was chosen because it had the widest confidence interval in
eq. (3.54). The sum-of-squares function then becomes

S(b) = 3" n [y; — 1.005 + .099z; + .685z;*'%]” = .065 (3.59)
i
and from eq. (3.58)
Sg = .065(1 — .007 - 2.387) = .064 (3.60)

If we assume [y = bp and [ = by, then the confidence region is defined by all the points £;
and B3 that satisfy

n
2
> [vi - 1005+ Bra + 68505 )" = .064 (3.61)
i=1
The equation can be expressed as a quadratic function of f:

AB? + BB + C = .064 (3.62)

where A, B, and C are functions of (s:

A=Zx?
i

B = Z(Zriyi—2.010mi+1.370xiﬁ3+1) (3.63)

i

¢c =3 (1.010 +2.010y; + 92 + 1.370y;2% — 1.3772% + .4692x§ﬁ3)

i
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Figure 3.12: Two-dimensional confidence region of nonlinear parameters.

We can find the quadratic solution of $; and express 81 as an explicit function of 83. By
entering a range of values of 33, a confidence region is developed. Figure 3.12 illustrates this
region. This analysis is consistent with the one used to derive eq. 3.54 because the projection
of the ellipse unto the (; axis results in a similar confidence interval. The projection of the

confidence region unto the B3 axis shows that the 95% confidence interval for 7 is
776 < v < .865 (3.64)

These confidence intervals suggest that the difference between the published TES MMD
regression line and the model given in eq. (3.53) is statistically significant, which is expected
since the linear term is included in the new model. However, this conclusion is based on
holding the By and (2 parameters constant at the center of their respective confidence
intervals. Thus, the ellipsoid in Figure 3.12 is a potentially underestimated projection.
Several values for fy were tested to determine the effect on the two-dimensional confidence

region but no significant changes were observed.
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The results from the ANOVA and the analysis of the residuals suggest that the TES
model may not be adequate for the entire population of materials on the Earth. However, it
does provide reasonable results for a large gamut of materials that is representative of the
Earth’s composition. The maximum errors in emissivities were about 5%. An error of this
magnitude leads to a temperature error of about 2.5 °K. This represents a worst case scenario
if proper atmospheric compensation and negligible sensor noise are assumed. In reality,
the large spatial scale measurements made by high-altitude aircraft and satellite platforms
result in hyperspectral pixels that consist of a mixture of spectral emissivities. These mixed
pixels tend to “average-out” unusual emissivity features, resulting in an effective emissivity
that adheres more closely to the phenomenology exploited by the TES model. Thus, it is
expected that the retrieved emissivities and temperatures from this model would have an
error lower than the 5% and 2.5°K.

Another option is to develop a model for each material class. Unfortunately, this
requires a priori knowledge of the scene objects, which is often not available. Besides, the
typical application of these hyperspectral sensors is to identify unknown targets to begin
with. However, it may be possible to calculate a model for two or three broad classes
that may be separable without having a priori knowledge of the materials. For example,
vegetation may be identified by a ratio of two spectral channels (i.e., Normalized Difference
Vegetation Index or NDVI). These “vegetation” pixels would be processed using one model
while the rest of the image is processed by another model.

In summary, an empirical model relating the maximum-minimum difference of spectral
emissivity curves measured by hyperspectral sensors and the true minimum emissivity value
has been developed using standard regression analysis. The nonlinear aspect of the power
law coefficient was resolved by performing a binary search which minimized the lack of fit
and standard error from the linear regression ANOVA. The model yields reasonable results
when applied to a large spectral library. Because of the broader range of materials for which

this model applies, this new empirical relationship was implemented in this research.
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Figure 3.13: Schematic of test and validation approach.

3.3 Test and Validation

The ultimate goal of this research is to show that it is feasible to retrieve accurate esti-
mates of land surface temperature and emissivity from remotely sensed infrared imagery.
Section 3.1 described the approach used in this research to estimate these parameters. This
section covers the methodology and data used to test and validate the approach. This
methodology is summarized in Figure 3.13. Standard MODTRAN atmospheric profiles or
radiosonde data were used as inputs into MODTRAN to generate simulated atmospheric
and sensor spectra. These spectra were then used to build the CCR inverse models. Two
kinds of models were built: (1) models inverting observed spectra to atmospheric optical
parameters (i.e, 7, L, and L), and (2) models inverting observed spectra to physical pa-
rameters (i.e., surface temperature, temperature profiles, and water vapor profiles). The
dashed double-headed arrows in Figure 3.13 indicate parameters that were compared to

validate the inverse model.
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When estimates of the atmospheric spectra are obtained from CCR, the sensor radiance

can be solved using eq. (2.5):

A

L(A) — Lu(N)

f/s ()= O

(3.65)

where " denotes an estimated parameter and Lg()\) is the estimated surface-leaving radiance.

Ls()\) includes the reflected downwelled radiance component. That is,
Ls(A) = e(A) LA, Ts) + [1 — (M) La(N) (3.66)

This estimated surface-leaving radiance and downwelled radiance are then used as inputs
to the Temperature and Emissivity Separation (TES) algorithm.

The estimated values were compared to the MODTRAN-generated spectra or to the
vertical profiles used as inputs into MODTRAN. This process was done using different
spectral configurations and bandpasses. Finally, the CCR inverse models were applied to
multispectral thermal images from the MODIS Airborne Simulator (MAS) and MODIS and
ASTER (MASTER) airborne sensors. The retrievals obtained from these data sets were

compared to field measurements made coincident with the image acquisition.

3.3.1 Simulations

Simulated data are ideal for algorithm development because the experimental variables are
easier to control. In addition, validation is less ambiguous than with real data because
the algorithm retrievals can be compared to an eract value that was controlled in the
experiment.

All of the CCR inverse models are built based on simulated MODTRAN spectra (L())).
These spectra are related to input parameters that are based on actual measurements
(e.g., radiosonde profiles) or synthetic profiles (e.g., MODTRAN standard atmospheric
models). Because there are no probability distributions governing the CCA inverse model,
it is not possible to define confidence intervals on the retrieved parameters. Therefore, the

performance of the inverse model was measured by calculating the RMS difference between
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the model inputs and the parameters retrieved with the CCA inverse model. The RMS

difference is the square-root of the mean-squared error (MSE) and is obtained from

(3.67)

where n is the number of observations and ygasg is a ¢ X 1 vector of RMS residuals. The
RMS error is a biased estimate of the standard deviation. Thus, it describes how much
error is expected 68.3% of the time.

Cross-validation of the CCR inverse models was also performed with simulated data.
To do this, half of the MODTRAN runs were used to build the CCR inverse model. The
model was then applied to the other half of the MODTRAN runs and RMS values were

computed.

3.3.2 MODIS Airborne Simulator (MAS)

A useful source of data is the MODerate-resolution Imaging Spectrometer (MODIS) Air-
borne Simulator (MAS). This is an airborne sensor mounted on the NASA ER-2 high-
altitude aircraft. The sensor is a breadboard of the Terra MODIS sensor. The MAS sensor
is not a hyperspectral sensor because of the small number of bands. There are 9 longwave
bands and 15 midwave bands. Nevertheless, this may be the only (relatively) high spectral
resolution data from space available in the near-term (i.e., MODIS and ASTER onboard
Terra). Since one of the goals of this research is to show the extendibility of the approach to
spaceborne sensors, the MAS data were worthy of consideration in the development of the
algorithms. That way, when MODIS data are available, it should be relatively easy to pro-
cess the new data. Reported thermal noise values for the LWIR bands range between 0.09
to 2.00 °K (King et al. 1996). The noisy bands are channels 49 and 50, which correspond
to 13.72 pm and 14.17 pm.

The MAS data is provided freely by NASA Goddard Distributed Active Archive Center
(DAAC) in HDF format. The structure of the HDF data is specified in the “Level-1B Data.
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User’s Guide” (Gumley 1994). ENVI has the capability to read this particular format.
There is also a free IDL widget program called SHARP that can read the MAS HDF data.

This was developed by Liam Gumley from the University of Madison-Wisconsin.

3.3.3 MASTER

The MODIS and ASTER (MASTER) sensor was developed as a breadboard sensor to
validate the algorithms planned for the MODIS and ASTER sensors onboard the Terra
satellite (Hook et al. 2000). It has been flown in a King Air Beachcraft B200 and DC-8
with plans for operations on the NASA ER-2. The system is a line scanner with a Gre-
gorian telescope and uses diffraction grating spectrometers. There are four spectrometers
covering the visible-near infrared, shortwave infrared (SWIR), midwave infrared (MWIR),
and longwave infrared (LWIR). The LWIR focal plane array (FPA) is a Mercury-Cadmium-
Telluride (HgCdTe) array with a cooled linear-variable filter. The LWIR FPA has 10 bands
covering the region between 7.7 and 12.9 ym with a nominal NEAT of 0.3°K. The spectral
resolution of these bands is about 0.5 pm. The FPA read-out is processed by a special set
of 16-bit A/D converters. These high dynamic-range converters actively track the DC level

detector signal, thus compensating for temporal thermal drifts (Hook et al. 2000).

3.3.4 SEBASS

SEBASS is an airborne infrared hyperspectral sensor that operates in the Mid-Wave In-
frared (MWIR) and the Long-Wave Infrared (LWIR) atmospheric windows. Light from
the telescope is imaged on the spectrograph entrance slit, then is split by a dichroic filter
into wavelengths shorter and longer than 6.5 pm. The dispersed light is re-imaged by two
prism spectrographs, one for MWIR and one for LWIR. The spectral range in the MWIR
is between 2.9 pm and 5.2 pym. In the LWIR, the spectral range is between 7.5 um and
13.6 pm. These regions are distributed over 128 spectral channels. The spectral resolution

of the sensor in the LWIR is not constant, as shown in Figure 3.14. These plots show the
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Figure 3.14: Spectral intervals for the SEBASS LWIR band.

intervals between the band centers as a function of wavelength or frequency. The sensor
operates in a pushbroom mode with a swath defined by an array of 128 pixels with an
Instantaneous Field of View (IFOV) of 1.1 milliradians per pixel. Thus, the FOV of the
sensor is approximately 8.1°. The observed radiance is dispersed into 128 spectral bins.
The 128 by 128 array is then scanned over the Earth’s surface by the aircraft’s motion.
This generates a hyperspectral image cube that is band-interleaved by pixel (BIP) so that

the depth is dictated by the number of frames collected over the flight path.

3.3.5 Experiments

A series of experiments using simulated and thermal imagery were carried out for the testing
and development of the inversion technique. This section describes the experimental setup
for each of these experiments, which are presented in chronological order. The results are

outlined in Chapter 4.

Experiment #1

The initial test of the CCA inverse model was to determine whether the correlations be-

tween the observed spectra and atmospheric parameters were large enough for accurate
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parameter estimation. To do this, 216 spectra were generated with MODTRAN 4.0. This
was done with a 3-factor experimental design with no repeats. The factors were the vertical
temperature profile, the vertical relative humidity profile, and the total amount of ozone.
There were six different temperature and humidity profiles. There were also six different
levels of ozone. This resulted in 62 = 216 observations. No repeats were measured because
the model is a physical model and the results are not random variables. The temperature
and humidity profiles used were the default profiles for the six model atmospheres included
in MODTRAN. These atmospheres are:
1. Tropical

2. Mid-latitude Summer

@

Mid-latitude Winter

L

Subartic Summer
5. Subartic Winter

6. 1976 U.S. Standard Atmosphere

The temperature, relative humidity, and ozone profiles for these models are shown in Fig-
ure 2.10. The profiles for temperature and relative humidity were used as radiosonde data
so they could be “mixed” in the factorial design. Because the pressure and CQOq profiles
do not vary greatly, these were not a controlled factor. The radiosonde data contained the
pressure and COg profiles that corresponded to the model atmosphere where the temper-
ature profiles were being extracted from. The total ozone concentration in the column of
air was varied by adjusting the O3STR variable in CARD 1A of the Tape 5 file. The levels
were 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 times the default value for the input model atmosphere.
All of the runs were performed using a surface temperature of 300 °K. The output from
the MODTRAN model is the simulated observed radiance for a sensor at an altitude of
100 km. The model also provides the spectral transmission and upwelled radiance based

on the input parameters. The bandpass for the runs was between 7.34 ym and 13.57 um
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(737 em™! to 1362 cm™ ' at 5 cm ™! steps). All of the observations were made assuming a
nadir sensor-target geometry (i.e., the sensor is located at zenith).

Another goal of this experiment was to develop a scaling scheme of the observed spectra
that would force CCA to use spectral features that are independent of the surface emis-
sion. This is because the observed radiance is typically dominated by the surface emission.
Therefore, significant error may be introduced in the retrieval of atmospheric parameters

because of uncompensated biases due to the surface temperature.

Experiment #2
There were several goals for this experiment:

1. To obtain temperature and water vapor retrievals with CCA inverse models built with

radiosonde data.

2. To show that CCA is able to separate surface and atmospheric emission effects when

these are allowed to vary in the model-building phase.
3. To couple the CCR inverse model with the TES algorithm.

4. To apply the CCR inverse model to real thermal imagery.

The CCA inverse models built in this experiment were based on the radiosonde data
described in Section 3.2.1. Each radiosonde profile introduced variations in air-surface
boundary layer temperatures, temperature profiles, water vapor profiles, altitude, surface
elevation, surface latitude and longitude, time of day, and date. The surface temperature
was set equal to the temperature of the lowest radiosonde level. Also, the radiosonde
profiles were resampled to a common pressure altitude grid for each data set. Table 3.4
gives summary statistics of the radiosonde data. The variability in the global database is
significantly higher than for the other two test cases. The surface temperatures for these

data ranged between -42.3°C and 36.7°C with the SSEC data being the coldest and the

NAST-I being the hottest.
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Table 3.4: Description of radiosonde used for CCR

Dataset N?®  Geographic Coverage  Time Span G’ 01°  Owe'
SSEC 117 Worldwide 1963-1972 19.00 1123 16.06
FSL 192 34-38°N,

115-119°W 1995,1999 5.09 4.55 4.94
NAST-I 3,310 East Coast, U.S.A. Jul-Sep 1998  5.35 3.71 12.33
*Number of profiles

®Standard deviation of surface-air boundary layer °K
°Average standard deviation of temperature °K
4Standard deviation of column water vapor (mm)

The CCR inverse models built with the radiosonde data were used to retrieve param-
eters from MAS thermal imagery of Death Valley (Fig. 3.15) collected on 4 March 1997
(Flight 97-063/Track 2). This is a nighttime track so that self-emission and atmospheric
radiation are the only relevant terms in the radiative transfer. An LST measurement was
made by Wan (1999) coincident with the overflight. LST measurements of 18.7°C and
18.5°C were made via a thermal infrared (TIR) thermometer and a thermistor 1 mm be-
neath the surface, respectively. These measurements have an uncertainty of ~ 0.5°C due
to errors in instrument calibration and emissivity estimates (Wan 1999).

To account for the altitude dependence of the observed spectral radiance, the MOD-
TRAN sensor altitude (i.e., the parameter H2) was set to a nominal altitude of 21 km.
This matched the nominal altitude of MAS for the imagery used in this experiment. The
surface temperature T was set equal to the air-surface boundary layer temperature Ty;,.
This introduced some variability in the surface temperature and was done to see if CCR
would be able to separate the surface and atmospheric emission effects. In addition, the
CCR inverse models were also used to retrieve the surface temperature directly. In this
experiment, the surface albedo was set to 0.0. Therefore, the surface was assumed to be a
blackbody. Default values for the standard mid-latitude summer model were used for all
atmospheric parameters not described by the radiosonde data. Simulated observed spec-
tral radiances as well as transmission, upwelled radiance, and downwelled radiance were

recorded. Gaussian sensor response functions defined by specified FWHM and band centers
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Figure 3.15: MAS infrared image of Death Valley (Band 44 equalized grayscale). The arrow
indicates location of field temperature measurement.

were used to resample all spectral radiances and simulate MAS spectral observations. The
observed radiances for each radiosonde set were then collected in an ensemble X with n ob-
servations for each of p = 9 spectral bands. The bands correspond to the longwave infrared
(LWIR) MAS bands 42-50. The band configuration for the Death Valley collect are listed

in Table 3.5. The observations were randomized prior to the analysis.

Experiment #3

The goal of this experiment was to demonstrate the ability of CCA to identify regions of
the MWIR spectrum that are most useful for atmospheric sounding of temperature and
water vapor. Another goal was to show that the CCR inverse model is “physical”. That
is, the inverse mapping is based on physical properties of radiative transfer rather than on
ensemble-dependent features that fortuitously lead to least-squares optimization.

The FSL and NAST-I data sets were used to generate simulated spaceborne MWIR ob-

servations. To build the X ensemble, radiosonde profiles and simulated observed radiances
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Band | Center | Right 50% | Left 50%
42 8.53400 8.72800 8.31400
43 9.67500 9.98300 9.43900
44 10.5040 10.7120 10.2570
45 10.9930 11.2120 10.7280
46 11.9930 12.1560 11.7270
47 12.8670 13.0950 12.6960
48 13.3030 13.4950 13.0270
49 13.8330 14.0850 13.5240
50 14.2930 14.4720 14.0300

Table 3.5: MAS Thermal Bands for Death Valley Collect. The “Right” and “Left” columns
denote the wavelengths to the right and left of the center wavelength where the response is
50% of the center response.

were processed at a nominal altitude of 100 km, which is the maximum for MODTRAN.
Atmospheric optical properties were also generated and recorded. For each radiosonde
observation, the surface temperature was varied about the air-surface boundary layer tem-
perature by +/- 6 °K at 2° increments. As in Experiment #2, the surface albedo was set
to 0.0 and the parameters not specified by the radiosonde were set to mid-latitude summer
profile values.

In this study, n = 120 observations were randomly chosen from both data sets to
minimize computational time. The number of bands varied depending on the resolution at
which MODTRAN was run. For this MWIR case study, the bandpass from 1950 to 3350
cm™! (2.98 to 5.13 um) was used. The highest resolution available with MODTRAN is
1 cm™!. The results presented here are based on analysis done using high, medium, and
low resolution cases defined by resolutions 1 ecm™!, 7ecm™!, and 15 cm™1, respectively. This
corresponded to having 1401, 201, and 94 spectral bands in the X ensemble, depending on
the test case. The number of correlations derived from CCA should provide insight into the
number of independent channels of information. Also, the canonical weights should indicate

the most influential regions of the spectrum that lead to the largest correlations with the

atmospheric profiles.
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Experiment #4

The goal of this experiment was to demonstrate the ability of CCA to define an inverse model
for the prediction of atmospheric parameters and surface temperature under the influence of
varying surface emissivities. The hypothesis is that CCA can be forced to find features that
are independent of the surface emission and reflection by introducing variability in these
parameters. The inverse model was also coupled with the TES algorithm to retrieve spectral
emissivities and surface temperatures. Finally, the algorithm was applied to MASTER
thermal imagery.

Ensembles were built with the FSL, NAST-I, and SSEC radiosonde profiles. In addition
to the profiles, the surface temperature and emissivity were varied. The surface temperature
was varied to 4 /- 6°K of the air-surface boundary layer temperature specified in the profiles.
Ensembles were built using one of two surface cases: 1) using blackbody targets, and 2)
using spectrally varying emissivities. The first case provides a baseline which is suitable
for retrievals over near-blackbody targets such as water and certain types of vegetation.
The second case is more general and applies to remote sensing over water and land. Three
spectral emissivity classes were used: ocean, desert, and farmland. Thus, for each vertical
profile, there were three different emissivity targets used as inputs in the MODTRAN
model. These emissivities were chosen because they represent large generic classes and are
conveniently referenced in the MODTRAN model. The emissivity spectra fluctuated from
about 0.99 to 0.75.

In all cases, 60 observations were randomly selected from the radiosonde databases.
For the blackbody cases, 7 temperature levels were used for each atmospheric observation,
resulting in n = 420 observations. For the varying emissivity cases, 3 temperature and 3
emissivity levels were used resulting in n = 540 observations.

The MODTRAN runs were executed at the highest resolution (i.e., 1 cm™!) and then
resampled using MASTER sensor response functions. The MASTER sensor has 10 relatively

wide bands (about 0.5 pm resolution) in the LWIR so it is considered multispectral. Three
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Band | Lake Mead | RR/WR Valley
41 7.7574 7.7652
42 8.1599 8.1739
43 8.6120 8.6267
44 9.0487 9.0944
45 9.6855 9.7025
46 10.0966 10.1193
47 10.6186 10.6299
48 11.3079 11.3147
49 12.0984 12.1139
50 12.8712 12.8792

Table 3.6: MASTER band centers for Lake Mead and Railroad/White River Valley collects.

MASTER images were analyzed: 1) Flight 99-001-01 Track F over Lake Mead, NV on 02
December 1998; 2) Flight 99-006-14 Track F over White River Valley, NV on 29 September
1999; and 3) Flight 99-006-14 Track B over Railroad Valley, NV on 28 September 1999.
The spectral band centers for these collects are listed in Table 3.6. Figure 3.16 shows
the shape of the spectral response curves used to resample the MODTRAN runs for one
of the collects (obtained from the ASTER web site: http://asterweb.jpl.nasa.gov). These
collects were supported with ground truth measurements of surface temperature with self-
calibrating radiometers and thermistors. In addition, emissivity measurements were made
in the lab and the field in support of the Railroad Valley collect. The Railroad Valley and
White River Valley images were collected at a nominal aircraft altitude of 10 km. The Lake
Mead image was collected at about 6 km (Hook, Myers, Thome, Fitzgerald, and Kahle
2000; Palluconi 2000).

The images were obtained from the Earth Resources Observation Systems (EROS)
Data Center (EDC) for the U.S. Geological Survey’s (USGS), which also serves as the
NASA Distributed Active Archive Center (DAAC) of MASTER data. The data are supplied
georeferenced to latitude and longitude coordinates. These coordinates were used to select
the pixels corresponding to ground truth measurements. The error in this procedure for

the Railroad Valley and White River Valley images was less than 1.7 urad, which translates
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Figure 3.16: MASTER band spectral response for Railroad/White River Valley collect.
An atmospheric transmission curve is superimposed for reference. Response functions were
scaled for visualization.

to approximately 11 meters. For the Lake Mead image, the accuracy of the pixel location
was about 5.6 meters. Figure 3.17 shows excerpts from these images using band 46 (at 10
pm). The location of the ground measurements are shown as asterisks. These pixels were
processed through the inverse models built with the MODTRAN ruuns.

To gauge the performance of the algorithm with hyperspectral sensors, the MOD-
TRAN output was resampled using spectral response functions for the Spatially Enhanced
Broadband Array Spectrograph System (SEBASS) described in Section 3.3.4. MODTRAN
spectra were resampled with the SEBASS band configuration for the 1997 Atmospheric

Radiation Measurement (ARM) site collects over Lamont, Oklahoma.

3.3.6 Comparative Studies

Two comparative studies with other existing methods were made. One study compared
the CCA inverse model results to those obtained with other multivariate regression models

(see Appendix D for a description of these methods). Another study compared the CCR
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Figure 3.17: MASTER IR images with location of ground measurements: a) Gypsum Bay
in Lake Mead (radiometer); b) Cold Springs reservoir in White River Valley (buoy-mounted
thermistor); and c) Railroad Valley playa (FTIR).
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inverse model estimates to results from the In-Scene Atmospheric Compensation (ISAC)
method. The ISAC algorithm was implemented with the “maximum-hit” and Kolmogorov-
Smirnov regression methods described in Section 2.1.6. The Kolmogorov-Smirnov ISAC
algorithm used in this research was a modified version of the algorithm distributed by
the Spectral Information Technical Application Center (SITAC), Central MASINT Office
(CMO). Finally, a new “normalized” regression (NR) implementation of ISAC was also
developed and tested. A detailed description of the different ISAC implementations is
given in Appendix E. Although these studies were not comprehensive, they provided some
indication of the performance of the CCA approach relative to other methods. ISAC is a

good baseline for comparison because it is relatively popular in the community.

3.3.7 Validation of Linear Model

Finally, the appropriateness of using a linear inverse model was investigated. This was done
through the analysis of canonical variable and residual vs. fitted value scatter plots. The
canonical variable plots give insight into the “shape” of the data in the canonical space. If
the canonical correlations are high, then the scatter plots should follow a linear pattern and
the linear model is appropriate. On the other hand, low correlations in the canonical space
result from: (1) all of the correlation being explained by the first few canonical variables, in
which case the linear model is appropriate and the plot of the of the low-correlation canonical
variables has no pattern, and (2) outliers in the data due to errors or nonlinear relationships,
in which case the canonical variable plots should exhibit some pattern. The residual vs.
fitted value plots give an indication to how the errors change relative to the values being
estimated. A pattern in the error plot gives an indication of the appropriateness of the
model. For example, the residual vs. fits plot for the TES algorithm shown in Figure 3.10
indicate that emissivity spectra with low minimum emissivity values and high variability

are not modelled well by the MMD-¢,,, linear model.
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Chapter 4

Results

No amount of experimentation can ever prove me right;
a single experiment can prove me wrong.

Albert Einstein

The detailed description of the experimental design for the results presented in this
chapter are found in Section 3.3. However, schematics showing the design of each experiment

are presented throughout the material as reference.

4.1 Experiment #1

Figure 4.1 shows a schematic of the experimental design. The goal of this experiment was to
demonstrate that the canonical correlations relating the observed radiance and atmospheric
parameters were large enough to build an accurate inverse model. In addition, a scaling
scheme for surface temperature biases was explored.

The analysis relating the observed radiance and the atmospheric transmission and up-
welled radiance resulted in 6 significant correlations with squared values of 0.9999, 0.9969,
0.9873, 0.97164, 0.8996, and 0.8118. A complete sum-of-squares of error (SSE) matrix would

be too large to show here and difficult to interpret. However, the RMS errors for trans-
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Figure 4.1: Schematic of design of Experiment # 1

mission and upwelled radiance over all wavelengths were 0.011 and 15.49 uf, respectively.
Clearly, there is a strong linear correlation between the observed radiance and the atmo-
spheric spectra. These results should not be surprising since eq. (2.5) define the observed
radiance as a linear combination of transmission and upwelled radiance effects.

Figure 4.2 shows an example of the results for the atmospheric transmission and up-
welled radiance predictions. The black curves are the “true” values obtained from the
MODTRAN model. The red curves are the CCR predictions. The data shown are rep-
resentative of observation #2, which is a Tropical model case. Both the temperature and
relative humidities are from the tropical model. The Og content was the standard default
concentration for this observation.

One of the aspects that makes CCR very appealing is the analysis of the linear com-
binations used in the transformation. These “canonical modes” are the orthogonal basis of
the space the data are transformed to. These “modes” or “weights” are often interpretable
and provide insight into the nature of the problem. Figure 4.3 shows the first two modes

for the transmission and upwelled radiance predictions. The black curves are the modes
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Figure 4.2: Comparison of “true” and CCR-predicted spectra: (a) transmission, (b) up-
welled radiance, (c) transmission residual, and (d) upwelled residual (% error).
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Figure 4.3: First pair of canonical modes obtained from the radiance and transmission
spectra: (a) First canonical modes, and (b) Second canonical modes.

used to transform the observed radiance spectra. The green curves are the modes used to
transform the transmission spectra. Note that the modes for both sets of data are very
similar, which indicates that the there is a tight relationship between the observable fea-
tures in each spectra. The first mode appears to be picking up on the wing of the water
absorption band centered at 6.3 um. The second mode is clearly based on the shape of
the major ozone absorption band at 9.6 pum. The modes for the upwelled radiance were
consistent with these results. These interpretations of the modes indicate that the CCA
inverse model is physical.

CCR was also used to relate the observed spectra to the vertical temperature profiles
used as inputs to MODTRAN. Figure 4.4 shows a comparison of the true input and the
predicted temperature profile for observation # 79. This is a mid-latitude winter temper-
ature profile, which was run with a mid-latitude summer relative humidity profile and the
default O3 concentration. The curve in red is the predicted profile. All of the residuals
were within 1°K of the true profile. There were 4 significant canonical correlations: 0.9995,

0.9988, 0.9466, 0.8531. The RMS error over all altitude levels was 0.93 °K.

134




B M AAdanasss PP LA LA LA LA KA RAAN RN
80
~ B0f
£ T
~ 2
@ v
he) ©
=] =
£ z
< 40}t
20t
O'...|.|.|...|”.|...|...1 oF | | ' ~
220230240 250260270 st beea b beee b ga ool
Temperature (K) =0.8-D70.4-02 g 02 04
(a) (b)

Figure 4.4: Comparison of “true” and CCR-predicted temperature profiles (observation
#79): (a) temperature profile, and (b) Residual.

The second part of the experiment addresses a practical issue that may potentially
introduce large errors in the estimated spectra. Inspection of eq. (2.5) will show that the
surface-leaving radiance can significantly dominate the observed radiance. This is particu-
larly the case when the surface temperature is larger than the apparent temperature of the
atmosphere. Although this particular scenario would normally be welcomed in infrared re-
mote sensing of the surface, it is not ideal when the goal is to remotely sense the atmosphere.
Therefore, it is necessary to scale the data so as to minimize the effect of the surface-leaving
radiance on the prediction of the atmospheric parameters. The emphasis is placed on mini-
mization of the effect because it is physically impossible to get around the effects of a poor

signal-to-noise ratio (SNR). In the atmospheric parameter retrieval problem, the signal of
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Figure 4.5: Observed radiances for two different surface temperatures. The black curves cor-
respond to a surface temperature of 300 °K. The green curves are for a surface temperature

of 310 °K.

interest is the upwelled radiance while the “noise” is the surface-leaving radiance. The best
that we can do is to force the canonical correlation regression algorithm to use features in
the observed radiation that are independent of the surface-leaving radiance. A heuristic
approach was developed that seemed to work well with the data discussed in section 3.3.5.
This procedure is an intermediate step necessary to characterize the atmosphere. Later on,
the atmosphere will be the “noise” and the estimated atmospheric parameters will be used
to calculate the surface radiance.

The approach is based on the careful inspection of the observed radiances for two cases.
Figure 4.5 shows the curves for two cases. The first case corresponds to observation #2
of the regression analysis. This is obtained from the standard MODTRAN tropical model
with a surface temperature of 300 °K. The second case is an observation outside of the
regression data. The surface temperature used in the new observation is 310 °K. This
10°K difference should introduce a large enough bias to test the algorithm against. The

structured curves are the actual MODTRAN observed radiances. The smooth curves are
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Planck functions derived with either the maximum brightness temperatures of the observed
radiances or with the actual surface temperature. For both cases, the Planck curves obtained
with the brightness temperatures are lower than the Planck curves obtained with the true
surface temperatures. This is expected, since the maximum brightness temperature is an
underestimation of the true temperature because of attenuation by the atmosphere. Note
however, that the Planck curves derived from the maximum brightness temperatures follow
the shape of the observed radiance much more closely than the Planck curves obtained
from the surface temperatures. The difference between the Planck curves derived from the
maximum brightness temperature is proportional to the difference between the observed
radiances except for at the edges of the band and at the center of the ozone feature. This
is because these are areas where the atmosphere is highly absorbent (low transmission).
In those regions, the contribution from the surface component to the observed radiance
is low. Thus, for the case of equal atmospheres, the observed radiances are the same in
those regions. A suitable scaling scheme would be one that would shift the spectra only in
spectral regions where the atmosphere is transmissive.

Unfortunately, there is no a priori knowledge of the actual atmospheric transmission.
In fact, this is the quantity that we wish to predict with the analysis! However, note
that the observed radiance is proportional to the transmission of the atmosphere. This will
generally be true for cases where the surface-leaving radiance component dominates over the
atmospheric upwelled radiance. Luckily, this is the scenario that we wish to “compensate”
for. Thus, a suitable scaling of the observed radiance may be obtained by multiplying the
difference in the Planck curves obtained with the brightness temperatures by a fraction that
is proportional to the observed radiance. This defines the bias that the observed radiance

is shifted by. Mathematically, the fraction is obtained from

_ L(A\) = min [L()\)]
7A) = max {L(A) — min [L())]}

(4.1)

The numerator is the radiance subtracted by its minimum. This ensures that the minimum

value of the correction factor is zero. The resulting curve is then divided by its maximum
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Figure 4.6: Scaling factor applied to the difference in Planck curves.

value so that the peak value is 1.0. Thus 0 <~ < 1.0. This fraction is a scaling factor that
is proportional to the atmospheric transmission. This curve is shown in Figure 4.6. The
next step is to multiply the scaling factor by the difference in the Planck curves obtained

from the maximum brightness temperatures. The bias then becomes
b(A\) =7 [LeB(\, Ty1) — Les(A\ Tp)] (4.2)

where Ty, and T}, are the maximum brightness temperatures for the two observations.
Unfortunately, for any particular observation, we do not know what T}, the radiance
should be compared to. We do know, however, that all of the observations to be used in
the regression analysis were generated at a single surface temperature Ty = 300°K. Thus,
we would scale all of the data to the Planck curve derived with this temperature. The bias

to be used is then
bi(A) =« [LBB(/\, Téi) — Lpp(A, TS’)] (4.3)

where b;()\) is the bias subtracted from the it® observation. Figure 4.7 shows the effect of

the scaling factor on the observation biased by the high surface temperature. The scaling
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Figure 4.7: Comparison of scaled and unscaled observed radiances for observation #2 of
the regression analysis.

brings the observed radiance closer to the curve obtained with 300 °K but it is not perfect.
This will translate to an increased error in the atmospheric spectra estimates. Nevertheless,
the results should be an improvement over those obtained with unscaled data.

Figure 4.8 shows the results that would be obtained if the data were not scaled. The
errors are very large and the retrieved transmission and upwelled radiance contain values
that are not physically possible.

Figure 4.9 shows the results obtained with the scaled data. CCR was done with all
of the observations in the regression data scaled with the bias correction. The scaling had
no significant effects on the regression analysis since all of the observations had a common
surface temperature. However, the scaling dramatically improved the retrievals obtained
with the biased observation outside of the regression data. These results are much better
than those obtained with the unscaled analysis. However, the residuals are larger than those
obtained with just the regression data. There is also a distinct pattern to the residuals,
suggesting that there may be a better way to minimize the effect of changes in the surface

radiation.
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Figure 4.8: Comparison of “true” and CCR-predicted spectra (before scaling the data): (a)
transmission, (b) upwelled radiance, (¢) transmission residual, and (d) upwelled residual (%
error). Blue curves are the true values; red curves are the estimated spectra
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This heuristic approach minimizes the effect of differences in the surface-leaving radi-
ance due to temperature changes because all of the observed radiance spectra are scaled
to one common (or reference) surface temperature. The reference temperature does not
necessarily have to be the surface temperature used in the regression data. However, the
reference temperature should be in the domain of surface temperatures used in the regres-
sion analysis. This adds flexibility in the experimental design by allowing observations that
were obtained with different surface temperatures to be used in the regression analysis.
Finally, the scaling takes into consideration the fact that we do not wish to apply any
correction to spectral regions where the surface contribution is minimal.

The scaling approach developed for this experiment was not used throughout the rest
of this research. This is because subsequent experiments included the the surface temper-
ature as a parameter to be estimated by the CCR inverse model. Nevertheless, the scaling
results are presented here since they may a suitable implementation of CCR when only the
atmospheric parameters are of interest.

In summary, the results from this experiment demonstrate that the canonical correla-
tions between atmospheric physical and optical parameters and the observed spectra are
large enough to build an accurate inverse model. In addition, analysis of the canonical
modes showed that the CCA inverse model is physical. A scaling scheme for mitigating

biases due to changes in surface temperatures was developed.

4.2 Experiment #2

CCR inverse models were built for the prediction of atmospheric profiles and spectra. In
both cases, the parameters were retrieved simultaneously. That is, the ensemble Y contained
all of the parameters of interest. For the case of atmospheric profile retrievals defined at
g altitude levels, Y was a n X 2¢ partitioned matrix where the first ¢ columns were the
temperature profiles and the second ¢ columns were the water vapor profiles. Similarly, an

ensemble Y of atmospheric transmission, upwelled radiance, and downwelled radiance was a
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Figure 4.10: Schematic of design of Experiment # 2

n x 3p matrix. This was done to constrain the algorithm and prevent CCR from attributing
the same observed radiance effect to different parameter estimates. The experimental design
is shown in Figure 4.10. In this experiment, the surface temperature as allowed to vary (as
defined by the lowest layer in the radiosonde profiles) and was estimated by the CCR inverse
model. In addition, TES was coupled with CCR to refine the surface temperature estimates.

The results are summarized in Table 4.1. Since no field emissivities were measured, the
TES emissivity estimates cannot be verified. However, the estimated surface temperatures
agree to within 0.4 °C of the field temperature measurements. The accuracy of the retrieved
TES temperatures is improved by as much as 1 °C compared to the direct CCR retrievals.
This suggests that the TES algorithm is adequately compensating for reflected downwelled
radiance and emissivity. In addition, the direct retrieval is based on all of the bands while
the TES retrieval uses only the bands in regions of high transmission. These bands also had
lower sensor noise than those at the edge of the LWIR bandpass (Wan 1999). The estimated
uncertainty in these retrievals is within 1 °C for the FSL and NAST-I data and about 4 °C

for the SSEC data. These results are consistent with the analysis on the databases used to
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Parameter SSEC FSL NAST-I

MAS

RMS Error T, (°C) 1.15 0.21 0.23
RMS Error Profile (°C) 2.13 2.20 4.65
RMS Error CWV (mm) 4.66 1.92 4.65

CCR Retrieval MAS pixel T, (°C) 19.82  17.50 19.32
TES Retrieval MAS pixel® T; (°C) 18.9 18.7 18.3

MODIS

RMS Error 7T, (°C) 131 0.26 0.26
RMS Error Profile (°C) 2.00°  2.10 1.53
RMS Error CWV (mm) 496  2.10 4.65

*0Only MAS bands 42,44-48 used.
*For pressure levels greater than 100 mbar.

Table 4.1: Summary results for experiment # 2

build the correlation coefficients. Recall that the SSEC data had a lot of variability in the
profiles as a result of the sparse geographic coverage over the entire globe. This results in
estimates that are less precise than for the FSL and NAST-I retrievals.

Finally, MODIS data simulated with MODTRAN were processed. These data were
generated using the maximum altitude in MODTRAN (100 km). The residual errors in the
atmospheric parameters are shown to be of the same order as those obtained with the MAS
data. This shows the extendibility of the algorithm to spaceborne remote sensing platforms.

The results obtained in this experiment are not optimized for the observations in the
training data. That is, it is possible to obtain more accurate results for the specific ensembles
used to build the regression coefficients by keeping more canonical dimensions in the inverse
model. However, this may lead to “overfitting” of the data. Therefore, the model is more
robust and applicable to observations outside of the training set because only 3-4 significant
correlations were retained. Figure 4.11 shows how the cross-validation results are nearly
identical to those obtained with the ensembles used to build the model. To demonstrate
the robustness of the model, 5 observations from the NAST-I data were used to predict all
of the 3,310 NAST-I temperature profiles and corresponding air-surface temperatures. The

RMS errors in the estimates were within 3 °K and 1 °K, respectively.
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Figure 4.11: Cross-validation results for MAS profile retrievals for the NAST-I data. The
standard deviation of the ensembles are shown to show the amount of variability accounted
by the model.

4.3 Experiment #3

4.3.1 Number of Bands Determination

CCR provides a mechanism for finding the minimum number of bands required for accu-
rate estimation of atmospheric parameters from the observed radiance. As described in
Section 3.2.1, the algorithm truncates the singular value spectrum so that a lower dimen-
sional space is used to build the canonical correlations. This ensures that the model does
not overfit the data and the solutions are stable. The retained dimensionality is also an
indication of the number of independent bands (i.e., the inherent number of independent
variables) needed to achieve a certain level of accuracy.

The experimental design is shown in Figure 4.12, CCR was performed on the FSL
and NAST-I data sets for the high, medium, and low resolutions. The RMS errors in the
estimated temperature and water vapor profiles obtained with the FSL and NAST-I data
are shown in Figure 4.13 and Figure 4.14, respectively. The lowest layer in the plotted

profiles is actually the surface temperature, which was estimated with CCR as well. In
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Figure 4.12: Schematic of design of Experiment # 3

general, CCR found strong correlations with the surface temperature and predicted it with
high accuracy. The errors in the temperature profiles are larger in the stratosphere. This
is because the contribution from stratospheric temperatures to the observed radiance is
minimal due to lower atmospheric density and constituent population. For the water vapor
profiles, the error is largest close to the Earth’s surface where the water vapor content
and variability is largest. The standard deviation of the profiles is plotted as reference
to show what the residual error would be if the algorithm simply predicted the mean.
This provides a baseline to help determine how much of the variability the algorithm is
truly predicting. The error in the temperature retrievals approaches the standard deviation
curve just below the tropopause (at about z = 12 km or p = 200 mb). This implies that
there is little information in the MWIR spectrum about this atmospheric level. There could
be several reasons for this: (1) there is no significant emission from this atmospheric level,
(2) emission from this level does not reach the sensor because of path absorption, (3) the
simulated spectral resolution is too low for the emission to be detected, (4) there are errors
due to discretization and regularization, or (5) there are errors in the forward model.

The latent dimensionality of the problem is driven by the number of features available

in the profile data that can be related to features in the observed radiation spectra. Clearly,
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Figure 4.14: RMS error profiles for NAST-I dataset
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atmospheric spectra are much more feature-rich than temperature and vater vapor profiles.
In addition, the amount of information about the profiles available in the observed radiance
is limited by the discretization of the atmospheric profiles. By virtue of the true profiles
being continuous functions, working with discrete measurements introduces a certain level
of ambiguity and ill-conditioning. To avoid problems arising from this situation, the CCR
model necessarily has to use a lower dimensional space. This regularization introduces a
certain level of error.

The residual errors are a manifestation of variability not accounted by the CCR model.
This “left-over” variability may be attributed to errors in the radiosonde measurements,
errors in the radiative transfer code, and nonlinear relationships. Errors in the radiosonde
measurements lead to inconsistencies and nonphysical behavior. Thus, the resulting pre-
dicted observed radiance from an erroneous profile will not be representative of the rest of
the ensemble. These inconsistencies may reduce some of the “weaker” relationships that
would otherwise be detected by the algorithm. How well the CCR model can represent the
physics of radiative transfer also depends on the quality of the ensemble generated with
the forward model. If the predicted observations associated with the input profiles do not
accurately reflect what would truly be observed, then this has the effect of lowering the
relationships in the data. Thus, errors in the band and radiative transfer models used in
MODTRAN would contribute to the residual error. Finally, recall that the CCR model
finds the maximum linear correlations in the data. If there are nonlinear relationships,
these could go unaccounted for and would therefore contribute to the residual errors.

These errors are inherent to the problem and are present regardless of the method used
for atmospheric compensation. In this experiment, the interest is in the relative performance
of the algorithm as the number of bands are varied. In light of these inherent errors, CCR
provides insight into the number of bands required so that more error is not introduced. The
residual RMS errors did not change appreciably as the resolution of the observed radiation

was varied. This indicates that the basis (i.e., modes; weights) spanning the canonical space
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have broader spectral features than the modelled resolution. For the FSL data, the latent
dimensionality was 4. For NAST-I, the dimensionality was 5. Presumably, the NAST-I set
required an extra dimension because of the higher water vapor content and variability in
the East Coast atmospheres. Thus, the analysis suggests that 5 bands may be enough to
achieve close to the same level of accuracy as obtained with 94, 201, or even 1401 bands.

The next section describes the optimal placement of these bands.

4.3.2 Band Selection

CCR provides regression coefficients between Y and X which are useful for prediction. The
regression coeflicients are formed from the canonical weights A and B and the canonical
correlations. The columns of these matrices are the CCR weights associated with the
significant correlations. In addition, the loadings are the correlations between the canonical
and original variables. The loadings also represent the inverse transformation from the
canonical to the original space and are given by A’¥,. and B'Xy, (see Section 3.1.3).
These weights and loadings provide insight into how the spectral bands in X are used to
infer information about Y.

Figure 4.15 shows the significant CCR weights and loadings for the FSL medium resolu-
tion case. For this case, four dimensions were found to be sufficient. The four curves shown
are associated with the four dimensions retained. All of the weights have been normalized
so that they can be shown on the same plot. This is because the weights associated with the
lower correlations have a smaller contribution to the predictions than those associated with
the higher correlations. The plot of the weights for the observed radiance are overlaid with
a normalized transmission curve. This curve is the mean transmission for all of the profiles
in the FSL data and helps in the interpretation of where in the spectrum the canonical
weights and loadings are finding the most information. In general, the loadings offer a bet-
ter interpretation because irrelevant variance in the weights is removed. However, regions

emphasized by both canonical weights and loadings should contain much information.
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Figure 4.15: Results with FSL dataset (medium resolution): (a) Weights and loadings for
the observed radiance, (b) weights and loadings for temperature profiles, and (c) weights
and loadings for water vapor profiles
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By relating the observed radiance to the profiles, the analysis is forced to find bands
that would be useful for sounding. To the extent that the physics of radiative transfer are
manifested statistically, the CCR method should provide results similar to the weighting
functions. In the results shown in Figure 4.15, the sounding interpretation is evident in the
way CCR relates the radiance to the profiles. For instance, consider the relationships built
between the observed radiance and the temperature profiles. The blue curve denotes the
first dimension in the analysis and is clearly a weighted average of the observed radiance
in regions of relatively high transmission. Clearly, these regions offer the most information
about the surface temperature and this is manifested in the weights and loadings for the
temperature profiles where the emphasis is in the surface layer. The other 3 profile loadings
are associated with information in upper layers of the atmosphere. The curves are akin to
the weighting functions used for atmospheric sounding but they tend to be broader. This is
because we are looking at the entire spectrum and not at just a single aBsorption feature.
The general sounding approach is evident since information about the upper atmosphere is
associated with regions of high absorption. The water vapor profiles tend to be wider and
smoother suggesting that the CCR approach could not find significant correlations between
higher order features in the profiles and the observed radiation spectra.

The canonical weights and loadings for the NAST-I data are shown in Figure 4.16.
In general, the significant absorption bands in the observed radiance are similar to those
obtained with the FSL data. The main difference between the two sets is that the variability
in water vapor plays a larger role in changes observed in the observed radiance. This is
because the average content of water vapor for the NAST-I data is higher than for the FSL
data. Because of this extra factor, the number of canonical correlations is larger by one
dimension. Also, the water vapor weights have more structure than in the FSL case and
the loadings are better defined. There are two factors contributing to this. One has already
been mentioned, and it is the fact that there’s more water vapor in the NAST-I atmospheres

and therefore a larger contribution to the observed radiance. The other is that the NAST-I
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Figure 4.16: Results with NAST-I dataset (medium resolution): (a) Weights and loadings
for the observed radiance, (b) weights and loadings for temperature profiles, and (c) weights
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profiles are measured at more discrete levels than the FSL profiles. Thus, less errors are
introduced by discretization.

Figure 4.17 emphasizes the emissive portion of the MWIR region. There are two
reasons for doing this: (1) CCR finds more information about the profiles in this region,
and (2) the effects of reflected direct solar radiation are minimized. Indeed, CCR may be
focusing in this region to avoid variation introduced by solar radiation, which was certainly
present in the data (i.e., the data contained day and night cases). The plots shown in
Figure 4.17 are for the FSL and NAST-I medium and high resolution cases. The medium
resolution case provides a smoother version of the high resolution case and is more applicable
to a sensor with relatively wide FWHM. The high resolution case gives more insight into the
fine structure of the atmospheric spectra and where wide bands and narrow bands would
be more applicable. For example, to appropriately sample the large COy band “wings”
originating at 4.3 pm, two relatively wide bands are sufficient (namely, two centered at 4.44
and 4.52 pm). However, to sample some of the water vapor features, narrow bands are
necessary (e.g., bands centered at 4.9 pym and 5.01 ym).

Based on the results in Section 4.3.1, five bands were selected. The location of these
was based on where in the spectrum the canonical weights and loadings were placing an
emphasis. The criterion for selection was that the band had to appear to be significant in the
weights and the loadings for both data sets. The selected bands where 4.44, 4.52, 4.6, 4.9,
and 5.01 um. All of the bands except band 3 are used to characterize the atmosphere. Band
3 was chosen for imaging and surface temperature determination because it corresponds to a
region of relatively high transmission and blackbody emission, thus taking into consideration
practical issues dealing with signal-to-noise ratio. It is worth noting that bands 1 and 2
are the same bands used by MODIS for temperature sounding. For this study, a nominal

FWHM of 0.05 pm was chosen to build a Gaussian-shape sensor response function for each

band.
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Figure 4.17: Canonical weights and loadings for MWIR emissive region: (a) FSL medium
resolution, (b) FSL high resolution, (c) NAST-I medium resolution, (d) NAST-I high

resolution.
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Table 4.2: Summary Band-Selection Results

CONFIGURATION NAST-I RMS FSL RMS
ERRORS ERRORS
Direct CWV | Direct | CWV
CK) (mm) | (K) | (mm)

5 bands 0.78 4.97 0.80 | 2.52
Bands 1,2 1.57 9.33 2.10 [ 3.39
Bands 1,2,5 1.39 5.16 210 | 2.55
Bands 1,2,4,5 1.01 4.94 0.81 2.69

4.3.3 Testing and Validation of Band Configurations

Surface temperature and column water vapor estimates were obtained using the bands
selected in Section 4.3.2. The RMS errors in these parameters serve as a metric that may
be used to gauge the performance of the selected band configuration and are shown on
Table 4.2. The results show that bands 1 and 2 provide information about the temperature
profile but not about the surface temperature. For both data sets, using just bands 1
and 2 resulted in the highest error in estimated surface temperature. The same was true
for column water vapor. This is not surprising since there are no resolvable water vapor
features at these band locations. The addition of band 5 reduces the error in column
water vapor significantly while not affecting the surface temperature retrieval. The 3-band
configuration produces a better estimate of column water vapor at the expense of increased
error in surface temperature, indicating that the temperature and water vapor errors are
not mutually exclusive. This is because the temperature and water vapor profiles are
estimated simultaneously. Figure 4.18 shows how the retrieved error profiles are affected
by the different band configurations. The black profiles are the retrievals obtained with
the medium resolution case and are shown as a reference. In general, the profiles were not

affected significantly with the exception of the 2-band configuration (red profiles).
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Figure 4.18: RMS error profiles for different band configurations.

4.4 Experiment #4

The design for this experiment is shown in Figure 4.19. The CCR inverse models built for
this experiment were the .most extensively tested because surface emissivity variations were
included. The models were tested with MASTER thermal imagery as well as SEBASS and
high resolution simulations.

Table 4.3 summarizes the data used to build the inverse models. The italicized runs
correspond to the White River Valley and Railroad Valley collects. The other runs are for
the Lake Mead collect. Separate ensembles were needed because of the altitude differences.
The summary statistics give an indication of the nominal climatological conditions. These
are the average surface temperature (ur,), standard deviation of the surface temperature
(o1,), the average standard deviation of the temperature profile (or), the average column
water vapor (fewy), and the standard deviation of column water vapor (0cy ). Of the three

major climatologic datasets, the FSL most closely resembles the weather conditions found
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Figure 4.19: Schematic of design of Experiment # 4

Dataset | Geographic | Time Run Hrs Ors or Hewy Tewy
Coverage Span | Seed (°C) °C) (°C) | (mm) | (mm)
13406 | 9.01 6.3] 4.73 | 11.08 | 5.15
FSL 34-38 °N, 1995 1460 9.58 7.05 4.41 11.52 | 541
115-119°W | 1999 [4768" 8.64 6.04 4.17 14.11 7.44
17836 | 9.40 7.47 5.12 14.14 | 731
24603 | 22.77 | 6.17 3.63 | 3897 | 12.83
NAST-I | EastCoast, |Jul-Sep| 23072 | 23.32 | 6.94 3.05 | 3812 | 12.36
US.A. 1998 [6085 | 2332 | 6.34 3.08 | 4239 [ 15.00
1280 | 2271 7.02 3.63 3845 | 14.83
30165 | 0.97 | 2009 | 13.77 | 17.28 | 17.92
SSEC Worldwide 1963- 5129 -2.61 19.26 | 12.86 | 13.60 | 15.40
1972 (4984 | -11.05 | 1595 | 10.97 8.31 6.57

8729 | -1.71 | 19.84 | 14.57 | 17.04 | 18.63

Table 4.3: Atmospheric database description and statistics for Experiment #4. Italic runs
correspond to Lake Mead. Other runs are for Railroad/White River Valley. *Generated
using blackbody targets.
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Database Avg. Profile RMS Error (°K) CWYV RMS Error (mm/ %)
Blackbody Variable Blackbody Variable

Emissivity Emissivity

FSL 2.14 277 2.78/33.2 6.02/52.8

NAST-I 1.87 2.39 6.73/16.8 9.81/26.6

SSEC 2.30 2.99 2.84/494 8.34/130

Table 4.4: Temperature and column water vapor errors for Lake Mead.

Database Avg. Profile RMS Error (°K) CWYV RMS Error (mm/ %)
Blackbody Variable Blackbody Variable

Emissivity Emissivity

FSL 2.14 2.77 27817332 6.02/52.8

NAST-I 1.87 2.39 6.73/16.8 9.81/26.6
SSEC 2.30 2.99 2.84/494 8.34/130

Table 4.5: Temperature and column water vapor errors for Railroad/White River Valley.

in the MASTER images since it is based on observations made in the same region. The
NAST-I databases tend to be more humid than the FSL and SSEC data. Finally, the SSEC
has the highest amount of variability. In general, there’s a high degree of variation that

must be accounted by the model.

4.4.1 Atmospheric Parameter Retrievals

Atmospheric physical parameters (i.e., temperature and water vapor profiles) were esti-
mated from simulated MASTER “at-sensor” spectral radiance observations using the CCR
inverse model. Tables 4.4 and 4.5 show the average RMS error in the temperature profiles
and column water vapor for the Lake Mead and Railroad/White River Valley configurations,
respectively. The results are shown for both blackbody and variable emissivity cases. The
errors do not appear to be dependent on the type of surface used in the retrievals. On the
other hand, the errors differ quite significantly depending on which atmospheric ensemble
is analyzed. More specifically, the errors are the lowest for the NAST-I set and the largest
for the SSEC data.

There are two major reasons why the errors for the SSEC data are so large. The most

important factor is the large variability in the data with respect to the average temperature
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and water vapor concentrations. The lowest error for the SSEC retrievals was obtained with
the blackbody run for Lake Mead. Table 4.3 shows that this particular run had the least
amount of variation of all of the SSEC runs. The other source of error is the discretization of
the vertical profiles. This error is common to both the SSEC and FSL data. For example,
the Railroad/White River Valley collects were done at an altitude of about 10 km. At
this altitude, only 18 discrete atmospheric layers (between 300 and 900 mb) are defined for
the FSL data and only 17 (between 300 and 1050 mb) are defined for the SSEC data. In
contrast, 26 layers (between 350 and 1000 mb) are defined for NAST-I.

Another source of error, independent of the atmospheric database used, is the spectral
resolution of the MASTER sensor. Figure 4.20 on page 161 shows the canonical weights
and loadings for the MASTER sensor obtained with the NAST-I (Run 23072) data. Three
significant correlations were identified. The canonical weights for the sensor observations
emphasize the overall shape of the continuum as well as water vapor and ozone band absorp-
tion features. The canonical weights for the temperature and water vapor profiles exhibit
a high degree of variability, indicating that information is being extracted from the profiles
and that the profiles are highly correlated. The loadings for the temperature profiles are
broad-a direct result of the low spectral resolution. Water vapor loadings are also broad
but have a more definable shape. Figure 4.21 on page 162 shows the canonical weights and
loadings for a high-resolution configuration (maximum MODTRAN resolution resulting in
751 bands between 650 and 1400 cm~!) implemented with Run 23072. There are now 8
significant correlations and there is quite a bit more structure in the temperature and water
vapor loadings. The canonical weights for the sensor observations show that an appropriate
emphasis is being placed on the continuum as well as the major water vapor band absorption
and narrow line absorptions. The average RMS error in the temperature profiles estimated
with the high-resolution observations was 1.21 °K. The RMS error in column water vapor
was 3.76 mm (10.3%). These are significant improvements over the MASTER (NAST-I

variable emissivity) retrievals shown in Table 4.5. The errors for the SSEC data (variable

159



emissivity) were reduced to 2.02 °K and 6.23 mm (113%) for temperature and column water
vapor, respectively. However, the errors are still too large which indicates that the increased
spectral resolution could not completely account for all of the variability in the data.

In general, the atmospheric optical parameter retrievals were very accurate for the FSL
and NAST-I data. Figure 4.22 on page 163 shows the RMS errors in transmission, upwelled
radiance, and downwelled radiance for SEBASS simulations using Run 23072 (NAST-I
data). The simulations were done with MODTRAN and with the same sensor altitude as
for the MASTER airborne images. An example of the actual retrieved spectra is shown for
observation 412 (chosen randomly). The highest RMS error for transmission is about 0.07
transmission units while the highest RMS error for upwelled and downwelled radiance was
about 18%. As with the physical parameter retrievals, the errors for the SSEC data where
much larger. This was particularly so for the retrievals of upwelled and downwelled radiance
which had RMS errors of up to 75%! The next section demonstrates the effect of this error
on the retrieval of surface temperature and emissivity. It should be noted that all of these

retrievals were done under the influence of varying surface temperature and emissivity.
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Figure 4.20: NAST-I (Run 23072) canonical weights and loadings for MASTER: (a) sensor
observed spectra, (b) temperature profiles, and (c) water vapor profiles.
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Figure 4.21: NAST-I (Run 23072) canonical weights and loadings for high-resolution case:
(a) sensor observed spectra, (b) temperature profiles, and (c) water vapor profiles.
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Figure 4.22: RMS Errors and retrievals of atmospheric spectra from SEBASS-resolution
NAST-I data (Run 23072).
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Test Case Simulated MASTER
MASTER (L. Mead & C. Springs)
T, (RMS °K) Ts (RMS °K)

Lake Mead

FSL 0.11 0.37

NAST-I 0.15 0.71

SSEC 0.08 0.33
Cold Springs

FSL 0.07 0.71

NAST-I 0.16 1.16

SSEC 0.27 0.88

Table 4.6: Errors in retrieved surface temperature for blackbody targets.

4.4.2 Surface Temperature and Emissivity Retrievals
Blackbody Target Results

The estimation of surface temperature when the target is a blackbody is unique because
the problem is greatly simplified. For these cases, two unknowns are removed: the surface
emissivity and downwelled radiance. This allows the use of a simpler approach. For these
cases, the observed brightness temperatures were related directly to the surface temperature
T, with the CCA inverse model. The rationale for the use of brightness temperatures is
discussed in Section 4.4.3.

Table 4.6 shows the results obtained with the Lake Mead and Cold Springs (located
in White River Valley) configurations, respectively. The first column is the RMS error in
the retrieved surface temperature for the observations used to build the model. The second
column is the RMS error in the retrieved surface temperature for the actual MASTER
observations at Cold Springs reservoir and Lake Mead. The results are very accurate for
the simulated blackbody target case. The model validation shows that the highest error
introduced by the procedure is 0.27 °K. This occurs when the SSEC database is used, which
is not surprising considering this database had the highest variability in surface temperature.
Thus, this residual error is due to variance unexplained by the CCA inverse model. The RMS

errors increase for the actual MASTER observations. This is expected since these errors
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include not only the model errors, but sensor noise, calibration error, ground measurement
error, and pixel registration error as well. Except for the NAST-I results, the Lake Mead
errors were within the uncertainty due to sensor noise and the White River errors were
slightly higher than that. This is because the NAST-I atmospheres are much more humid
than the dry Nevada atmospheres. The larger errors for the White River Valley MASTER
retrievals may be due to uncertainty in the ground surface temperature measurements. The
measured temperature was actually bulk water temperature, which is not necessarily the
same as the skin (or kinetic) surface temperature (Palluconi 2000). The skin temperature
for Cold Springs was assumed to be 0.5 °K lower than the bulk water temperature. This
assumption was based on comparisons made with other similar measurements (Palluconi

2000). Finally, the Cold Springs image was taken at a higher altitude.

Varying Emissivity Results

The surface temperature for these cases was estimated using the direct approach used for
blackbody targets and the atmospheric compensation-TES approach. Table 4.7 shows the
RMS errors in the retrieved surface temperatures for the various test cases. The “Simulated
MASTER?” column contains the results from comparing the input surface temperatures and
those derived with the CCA models. These results were obtained using the MASTER spec-
tral resolution. The “MASTER” (middle) column contains the RMS errors in the retrieved
surface temperatures based on the Lake Mead or Cold Springs MASTER observations.
Finally, the “Simulated SEBASS” column contains the errors in the retrieved surface tem-
peratures using the the same observations as in the “Simulated MASTER” column but
resampled to SEBASS resolution. All available spectral bands were used to estimate the
surface temperature directly. This was also true for the estimation of the atmospheric pa-
rameters. However, only bands where 7()\) > 0.4 were used when applying eq. (3.65) for
compensation of the SEBASS observations. This was done to minimize numerical insta-

bility in the solution. The sensor altitude for the White River collect was high enough to

165



Simulated MASTER Simulated
MASTER (L. Mead & C. Springs) SEBASS
Test Case TES Direct TES Direct TES Direct
RMS(’K) RMS(K)| RMS(’K) RMS (°K) | RMS (°K) RMS (°K)
Lake Mead
FSL 2.81 1.13 0.81 1.87 2.50 0.60
NAST-I 2.51 1.19 0.65 1.75 2.33 0.53
SSEC 2.68 1.99 0.99 2.70 - 1.24
Cold Springs
FSL 2.83 1.45 0.67 3.50 2.28 047
NAST-I 2.30 191 0.61 1.95 2.11 0.55
SSEC 3.60 2.59 1.40 2.05 - 1.23

Table 4.7: Errors in retrieved surface temperature for variable emissivity targets.

make ozone absorption significant. However, ozone effects were held constant in the at-
mospheric databases so they were not accounted for. Thus, band 45 (centered at the 9.6
pum ozone absorption feature) was removed from the analysis of the MASTER White River
observations.

The RMS error in the TES surface temperatures obtained from the simulated MASTER
observations were about 2.5 to 3.5 °K. This high residual error was due to errors in the
retrieved emissivities. Figure 4.23 shows the retrieved emissivity for the farm and desert
classes using the MASTER resolution and the FSL/White River database. The bias error
for the farm emissivity retrievals was 0.09 with a standard deviation of 0.03. The bias is due
to the prediction of e from the MMD. The MMD for the farm emissivity is about 0.15,
which leads to emipn =~ 0.85. This value is shown on the graphs as a dotted line. Note that
the average minimum value of the retrieved emissivity is 0.85. For the desert emissivity,
the true MMD is about 0.06 corresponding to e, =~ 0.92. The desert retrievals had a
large error in band 41 due to atmospheric compensation. This error offset the overall bias
by making the MMD larger-thus reducing €min. This offset was about 0.02. The overall
bias between the predicted and the true desert emissivity was about 0.05. Again, this is
mostly due to the MMD regression line. The errors in the temperatures retrieved directly

from the observed brightness temperatures were about 1 °K lower than the TES-derived
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Figure 4.23: Emissivity retrieval for MASTER simulations: a) farm and b) desert classes.

temperatures. This indicates that the error introduced by the compensation computation
is about 1 °K. Also, these errors are relatively low, indicating that CCA is able to find
a model for the prediction of temperature that is relatively insensitive to emissivity and
atmospheric variations.

The TES-derived temperatures from the MASTER. images were all within 1 °K of the
ground measurements (with the exception of the SSEC dataset used for Cold Springs).
These results are much Better than for the entire dataset because the target was water,
which has high emissivity. Figure 4.24a shows the emissivity estimated from MASTER
Cold Springs observations and the ocean emissivity class used in MODTRAN. The TES
emissivity is an unbiased estimate except at the edges of the spectrum. Despite the sensor
noise, the average deviation in the emissivity retrievals was less than 0.01. The errors in
the temperatures derived directly from the MASTER brightness temperatures were higher
by about 1-2 °K. This may be due to the lower resolution of the MASTER spectra, which
limits the model’s ability to separate the atmospheric and emissivity variation from the
surface temperature. The reason why this does not manifest itself in the atmospheric com-

pensation and TES process is because the information about the atmospheric parameters
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Figure 4.24: MASTER emissivity retrievals for: a) Cold Springs reservoir and b) Railroad
Valley playa.

is in the regions of high absorption where the contribution from the surface emission is low.
Figure 4.24b shows the emissivity estimated from MASTER Railroad Valley observations.
These spectra are compared to measurements made with a field FTIR (Palluconi 2000).
Except for band 45, the spectra agree quite well. The feature in the playa spectra matches
that of ozone absorption. When the CCA model is built including this band, the model
interprets the feature as due to atmospheric absorption and compensates for it. Thus, the
feature is eliminated from the resulting emissivity. This is an inherent problem with the
retrieval of emissivity spectra that have reflectance features at the same location and of the
same width as atmospheric absorption spectra. As the emissivity values for these features
decrease, the amount of reflected downwelled radiation increases. Depending on the surface
and sky temperature, this reflected radiance can “mask” the emissivity feature completely.

The SEBASS results show that increasing the number of bands and spectral resolu-
tion does not lead to better estimates of surface temperature when using the atmospheric
compensation and TES approach. The errors in the TES-derived temperatures are about

the same as those obtained with MASTER resolution observations. This is because the
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Figure 4.25: Emissivity retrieval for: a) farm and b) desert classes using SEBASS resolution.

error is still being driven by the bias from the MMD regression. Figure 4.25 illustrates
this by comparing the retrieved and true emissivity for the farm and desert classes. The
dotted lines about the average prediction curves are one standard deviation away from the
mean. The results were nearly the same as those obtained with the MASTER. resolution.
The spectral error (i.e., the relative band emissivity error) was generally low but larger at
the edges of the LWIR bandpass. These regions are characterized by strong and narrow
water vapor absorption features. For the SSEC database, the errors were actually larger.
Because of this, TES was not able to converge to a solution (see Section 4.4.3 for a detailed
explanation). The direct temperature retrievals, however, are significantly improved. This
is because there is more spectral information that can be used without introducing more
unknowns. That is, as the number of bands p grows larger, p+1 =~ p. Also, as the resolution
increases, the difference in the emissivity between adjacent bands decreases. This results
in several observations with approximately the same temperature and emissivity, thus im-
proving the accuracy of the temperature estimate. With the exception of the SSEC data,
all the retrievals had an accuracy of about 0.5-0.6 °K. Again, the larger errors for SSEC are

due to the large variability in the global database.
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4.4.3 Other Findings
Observed Radiance vs. Brightness Temperature

In this experiment, the brightness temperatures were used instead of the observed radi-
ance for the estimation of surface temperature and atmospheric profiles. Recall that the
brightness temperature is the apparent temperature at each wavelength and is obtained by
inverting the Planck function (see eq. (2.84)). This was done because the CCR model de-
pends on the strength of linear correlations. However, the observed radiance is proportional
to the Planck function, which is nonlinear with respect to temperature. This is particularly
the case when the temperature has a large range. This nonlinearity is demonstrated in
Figure C.1 in Appendix C. On average, the error in surface temperature retrievals from the
brightness temperature was about 0.25 °K less than for estimates obtained from the ob-
served radiance. The estimation of water vapor from brightness temperatures was tested as
well since the temperature profiles are solved simultaneously with the water vapor profiles.
Analysis showed that errors in water vapor estimates obtained from the brightness temper-
atures were not significantly different than those obtained from radiance. Figure 4.26 shows
two examples of RMS errors in water vapor profiles obtained from CCR using brightness

temperature Tj(A) and observed radiance L(}).

Issues with Unconstrained Solutions

In all previous experiments, the solutions obtained with the CCR inverse model were all
physical. That is, the solutions did not take on values that were not physically possible
(e.g., 7> 1 or L, < 0). This fortunate state of affairs was not attained by design since the
solutions from the CCR inverse model were not constrained in any way.

In this experiment, some of the solutions for transmission spectra had values greater
than 1.0 or less than 0.0. This occurred only with the CCR inverse model built with

varying emissivity and SEBASS spectral resolution (Figure 4.27). The error was the worst

170



3.5

Altuge (km)
W
Altitude (km)

25

0 0.5 1 1.5 0 1 2 3
Water Vapor (g/kg) Water Vapor (g/kg)

(a) (b)

Figure 4.26: Comparison of water vapor profile retrievals obtained with the sensor brightness
temperature and observed radiance. The results were obtained from CCR inverse models
built with (a) FSL Run 4768 and (b) NAST-I Run 23072.

for the SSEC training set. The same problem occurred with the estimation of upwelled
and downwelled radiance from the CCR inverse model built with the FSL and SSEC data.
Again, the SSEC estimates exhibited the worst errors. One plausible explanation for this
problem is that the errors are larger when the atmospheres in the ensemble are thin. Thus,
the emissivity variability is more likely to affect the observed radiance at the sensor. On
average, the FSL and SSEC atmospheres are thinner than the NAST-I atmospheres; thus

explaining the increased error in these data.
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4.5 Comparison of Multivariate Regression Methods

This section compares the CCR, inverse model estimates with those obtained from other
multivariate regression methods. Three other methods are tested: 1) Principal Components
Regression (PCR), (2) Maximum Redundancy (MR), and (3) Partial Least Squares (PLS).
A description of these methods is provided in Appendix D.

Tables 4.8, 4.9, and 4.10 show the RMS errors obtained with the multivariate regression
methods. The test case was Run 23072 from Experiment #4 at different spectral resolutions.
The dimensionality of the multivariate models was the same within each test case. In
general, CCR performed better than MR, PCR, and PLS. This was particularly the case for
surface temperature estimates. The largest difference between CCR, and the other methods
occurred with the SEBASS and high resolution test cases. The results obtained with MR,
PCR, and PLS were about the same except for the estimate of column water vapor where
PLS yielded better estimates than MR and PCR (and slightly better-although probably

not significantly better-than CCR for the high resolution test case).

Parameter PCR CCR MR PLS
T, RMS (°C) 2.05 191 2.05 2.01
Temp. profile RMS (°C) 2.99 2.97 2.98 2.98
CWYV RMS (mm) 12.10 12.12 12.10 12.10

Table 4.8: Comparison of multivariate methods for the MASTER resolution case (10 bands).
Three dimensions were retained for all methods.

Parameter PCR CCR MR PLS
T, RMS (°C) 1.91 0.56 1.91 1.90
Temp. profile RMS (°C) 1.56 1.47 1.54 1.54
CWYV RMS (mm) 5.49 4.49 5.33 5.23

Table 4.9: Comparison of multivariate methods for the SEBASS resolution case (128 bands).
Five dimensions were retained for all methods.
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Parameter PCR CCR MR PLS

T, RMS (°C) 1.85 0.51 0.75 0.75
Temp. profile RMS (°C) 1.84 1.80 1.81 1.80
CWYV RMS (mm) 4.38 422 4.22 4.21

Table 4.11: Comparison of multivariate methods for the MWIR medium-resolution case
(200 bands). The multivariate model dimensionality was 5.

Parameter PCR CCR MR PLS
T, RMS (°C) 3.11 0.80 0.80 0.80
Temp. profile RMS (°C) 2.06 1.99 1.99 1.96
CWYV RMS (mm) 5.11 4.96 4.95 4,94

Table 4.12: Comparison of multivariate methods for the MWIR, 5-band resolution case. The
multivariate model dimensionality was 3.

Parameter PCR CCR MR PLS
T, RMS (°C) 1.67 0.54 1.67 1.68
Temp. profile RMS (°C) 1.42 1.31 1.41 1.38
CWV RMS (mm) 4.51 4.16 4.36 4.12

Table 4.10: Comparison of multivariate methods for the high resolution case (751 bands).
Eight dimensions were retained for all methods.

The MWIR NAST-I ensemble generated in Experiment #3 was also tested. Tables 4.11
and 4.12 show the results. Again, CCR outperformed MR, PCR, and PLS in the estimation
of surface temperature. Otherwise, the methods yielded almost identical results for the
medium resolution test case. The results obtained with the CCR-selected bands show that
MR and PLS are able to adequately exploit the information contained in these bands.
However, PCR residuals are considerably higher. This may be due to the methodology
used for band-selection, which was to maximize the information about the parameters of
interest based on the CCR weights and loadings. The resulting configuration appears to
have principal components that are poor estimators of the parameters of interest.

The methods were also applied to Run 5129 at SEBASS resolution (128 bands). Sec-

tions 4.4.3 and 4.4 described the difficulties associated with this test case. The goal of
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Figure 4.28: Comparison of transmission spectra RMS errors with (a) 4 dimensions and (b)
40 dimensions.

this exercise was to see how well the different methods could estimate atmospheric spectra
within the respective physical boundaries. Figure 4.28 shows the RMS errors in transmis-
sion spectra estimates obtained with 4 and 40 dimensions. All of the multivariate methods
give very similar results for the low-dimensional case. If 40 dimensions are kept, the overall
RMS error decreases for all of the methods. However, PLS errors are considerably lower
than for CCR, MR, and PCR. As the number of dimensions approaches the number of
original variables, MR and PCR converge to the same solution. This is because all of the
relevant information about X and Y is contained in the principal components as the num-
ber of dimensions increases. Therefore, a regression of the principal components in PCR is
almost identical to the regression of the principal components and the OLS estimate of Y
in MR. It is interesting to note that CCR performs about the same as PCR and MR. This
suggests that the canonical correlations and weights of Y explain as much of the variance
in Y as the principal components do. Figure 4.29 shows the maximum transmission and
minimum upwelled radiance spectra estimated with the multivariate methods when 40 di-
mensions were retained. The 7 = 1.0 boundary (red line) is shown in Figure 4.29(a) as a
boundary reference. Likewise, the reference boundary L, = 0.0 is shown in Figure 4.29(b).

The MR results (not shown) were identical to the PCR estimates. Again, CCR and PCR
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dimensions retained.

give similar results with the PLS estimates being the closest to the physical boundaries for

transmission and upwelled radiance.

4.6 Comparisons to ISAC

The CCR inverse model approach was compared to the generally accepted In-Scene At-
mospheric Compensation (ISAC) approach. Three implementation of the ISAC algorithm
(as described in Appendix E) were tested: (1) Kolmogorov-Smirnov (KS); (2) Normalized
Regression (NR); and (3) SITAC Kolmogorov-Smirnov. The comparison was done in terms
of errors in the surface temperature and emissivity retrievals. To this end, CCR and ISAC
were coupled with TES. However, TES requires an estimate of downwelled radiance, which
ISAC does not compute. To make the comparison fair, the estimated downwelled radiance
for ISAC had to be obtained. A comparison of MODTRAN upwelled and downwelled radi-
ance calculations showed that the downwelled radiance can be estimated from the upwelled

radiance through a scalar factor:

La(N) ~ 1.6Ly(N) (4.4)
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Method Lake Mead C. Springs
RMS (bias) ’K  RMS (bias) °K

CCR 0.81 (-0.75) 0.67 (0.14)
ISAC-KS 0.17 (-0.07) 0.67 (-0.33)
ISAC-NR 0.16 (-0.02) 0.69 (0.22)
ISAC-SITAC 0.30 (0.26) 0.63 (-0.23)

Table 4.13: Comparison of CCR and ISAC surface temperature retrievals with TES for
Lake Mead and Cold Springs reservoir.

Using this approximation, the ISAC downwelled radiance could then be calculated from the
ISAC upwelled radiance. Clearly, this is a rough approximation since there is no consid-
eration for the altitude of the sensor or for the heterogeneity of the sky composition (e.g.,
presence of clouds). Another option was to use the CCR estimates of downwelled radiance
with the ISAC transmission and upwelled radiance estimates. Both methods yielded almost
identical results, indicating that the sky inhomogeneity was negligible for the cases under
consideration. Finally, the ISAC retrievals were based on the unscaled parameters.

Table 4.13 shows the results for Lake Mead and Cold Springs temperature retrievals.
The CCR inverse model results were obtained using the correlations computed with the FSL
(runs 17836 and 1460) data. RMS and bias temperature errors are listed for all methods.
In general, the majority of the error in temperature is due to a bias in the estimate. ISAC
performed significantly better than CCR for the Lake Mead case. For this case, the ISAC-
TES temperature estimates were practically unbiased except for the SITAC implementation.
In contrast, the difference in the retrievals for Cold Springs were negligible. The bias in the
temperature estimates for CCR and ISAC were also about the same.

The results shown in Table 4.13 indicate that the temperature error is largely driven by
the bias in the estimates. The question then becomes: are the differences in the biases due
to TES or to the atmospheric compensation? The answer is both. However, our interest
is in comparing the differences in atmospheric compensation between CCR and ISAC. The

use of TES as the final temperature and emissivity retrieval step confounds the comparison.
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Figure 4.30 shows the CCR and ISAC surface-leaving radiance retrievals for Lake Mead.
Both retrievals resemble blackbody radiation curves. The Planck function for the average
Lake Mead surface temperature is overlayed on top of the surface radiance retrievals. Al-
though similar, there are some small differences in the shape of the curves. TES identifies
this variation and translates it to variation in emissivity, thus introducing a bias in the sur-
face temperature retrieval. CCR and ISAC were coupled wiyth the Normalized Emissivity
Method (NEM) to isolate the differences in biases due to the atmospheric compensation.
The NEM is simply the first module of the TES algorithm. The results are not scaled
by an empirical formula and are based only on the retrieved surface-leaving radiance and
downwelled radiance. Table 4.14 shows the surface temperature errors obtained with CCR
and ISAC coupled with NEM. The errors are generally higher, indicating that TES MMD-
regression line is at least scaling the emissivities in the right direction (the exception is the
CCR retrievals for Lake Mead where the NEM results are unbiased). The differences in
the biases (and therefore the temperature errors) are due only to the atmospheric compen-
sation step. In general, CCR results in lower errors than all of the ISAC implementations
for both Lake Mead and Cold Springs. The ISAC errors are almost exclusively due to a
bias in the temperature estimate. In general, the ISAC-NEM temperature retrievals are
underestimates of the true surface temperature. This is likely due to the use of unscaled
parameters. By using the unscaled parameters, the surface temperature estimate is basi-
cally the observed brightness temperature at the band with the highest transmission. ISAC
unscaled parameters assume that the transmission is 1.0 at this band. Normally, the trans-
mission is less than that, causing the brightness temperature to be lower than the surface
temperature.

The Lake Mead and Cold Springs reservoir cases dealt with water targets, which are al-
most blackbody in nature. Emissivity retrievals for the Railroad Valley playa were obtained
to compare the performance of CCR and ISAC with nonblackbody targets. Figure 4.31

shows the emissivity retrievals for ISACng (the results were nearly identical for all ISAC
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Figure 4.30: Surface radiance retrievals over Lake Mead for (a) CCR and (b) ISACngr. The
Planck function for the average surface temperature is overlayed as a reference.

@

Method Lake Mead C. Springs
RMS (bias) °’K  RMS (bias) °K
CCR 0.22 (-0.08) 1.30(1.13)
ISAC-KS 1.66 (1.65) 1.80 (1.70)
ISAC-NR 1.25 (1.24) 1.64 (1.55)
ISAC-SITAC 1.69 (1.69) 1.98 (1.89)

Table 4.14: Comparison of CCR and ISAC surface temperature retrievals with NEM for
Lake Mead and Cold Springs reservoir.
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Figure 4.31: ISACngr emissivity retrievals for Railroad Valley playa.

implementations) and for CCR (with the FSL data). The ISAC-TES emissivity is biased by
about 0.03 emissivity units and completely misses the feature around 9.6 pm. In contrast,
the bias in CCR is between 0 and 0.01 except at the edges of the bandpass. CCR misses
the center of the 9.6 um feature but correctly estimates the emissivity along the wings of
the feature. The error in the ISAC estimate is due to the atmospheric compensation. Fig-
ure 4.32 shows the ISAC surface-leaving radiance for this case. The shape is smooth and
is basically blackbody. The reason why this happened is because the scene from which the
ISAC transmission and upwelled radiance were derived is dominated by the composition of
the playa (see Figure 3.17(c)). ISAC assumes that the majority of the pixels in the scene
are blackbody. Therefore, the atmospheric spectra retrievals are contingent upon the as-
sumption that the playa is a blackbody and contain some of the features associated with
the true playa emissivity. Thus, the retrieved surface-leaving radiance resembles blackbody
radiation. Figure 4.33 shows the retrieved transmission spectra for ISAC and CCR. The

ISAC retrievals have a much more pronounced ozone absorption feature.
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4.7 Appropriateness of Linear Model

The CCR inverse model is a linear transformation of the observed spectra to the space
spanned by the parameters of interest. As such, nonlinear relationships between the data
are not exploited. From the discussion in the Chapter 2, it is clear that the radiative
transfer of radiation is nonlinear. The nonlinearities arise from the interdependence of the
Planck radiation and the absorption, which is due to their joint dependence on temperature
and wavelength. The linear inverse procedures described in Section 2.1.5 assumed that the
Planck function dependence on wavelength and the absorption dependence on temperature
were negligible. The CCR inverse model does not make these assumptions. For example,
the linear transformation of the observed radiance to the vertical temperature profile does
not make the use of a sounding weighting function. The transformation is made up of three
steps: (1) the decomposition of the observed spectra into canonical variables via canonical
weights which form an orthogonal basis, (2) the mapping between the observations and the
parameter space via the canonical correlations, and (3) the reconstruction of the parameters
based on the basis (canonical weights) derived from the parameter space. Thus, the linear
mapping is based on the canonical variables; not on the original variables. While the
canonical correlations will be weak if there is no linear relationship between the data,
they maximize the amount of linear relationships that do exist. Therefore, if the linear
relationships dominate, the first few canonical correlations will effectively “summarize”
these relationships while nonlinear relationships are ignored (and contained in the weaker
canonical correlations and corresponding variables). Also, the canonical relationships are
based on a “steady-state” atmosphere where the true temperature of the atmosphere is
known. In contrast, traditional atmospheric sounding algorithms use weighting functions
derived from an initial estimate of the vertical temperature profile and adjust the weighting
functions iteratively as the algorithm converges to a temperature solution. In this section,

the CCR linear assumption is explored by analysis of the canonical variables and correlations

and analysis of residuals.
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Figure 4.34: Matrix plot of canonical variables for MASTER simulations using Run 23072
of Experiment #4. The canonical correlations relate observed brightness temperatures to
temperature and water vapor profiles.

4.7.1 Canonical Variables and Correlations

In this research, there were typically 3 to 5 significant canonical correlations. The first
canonical correlation was always greater than 0.97. The correlations were slightly higher
for the estimation of the atmospheric optical parameters (e.g., transmission) than for the
physical parameters (e.g., water vapor profile). Figure 4.34 is a “matrix” plot for the
first 3 canonical variables for MASTER simulations using Run 23072 of Experiment #4.
Figure 4.35 is the matrix plot of the first 5 canonical variables for SEBASS simulations
using Run 23072 of Experiment #4. The canonical variables shown in these plots resulted
from the regression of the brightness temperatures to the vertical temperature and water
vapor profiles. The diagonal plots are those corresponding to the canonical correlations
and demonstrate the strong linear relationship in the data. The off-diagonal scatter plots
show how the canonical variables are uncorrelated with variables corresponding to other

dimensions. The plot of the canonical variables also demonstrates that there are no outliers
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Figure 4.35: Matrix plot of canonical variables for SEBASS simulations using Run 23072
of Experiment #4. The canonical correlations relate observed brightness temperatures to
temperature and water vapor profiles.

in the data. It is evident that the canonical correlations are stronger for SEBASS than
for MASTER. This is due to the higher spectral resolution of SEBASS, which allows the
separation of atmospheric and surface effects. This separation leads to improved correlations
with the atmospheric parameters. Nevertheless, both cases result in at least one large
canonical correlation, thus demonstrating the dominance of the linear relationships.

One of the appealing advantages of the CCR inverse model is that it is not based on

any assumptions of the underlying probability distributions of the data. However, if the
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distributions are Gaussian, the canonical correlations are Maximum Likelihood estimates
and maximize mutual information (Kullback 1997; Akaho et al. 1999). In this ideal case,
the linear model is optimal from an information theory perspective. The Central Limit
Theorem states that the probability distribution of a random variable resulting from the
sum of several independent and identically distributed random variables converges to a
Gaussian distribution as the number of variables goes to infinity (Johnson and Wichern
1992). Thus, the maximization of mutual information is more likely with the CCR model
because the probability distributions of interest are based on the canonical variables, which
are sums of the original variables.

Figures 4.36(a) and 4.36(b) show the histograms for the first two canonical variables
obtained with the NAST-I data at the maximum MODTRAN resolution (3,310 observa-
tions with 751 bands in the LWIR bandpass between 650 and 1400 cm~!). The canonical
variables were obtained from analysis relating the observed brightness temperatures to the
temperature and water vapor profiles. The histograms are overlayed with a plot of the Gaus-
sian probability distribution function. This qualitative look reveals that the first canonical
variable does not seem to follow a Gaussian distribution while the second canonical variable
closely matches the Gaussian distribution except at the extreme right tail. A more quanti-
tative analysis involves the use of the Kolmogorov-Smirnov statistic (see Appendix E). A
small D-statistic means that the cumulative distribution of the observations matches the
normal cumulative distribution. The p-value is the probability that a distribution with the
calculated D-statistic is a normal distribution. Therefore, the p-value ranges between 0
and 1.0 with 1.0 signifying 100% confidence that the observations are normally distributed.
There were 8 significant canonical correlations for these data. These are listed in Table 4.15
with the associated D-statistics and p-values. The last three canonical variables are normally
distributed. The second canonical variable is barely normally-distributed. Figures 4.36(a)
and 4.36(b) show the normal probability plots for the first two canonical variables. These

plots have the normal quantiles as the ordinate and the canonical variables as the abscissa.
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If the observations follow a normal distribution, the scatter plot would fall along a perfect
line. These results are consistent with the histogram plots and demonstrate that the first
canonical variable is not normally distributed while the second one is. The normal prob-
ability plots also show that the deviation from normality in the second canonical variable
occurs at the tails. The observations leading to these deviations were 323, 332, and 2310 in

the NAST-I data. There were no obvious problems with these points.
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Figure 4.36: Histogram plots for (a) u; and (b) ug canonical variables with Gaussian pdf
overlay. (c) and (d) are the normal probability plots for u; and ug, respectively.
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Canonical Correlation  D-statistic  p-value

0.99991 0.06629 <0.00001
0.99725 0.02543 0.02717
0.99242 0.05679 <0.00001
0.9847 0.02940 0.00640
0.97367 0.03401 0.00091
0.93251 0.01544 0.40655
0.72471 0.01493 0.44898
0.655 0.01481 0.45958

Table 4.15: Canonical correlations and corresponding Kolmogorov-Smirnov statistics.

4.7.2 Analysis of Residuals

The residual plots can give an indication of the appropriateness of the linear model. For ex-
ample, if there is a nonlinear relationship between the surface temperature and the observed
brightness temperature, then the residual errors between the estimated and the true tem-
peratures would have some curvature when plotted against the magnitude of the estimated
temperature. Residual plots for surface temperature and column water vapor are shown in
Figure 4.37. These residuals were obtained from the analysis of SEBASS simulations using
Run 23072 from Experiment #4. The temperature errors appear to cluster at the center of
the plot and increase at the edges of the surface temperature range. This increased error
at the edges is due to the CCR model only predicting deviations from the mean surface
temperature (see Section 4.7.3 for a more detailed explanation). The column water vapor
residuals exhibit a series of straight lines with slopes equal to -1. This is an artifact of the
experimental design. For Run 23072, each water vapor profile was included in the data set
9 times—9 repeats because there were three surface temperatures, each with three different
emissivities. Draper and Smith (1998) provides an excellent discussion about this effect,
which is present in all regression residuals regardless of what model and fitting technique is
used (if no repeats are included in the data, then only one point of each line is observed).
The effect is more obvious here because there are discrete levels of column water vapor

that are sufficiently apart. The effect is also present in the surface temperature residuals
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Figure 4.37: Residual plots for (a) surface temperature and (b) column water vapor with
repeats.

but it is not as noticeable because the temperature values are much more closely spaced
and there are only 3 repeats. In addition, the total range of temperatures is much larger
than the residual magnitudes, which results in sloped lines that appear more vertical due
to the aspect ratio of the plot. This effect may be compensated by only including one of
the repeats in the residual analysis. Figure 4.38 shows the residual plots without repeats.
The correlation of the residuals with the fitted surface temperature values is much more
apparent. Again, this results from not estimating the mean surface temperature level with
the model. The effect may be reduced if a smaller range of temperatures is considered. The

column water vapor residual plot does not exhibit any significant patterns.

4.7.3 The CCA Regression Model

The regression model obtained with CCA is significantly different from the standard multi-

variate regression model. The difference stems from the symmetry of CCA. Recall that the
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Figure 4.38: Residual plots for (a) surface temperature and (b) column water vapor without
repeats.

canonical transformations are obtained from the solutions to

2;;( ny 2);'yz)yxa = ¢%a

TS, IRS,,b = ¢ib

yx<xx“xy

The use of the covariance matrix notation partly obscures what CCR is really doing. Re-
placing the covariance matrices with mean-centered and scaled matrices X and Y, the CCA

equations become:

X'X7'X'Y (YY)'Y'Xa = 4?a (4.5)
ﬁ;Y ﬂ:{rx

YY) 'YX (X'X)'X'Yb = 4?b (4.6)
ﬂ;x ﬁ;Y

This clearly shows that the canonical weights are the eigenvectors which simultaneously
maximize the least-squares solutions for the regression of X on Y and the regression of
Y on X. In a way, the CCR solutions are analogous to the geometric mean functional

relationship regression coefficients. The geometric mean regression is appropriate for cases
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Figure 4.39: Example regression data from Draper

where there is noise in both X and Y and when the number of observations in the regression
data is small compared to the number of parameters in the model (Draper and Smith 1998).

In the context of symmetry, the concept of a “y-intercept” has no meaning. The sym-
metry of the CCA regression model forces the intercept to the origin of the data coordinates.
Therefore, the model is only appropriate when the data are mean-centered or when the true
mean is zero. For zero-mean data, the CCR solutions are identical to OLS solutions if all
of the canonical correlations are kept in the model. The same is not true for mean-centered
data. That is, the solutions obtained from OLS after adding the mean back to the data are
different than those obtained with CCR. Again, this is due to the symmetry of the CCR
model which is retained even after the mean has been added back to the data.

Figure 4.39 shows an example of the differences between the OLS, CCR, and geometric
mean solutions for the star data example in Table 2.2 of Draper and Smith (1998). The

data consist of magnitude observations (Vag) and the log central velocity dispersion (log o)
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for stars in the Coma cluster. The red line is the OLS solution. The blue line is the CCR
mean-centered solution after the mean is added back to the data. The dotted blue line
is the geometric mean functional relationship solution. Finally, the red dotted line is the
solution obtained with CCR if the data are not mean-centered but are bias adjusted by the
geometric means. That is, the slope coefficient is obtained from CCR and the “y-intercept”
is obtained from by = § — Xb; where b; is the CCR regression coefficient and by is the “y-
intercept”. The CCR and geometric mean solutions bias the regression line such that the
slope of the line is steeper than the OLS solution. Thus, the linear relationship predicted
by CCR is stronger than the OLS prediction. This may be more representative of the true
relationship of the parameters when there is uncertainty in both X and Y. That is, we
think that the OLS solution underestimates the true relationship due to the noise in the

observations. The bias is much stronger for the geometric mean solution than for CCR.
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Chapter 5

The outcome of any serious research can only be to make two
questions grow where only one grew before.

Thorstein Veblen

Every scientific fulfillment raises new questions; it asks to be
surpassed and outdated.

Max Weber

5.1 Summary

Conclusions and Recommendations
Estimating the surface temperature and emissivity of land targets is a difficult task because
there are so many variables that contribute to a single sensor observation. The atmosphere
and the surface are strongly coupled, particularly for targets with emissivities less than 0.9.
Thus, a suitable atmospheric compensation must consider the emissivity effects so that the
‘ atmospheric parameters may be retrieved accurately.
My approach was to build an inverse model by using Canonical Correlation Analysis

(CCA) as a rank-reduced multivariate regression to capture all the relevant physics con-

tained in the MODTRAN forward model. This approach was tested by using three separate
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atmospheric databases with distinct climates. The results showed that the Canonical Cor-
relation Regression (CCR) models did not depend highly on the geographical location of
the atmospheric database. This is an indication of the robustness of the model. That is, the
model is not just optimized for whatever database of observations was used to create it; it is
able to handle future observations as well. This was corroborated through cross-validation
of the model and by the physical interpretation of the canonical weights and loadings. How-
ever, the models do depend on the amount of variability in the data. In general, parameters
estimated with the SSEC (global) database had larger errors than those obtained with the
other two databases. This is primarily due to the large amount of variability relative to
the average atmospheric state in these data. In addition, discretization of the atmospheric
profiles minimizes the strength of the canonical correlations. Thus, I recommend that sepa-
rate CCR models be built for each distinct climate of interest with high vertical-resolution
profiles.

When the quality of the atmospheric database is high, the CCR inverse model can
yield very accurate results. It was demonstrated that it is feasible to estimate water and
land surface temperature and emissivity to within 1.0 °K and 0.01 accuracies, respectively.
It is also possible to retrieve atmospheric parameters with high accuracy depending on
the available spectral resolution of the sensor. Multispectral thermal sensors may retrieve
atmospheric temperatures to within 2 to 3 °K error RMS and column water vapor to within
20%. Hyperspectral and ultraspectral sensors may achieve errors on the order of 1 °K and
10% for temperature profiles and column water vapor, respectively. Thus, the CCR inverse
model is a good alternative to standard statistical methods used in traditional atmospheric
sounding applications.

The CCR inverse model is versatile. It can be used for the direct estimation of sur-
face temperature, temperature and water vapor vertical profiles, atmospheric transmission,
upwelled radiance, and downwelled radiance. The canonical correlations relating the ob-

served radiance to the atmospheric spectra were strong enough to build an accurate inverse
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model. For the retrieval of temperature and water vapor, the sensor brightness temper-
atures yielded stronger correlations than the observed spectral radiance. This is because
the relationship between temperature and radiance is nonlinear. Including both radiance
and brightness temperature measurements as predictors in the model would not add more
information. However, it may lead to a slightly better fit if scatter plots of the canonical
variables reveal any nonlinearity.

The CCR inverse models do not appear to amplify sensor noise. Even though the
sensor noise was not considered, the CCR inverse models adequately predicted the surface
temperature and emissivity from MASTER observations. This was true for direct temper-
ature retrievals and for retrievals obtained through atmospheric compensation and TES.
These results, however, are based on water and playa targets. The effect of sensor noise
on retrievals over less emissive targets should be studied. If the sensor noise is correlated,
then the observations should be preprocessed to compensate for the structure in the noise.
Alternatively, the structure may be accounted in the covariance matrices used to compute
the canonical correlations and weights.

CCR can be used as a sensor design tool. The canonical weights and loadings emphasize
the original variables that lead to the highest correlations. The canonical correlations are
a measure of mutual information assuming that the variables are normally distributed.
Therefore, CCA may be optimal from an information theory perspective. It was shown that
the analysis of the canonical weights and loadings can identify regions of the spectrum that
carry the most information about the vertical structure of the atmosphere. The number of
significant canonical correlations identify the smallest number of bands that can be used to
retrieve parameters within a specified accuracy. The canonical loadings resemble traditional
sounding weighting functions, confirming that the CCR model is physics-based. Thus,
CCR is an appealing alternative to traditional sounding methods when system resources
are limited and an extremely high spectral resolution sensor is not available. If the option

for a high resolution is available, the CCR model can readily handle the large number of
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bands and efficiently find the regions where narrow sensor bands and sounding weighting
functions should be built.

The CCR inverse model compares well with other multivariate regression models. In
general, it performs as well or better than Maximum Redundancy (MR), Partial Least
Squares (PLS), and Principal Components Regression (PCR). This is particularly so for re-
trievals of physical parameters (i.e., surface temperature and temperature and water vapor
profiles). If the number of dimensions retained in the model is low, all of the methods es-
timate atmospheric optical parameters with the same level of accuracy. PLS outperformed
CCR, MR, and PCR when the number of dimensions was increased. Generally, the robust-
ness of the model is inversely proportional to its complexity. However, it is possible that
complex PLS models are robust and suitable for remote sensing applications. Chemometri-
cians have found PLS consistently accurate in the estimation of material abundances from
high-resolution spectroscopic data. Thus, the PLS model may be appropriate for spectral
unmixing applications. More analysis with complex PLS models is recommended.

The CCR inverse model also compares well with the ISAC algorithm. Several imple-
mentations of the ISAC algorithm were developed and tested. The advantages of ISAC are
that it is simple and it does not require the use of a large database. For scenes that are
dominated by blackbody targets, the ISAC solutions coupled with TES may yield better
surface temperature retrievals than CCR. However, if the scene is not dominated by black-
body targets and TES does not correctly compensate for the bias in the unscaled parameter
solutions, then the CCR solutions will generally be more accurate.

The accuracy of the temperature retrievals was largely limited by the TES algorithm.
Materials that have characteristics that do not fit the MMD regression line are biased de-
pending on the calculated €y,;,. Alternative emissivity-scaling methods should be explored.
Despite this drawback, the algorithm performed relatively well. In particular, it was able
to adequately compensate for downwelled radiance. This resulted in spectral emissivity

estimates that had a shape nearly identical to that of the true emissivity. Thus, these
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biased estimates could be very useful in spectral classification and target identification ap-
plications. However, large errors may be introduced when the emissivity spectral features
match that of the atmosphere. Using pixel-averaged atmospheric parameter solutions may
solve this problem if the spatial scale of the surface target class is smaller than the spatial
atmospheric variability.

Increasing the spectral resolution from MASTER to SEBASS did not have a significant
effect on the accuracy of the surface temperature retrievals when CCR was coupled with
TES. The performance did not improve because the TES bias dominated the error in sur-
face temperature estimates. However, the direct temperature retrievals were dramatically
improved from those obtained with MASTER resolution. This indicates that the CCR
model is able to distinguish the atmospheric features from the surface emissivity features
and obtain a surface temperature estimate that is relatively unbiased by the spectral emis-
sivity. This is feasible with higher spectral resolution because spectral atmospheric features
tend to be narrower than the emissivity features. Thus, a CCR inverse model built for a
high resolution sensor (e.g., ultraspectral) may be insensitive to emissivity effects. Unfortu-
nately, the direct estimation of temperature does not yield atmospheric optical parameters.
Without these, it is not possible to compensate the observations for atmospheric effects
and retrieve the surface emissivity. One approach may be to estimate atmospheric profiles
along with the surface temperature and use these as inputs into MODTRAN. The resulting
transmission, upwelled radiance, and downwelled radiance can then be used to estimate
the emissivity from the observed radiance subject to the constraint that the CCR surface
temperature estimate is correct. Another possibility is to estimate the emissivities as was
done here, but then use the direct temperature estimates to rescale the biased emissivities.
Finally, given the CCR direct surface temperature estimate, it may be possible to indirectly
use the alpha-residuals technique for the emissivity retrieval.

One practical difficulty was the implementation of the atmospheric databases. Because

the databases were generated based on a factorial design, the number of observations in-
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Figure 5.1: Lake Mead images obtained from MASTER: (a) CCR surface temperature map
retrieval; (b) Band 46 sensor brightness temperature image; (c) CCR surface temperature
map retrieval without mean-centering. The brightness scales of the images were modified
through histogram equalization for better viewing.

creases exponentially as the number of factors (e.g., surface temperature and emissivity)
increases. This exponential increase depends on the number of levels that each factor is al-
lowed to vary. This may lead to a prohibitive computational burden. Therefore, a judicious
choice of factors and levels is essential. Although building the database is computation-
élly intensive, the database has to be generated only once. After that, a simple matrix of
coefficients is all that is needed to process new data. This is a big advantage considering
the large size of hyperspectral data because the operation is fast and may be implemented
on hardware onboard the sensor platform. As an example, Figure 5.1(a) is a temperature
map of Lake Mead generated by applying a simple linear transform (the CCR regression
coefficients) to a 400x300x10 (number of lines by number of samples by number of bands)
MASTER multispectral image cube. The operation was done with MATLAB and lasted
0.35 seconds (including mean-centering operations) on an AMD Athlon 600 MHz PC with
128 MB SDRAM running Windows 2000 Professional. Figure 5.1(b) is the sensor bright-

ness temperature for MASTER band 46. The CCR surface temperature map is considerably
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“noisier” and has less contrast. The same thing was observed for the other images tested in
this research. The exact reason why this happens is not known, but it seems to be related
to the symmetry of the CCR model (Section 4.7.3). That is, the CCR solutions are based
on mean-centered data because the “y-intercept” cannot be included in the model. The
data in the regression analysis are centered about a scalar value. It may be that the true
mean of the image lies in a plane with dimensions dictated by the context of the scene. If
the CCR inverse model is built without mean-centering, it may be possible to recover this
mean. Figure 5.1(c) is the temperature map estimated with CCR without mean-centering.
The visual quality of the image is much better than the mean-centered solution. Unfortu-
nately, the RMS errors in surface temperatures are much larger (by 2.0 °K or more) than
the mean-centered solutions. The disparity between the visual and RMS results may be
due to the psychophysics associated with the human visual system. This phenomenon is
also seen in error diffusion theory where halftone images with lower RMS errors do not nec-
essarily reproduce a better quality image. The image histograms are shown in Figure 5.2.
These plots quantify the visual effects seen in the images. The evidence suggests that di-
rect inversions to surface temperature with CCR should be done without mean-centering
for qualitative or relative image analysis only. Otherwise, mean-centering should be used.

More research on this issue is recommended.

5.2 Extensions of the CCA Approach

The CCA approach described in this research may be enhanced to potentially obtain more
accurate estimates of atmospheric and surface parameters. This section describes some ideas
on how this might be done. In addition, other uses of CCA for remote sensing applications
are discussed.

One potential extension is to use CCA to retrieve the surface spectral emissivity di-
rectly from the observed radiance. The results of this research show that CCA is able to

find spectral features in the observed radiance that are highly correlated with atmospheric
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Figure 5.2: Histogram of Lake Mead temperature maps

parameters. CCA was forced to find these features despite biases from surface emission and
reflection. Estimates of the atmospheric parameters were obtained with the highest canoni-
cal correlations. However the complete set of canonical correlations span all the data. Thus,
the data are projected to dimensions that range between highest to lowest correlation. It
may be possible to establish a separability of atmospheric and surface effects by separating
the dimensions that are associated with the atmosphere and those that are least associ-
ated. That is, if there are k = min(p, q) canonical correlations, then the first » dimensions
are highly correlated with the atmosphere and the last k — r dimensions have almost no
correlation with the atmosphere. The canonical variables Upx (k—r) associated with these
dimensions could then be used as efficient predictors of surface emission and reflectance
parameters. Because the CCR inverse model is generated with modelled data, the modelled
observed radiance has no noise. Therefore, all of the variability in the set Ujpx(k—r) is due
to surface effects. However, to relate Ujx(k—r) to the surface emission, the ensemble must

include surface emission variability. It might be tempting to consider including the spectral
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Figure 5.3: Diagram of the cascaded CCA approach

emissivity as another set of variables in the analysis. Unfortunately, this is impractical
because the factorial design would result in a prohibitive number of MODTRAN runs. It
may be possible to circumvent this problem by implementing a set of cascaded CCA’s as
shown in Figure 5.3. First, an ensemble X is built using a database of atmospheres Y
with no variability in the surface emission and reflectance. The resulting canonical corre-
lations can then be segmented and the k — r smallest correlations and associated weights
retained. A second ensemble Y(2) with variability only in surface temperature can then
be used to generate new observed radiances, which are in turn projected onto the k — r

canonical weights derived from the previous analysis. It is only necessary to use any one
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of the atmospheres used to generate X to make the new observed radiances comparable to
the original observations and related canonical weights. The choice of the atmosphere is
not crucial because the subsequent operations are atmosphere-independent by design. The
resulting variables X(2) are then used in a new CCA with Y(2). As before, the k —r small-
est correlations and associated weights are retained. The UT(f()(k_r) are the least correlated
with the surface temperature. Finally, a third ensemble of observed radiances is generated
with a set of spectral emissivities Y (3). These can be synthetic or from a spectral library of
measurements (e.g., ASTER library). The same atmosphere used to generate X(2) could
be used to generate the new observed radiances. Using the weights from the previous the
step, the variables X(3) are constructed. These are then used in a third CCA, this time
relating the variables to the spectral library Y(3). Once the analysis is complete, a new
observation can be processed through the set of cascaded CCA rotations generating differ-
ent parameter-estimates at each level. One potential problem with this approach is that
the canonical weights are derived based on the geometric properties of the data. Therefore,
linear combinations that result in separability with one set of variables may not do the same
with a different set of data with new geometric properties. This problem may be addressed
by adding the ensemble from the previous CCA to the new observations.

Another extension of CCA is to maximize the statistical dependence between the canon-
ical variables u; and v;, subject to the constraint that u; and v; are statistically independent
for all ¢ # j. In this research, I have stated that the orthogonality of the canonical vari-
ables implies independence. This is only true when the joint probability distributions are
Gaussian, which was implicitly assumed. If the joint probability distribution is not per-
fectly symmetric (e.g., Gaussian distribution), it is possible to have orthogonal variables
that are statistically dependent. For two variables to be statistically independent, their
joint probability distribution must be able to be represented as a product of the individ-
ual probability distributions (i.e., P(z,y) = P(x)P(y)). Statistical independence implies

orthogonality and imposes a stronger restriction than orthogonality. In fact, if two vari-
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ables are independent, any transformation of the variables results in variables that are also
independent. An alternative definition of independence is that all of the moments of the
individual probability distributions are orthogonal. An extension of PCA that looks for
independent components is Independent Component Analysis (ICA) (Hyvérinen 1999). In
remote sensing, ICA has been applied to spectral unmixing problems where the endmem-
bers and abundances are unknown (Bayliss et al. 1997; Tu 2000). The ICA approach can
be extended to CCA except that the independent components are found so that the mutual
dependence is maximized, which implies a maximization of mutual information. Recently,
this approach was implemented as a neural network (Akaho et al. 1999). To my knowledge,
this is the only work that has been done with this approach so this is a ripe area of research.
For that matter, extensions of all of the multivariate regression models used in this research
based on independent component analysis should be considered. Results from Section 4.7.1
showed that the canonical variables did not always have a Gaussian distribution. Thus, the
independent CCA approach may result in improved estimates.

In this research, the focus was placed on the information content in the observed ra-
diance spectra. However, there is also contertual information in images. As the spatial
resolution of hyperspectral sensors improve, the use of contextual information in addition
to spectral information may lead to dramatic improvements in the accuracy of retrieval
algorithms. CCA lends itself very easily to the inclusion of contextual information. One
approach may be to create parameter-based texture models (e.g., Markov Random Fields)
and include the texture parameters as another set of variables in CCA. Another approach
is to create a database of textures which form a basis for scenes of interest. The textures
represent surface emission components, which are processed through MODTRAN to gener-
ate ensembles of observed radiances. CCR inverse models built with these textures would
include context in the definition of the canonical correlations. Because MODTRAN does
not have any scene generation capability, a different model would have to be employed. The

Digital Imaging and Remote Sensing Image Generation (DIRSIG) model merges ray-tracing
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calculations with CAD models and MODTRAN to generate scene simulations (Schott 1997).
Thus, DIRSIG may be an appropriate tool for this CCA extension.

Extensions of the CCA approach may be associated with other remote sensing appli-
cations. For example, CCA may be useful as a change detection algorithm. Nielsen (1995)
developed a Multivariate Alteration Detection (MAD) algorithm for change detection based
on CCA. The concept is similar to the cascaded CCA procedure described earlier. CCA is
used to relate two (or more) multispectral images taken at different times. Areas leading to
high canonical correlations are associated with no change while those leading to the smallest
canonical correlations are associated with change. Because CCA does not restrict the X
and Y to have the same number of variables, images acquired with different sensors may be
used. Another example is data compression. The set of significant canonical correlations are
typically much lower than the number of dimensions of hyperspectral data. If the purpose
of the data is to extract a particular parameter, only the canonical variables need to be
transmitted. The receiver station would then use stored canonical correlations and loadings

to reconstruct the parameters of interest.

5.3 Outlook on the future

These are exciting times for remote sensing and Earth science. With the launch of Terra on
December, 1999, the NASA Earth Observing System (EOS) is well on its way to achieving
many objectives supporting fundamental research areas in Earth science. The MODIS sen-
sor onboard Terra has already acquired spectacular imagery of the Earth
(http://earthobservatory.nasa.gov) and will continue to do so over 36 spectral bands cover-
ing the entire globe every 1-to-2 days (King and Greenstone 1999). ASTER, also onboard
Terra, has also begun to acquire multispectral thermal images at 90 m spatial resolution.
The information provided in the imagery from these sensors alone will have a tremendous

impact on our understanding of the environment.
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The next generation of sensors will continue to push technology toward higher spectral
and spatial resolution. As the volume of data increases, the timeliness of specialized algo-
rithms cannot be overstated. It is in the context of the evolution of these algorithms that
the results, insights, and conclusions obtained from this research should have the largest

impact.
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Appendix A

Water Vapor Units and

Conversions

Beware of the man who won’t be bothered with details.

William Feather, Sr.

There are several measures of water vapor that can be used to characterize its content
in the atmosphere. In this appendix, relevant units used in this research are discussed. A
more thorough discussion on atmospheric chemistry may be found in (Seinfeld and Pandis
1998) and (Saucier 1989).

One way of expressing concentration is in terms of moles per volume of air. The
concentration describes how many molecules are in the volume based on Avogadro’s number

(i.e.,Ng = 6.022 x 10?®mol™1). The ideal gas law states
PV = NRT (A1)

where P is the pressure in Pascal (Pal), V is the volume (m?), N is the number of moles,

R is the molar gas constant (8.314 Nmmol ' K~'), and T is the temperature (K). The
1 hPa = 10000- Pa = 1 millibar (mb). Also, a standard atmosphere (atm) is defined as 1013.25 mb.
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concentration depends on pressure and temperature. Because these physical parameters

are dynamic, a better measure of concentration for atmospheric studies is the mizing ratio:

=12 (A.2)

Cc

where ¢; is the mixing ratio of the i constituent, ¢; is the concentration of the i con-
stituent, and c is the total concentration of all the constituents. This is a measure that is
independent of pressure and temperature. The measure can also be expressed in terms the
ratio of partial pressure:

_bi
& » (A.3)

where p; is the partial pressure of the :*h constituent and p is the total (ambient) pressure.
The mass mixing ratio of water is the ratio of the partial pressures weighted by the

ratio of molecular weights:
_ Myey

r = A4
mM4pPd (44

where m,, is the molecular weight of water (18.015 g/mol), mg is the molecular mass of dry
air (28.966 g/mol), and py is the partial pressure of dry air. The mixing ratio is usually
expressed in units of g/kg and can referenced to either dry or wet air. When compared to
wet air, the mixing ratio of water is also called the specific humidity. In this research, all
mixing ratios are expressed relative to dry air. The mixing ratio can be expressed in terms

of water vapor and total pressure:
(A.5)

where the factor of 1000 is introduced to make the ratio units of g/kg. el is the saturation
water vapor pressure. The saturation water vapor pressure is the maximum pressure that
can be exerted by water at a given ambient temperature. Thus, the partial pressure of dry

air is the total pressure less the potential partial pressure of water. The saturation mixing

ratio is

)

p—ey)

rs = 621.97 (A.6)
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Figure A.1: Water vapor saturation pressure

The saturation water vapor pressure is a function of temperature only (see Figure A.1).
The functional relationship is the Goff-Gratch formula with reference over liquid water,
which has been standardized by the International Meteorological Organization (List 1951).

The formula is e (T') = 10*T), where

C (1 T)
T T. all—=
oT) = _Clle'f‘CQlOg(Ts)—(h 10 Ts) —1
Ts
—Cg
— Cs|1-10 T —1| 410g(1013.25) (A7)

where T is the ambient temperature (K), T is the temperature of boiling water, and 1023.25
mb is the water vapor saturation pressure at T;. The coefficients C; through Cg are the

elements of the array:

C = [7.90298, 5.02808, 1.3816 x 1077, 11.344, 8.1328 x 1073, 3.49149]

207




The relative humidity (RH) is the percentage of the partial pressure of water referenced

to the water vapor saturation pressure. Thus,

RH = 1002 (A8)
Cw
where RH is in %. Alternatively,
RH = 100— (A.9)
Ts

Thus, the RH is an indication of how much water vapor is in the air relative to how much
there can be without condensation.

The relative humidity is a simple parameter to understand, but it can be intractable as
a measure of water vapor because RH is measured with respect to water vapor saturation,
which is highly dependent on temperature. Thus, a small decrease in ambient temperature
can result in a high increase in relative humidity if the water vapor content remains con-
stant. A better measure is the dew point temperature, which is the temperature to which
the atmosphere would have to be cooled for saturation to occur. This is the standard mea-
surement of water vapor in radiosonde data. The water vapor pressure can be estimated
with Tetens’ formula:

ew = 6.11 x 10%/(t+0) (A.10)

where a = 7.5 and b = 237.3 °K over water (i.e., liquid-phase temperatures). The coefficients
are a = 9.5 and b = 265.5 °K over ice.

All of the measurements described so far can be used to describe the amount of water
vapor in a layer of the atmosphere. The vertical profiles of water vapor used in this research
are presented in units of mixing ratio. There are times, however, when it is useful to
quantify the total amount of water vapor in a column of air. The total column water vapor
(CWV) can be directly calculated from the water vapor profiles. The CWYV is equivalent
to precipitable water, which is measured in millimeters. Suppose all of the water vapor in
the column is condensed at the surface, then the precipitable water measures the height of

the condensed water in a hypothetical 1 m? surface area. The total CWV is a function of
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the amount of water and atmospheric pressure:

1 P
CWV = / ~(p) dp (A.11)
9 Prz0 Jo

where pg,o is the water density at standard pressure (1000 kg/m3), g is the gravitational
constant (9.807 m/s?), p is the ambient pressure (i.e., the “pressure altitude” of the atmo-
spheric layer with thickness dp)(Pa), and y(p) is the water mixing ratio (g/g) expressed as
function of pressure altitude.

MODTRAN accepts user-defined atmospheres (i.e., vertical profiles of concentrations
and temperature). Several units may be specified for water vapor, including mixing ratio,
relative humidity, and dew point. However, the output files are less flexible. Older versions
of MODTRAN generated vertical water vapor profiles in units of g/cm?. This is a density-

dependent measure of concentration and is related to the mixing ratio by

= —— 12
Co 10 dp (A )

where ¢, is the concentration in g/cm?, « is the mixing ratio (g/g), g is the gravitational
constant, and dp is the pressure of the atmospheric layer. Because of the density dependence,
these values were referenced to sea-level density. Newer versions of MODTRAN generate
vertical water vapor profiles in atm-cm. This is a pressure and temperature independent
measure because it is referenced to STP (i.e., T = 273.15 °K and P = 1 atm). The molar
volume of any gas at STP is 22,413.83 cm®. Thus, the pressure-volume is 22,413.83 atm-cm?.
Since the molecular weight of water is 18.015 g/mol, the conversion from ¢, to the new

MODTRAN units is
_22413.83

= ZEETeeY ., 427 .
Cn 18015 Co = 124.42— dp (A.13)
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Appendix B

Singular Value Decomposition

It is often useful to decompose a matrix into a set of basis vectors. The basis are like
“building blocks” that can be used to reconstruct the matrix when the appropriate weighting
of the basis is applied. The decomposition of a matrix is often called a factorization. Ideally,
the matrix is decomposed into a set of factors (often orthogonal or independent) that are
optimal based on some criterion. For example, a criterion might be the reconstruction of
the decomposed matrix. The decomposition of a matrix is also useful when the matrix is
not of full rank. In these cases, the rows or columns of the matrix are linearly dependent
and do not form an orthogonal basis for the matrix. In theory, a rank-deficient matrix may
be decomposed into a smaller number of factors than the original matrix and still preserve
all of the information in the matrix.

If A is a square symmetric matrix, then a useful decomposition is based on its eigen-
values and eigenvectors. That is,

AE =EA (B.1)
where E is the matrix of eigenvectors and A is the diagonal matrix of eigenvalues. The
eigenvectors have the convenient mathematical property of orthogonality (i.e., E'E =1,
where I is the identity matrix) and span the entire space of A. The eigenvalues are the
largest values of A and form a spectrum of orthogonal values. For that reason, this procedure
is often referred to as a spectral decomposition (Johnson and Wichern 1992).
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The limitation of this approach is that A must be square and symmetric. In many
cases, we wish to decompose a matrix that is not square nor symmetric. Consider the
matrix A that is n x p where n # p. In this case, the rank of the matrix is 7 < min(n, p)
and the matrix is defined by row and column spaces that have different rank. However,
A’A is square and symmetric (it is also positive semi-definite). The same is true for AA’.
The former is a inner product of the matrix and results in a matrix that is spanned by the
column space (i.e., the range) of A. The latter is a outer product of the matrix and results
in a matrix that is spanned by the row space of A. Refer to Trefethen and III (1997) for
more on principles of matrix algebra.

The nonzero eigenvalues of A’A and AA’ and are called singular values. However,
the corresponding eigenvectors are different. The eigenvectors of AA’ are called the “left”
singular vectors while the eigenvectors of A’A are the “right” singular vectors. By retain-
ing the nonzero eigenvalues £ = min(n,p), a singular value decomposition (SVD) can be
constructed:

USV' =% (B.2)

where U is a n x k matrix of left singular vectors, V is a k X p matrix of right singular
vectors, and S is a diagonal matrix of singular values. The singular values are the squared
singular values of A, making the decomposition positive semi-definite.

The SVD is a powerful tool for linear algebra. The left and right singular vectors form
a basis of the row and column spaces of A that are orthogonal. As such, the SVD can be
used to compute the generalized inverse of A by using the reciprocal singular values in the
decomposition. That is,

AT =VsiU (B.3)

where AT is the generalized inverse and is equivalent to the Moore-Penrose pseudoinverse.
The SVD provides a convenient and flexible framework for computing the generalized in-
verse because the rank of the singular value matrix can be controlled. By eliminating null

singular values, the inverse operation is numerically stabilized. This truncation is a form of
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regularization. In addition, the singular vectors point in the directions of maximum vari-
ance of the column and row spaces. In terms of signal processing, the variance is a measure
of information. Thus, analysis of the singular vectors can provide insight into the inverse
operation. A detailed description on the use of the SVD for inverse-problems may be found

in Hansen (1998).
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Appendix C

Simultaneous Retrieval of

Temperature and Concentration

Profiles

Before deriving the simultaneous retrieval approach, it is beneficial to review some basic
definitions and fundamental atmospheric physics. The definition of optical depth was intro-
duced in section 2.1.3. The optical depth can also be expressed in terms of the absorption

mass coefficient or mass cross-section:

V4 z
5:/ Babs dz=/ Capdz (C.1)
0 0

where C,, is the absorption mass cross-section in ¢cm?/g and p is the air mass density. The
optical depth can also be represented in terms of the mizring ratio of gases of interest. The
mixing ratio is defined as the ratio of the gas mass density to the air mass density. The

relationship is easily derived from the hydrostatic equation:
q
pdz = =3 dp (C.2)

where ¢ is the mixing ratio, g is the acceleration due to gravity, and dp is some small

incremental change in pressure. Multiplying both sides of the hydrostatic equation by the
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absorption mass cross-section results in
_ q
Copdz = ——Ca—é dp (C.3)
Integrating both sides and using eq. (C.1) yields
g P g
d=— | Cu=dp= / Co~dp (C4)
Ps g 0 g

where ps is the pressure at the surface boundary layer. Similarly, we can define the optical

mass:

Ulp) = é /0 ’ q(p')dp’ (C.5)

This definition follows directly from the hydrostatic equation by setting the incremental
optical mass dU equal to pdz and integrating over a pressure altitude range. Note that in
these equations we have assumed that altitude z of the sensor high enough that the ambient
pressure is approximately zero.

With these definitions, we can now derive the perturbed form of the radiative transfer

equation. We can rewrite the radiative transfer equation in (2.36) as
z
L) = rNeMLasT) = [ Las(\T)dr(3,2) (C.6)
0

where the emissivity and the Planck function are used to represent the surface emission L.
The explicit dependence of the Planck function on wavelength is noted because we need to
distinguish between the spectral regions over which the weighting functions will be built.
In other words, while the Planck function is nearly constant in the neighborhood of the
center absorption line of a particular constituent, it will change considerably for different

constituents. We can also write the equation in terms of pressure altitude
Ds
L) = 7NeW s T) ~ [ Lan(h ) dr(n,p) ()
0

Hereafter, the notation will be simplified by denoting the wavelength dependence as a

subscript and labelling the Planck profile as a function of pressure (i.e., Lgg(Tp) = Lpg(p)).
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Thus, the expected spectral radiance from an initial estimate is

Ds .
2 = 19(pe)e3 L, (0s) — /0 L2, (0) dr5(0) (C3)

To simplify the analysis, we will assume a blackbody surface (i.e., €x=1). Subtracting the

estimated initial spectrum from the true spectrum results in

ALy =Ly — l))\ = T)\(ps)LBB,\(Ps) - Tg(ps)L%B,\ (ps)
Ds

- [ L @dn® + [ i@t (€9
0 0

We now define the following perturbations

ALpg,(p) = Lpa,(p) — Lgg,(p)

ara(p) = map) —73(p) (C.10)

Rewriting eq. (C.9) in terms of these perturbations yields

ALy = Lp,(ps) ATA(ps)+ AL, (p)75(ps)

Ds Ds
—/ Lss, (p)d[ars(p)] — / AL g5, (p) dr3(p) (C.11)
0 0

The first integral is evaluated by parts so that
s : Ps
| Lon, 0 dlen@) = Lonyb) om0 - [ om@)dLon @) (©12
Substituting into eq. (C.11) yields
Ps Ps
DIy =05, (0750 = [ 0155, @)d0)+ [ anae)dLem, @) (C13)
0
This equation depends on the perturbed values of the Planck function. We wish to show
the direct dependence on temperature so that we can solve for a perturbed temperature

directly. To do this, the Planck function is expanded with a Taylor series about T7:

9Lpg, (Tp) oy, 0°Lpp,(Tp)
T, TO(T” T+ oT?

0
P TP

LBB,\ (Tp) = LBB,\ (T;?) + (Tp - Tpo)2 U (014)
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Figure C.1: Taylor approximation of the Planck function.

To make the notation more concise, let

ka(p) = O0Lpg,(Tp) c1coe?/AT
AP o1, ABT?2 (ec2/AT — 1)2

(C.15)

and AT(p) = T, — T;). Because the Planck function is smooth, it can be reasonably
estimated by a truncated Taylor series expansion. Thus, the function is “linearized” by

using the first-order Taylor approximation resulting in
ALpB,(p) = k3(p) AT (p) (C.16)
In the limit AT'(p) — 0, the finite difference approximation results:
AT(p) = dLpp, (p) = k3dT(p) (C.17)

Figure C.1 shows a plot of the Planck function evaluated at 10 um and two first-order
Taylor series approximations centered about 295 °K and 255 °K, respectively. Note that
the approximation is very good when AT (p) is less than about 10 °K. Initial temperature

estimates that are this close to the true profile should not be difficult to obtain.
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Now we can substitute egs. (C.16) and (C.17) into eq. (C.11) so that

dr¥(p
L (O

T /0 " KBe) s dp (C.18)

The only term that still contains an “unknown” is the perturbation of the transmission
ATx(p). The goal of the following development is to represent this quantity in terms of the
optical mass, which can then be recast in terms of the perturbed temperature profile. We
begin by using the definition of the total transmission given by eq. (2.81) and using the

definition for the optical mass so that

() = H’T}\ ——exp{ Z/ Cay dUd(? } (C.19)

A small incremental change would then be

L R
= ) [—Z I caAdUd”pf’ dp'} (©:20

We can use eq. (C.19) to redefine d7)(p) in terms of the natural logarithm of the transmission

dra(p)

II

profiles of the individual constituents:

Inmy, (p) = / Co dlg ") 4y (C.21)
which implies that
dra(p) = 1a(p) 3 dIn 7y, (p) (C.22)
Thus, the initial estimate is Z
drs(p Z dIn73 (p (C.23)

and using the finite difference approximation d7$(p) ~A7)\(p) then

ATA(p) = T5(p Z Aln(7y,(p (C.24)
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The perturbation of the logarithmic transmission is obtained from the relationship estab-

lished in eq. (C.22) so that

P (pf
AlnTy,(p) = —/O Ca,\fiA—Uz(Iz—)dp' (C.25)

dy’
Now we integrate this equation by parts to get

dCl,
d /

D
Aln 7, (p) = —Ci, AUs(p) + / U (p') 22 gy (C.26)
0

But the second term goes to zero because Cy, is constant with respect to pressure. Also,

from eq. (C.21) we can define
_dlntg .(p)

Ca/\ = dUo (p)

(C.27)

This assumes that the initial estimates are formulated with a model that employs the correct

absorption mass cross-sections. Thus, we end up with

ATx(p) = 7X(P) Z AU;(p) dclinU?( (;D) (C.28)

Now we can substitute this expression into equation (C.18) to get
Ps dr¥(p
b = K(pe) T (pe)r3(00) ~ [ 130) 87(0) 5L g

dp
Ps o ) dlnTOi( )
+/0 k3 (p) [TA(P);AUi(p) dUz':\(P;)

dT (p)
% dp (C.29)

and rearranging

ALy = k§(ps) AT (ps)T5(ps) — /ps k3(p) AT(p)‘(%gldp

dlnTy
+ 3 [0 20 i) A (©0:30)

After substituting eq. (C.23) we get

Ps dlnT¢
MFW%MWWWM—;A[WmM@wW—ﬁ@
- k() AU (p) D) A5, dp (C.31)

ORI
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Finally, we let

dT'(p)
dU? (p)

That is, each constituent contributes to the perturbed temperature profile based on the

8Ti(p) =oT(p)— AU:(p)

(C.32)

temperature dependence on that constituent (the derivative term) and how much of the

constituent is present (AU;(p)). Substituting eq. (C.32) into eq. (C.31) yields

o R Ps oy dInTY (p)
ALy = k3(ps) AT (ps)7x(ps) — E/O k3 (p) AT (p)7x (p)T dp (C.33)
i
where the perturbed temperature profile of the i* constituent is
AT;(p) = Ti(p) — T°(p) (C.34)

Thus, the same initial estimate of the temperature profile T°(p) is used for all atmospheric
constituents. Equation (C.33) is the final form of the perturbed radiative transfer equation.
The surface temperature differential can be approximated by making a measurement in a
highly transmissive region of the spectrum. The perturbed temperature profile can be solved
for by applying one of the inversion techniques discussed in Section 2.1.5. The retrieval of

temperature and concentration profiles can be summarized in three steps:

1. Build weighting functions based on an initial estimate of the atmospheric profiles and

solve for AT;(p) using a linear or nonlinear inversion technique.

2. Let the true temperature profile be T'(p) = T°(p)+ ATj;(p) where j denotes a con-

stituent that is well mixed (i.e., COs3).

3. Solve for the concentration of other constituents by equating eqs. (C.32) and (C.34)

and solving for the optical mass:

Uilp) = U7 (o) + G 15) = (o) (©35)
or in terms of the mixing ratio
ai(p) = —g%@ (C.36)
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Appendix D

Other Multivariate Regression

Methods

This appendix provides a description of two alternative multivariate regression models. The
concept is similar to CCR and PCR in that a multivariate regression relating X and Y is

based on a latent lower-dimensional space.

D.1 Partial Least Squares

Another approach that is similar to canonical correlations is Partial Least Squares (PLS).
The technique was originated by Herman Wold for the determination of latent paths and
the creation of simplified models (Geladi 1988). Further development of PLS was led by
research in chemometrics. In this field, the goal is to quantify the concentration of a
particular absorber based on the spectroscopic measurement. The dataset used to build the
regression is known as a “calibration” set. The path model for PLS is shown in Figure D.1.
Note that the arrows flow in only one direction. This is because the PLS analysis is not
symmetric and is biased toward predicting one set from the other. The linear combinations
obtained from PLS maximize the covariance between data sets. This is done subject to the

constraint that the scores from the linear transformations have maximum variance (just as
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Figure D.1: Path model for partial least squares.

in PCA). Therefore, PLS can be viewed as a “compromise” between CCA and PCA because
the solution must maximize variance and covariance simultaneously. This constraint also
results in a latent correlation space that is not orthogonal. This is depicted in Figure D.1
by the cross-paths between the latent variables u and t, which are analogous to the CCA
and PCA scores. These latent cross-paths occur between the same or lower dimensions and
not between lower and higher dimensions (from the perspective of mapping T to U). This
results in a upper-triangular matrix T'U (i.e., tju; = 0 for 7 > j5).

The original PLS algorithm, known as the Nonlinear Iterative Partial Least Squares
(NIPALS) algorithm, employs a numerical technique for the computation of eigenvec-
tors (Wold 1984). A popular implementation of the PLS algorithm is based on the NIPALS
approach. One unique aspect of this approach is that the latent dimensions (i.e., the eigen-
vectors) are computed iteratively one at a time. The algorithm computes a “dominant”
eigenvector from the covariance matrix ¥, X,y and attempts to predict Y just using this

linear combination. The predicted Y is then compared to the true Y. Likewise, the original
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X is compared to an estimate X obtained with just the first eigenvector. The next eigenvec-
tor is computed from the residual X — X and regressed to the residual of Y. This process is
repeated until convergence or until the number of eigenvectors is equal to the rank of X (i.e.,
r < min(p, n)). The operation on the residuals ensures the orthogonality of the weights. It
also provides an inherent method for finding the latent rank of the data. The analysis has
the effect of “shrinking” the data until there is no more information to be exploited. One
way to determine whether all the information has been used is to compute the determinant
of the residual X matrix. The determinant can be thought of as a measure of the mass of
a matrix. Thus, the algorithm stops when the mass of the matrix has dropped below some
cutoff point r. This point then defines the rank. Another advantage of PLS is that it can
be implemented so that no matrix-inverse operations need to be made. The PLS method
presented in this section is often called “two-block” PLS because it shrinks two blocks of
data (i.e., X and Y), making it suitable for multivariate regression.

Two aspects make the PLS technique difficult to interpret: (1) the iterative approach
used to find the eigenvectors; and (2) the way the regression coefficients are computed.
The work of Helland (1988), (Héskuldsson 1988), (Stone and Brooks 1990), and (Phatak
1993) have done much to explain PLS and to put the approach in the same context as
other multivariate regression methods. Another attempt is made here. The algorithm is
initialized by letting Eq = X and Fo = Y, where X and Y are n x p and n X g matrices,

respectively. Then for ¢ =1 to k:

1. Let u; be any column of Y. At this point, u; is an n X 1 column vector estimating the
score obtained from the transformation Yc¢, where c is a ¢ X 1 column vector defining

the latent path from Y to the first dimension of U.

2. w; = (uju;) "u/E;_1. The w vector is a p x 1 vector of weights that describe the
mapping from the original X space to the latent variable space. By definition, it is

the same as the regression coefficients (least-squares solution) relating u to E.
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10.

11.

12.

t; = E;_1w; performs the mapping to the latent space defined by w;.

. ¢ = (tt;)'t;F;_1. The c is the least-squares solution relating the latent variables t

to the original variables in Y. It is therefore a 1 x ¢ vector.
¢; = ¢;/(c}c;) for unity normalization.
u; = F;_jc; maps the original Y variables to the latent variable u.

Iterate on steps 2-6 until convergence. During the iteration, several “partial” least-
squares regressions are performed. The regressions are done in a criss-cross pattern
going back and forth between the latent variables and the original variable spaces.
These iterations converge on solutions for w and ¢ that are the basis of the latent

variables.

p; = (tjt;)'t;E;_; is the least-squares solution relating the latent variable t; to the
X data. p is a p x 1 vector representing an inverse mapping from the latent space to

the original space (i.e., loading).

q; = (uju;)"'ujF;_; is the loading for Y.

13

b; = (tit;)"*t;u; is the regression coefficient relating the latent variables.

E; = E;_; — t;p}. When ¢ = 1, this computes the residual between the X data and an
estimate of X based on the first loading. Subsequent analysis is based on the residual
matrix, which contains all information not spanned by the first loading. This has the

effect of “shrinking” the matrix.

F; = F;_1 — b;t;c, does the same as the previous step for the Y data. The F ma-
trix is reconstructed with the information spanned by the t latent variables. It is a
least-squares estimate of F' weighted by the regression coefficient b relating the latent

variables. It is also an estimate of the bilinear expansion u;q; defining F;.
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13. The procedure is done all over again for the next dimension and is based on the
residual data matrices from the previous iteration. The operation on the residuals
ensures that the latent variables are linearly independent. However, the relationship

between the latent variables is not orthogonal.
The resulting k dimensions can then be grouped into matrices so that
YPLS =TBC’ (D.1)

where T is n X k, B is a k x k diagonal matrix, and C is ¢ x k. In terms of the original
variables, T = EW where W is a matrix whose columns are the vectors w/. The PLS

estimate of Y can therefore be rewritten as
Yprs = EWBC
= EW[(T'T)'T'U|C’ (D.2)
= EW[(WEEW)'WE'|FCC’
Thus, the PLS regression coefficients relating X to Y can be defined as
Bprs = W(W'X'XW)*W'X'YCC’ (D.3)

Since Y = UC’ then
BrLs = W(W'X'XW)'W'X'Y (D.4)
If the inverse operation needs to be avoided, PLS regression can be implemented so that
the prediction of Y is built iteratively. The procedure is similar to the computation of the
eigenvectors. For ¢ = 1 to k, map the new data E with w; to get t;. At each step, let
F; = Fi_; + bit;c]. Here, b and c are obtained from the model built with the regression
data and t is obtained with the new observations. The new data X is also “shrunk” based
on t;pj.
The formulation of the regression coefficients given in eq. (D.4) is useful to interpret the
optimization achieved by PLS. The linear combinations W and C result in latent variables

that have maximum covariance, subject to the constraint of maximum variance.
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Proof. Upon convergence,
W = EUUuu!
= E'FC(C'F'FC)! (D.5)
Multiplying both sides by C'F'FC yields
W(C'F'FC) = EFC (D.6)
Substituting C = F/'T(T'T)"* and using T = EW results in
W(C'F'FC) = EFFFEW(WEEW) ! (D.7)
Multiplying both sides by W/E'EW yields
W(C'F'FC)(WE'EW) = EFFFEW (D.8)
Therefore, the W are the eigenvectors resulting from
WA = EFFEW (D.9)

where A = (C'F'FC)(W'E'EW). Therefore, PLS maximizes the squared covariances
between X and Y. This is in contrast to CCA where the correlations are maximized.
Thus, the PLS results depend on the scaling of the data whereas CCA results do not. The
maximization of covariance in PLS is done subject to the constraint of maximum variance.
From the definition of A,

WE'EW = (C'F'FC)~1A (D.10)

Multiplying by W and using the orthonormality property from eq. (D.9) (i.e., W'W =1
and W/ = W~1) results in
E'EW = W(C'F'FC) 1A (D.11)

So that
E'EW = WAg (D.12)
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where Ag = (C'F'FC)~'A. Thus, the W maximize the variance in X. This also results in
C'F'FC = AAg™! (D.13)

which results in the maximization of variance of U, subject to the constraint of maximum

covariances and maximum variance of T. Il

D.2 Maximum Redundancy

In the previous section, it was shown that PLS maximizes the covariance between the latent
variables. The PLS latent variables are derived subject to the constraint that they represent
the maximum variance in X and Y. This in contrast to PCR where the sole criterion is to
maximize the X covariance matrix. The other extreme would be to find the latent variables
that maximize the Y covariance matrix. This, of course, could be accomplished via a
standard PCA of the Y data. However, the purpose of the analysis is to estimate Y with
Y based on the observations X. Therefore, the alternative is to maximize the covariance
matrix of Y from linear combinations of X (i.e., latent variables of X. One way of doing

this is to find the linear combinations of X that maximize the Redundancy Index (RI):
(D.14)

where tr(-) is the trace operator. The trace is the sum of the diagonal elements of a matrix
and is equal to the sum of the eigenvalues. This “Maximum Redundancy” (MR) approach
was developed by Van den Wollenberg in 1977. It turns out, however, that the same
multivariate method had already been derived under different names and using different
objective functions (Merola 1998). It can be viewed as a “Reduced Rank Regression” where
the OLS estimates of Y are derived from rank-reduced regression coefficients (Izenman
1975) or as a “principal components of Y relative to X” (Merola 1998). As such, the path
model for MR is identical to that of PCR (Fig. 3.2) except that the latent variables are

different. Regardless of the derivation, the optimal linear combinations of X are found from
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the eigenvalue/eigenvector solution to
Sl s, TyxA = AP (D.15)

where A are the MR weights and ® is the diagonal matrix of eigenvalues. The eigenvalues
turn out to be the maximum variances in Y.

The derivation presented here is based on the maximum redundancy concept. Since
the trace of the covariance matrix is equal to the sum of the eigenvalues, the maximization

can be expressed in terms of the solution to the eigenvalue problem
Y/Y(Uqu) =(Uqgxq)® (D.16)

where Uy, is a matrix of eigenvectors, which are the principal components of Y. Thus,
the eigenvalues ® are the largest variances in Y. Our goal, however, is to force the scores
of X (i.e, U= XA) to be the principal components of Y. The scores are n x k matrices,
where the latent rank £ < min(n,q). This requires a modification of eq. (D.16) so that
it uses the outer-product covariance matrix YY'. This is not a problem since the nonzero
eigenvalues of YY’ and Y'Y are identical. Thus, the scores can be made to be the principal
components by using

YY/(Unxk) = (Unxk)q’ (D~17)

If n < g, then U is a square orthogonal matrix of eigenvectors. Otherwise, U is n X q.

Letting U = XA, eq. (D.17) reduces to eq. (D.15).
Proof. The OLS estimate of Y is
Y = X(X'X)"'X'Y (D.18)
Substituting this equation for ¥ in eq. (D.17) and letting U = XA results in

YV (Upyk) = X(X'X)IX'YY'X(X'X) IX'XA = XA® (D.19)
Cancelling like-terms and simplifying yields

(X'X)IX'YY'XA = A® (D.20)
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If the data is mean-centered and scaled by the number of observations, then X'X = 3,4.
Therefore,

P

YV (Upxi) = Tk Bey ByxA = AP (D.21)
O

While a latent subspace of Y does not need to be defined in MR, it may be useful
to do so for interpretation, outlier tests, and discriminant analysis of the subspace. The
linear combinations V = YB that maximize the covariance with the linear combinations

U = XA, subject to the maximum redundancy constraint, are obtained from
B=Y'XA (D.22)

which is simply a projection of the Y data onto the latent (redundancy) variables from the
X data. Since the redundancy variables of X are the principal components of Y, then the
redundancy weights defining the basis of V are scores. This offers an interpretation of the
Y redundancy variables as the Y data rotated by the scores derived from its OLS subspace.
Therefore, V is proportional to the variance in Y.

The Maximum Redundancy solutions can be thought of as CCR solutions biased toward
dimensions that maximize the variance in Y. Because of this bias, the correlations between
the latent variables U and V are not orthogonal. The bias results in linear combinations
A and B that are derived from eigenvalue equations that are similar to that of CCR. For
example, the only difference between the MR and CCR eigenvalue equations for A is that
3,y is missing in the MR equation. Thus, MR and CCR are the same for the special case
where the variables in Y are uncorrelated and have equal variance. The bias makes MR
optimal for the estimation of Y because the MR variables U form an orthogonal subspace
of the OLS estimate of Y that maximizes the variance in Y. All other MR properties are
subject to this constraint. This is in contrast to CCR where the estimate of Y is optimal

subject to the constraint that the latent variables are maximally correlated.
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D.3 Implementation

Principal Components Regression (PCR) and Maximum Redundancy (MR) were imple-
mented in a manner similar to CCR. That is, a latent space is derived and a rank is
estimated based on the properties of the eigenvalues. For these methods, the latent space is
truncated to the dimension where the running sum of the eigenvalues is 99.5% of the total
sum of eigenvalues. Typically, PCR is implemented so that the PC’s of X are regressed
directly on Y. In this research, PCR is implemented as a “two-block” PCA where the PC’s
from X and Y are regressed. Thus, the estimate of Y is obtained by applying the inverse
PC transform to the estimated Y PC’s.

PLS was also a “two-block” implementation using the NIPALS or “canonical” method
as described by Phatak (1993) and Hoskuldsson (1988). There are two times when stopping
criteria must be defined for this algorithm. One defines the number of iterations needed
to converge on a vector that lies along the direction of maximum covariance. The sec-
ond determines how many dimensions are retained for the regression. The iterations for
the calculation of the “dominant” eigenvector were stopped based on the change in the
“canonical” variate u determined by this eigenvector. Thus, convergence is achieved when
| us—u;—1 ||< 6, where || - || is the Eucledian norm and i denotes the iteration step. § = 0.01
appears to work well for the data sets analyzed in this research. The next step is in the
rank determination. As described in Section D.1, the PLS algorithm works on the residual
matrices obtained from the regression of previous dimensions. The stopping criterion was
|E;| < d¢, where || is the determinant and E; is the residual matrix of X. A value ., = 0.05
resulted in latent-rank estimates that were consistent with those derived with CCR.

The algorithms for PLS, MR, CCR, and PCR were written in IDL and MATLAB and

tested with the Linnerud data set used by Jackson (1991). The results were identical to

those presented in the literature, thus validating the code implementation. Furthermore,

the properties of the matrices involved (e.g., W'W =1 for PLS) were also verified.
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Appendix E

ISAC Implementation and

Validation

The ISAC algorithm obtains the spectral transmission and upwelled radiance from a regres-
sion of the observed radiances and the calculated radiances. There are three approaches to
the regression: (1) do a standard least-squares regression using only the blackbody pixels;
(2) do a Kolmogorov-Smirnov fit across the top of a scatter plot with all or some of the pix-
els in the image; (3) do a “normalized” regression where outliers are automatically rejected
with the goal of normalizing the residuals. Hereafter, these three approaches are referred

to by ISACyrs, ISACksg, and ISACng (or simply LS, KS, and NR), respectively.

E.1 Least-Squares Maximum-Hit Method

The ISACLs method uses the maximum-hit approach to find blackbody pixels in a scene.
This assumes that pixels having the maximum brightness temperature are likely to be black-
bodies. This is certainly the case, provided that the brightness temperature is measured at
a wavelength where the atmospheric effects are minimal. Otherwise, the detected maximum
brightness temperature may be biased by clouds or by an atmosphere that is considerably

warmer than the surface. For this reason, the maximum-hit method implemented in this

230



research uses a fized reference wavelength. The reference wavelength corresponds to the
SEBASS and MASTER Band 46, which are both close to about 10 ym. This wavelength
was selected because it coincides with the peak of the Planck radiation curve for typical
terrestrial temperatures. In addition, the atmosphere has a relatively high transmission at
this wavelength. The maximum-hit method uses the wavelength at which the most number
of pixels have the maximum brightness temperature. In practice, it was better to find the
most number of pixels that were close to the maximum brightness temperature. Forcing
the pixels to have ezactly the same maximum brightness temperature typically lead to very
few pixels being chosen for regression. A deviation T away from the maximum brightness
temperature may be driven by system noise. Therefore, pixels with brightness temperatures
that fall within a 07 equal to the sensor NEAT should be considered as “blackbody” for
the regression. The approach to the selection of 6T was heuristic. I found that 3 < §T° < 5

was necessary to get enough pixels for the regression.

E.2 Kolmogorov-Smirnov Method

The ISACkg algorithm is based on the Kolmogorov-Smirnov test for goodness-of-fit. It is an
alternative approach to standard least-squares regression which can be more robust. The
problem with the least squares method is that it depends on several assumptions about
normality, homogeneity of variance, independence, and normal distribution of residuals.
One solution is the use of a goodness-of-fit statistics such as the x? and the Kolmogorov-
Smirnov (KS) D statistics. The main advantage of the KS statistic is that it makes no
assumptions about the probability distribution of the data and provides a more flexible
criterion for goodness-of-fit. Section E.2.1 provides a generic description of the statistic and
its computation. Section E.2.2 describes the asymptotic distribution of the KS statistic and
how it can be used to test for goodness-of-fit. Finally, Section E.2.3 describes the use of KS

for regression and how it is implemented in ISAC.
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E.2.1 Kolmogorov-Smirnov Two-Sided Statistic

While the least squares method analyzes the squared difference of the data and the predicted
value by the linear model, the Kolmogorov-Smirnov (KS) statistic compares the cumulative

distribution functions of the data and the predicted model. The statistic is defined as
D= max |Sn(z) — Sm(z)| (E.1)

where Sy, (z) and Sy, (z) are empirical cumulative distribution functions of two sets of random
samples of sizes n and m that are in ascending order. Thus, for two sample sets X1, X, .. X,

and Y7, Y5, ..Y,, the empirical distributions are:

P

0 z< X,

Sn($)=< ,—Z— XkSlU<Xk+1 k=1,2,.,n-1

1 z>2X,
(E.2)

0 z<Y;

Sm($)=< % YkaC<Yk+1 k=1,2,.,m—-1

\ 1 z2>Y,
where £ is an index that runs through the sequence of data points in the sample sets. These
cumulative distributions are really proportions that define the fraction of observations that
are less than or equal to the current x. Thus, if three of ten observations are less than or
equal to some z in the data set then the value for S(z) is 0.3. The two-sided KS statistic

is then the maximum of the absolute difference between these two empirical cumulative

distributions (Gibbons and Chakraborti 1992).
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The way these two cumulative distributions are compared may not seem obvious. You
cannot simply define each distribution and subtract each corresponding element. Instead,
the index k for a particular distribution, say Sy, (z), is only advanced when the current X}, is
less than or equal to the current Y. Otherwise, the index for S, (z) remains constant (i.e.,
it is evaluated at the same X) until Y} is greater than Xj. To illustrate this, consider the
sample set X =1,2,6 and Y = 3,7,8. In this case, the first two elements of the array S,(x)
would be evaluated using 1 and 2 and the first two elements of the array S,,(x) would be
evaluated at 3 and 3. On the third step, 6 is greater than 3 so S, (z) is evaluated again at 2
and Sp,(x) advances and gets evaluated at 7. The process continues until there are no more
elements to evaluate in the set of observations. Once the new (“stretched”) cumulative

distributions are obtained, the KS statistic can be calculated with equation E.1.

E.2.2 Kolmogorov-Smirnov Probability Distribution

Now that the D statistic has been obtained, it is necessary to determine whether it is
significant or not. In other words, is the difference between the cumulative distributions
only due to random variation in the data (i.e., it is not significant) or to the fact that the
distributions are different? To determine this, a probability distribution function is needed.
The KS function depends on the number of observations ( which is related to the degrees
of freedom). For the case where n and m are not equal, an effective number of observations

is defined as follows:
nm

= E.3
€ n—+m ( )

otherwise N = N = n = m. The probability (i.e., “p-value”) that a random value from

the KS distribution is greater than the observed D statistic is given by

VNe+0.12+ %2
P(D > Dobserved) - QKS \/]—V— <D (E4)
€
where Qks(\) is a monotonic function defined as
o0
Qxrs\) = 22(_1)j—1e—2j2)\2 (E.5)

J=1
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The index j is arbitrary and is not related to the number of observations. In practice, the
sum cannot be performed to infinity and there are numerical considerations for convergence.
The stopping criteria recommended in Numerical Recipes in C is to stop whenever the new
term in the sum is .001 of the previous term in the sum or when the new sum is 1E-8 of

the previous sum Press et al..

Example

Consider the data set obtained from the following equation:
y' =2z + 3+ 10¢ (E.6)

where ¢ is random error from a unit normal distribution. The data is essentially a line with

some additive noise as illustrated in figure E.1. Now let the second set of data be the model
y=2x+3 (E.7)

This line is plotted on top of the noisy data in figure E.1. With these two data sets, it is
expected that the KS statistic should be small and that the probability that a value from
the KS distribution is greater than the observed statistic should be high (close to one). This
would lead to the inference that the differences between the cumulative distributions of the
two data sets is not significant and due only to random variation (i.e. the noise introduced).
Using an IDL version of the algorithm suggested in Numerical Recipes, the two-sided KS
statistic and probability (p-value) are D = 0.06 and p = 0.992, respectively. As expected,
the statistic and probability values indicate that on the basis of this test, the model and

the data have the same distribution. In other words, the model fits the data well.

E.2.3 Kolmogorov-Smirnov Regression and ISAC

The simple example in the previous section demonstrated that when a model fits the data

well, the KS statistic is small and the p-value is close to one. Thus, a logical extension of KS

234



200

150

50

LA S O L B B B L N S N B

I A SR S S ST SN BT RAT S

o
o

Figure E.1: Noisy data and model line plot

statistics is to implement it as a goodness-of-fit test in a regression algorithm. Ideally, such
an algorithm would select the regression coefficients so that the KS statistic is minimized
or the p-value maximized. This is not how the KS statistic is implemented in ISAC.
Instead, ISAC builds the scatter plot of n observed radiance pixels (y,x1) vs. the estimated
surface radiance (xpx1) and uses the KS statistic to find the points that have a distribution
that is most like the Gaussian distribution. Thus, instead of comparing two data-derived
cumulative distributions, ISAC compares one data-derived distribution with an “exact”
analytical distribution. Actually, this is a very common implementation of the KS statistic.
Many statistical software packages implement it as a test for normality by comparing the
data and Gaussian cumulative distributions.

For any given bin Az in the scatter plot, there will be a vertical spread Ay in the
observations that is due to several sources of variation. Johnson and Young (1998) point
out three sources: (1) surface emissivity variation, (2) surface temperature variation in

the finite Az bin, and (3) sensor noise fluctuations. Another potentially influential source
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of variation is the atmosphere, particularly over wavelengths were water vapor absorption
is present. The amount of variation introduced by atmospheric effects depends on the
spatial heterogeneity of the atmosphere over the scene. However, one of the fundamental
assumptions of the ISAC algorithm is that the atmosphere is stationary. Therefore, this
error source is ignored. Of the other sources, the surface temperature variation is the easiest
to compensate. For a spectral band £ € 1...p (where p is the number of bands), an ordinary
least-squares regression may be done to estimate the slope b; and y-intercept by of the n
points. These are estimates of 7, and L,, that include a bias due to errors in the surface

temperature estimates. Each observation ¢ € 1...n is transformed to
Yi = yi — (bo + brzs) (E.8)

This removes the general linear trend of the scatter plot and the mean signal level i of each
Az bin. Thus, only variations due to sensor noise and emissivity remain (some comments
and interpretations on this transformation are given in Section E.3). The emissivity vari-
ation is minimal if only the points at the top of the scatter plot are considered. In that
case, the distribution of the topmost points should follow the distribution of the sensor
noise. In ISAC, the noise at each band j is assumed to be Gaussian with standard devia-
tion o = NESR. The development is not restricted to spectrally constant NESR, but it is
assumed to be so for simplicity.

Once the data are transformed, the observations are divided into N, bins, each having
N points. Each bin has a distribution of values y; that can be represented by a histogram.
The goal is to use the points with the largest y] values in the analysis. These points lie
on the top part of the cumulative distribution as shown in Figure E.2. ISACkgs starts
with the topmost pixel and builds a cumulative distribution pixel-by-pixel. At each step,
the cumulative distribution of the observations is compared to the Gaussian probability

distribution due to the noise. The Gaussian distribution is evaluated with the standardized
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variable

zZi = -(-y;—;iy—(/ﬁ (Eg)

where /g is the smallest value in the selected set. The cumulative distribution of the data is
based on the range between y; and max(y}) and is calculated as shown in eq. (E.2). Because
y is positive semi-definite, the z values correspond to only half of the Gaussian distribution
(i.e., the only points considered are those with positive values, which make up only half of

the distribution). Therefore, the actual distribution the data is compared to is
z 2
Pz)=—-14+— [ e 74t (E.10)

where the -1 term is needed to set the probability range between 0 and 1. The D statistic is
calculated at each step and the p-value recorded. As mentioned previously, the D statistic
is not simply the maximum difference between the two distributions. The differences must

be computed one at a time. Alternatively,
D = max( [ max |Ps(2;) — Sp(2)| , max |Pu(z;) — Sn(zi41)] ] ) (E.11)

where the absolute value operators are used because we are interested in deviations away
from the normal distribution regardless of sign.

The calculation of the KS probability value is given in eq. (E.4), which is different than
the published computation for ISAC. In this research, the ISACks method was implemented
with eq. (E.4). Once all of the pixels in the bin have been used, the list of p-values is checked,
and the set of pixels that lead to the largest p-value is selected. That is, the set of topmost
pixels that resulted in the lowest D statistic are the pixels at the top of the scatter with a
distribution close to the sensor noise distribution. The process is repeated for the rest of
the bins (V) in band k. This results in N, p-values, which are then used as weights in a

least-squares regression of the points that contributed to the maximum p-values.
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Figure E.2: (a) Histogram and (b) cumulative distribution for a hypothetical bin. The
observations of interest are at the top of the distribution.

E.3 Normalized Regression

Like the Kolmogorov-Smirnov approach, the “normalized” regression attempts to find the
pixels that are most likely associated with blackbody targets and have a distribution most
like the normally-distributed sensor noise. However, NR avoids some of the “pitfalls” that
might be encountered with KS. These include: (1) unnecessary bias introduced when least-
squares parameters are correct, (2) errors due to atmospheric variations or spurious sensor
response, and (3) ambiguities associated with the KS statistic. The discussion that follows
expounds on these issues and develops the framework upon which NR is built.

The KS algorithm assumes that the topmost pixels will always lead to a better solution.
By selecting the topmost pixels, KS introduces a bias in the least-squares estimate to
compensate for observations that are due to reflective targets. However, if all of the points
in a bin Az come from blackbody targets, then only selecting the topmost points introduces
an unnecessary (and erroneous!) bias. That is, in this simple case all of the variation is
due to sensor noise and the regression line should be forced to fit through the center of the

distribution Ay. Therefore, we need a method that will not bias the least-squares estimates
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but at the same time not be affected by the presence of pixels that are not associated with
blackbody targets.

Another implication of selecting only the topmost pixels is that, in certain circum-
stances, these pixels may actually lead to more error in the estimate of the regression
parameters. Figure E.3(a) shows a scatter plot for SEBASS band 46 (approximately 10
pm) and a standard least-squares fit through the data. The data are observations from one
of the ARM site collects (see Section E.4) that include calibration and emissivity panels.
Figure E.3(b) shows the “transformed” data obtained with eq. (E.8). The transformation is
simply a calculation of the residuals between the observed values and the estimated values
from the regression model. The residuals are variations unezplained by the model. There-
fore, residuals will include variations due to sensor noise, emissivity, and atmosphere. In
addition, the sensor may have spurious responses that do not fall under the typical Gaus-
sian distribution due to the NESR. Figure E.3 clearly shows that the errors may actually
be larger at the top of the scatter plot. One final comment should be made about the se-
lection of the topmost pixels. By doing this, we are concentrating on the tail of the normal
distribution, which is precisely where the KS statistic is least robust (Press et al. 1992).
Other statistics and tests, such as the Anderson-Darling statistic or the Wilks-Shapiro test
may actually be a better measure of normality.

While KS assigns a weight to a particular bin based on the computed p-value from
the KS distribution, NR attempts to keep only those pixels that appear to be normally
distributed with standard deviation equal to the NESR. Figure E.4(a) shows a histogram
for band 46 in the SEBASS example. While the distribution appears to be normal, it
is “heavier-tailed” than it ought to be. The normal plot shown in Figure E.4(b) clearly
identifies the pixels that deviate from normality. The excursion of residuals at the top
of the normal plot can easily be detected and these pixels can be rejected automatically.
Thus, only the pixels that have a variation on the order of the NESR are maintained. The

straight line shown in the normal plot may be computed several ways. An easy approach
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Figure E.3: Band 46 (a) Scatter plot with least-squares fit line and (b) residual error between
the observed and the fitted values.
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is to do a standard least-squares regression of the residuals in the normal plot. Any points
that are 30 away from the regression line are deemed to be outliers. While this may not
be optimal, it avoids the calculation of a statistic and the implementation of a probability
distribution for testing normality. The algorithm is also faster because the statistic and
probability values do not have to be calculated iteratively as is done in KS. (The run time
appears to an issue with the KS approach; SITAC recommends the use of only 10% of the
pixels in a particular bin. Unfortunately, this introduces large biased errors when the true
distribution is closer to the standard regression line, in which case all of the pixels should
be used in the calculation). Once the outliers have been removed, a standard least-squares

regression is done again and the 7 and L,, estimates recorded.

E.4 A Qualitative Validation

The following results were obtained from SEBASS data collected over the ARM site in
Oklahoma on June 27%?, 1997. These data were distributed with the SITAC algorithms as a
test case. Flight 8, Shot 41 was collected at 0835 local standard time (LST). The altitude was
10,000 ft above sea level (ASL). The analysis was done over a segment of the image, which
was a region of interest extracted from the original data.cube in order to speed up processing
time. The segment included the calibration panels that were placed at the ARM site. These
segments were 70 samples across by 80 lines down and included all 128 spectral bands. A
look at the spectral profiles in ENVI showed that there were unusual variations about the
Planck spectrum. This “noise” may have been due to the present state of the atmosphere
or to band-to-band sensitivity variations. In theory, the unscaled parameters cannot be
used for radiometric calibration and accurate atmospheric compensation. Nevertheless,
in the absence of scaled parameters, they may provide a reasonable estimate of surface
temperature and emissivity. To do this, ISAC was coupled with the TES algorithm. One
of the limitations of ISAC is that it does not provide an estimate of downwelled radiance.
However, in certain cases, the upwelled radiance may serve as a reasonable estimate of Lg,

as was done in this exercise. The ARM site calibration panel region is shown in Figure E.5.
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Figure E.5: (a) Temperature and (b) emissivity (band 9) maps of the ARM calibration
panels. The images were generated from coupling ISACkg and TES.

Figure E.6 shows the results for the estimation of unscaled transmission and upwelled
radiance with the KS algorithm. The estimates were obtained by selecting 10% of the pixels
in each bin. The SITAC implementation allows “filtering” of the data via the maximum-hit
method. The results shown in Figure E.6 demonstrate that the filtering can have a sig-
nificant effect on the parameter estimates. In general, however, the unscaled atmospheric
parameters match the MODTRAN spectra relatively well. ISAC overestimates the trans-
mission and underestimates the upwelled radiance near the reference wavelength (i.e., band
46). This difference occurs mostly between 8.3 ym and 11.7 um and is not uniform. This
is a characteristic of the unscaled parameters because they are based on estimated surface
temperatures, which are the sensor brightness temperatures at these wavelengths. Thus,
ISAC will typically overestimate the transmission. Scaling the transmission by 7(\,) should
yield a more reasonable result. The same effects are seen in the upwelled radiance as well,
except reversed. The MODTRAN results were obtained with a radiosonde profile acquired
in conjunction with Flight 8. The TES surface temperature retrievals for panel E1 were
297.95 and 295.98 °K for the no-filter and filter cases, respectively. The emissivity retrievals
are shown in Figure E.7 and compared to a laboratory measurement of the E1 panel emissiv-
ity. The filtered KS retrieval is much smoother than the nonfiltered result. Both retrievals

have a constant bias of about 0.09 emissivity units. About 0.02 emissivity units are due to

242



600 VWM

400}

Transmission

200]

Upwelled Radiance (uf)

9 6 11 12 13
Wovelength (um)

(a) (b)

Figure E.6: ISACks (a) transmission and (b) upwelled radiance results for no-filter (black)
and filter (red) cases. The green curve is MODTRAN output with radiosonde data. 100
bins were used with NESR=0.7 uf (~ 30)
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bias in the TES-MMD regression line. The rest is probably due to errors in the downwelled
radiance estimate. Nevertheless, the spectral shape of the curves match relatively well,
particularly at the longer wavelengths. It appears that for this case, the errors in the ISAC
transmission compensated for the errors in the upwelled radiance estimate. The results
also show that TES is correctly accounting for the spectral structure originating from the
downwelled radiance.

Figure E.8 shows the retrieved atmospheric spectra with the NR and MH approaches.
The MH transmission estimates have a steep downward slope, which is manifested in the
upwelled radiance as a steep upward slope. The NR solution was obtained using all pixels
(except for identified outliers) and setting 0 = NESR. Points beyond the 30 variation away
from the normal plot were rejected. Panel E1 temperature estimates were 297.87 and 298.49
°K for NR and MH, respectively. The emissivity retrievals are shown in Figure E.9. The
NR result is very similar in shape, but has a bias of about 0.09. The same error sources
affecting KS biased NR and MH estimates. Most notably, however, is the steep downward
slope with increasing wavelength in the MH retrieved spectrum. This is due to errors in
the transmission and upwelled radiance estimates. Increasing AT to 5 °K removed some of
this effect.
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Figure E.7: ISAC and TES emissivity retrievals for panel E1 obtained with ISACkgs using
filter (red) and no-filter (black) settings. The green curve is the emissivity measured at the
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Figure E.8: ISACng and ISACyp (a) transmission and (b) upwelled radiance results for
NR (black) and MH (red) cases. The green curve is MODTRAN output with radiosonde
data. The NESR was set to 0.25 uf (10) in NR. MH used AT = 3°K
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Figure E.9: ISACxgr and ISACyyg TES emissivity retrievals for panel E1 obtained with NR
(black) and MH (red) cases. The green curve is the emissivity measured at the laboratory

Finally, Figure E.10 shows a comparison of the transmission spectra retrievals from KS
and NR. They are nearly identical, as should be expected. The KS results (red) were ob-
tained with prefiltering enabled. This prefilter step is a form of automated outlier rejection.
The fact that the spectra math so well indicates that the outlier-rejection scheme used in
NR correctly identifies the pixels that are not blackbodies, In general, NR is computation-
ally more efficient than KS because it does not need to iterate on an “optimal” selection of
points.

Close inspection of the atmospheric and emissivity spectra retrievals and the MOD-
TRAN and laboratory measurements will show that there is a spectral registration error in
the SEBASS-retrieved spectra, particularly at the lower wavelengths. This appears to be
due to calibration errors for the ARM site collects. Because of these calibration errors, the
CCR inverse model approach could not be implemented with this image set. This is because
the CCR inverse model relies heavily on spectral features to characterize the atmosphere

and separate atmospheric and surface emission effects. The approach implicitly assumes
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Figure E.10: Transmission spectra estimates from ISACy R (black) and ISACks (red).

that the sensor is spectrally calibrated, and that the MODTRAN model spectroscopy is
accurate.

The qualitative analysis presented in this section is far from rigorous. While extensive
ground truth measurements were collected, none of them seemed to be reliable enough or
exactly coincident with the available imagery. However, the close agreement between the
different implementations provide some assurance that the algorithms were implemented
correctly. The analysis illustrates that the ISAC algorithm works as it was intended. It is a
relatively simple and fast approach to estimating the effects of the atmosphere (particularly
the MH and NR least-squares methods). However, it is not radiometrically accurate unless
some knowledge of the atmosphere exists (e.g., MODTRAN runs) that can be used to scale
the estimated parameters. The use of unscaled parameters lead to a bias of about 0.07 in
emissivity estimates. This error in emissivity has the potential of introducing temperature

biases on the order of 2-3 °K.
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